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DISCUSSION

INTRODUCTION

The Atlanta 30' x 60' quadrangle is located in northern Georgia and is roughly 
centered on the city of Atlanta. The northwestern corner of the quadrangle is in the 
Valley and Ridge province, and the rest of the quadrangle is in the Piedmont-Blue 
Ridge province (fig. 1; Crawford and others, 1999). Two assemblages of rock crop 
out in the Atlanta quadrangle, the parautochthonous Laurentian continental margin 
assemblage and the allochthonous oceanic assemblage (hereafter the 
parautochthonous and allochthonous assemblages, respectively). The allochthonous 
assemblage was obducted upon the parautochthonous assemblage during Middle 
through Late Ordovician time, so that the assemblages are separated by what were 
once nearly horizontal thrust fault boundaries that were folded after Early Silurian 
time. During Middle Silurian to Permian time the folded thrust stacks were in turn 
separated by a dextral wrench fault system similar to the San Andreas fault system in 
California (Crowell, 1962, 1974; Dibblee, 1977) and other large wrench fault 
systems (for example, Wilcox and others, 1973). Folding accompanied wrench 
faulting or strike-slip faulting, and in many places this faulting was accompanied by 
thrust/high-angle reverse faulting that cut through the Ordovician thrust system.

Although saprolite allows detailed mapping in the Piedmont-Blue Ridge in Georgia, 
contacts, including faults, are rarely exposed, so details of the nature of these contacts 
are only locally known. Therefore, in many places even with detailed mapping and 
even where exposures are good, the early thrust faults are difficult to separate from 
the later wrench/strike-slip related thrust/high-angle reverse faults. Every fault contact 
on the map has some kind of mylonite or cataclastic rock along it. Mylonitic rocks 
are, for the most part, continuous along most faults in and northwest of the Brevard 
fault zone. Southeast of the fault zone mylonite only has been observed in a few 
widely scattered localities along most faults because of poor exposure and because 
streams with alluvial deposits along them tend to follow contacts, faults, and fault 
zones. Faults are extremely difficult to map through the Bill Arp Formation (Oeb) 
because the faults form less competent mylonites from the pelites in the Bill Arp and 
these generally weather more than the unfaulted rocks around them.

MAP CONSTRUCTION

The geologic map of the Atlanta quadrangle was compiled from our geologic maps 
of the 32 7.5-min quadrangles that it encompasses. Most of these quadrangles were 
mapped in detail, but because of lack of exposures detailed maps in the city of Atlanta 
lack the control of most suburban and rural quadrangles. Approximately 70 percent of 
the Atlanta quadrangle can be described as urban-suburban, with rapid growth taking 
place in most other areas. Geologic mapping was done intermittently between April 
1963 and October 1976, and semi-continuously between October 1976 and January 
1993. Thus we were able to take advantage of the great growth of the Atlanta 
metropolitan area, where new roads and other construction provided an increasing 
percentage of exposure that was in many places covered after construction was 
completed. All of the mapping compiled into the geologic map was done by the 
authors, except as follows. We extensively field checked the geologic map of the 
Stone Mountain-Lithonia district by Herrmann (1954) and modified it as new 
exposures became available; similarly, because of the many new exposures since 
1965, we have modified the geologic map of the Brevard fault zone near Atlanta by 
Higgins (1968), maps of the Brevard fault zone and Deep Creek structure southwest 
of Atlanta by J.H. Medlin and T.J. Crawford (unpub. data), the map of the Austell-
Frolona anticlinorium by Medlin and Crawford (1973), the map of the Kellytown 
quadrangle by Jordan (1974), and the geologic map of the Kennesaw Mountain-
Sweat Mountain area by Hurst (1952). We did not use the geologic map of the 
Greater Atlanta region by McConnell and Abrams (1984) because much of our own 
mapping was used in that compilation and much of our mapping has since been 
modified and made considerably more detailed.

Geologic Cross Sections
The geologic cross sections for the Atlanta quadrangle are admissible (Elliott, 1983) 

but not balanced. The structures drawn on the sections are like those that can be seen 
in the geologic map, in roadcuts, railroad cuts, quarries, and natural outcrops.  The 
cross sections cannot be balanced because (1) we don’t know original thicknesses of 
the units, most of which are at metamorphic grades higher than greenschist facies. 
Thicknesses have been distorted during faulting, folding, and metamorphism. (2) 
Nowhere does a complete undeformed section of rock exists. (3) The nearest pin is 
located in the foreland in the Cumberland Plateau province, more than 40 km across 
strike from the Emerson fault at the northern-northwestern edge of the Piedmont-
Blue Ridge. (4) The sections cross wrench fault zones with probable large 
displacements such as the Dahlonega and Brevard fault zones. The sections 
incorporate faults with both strike-slip and normal displacements in which the 
magnitude of the displacements is unknown. More important than all these reasons, 
however, is the fact that there were at least two periods of metamorphism and 
deformation during the Paleozoic, and sections cannot be legitimately balanced where 
rocks have been deformed during two different metamorphic and (or) deformational 
events. The topographic sections for the geologic sections appear nearly flat at 
1:100,000 scale, because relief in the Atlanta quadrangle (excluding the 
monadnocks—Kennesaw  Mountain, Lost Mountain, and Pine Mountain in Cobb 
County; and Stone Mountain and Pine Mountain in DeKalb County) is very low; 
maximum relief is about 80 m. The interpretations presented in this map supersede 
those in Higgins and others (1988). We have divided the rocks in the Atlanta 
quadrangle in a different manner for this map than for plate 1 in Higgins and others 
(1988) because our continued research has modified our concepts of how the rocks 
should be grouped, their distribution, and how they arrived in their present structural 
positions. However, more detailed mapping has only reinforced our earlier conclusion 
that there is no scientific basis for dividing the Piedmont-Blue Ridge in Georgia into 
“belts” or into separate Piedmont and Blue Ridge provinces because the same rocks 
are found throughout, except for the area east of the “central Piedmont suture” of 
Hatcher and others (1990) (area underlain by Little River allochthon of Higgins and 
others, 1988) (fig. 1).
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CHRONOLOGY
Until recently, fossils had not been found in any of the rocks southeast of the 

Emerson fault (formerly part of the Cartersville fault) or east of the Carters Dam fault 
(formerly part of the Cartersville fault or the Great Smoky fault) in Georgia (fig. 2).  
Therefore the ages of units are based on their relation to and (or) correlation with 
fossiliferous rocks of the Valley and Ridge pro-vince northwest of the Emerson fault 
and west of the Carters Dam fault and their relation to the Middle(?) to Late 
Proterozoic Corbin Metagranite (ZYc) and to the Early Silurian Austell Gneiss (Sa).

VALLEY AND RIDGE PROVINCE

The age, stratigraphic relations, and structural relations of four units in the Valley 
and Ridge province in Georgia have direct bearing on age assignments in the 
Piedmont and Blue Ridge.  Two of these units, the Middle Ordovician Rockmart Slate 
(Or) and the Lower Mississippian Fort Payne Chert (Mf) crop out in the Atlanta 30’ x 
60’ quadrangle. The other two, the Lower and Middle Devonian Frog Mountain 
Sandstone and the Middle Ordovician Tellico Formation, crop out a short distance to 
the north in the Cartersville 30’ x 60’ quadrangle.

Middle Ordovician Rockmart Slate
Throughout the Appalachian Valley and Ridge province Middle Ordovician dark 

slates are found resting in sharp contact upon Middle Ordovician shelf carbonate units 
that are the same age within a few graptolite zones (Rodgers, 1968). In Georgia one 
of the dark slates is the Rockmart Slate (Or) (Cressler, 1970), which is only exposed in 
western Georgia and in the vicinity of the recess in the Piedmont-Blue Ridge part of 
the orogen at Emerson, southeast of Cartersville (fig. 2). Elsewhere in Georgia 
(Cressler, 1970, 1974; Cressler and others, 1979; Georgia Geological Survey, 1976), 
southern Tennessee (Hardeman and others, 1966), and Alabama (Osborne and 
others, 1989), the Middle Ordovician dark slate interval is represented by the Athens 
Shale. The age of these dark graptolitic shales and slates is critical to establishing the 
time of beginning of the convergence that produced an upper Middle Ordovician to 
Lower Silurian clastic wedge and foreland basin sequence and what has been called 
the “Taconic” or “Taconian orogeny” (for example, King, 1951; Rodgers, 1967, 
1970). Before deposition of the dark pelites, from the Early Cambrian to the Middle 
Ordovician, the rocks now beneath the dark pelites were deposited on an extensive 
carbonate shelf.

The Rockmart Slate (Or), which crops out in the northwestern corner of the Atlanta 
quadrangle, is a dark-gray to nearly black, tan- to yellowish-brown- to pink-
weathering, fine-grained, generally calcareous slate, about 90 m thick, but without 
marker beds.  It has well-developed folds and cleavages and a Middle Ordovician 
graptolite fauna (Cressler, 1970; Bergström, 1973; Finney, 1980). The Rockmart (Or) 
rests in sharp contact upon the regional angular unconformity at the top of the Upper 
Cambrian to Middle(?) Ordovician Knox Group (Cressler, 1970; Mussman and Read, 
1986) and upon the disconformity at the top of the warm, shallow-water Middle 
Ordovician Lenoir Limestone. The Lenoir is very nearly the same age as the 
Rockmart.

Dewey and others (1986, p. 5–9, figs. 2 and 4) formulated a model for a 
generalized orogen based on several major orogens, but especially the 
Alpine/Himalayan convergent system. One of the orogenic features in their model is 
a lithospheric flexure (“peripheral bulge”) that occurs in the foreland near its border 
with the more active parts of the developing orogen (hinterland).  Crampton and Allen 
(1995) call this peripheral bulge a “forebulge,” and the unconformity that results from 
erosion of the bulged-up rocks a “forebulge unconformity.” The foreland or peripheral 
bulge is in turn overridden and buried by sediments, thrust belts, and molasse basins 
from the adjacent hinterland.  The Knox unconformity probably resulted from early 
outward migration of the peripheral bulge (Dewey and others, 1986) or forebulge 
(Crampton and Allen, 1995) of the Appalachian orogen.

We interpret the contact between the Rockmart and the underlying rocks of the 
carbonate shelf sequence to be a thrust fault in many places, with the Rockmart 
having been thrust, or having slid, upon the Middle Ordovician Knox unconformity 
upon which it was deposited. The Rockmart (Or) is confined to the western side of the 
bend in the orogen at Cartersville, Ga. Conodont data indicate that the base of the 
Rockmart is older than the base of its near counterpart, the Athens Shale, and that 
the Rockmart was probably deposited farther from the craton than the Athens 
(Bergström, 1973; Finney, 1980). Higgins and others (1988) suggested that the 
Rockmart Slate may have had a more complicated history than the Athens Shale. 
Elsewhere in the Appalachian orogen, dark, graptolitic Middle Ordovician pelites have 
been interpreted to have been deposited upon Middle Ordovician shelf carbonates 
when the shelf sank (Rodgers, 1968; Stanley and Ratcliffe, 1985), and Chowns and 
Renner (1989) have interpreted the Rockmart Slate this way. We agree with that 
interpretation, but we think the evidence (summarized by Higgins and others, 1988) is 
strong that the lower contact of the Rockmart is a thrust fault in many places on 
which the Rockmart has been detached from its site of deposition and thrust or glided 
upon the unconformity upon which it was deposited.

Regardless of how it arrived, the position of the Rockmart Slate on top of the 
Lenoir Limestone indicates that slope reversal was taking place in the Georgia 
Appalachians during the Middle Ordovician. The Rockmart and the overlying Tellico 
Formation, which contains clasts of Rockmart Slate, were folded and metamorphosed 
under lowermost greenschist facies conditions that produced a 2M muscovite and 
chlorite assemblage (Renner, 1987). This deformation and metamorphism occurred 
before deposition of the unconformably overlying Lower and Middle Devonian Frog 
Mountain Sandstone, which is consolidated but apparently unmetamorphosed 
(Cressler, 1970; Sibley, 1983).

Middle Ordovician Tellico Formation
In western Georgia the Middle Ordovician Rockmart Slate (Or) is overlain 

(conformably?, paraconformably?) by the Middle Ordovician Tellico Formation, 
exposed a few kilometers north of the Atlanta quadrangle in the southern part of the 
Cartersville 30’ x 60’ quadrangle (fig. 2). The Tellico is a relatively thin (~90 m thick) 
unit composed of low-grade metamorphosed siltstone, feldspathic sandstone, and 
slate with lenses of polymictic conglomerate. The lenses of conglomerate are 
composed of angular to subrounded fragments, chips, pebbles, and cobbles of 
limestone, dolomite, slate, sandstone, chert, and quartzite in a matrix of feldspathic 
sandstone, sandy slate, graywacke, clay slate, or, rarely, dolomite or limestone. Some 
of the quartzite clasts in the conglomerates were metamorphosed before deposition, 
and some of the slate clasts lithologically match the underlying Rockmart Slate 
(Cressler, 1970; Chowns and McKinney, 1980; Sibley, 1983; Higgins and others, 
1988). Cressler (1970) suggested that the slate clasts are reworked Rockmart. 
Carbonate clasts lithologically match rocks of the carbonate shelf sequence below the 
Rockmart (Cressler, 1970, p. 25). Cressler (1970, p. 30) and Higgins and others 
(1988, p. 81) interpreted the Tellico in western Georgia to represent depositional 
equivalents of the Tellico Formation and overlying Chota Formation (Neuman, 1955) 
in southeastern Tennessee.

Higgins and others (1988, p. 81–82) summarized evidence that the Tellico 
Formation was derived from a source to the east or southeast rather than from the 
craton or the carbonate shelf.  An eastern or southeastern source is indicated (1) by 
the size and angularity of some of the noncarbonate clasts in the conglomerates, (2) 
by the presence of clasts that were metamorphosed before deposition, (3) by the fact 
that grain size in sandstone beds increases from west to east and bedding thickens 
toward the east, and (4) by the fact that the conglomerate lenses in southeasternmost 
outcrops are thickest, have the widest lateral extent, and contain the coarsest and 
least rounded pebbles and cobbles.  Cressler (1970, p. 30) described the Tellico as 
“an eastward thickening wedge of clastics.”

The age and structural and (or) stratigraphic position of the Rockmart Slate (Or) and 
Tellico conglomerate are interpreted to indicate that orogeny was taking place 
oceanward (present eastward-southeastward) from the Cambrian and Ordovician 
carbonate shelf during the Middle Ordovician.

Devonian Frog Mountain Sandstone
Not far northwest of the northwestern corner of the Atlanta quadrangle, the rocks 

of the carbonate shelf and the Rockmart Slate (Or) and Tellico Formation are overlain 
unconformably by the Devonian Frog Mountain Sandstone (Neunan and Lipps, 1968; 
Cressler, 1970; Sibley, 1983), a coarse-grained, proximal facies of the Armuchee 
Chert (Cressler, 1970). The Armuchee has a warm, shallow-water shelly fauna that 
suggests it was deposited in quiet conditions and this was probably also the 
depositional environment of the Frog Mountain Sandstone although it is less 
fossiliferous than the Armuchee. This quiet depositional environment suggests that 
either the event that was responsible for placing the Rockmart Slate upon the shelf 
rocks had ended by the Early Devonian or, more likely, that the event took place 
farther east-southeast of where the Frog Mountain was deposited.

Lower Mississippian Fort Payne Chert
In the western part of the recess at Cartersville, including the northwestern corner 

of the Atlanta quadrangle, the Middle Ordovician Rockmart Slate (Or) is 
unconformably overlain by the Lower Mississippian Fort Payne Chert (Mf). Near the 
Emerson fault, the Fort Payne is a breccia composed of hard, angular fragments of 
light- to medium-gray recrystallized chert and siltstone mixed with softer, generally 
smaller and more rounded, red, white, and tan fragments of similar material, all 
cemented by silica and iron oxide to locally form boxwork (Cressler, 1970, p. 41–42). 
A warm, shallow-water fauna composed of crinoid stem plates, horn corals, 

brachiopods, pelecypods, and bryozoan indicate that the chert is Osagean (Cressler, 
1970, p. 42–44). Its age sets the time of brecciation of the chert by movement along 
the Emerson fault at this point as younger than Early Mississippian.

PIEDMONT-BLUE RIDGE PROVINCE

Two units in the Piedmont-Blue Ridge province in northern Georgia have a direct 
bearing on age assignments of units in the Atlanta quadrangle. These units are the 
Middle(?) to Late Proterozoic Corbin Metagranite (ZYc) (Higgins and others, 1996a; 
Crawford and others, 1999) of the Allatoona Complex of basement rocks and the 
Early Silurian Austell Gneiss (Sa) (Higgins and others, 1997). In addition, five 
Carboniferous plutons can be used to infer minimum ages of stratigraphic units, folds, 
foliation, and faults that they intrude. However, none of the five plutons is sufficiently 
well dated to be used to definitively set age limits.

Middle(?) to Late Proterozoic Corbin Metagranite
In the western part of the Piedmont-Blue Ridge in northern Georgia, and at least as 

far west as the Mulberry Rock structure in the northwestern corner of the Atlanta 
quadrangle in western Georgia, basement is represented by the Allatoona Complex.  
This complex is composed of the Middle(?) to Late Proterozoic Corbin Metagranite 
(ZYc) and two units intruded by the Corbin, the Red Top Mountain and Rowland 
Spring Formations. The Red Top Mountain and the Rowland Spring occur as large 
xenoliths and roof pendants in the Corbin around Lake Allatoona in the Cartersville 
30’ x 60’ quadrangle, but are not mapped in the Atlanta quadrangle.

The Corbin Metagranite (ZYc) has been dated by two methods.  Dallmeyer (1975, 
p. 1740) reported preliminary Middle Protero- zoic U-Pb zircon ages obtained from 
Odom and others (1973) and Rb-Sr whole-rock isochron ages in excess of 1 Ga. 
Dallmeyer (1975, p. 1740–1743) also reported undisturbed 40Ar/39Ar release 
spectra with total-gas ages of 735 Ma and 732 Ma, both ±15 Ma, for the Corbin and 
suggested that “the biotite ages date the time of cooling below temperatures required 
for argon retention following Grenville metamorphism” (p. 1740). A zircon sample 
from the Corbin exposed along the southern shore of Lake Allatoona in Red Top 
Mountain State Park yielded a U-Pb age of 1.1 Ga (Crawford and others, 1999). 
However, the Corbin Metagranite (ZYc) is a complex rock, the dated zircons may be 
inherited detrital zircons, and previous interpretations that it has been 
metamorphosed to pyroxene-granulite facies are probably incorrect (Higgins and 
others, 1996b; Kath and others, 1996). Nevertheless, the Corbin must be either Late 
or Middle Proterozoic, and its age can therefore be used to place some limits on the 
age of rocks it has intruded, rocks it has supplied sediment to, and rocks it has been 
faulted upon or against. We have used the Middle(?) to Late Proterozoic age of the 
Corbin Metagranite to assign ages of Late Proterozoic as the probable older age for 
most of the non-plutonic rocks in the Atlanta, Athens, and Cartersville quadrangles.

Early Silurian Austell Gneiss
Many of the chronologic assignments in the Piedmont-Blue Ridge in Georgia 

depend upon the age of the Austell Gneiss (Sa), a gray, medium- to coarse-grained, 
strongly foliated, biotite-(±muscovite)-oligoclase-quartz-microcline (quartz monzonite) 
orthogneiss that crops out in the northeastern end of the Austell-Frolona anticlinorium 
on the northwestern side of the Brevard fault zone in the Atlanta quadrangle. In many 
outcrops the Austell is a mylonite, with textures ranging from protomylonite to 
mylonite gneiss. Locally, the Austell Gneiss contains microcline megacrysts, as long as 
4 cm, but more commonly 1 to 2 mm (Coleman and others, 1973; Crawford and 
Medlin, 1974) that make up 20 to 50 percent, but commonly 25 to 30 percent, of 
the rock. Accessory minerals include euhedral to subhedral grains of sphene and 
allanite as well as garnet, zircon, and opaques. Minerals of probable secondary origin 
include epidote, chlorite, and sericite. The chemical composition of the Austell Gneiss 
(Sa) (Higgins and others, 1997) is close to that of a minimum-melt (Tuttle and Bowen, 
1958).

Zircons from three localities in the Austell Gneiss (Sa) have been dated by the U-Pb-
Th method and yield data interpreted using a concordia plot to indicate an age of 
about 430 Ma (Higgins and others, 1997). In addition, six samples gave a Rb-Sr 
isochron age of about 430 Ma (Higgins and others, 1997).  We interpret the age of 
the Austell Gneiss to be about 430 Ma and to be the time of crystallization of the 
Austell from a granitic magma. The agreement between the age of the Austell Gneiss 
as determined by the two methods and the fact that isotope ratios indicate little 
contamination are considered to indicate that the age has not been reset during 
metamorphism.

The Austell Gneiss (Sa) has intruded the Bill Arp Formation (Oeb) and the Gothards 
Creek Gneiss (SYg) (Higgins and others, 1997, 1998). Austell Gneiss (Sa) can be seen 
to have intruded schist and metagraywacke of the Bill Arp Formation (Oeb) in lit-par-lit 
fashion at their contact along the northern fork of Little Bear Creek in the 
Campbellton quadrangle. Xenoliths of Bill Arp Formation schist (Oeb) in Austell 
Gneiss (Sa) can be seen in the roadcut along the left side of the east-bound lanes of 
Interstate 20 approximately 3.5 km west of the juncture of Interstate 20 with Georgia 
Highway 5. The contact between the Austell Gneiss (Sa) and Gothards Creek Gneiss 
(SYg) west and northwest of Austell, Ga., is a mixed zone of layered Gothards Creek 
Gneiss intruded in a lit-par-lit fashion by Austell Gneiss; this lit-par-lit intrusion can be 
seen in a pavement outcrop on the south bank of Sweetwater Creek about 60 m west 
of U.S. Highway 278 (Camp Creek Parkway) in the Austell quadrangle. So the Bill 
Arp (Oeb) and Gothards Creek (SYg) must be older than Early Silurian.  Moreover, if 
the Austell Gneiss (Sa) intruded the fault(s) that carried the allochthonous assemblage 
and placed it upon the parautochthonous assemblage, as appears to be the case, then 
the allochthonous assemblage and the fault must be older than Early Silurian.  
Because the Gothards Creek Gneiss (SYg) is completely bounded by faults it is 
unknown whether it belongs to the allochthonous or parautochthonous assemblage.

The Austell Gneiss (Sa) has been truncated along its southeastern side by the 
Chattahoochee fault (Crawford and Medlin, 1973; Hurst, 1973), along its 
northeastern side by the Olley Creek fault, and along its northern side by faults of the 
Oak Mountain fault zone. The Chattahoochee fault bounds the southeastern side 
(German, 1985, p. 15) of the Olley Creek fault zone (proposed here), which is 
bounded on the northwest by the Olley Creek fault, named for Olley Creek which it 
follows for several kilometers. Kinematic indicators, although sparse, indicate that the 
Olley Creek fault zone is a dextral strike-slip fault zone.  Because the strike-slip faults 
cut the Early Silurian Austell Gneiss (Sa), some of the strike-slip faulting must be 
younger than Early Silurian, but earlier strike-slip faulting is not precluded.

The major metamorphic event that changed the Austell (Sa) from a granite into a 
gneiss must have taken place during and (or) after the Early Silurian. The foliation in 
the Austell Gneiss (Sa) is the same foliation as that in its country rocks. The isoclinal 
folds in the foliation of the country rocks and the folding that produced the second 
early-fold set were probably established during the thrusting that emplaced the 
allochthonous assemblage upon the parautochthonous assemblage (see section on 
Folding). The second early-fold set was modified by folds of the en echelon set during 
strike-slip faulting. Therefore the foliation and second set of folds must be as young or 
younger than Early Silurian and the third set of folds and the wrench faulting that 
produced the third set of folds must be younger than Early Silurian.

Carboniferous Ben Hill and Palmetto Granites
The Ben Hill and Palmetto Granites (Cb and Cp, respectively), which have been 

tentatively dated as Carboniferous (about 325 Ma, but with large possibility of error), 
lack foliation, except near the Rivertown fault at the southeastern edge of the Brevard 
fault zone. The granites are interpreted to have been intruded during strike-slip 
faulting because they occur as retort-shaped plutons having tails that extend to the 
northeast along the Rivertown fault (Higgins and Atkins, 1981). Their shapes are 
interpreted to be the result of en echelon folding during dextral movement along the 
Brevard fault zone (Higgins and Atkins, 1981; Vauchez, 1987). En echelon folding is 
a type of folding that is commonly associated with strike-slip or wrench faulting 
(Wilcox and others, 1973; Dibblee, 1977; Little, 1992).
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DESCRIPTION OF MAP UNITS

Gossan (Holocene?)—Dark-brown, iron-rich, siliceous, porous-textured, 
weathering product of massive sulfide bodies. Found in fault zones in Ropes 
Creek Metabasalt (OZr), in mixed unit of the oceanic assemblage, and in sheared 
and altered rocks in fault zones, generally near magnetite quartzite

Diabase (Early Jurassic to Late Triassic)—Fine- to medium-grained, dark-gray to 
black augite diabase, locally containing small amounts of olivine, hypersthene, 
hornblende, magnetite, and pyrite (see Lester and Allen, 1950), in dikes generally 
5 to 30 m wide (width exaggerated on map; all dikes are shown at the same 
thickness). The diabase weathers to a dark-red clayey soil that contains spheroidal 
boulders with fresh rock inside an armoring, ocherous rind; the weathered rock in 
the boulders exfoliates like leaves on a head of cabbage

FAULT ROCKS—PROTOLITH UNKNOWN
Microbreccia (Cretaceous? to Permian?)—Fine-grained, light-gray to white, 

locally pinkish, generally cherty (flinty)-appearing, silicified microbreccia (flinty 
crush rock), composed mainly of potassium feldspar and (or) plagioclase, and 
quartz. In thin section, most are seen to be multiply brecciated. To the east, in the 
Athens 30' x 60' quadrangle, large thick bodies of microbreccia have central 
lenses composed of interlocking quartz crystals as large as 1 to 1.5 cm and outer 
edges of broken quartz-vein breccias, all suggesting that the microbreccias are 
late- or post-metamorphic features and implying Pennsylvanian to Permian ages 
of faulting. Even younger episodes of faulting along the trends of microbreccias 
are indicated by offset Late Triassic to Early Jurassic diabase dikes in the western 
part of the Athens 30' x 60' quadrangle (Jones, 1970; M.W. Higgins, T.J. 
Crawford, and Rebekah Brooks, unpub. geologic map of Athens, Ga., 30' x 60' 
quadrangle), but displacements may be relatively small

Mylonitized granitoid (Permian? to Silurian?)—Light-gray to nearly white 
mylonite and (or) mylonite gneiss derived from granite and (or) granite gneiss.  
Ductile style of deformation indicates the faulting was synmetamorphic and thus 
Permian or older

Button schist (Permian? to Upper Ordovician?)—Gray to silvery, tan-weathering 
(±chlorite)-plagioclase-quartz-sericite button schist (Higgins, 1971) with C-S 
texture (Berthé and others, 1979); S-C mylonite of Lister and Snoke (1984) with 
fish-scale texture and locally displaying fish-flash (Simpson, 1986, p. 252); locally 

manganiferous; in many places including (±chlorite)-sericite-quartz-plagioclase 
phyllonite with mica-fish and fish-flash, and, locally, lenses and slivers of sheared 
chlorite-actinolite (±hornblende)-plagioclase and chlorite-actinolite-plagioclase-
hornblende amphibolites. Weathers to a red soil with buttons (mica porphyro-
clasts, mica-fish) scattered on the ground surface. Probably derived by shearing 
mostly of mixed unit (OZm)

Graphitic button schist (Permian? to Upper Ordovician?)—Gray to silvery, tan- 
to gray-weathering, slightly graphitic fish-scale (±chlorite)-graphite-quartz-sericite 
button schist with lenses of more graphitic button schist. Protolith indeterminate, 
possibly graphitic phyllite/schist (Oeg) within the Bill Arp Formation or highly 
sheared Laffingal Member of the Nantahala Formation (enl), as in the Mulberry 
Rock structure in the northwestern corner of map  

FAULT ROCKS—PROTOLITH KNOWN
Metatrondhjemite breccia (Jurassic? to Mississippian?)—Light-gray breccia 

composed of angular fragments of metatrondhjemite as large as 3 cm. Holds up a 
low ridge

Mylonitized Ben Hill Granite (Permian? to Carboniferous)—Generally fine-
grained, light-gray to white mylonite and mylonite gneiss that contain a few 
scattered porphyroclasts of potassium feldspar as large as about 1 cm in most 
outcrops and many porphyroclasts as large as 1.5 cm in some outcrops. Contact 
with unmylonitized Ben Hill Granite has not been observed but is thought to be 
within the solid contact line at 1:100,000 scale

Mylonitized Chattahoochee Palisades Quartzite (Permian? to Upper 
Ordovician?)—Gray to greenish-tan, schistose mylonite with abundant thin 
stringers of mylonitized quartz and local lenses of mylonitized quartz rock as thick 
as 0.5 m. Locally has buttony S-C mylonite texture but more commonly has 
schist texture probably due to more laminar mylonitization  

Mylonitized garnet schist (Permian? to Upper Ordovician?)—Buttony, mylonitic 
garnet-biotite-muscovite-plagioclase-quartz schist with S-C mylonite texture, 
generally containing small (4 mm or less), pinkish-red garnets that are commonly 
porphyroclasts, and knots and stringers of quartz

Button schist and sheared amphibolite derived by shearing of mixed unit 
(OZm) (Permian? to Upper Ordovician?)—Gray to silvery, tan-weathering 
(±chlorite)-quartz-sericite button schist (Higgins, 1971) with C-S texture (Berthé 
and others, 1979); S-C mylonite of Lister and Snoke (1984) with fish-scale 

texture and commonly displaying fish-flash (Simpson, 1986, p. 252), with lenses 
and slivers of chlorite-actinolite (±hornblende)-plagioclase and sheared chlorite-
actinolite-plagioclase-hornblende amphibolites. Locally contains fine-grained, 
blocky and sooty weathering (±magnetite)-spessartine quartzite (gondite, coticule 
rock) (OZmm) in beds about 0.3 to 1 m thick indicating that the protolith was the  
mixed unit (OZm) of the allochthonous assemblage    

 SHEARED AND ALTERED ROCKS IN FAULT ZONES

Tectonically mixed unit (Permian? to Upper Ordovician?)—Tectonic mixture of 
amphibolite of Ropes Creek Metabasalt (OZr), sheared and schistose biotite gneiss 
of Stonewall Gneiss (OZs), and quartzose garnetiferous schist of Crawfish Creek 
Formation (ecf) in braided fault slices that could not be separately mapped at a 
scale of 1:12,000 

Sheared and altered fault rocks in fault zones (Permian? to Upper 
Ordovician?)—Generally fine-grained, red to white, commonly slightly graphitic, 
locally garnetiferous chlorite-sericite schist commonly with button texture and tan 
to white, platy siliceous rocks, locally with radiating clusters of actinolite on S-
planes. Locally has trace amounts of magnetite, sulfide minerals, and, rarely, 
fuchsite. Commonly contains magnetite quartzites and, locally, massive sulfide 
deposits 

Rocks of the Pine Mountain alteration zone (Permian? to Upper Ordovi-
cian?)—Light-gray to greenish-white, epidote-rich granofels and light-green to 
epidote-green, epidote-rich, chlorite-rich amphibolites that resemble Paulding 
Volcanic-Plutonic Complex but are less chaotic

Garnet Hill type altered rocks (Permian? to Upper Ordovician?)—Named for 
Garnet Hill in the south-central part of the Dallas 7.5-min quadrangle where they 
can be seen along the road that crosses the hill and along the north-south road 
just west of the hill, especially where that road crosses Mill Creek. They are 
pervasively sheared, buttony, coarse-grained, well-foliated, green, greenish- to 
reddish-weathering, actinolite-chlorite schist and slightly graphitic to graphitic 
button schists that generally contain abundant euhedral garnets as large as 2 to 4 
cm, but commonly less than 1 cm, and locally contain radiating clusters of 
actinolite on S-planes (generally on S-planes parallel to wavy shear-planes). Thin 
layers of chlorite-quartz-sericite schist, generally with small euhedral magnetite 
crystals, are intercalated with the actinolite-chlorite schist. Large garnets are 
commonly flattened and (or) sheared euhedra that can be flaked apart; subhedral 

garnets are commonly sheathed in Tavy chlorite bundles. In many outcrops 
garnets are conspicuously elongated. Locally there are layers and lenses of light-
colored, greatly leached, chalky-weathering, pyritiferous, euhedral magnetite 
crystal-bearing platy quartzite and (or) felsite and highly pyritiferous quartz rocks.  
The unit contains gossan, ferrous quartzites, and massive sulfide deposits  

Chlorite schist (Permian? to Upper Ordovician?)—Green, generally contorted, 
(±garnet)-quartz-plagioclase-actinolite-chlorite schist derived from shearing and 
alteration of amphibolite along faults

Serpentine schist (Permian? to Upper Ordovician?)—Green to light-green, 
generally contorted, chlorite-actinolite-serpentine schist derived from shearing and 
alteration of ultramafic rock along faults 

Silicified schist and metagraywacke (Permian? to Upper Ordovi-
cian?)—Garnet-biotite-muscovite-plagioclase-quartz schist and (±garnet)-biotite-
plagioclase-quartz metagraywacke derived from silicification and thermal 
alteration of Bill Arp Formation phyllite and metagraywacke adjacent to faults 

Amphibolite (Permian? to Upper Ordovician?)—Sheared and altered units of 
amphibolite that contain dikes and sills of granitic material; in many outcrops 
these units strongly resemble the Paulding Volcanic-Plutonic Complex in color 
and weathering characteristics, but lack its chaotic nature and its ultramafic rocks

Long Island Creek Gneiss (Permian? to Middle Proterozoic?)—Light- to dark-
gray, well-layered (layers generally about 8–40 cm thick), medium-grained, 
generally blastomylonitic epidote-biotite-plagioclase-quartz gneiss, with tiny 
crystals of sphene, interlayered with biotite-epidote-muscovite-quartz-plagioclase-
microcline gneiss; microcline content quite variable. Mylonite gneiss with 
porphyroclasts of potassium feldspar in many outcrops. Locally forms pavement 
outcrops. Characteristically cut by numerous 6- to 20-cm-thick quartz veins and 
sills and aplite dikes and sills. Weathers to a characteristic yellowish soil

Gothards Creek Gneiss (Lower Silurian? to Middle Proterozoic?)—Light-gray, 
medium- to coarse-grained, pervasively sheared, schistose and finely layered 
biotite-quartz-potassium feldspar-plagioclase gneiss that is generally rich in biotite 
and weathers to a uniform, almost featureless, light-orange saprolite. Age 
assignment is based on appearance and structural and stratigraphic position (see 
section on Early Silurian Austell Gneiss), which suggest the possibility that the 
Gothards Creek could belong with the southern Appalachian basement

GRANITES AND ORTHOGNEISSES

Stone Mountain Granite (Carboniferous?)—Very homogeneous, fine- to medium-
grained, mostly equigranular, whitish-gray, unfoliated biotite-muscovite-microcline-
oligoclase-quartz “granite” (quartz monzonite or adamellite) that tends to form 
pavement outcrops, and weathers to a yellowish, sandy soil in the area around 
and including Stone Mountain, the type locality, famous landmark, site of Civil 
War memorial carving, and a prominent, nearly unjointed, exfoliating monolithic 
monadnock that stands over 215 m above the surrounding Piedmont; although 
flat rock outcrops occur away from that area, they are less common and Stone 
Mountain Granite tends to form rotten boulders inside granite saprolite and finally 
weathers to a yellowish, sandy soil. Stone Mountain Granite characteristically has 
black tourmaline clusters (“cat’s paws”) a few centimeters in diameter; these can 
be easily seen in the old curbstone quarry on the eastern side of Stone Mountain 
and with more difficulty can be found in recent spalls and small quarries on the 
mountain and in roadcuts and natural outcrops away from the mountain.  
Xenoliths in Stone Mountain Granite have been interpreted to indicate that the 
magma intruded in several pulses (Grant and others, 1980) to form a stack of 
laccoliths. Stone Mountain Granite was extensively quarried for curbstone, 
building stone, and monumental stone prior to the 1960s

Union City Granite (Carboniferous?)—Massive, poorly foliated to unfoliated, light-
gray, porphyritic, muscovite-biotite-quartz-plagioclase-microcline granite, in which 
blocky, commonly zoned, microcline phenocrysts, locally as long as 5 cm, but 
more commonly 1 to 2.5 cm long, make up 10 to 70 percent, but most 
commonly 25 to 40 percent, of the rock. Tends to form pavement outcrops and 
large pedestal-boulder outcrops. Weathers initially to a tan-yellow saprolite with 
weathered microcline phenocrysts and quartz grains and finally to a light-red soil 
with quartz grains. Easternmost outcrops are less porphyritic, more foliated, and 
slightly finer grained. Porphyritic parts are lithologically similar to the Ben Hill and 
Palmetto Granites in most outcrops; nonporphyritic parts may be Lithonia Gneiss 
(Dl) between sills of porphyritic granite

Ben Hill Granite (Carboniferous)—Massive, poorly foliated to unfoliated, light-
gray, porphyritic, muscovite-biotite-quartz-plagioclase-microcline granite, in which 
blocky, commonly zoned, microcline phenocrysts, locally as long as 5 cm, make 
up 10 to 70 percent, but most commonly 25 to 40 percent, of the rock. Tends 
to form pavement outcrops and large pedestal-boulder outcrops (as at Utoy 
Boulder Park and along Shiprock Road in southwestern Atlanta). Weathers 

initially to a tan-yellow saprolite with weathered microcline phenocrysts and 
quartz grains and finally to a light-red soil with quartz grains. Lithologically 
identical to Palmetto Granite (Cp). Higgins and Atkins (1981) interpreted the Ben 
Hill and Palmetto Granites to be two cupolas on a batholith, but construction of 
cross sections for this map, using down-plunge projections that show deeper 
structural levels to the southwest, indicate that the two granite bodies are at 
different structural levels and are not part of the same batholith, unless they were 
detached from one another during faulting

Palmetto Granite (Carboniferous)—Massive, poorly foliated to unfoliated, light-
gray, porphyritic, muscovite-biotite-quartz-plagioclase-microcline granite, in which 
blocky, commonly zoned, microcline phenocrysts, locally as long as 5 cm, make 
up 10 to 70 percent, but most commonly 25 to 40 percent, of the rock. Tends to 
form pavement outcrops and large pedestal-boulder outcrops. Weathers initially to 
a tan-yellow saprolite with weathered microcline phenocrysts and quartz grains 
and finally to a light-red soil with quartz grains. Lithologically identical to Ben Hill 
Granite (Cb)

Porphyritic granite (Carboniferous)—Porphyritic granite resembling Ben Hill and 
Palmetto Granites, but not assignable to either granite because the Ben Hill and 
Palmetto Granites are identical in the field

Panola Granite (Carboniferous)—Homogeneous, medium-grained, rarely and very 
poorly foliated (igneous foliation?) to commonly unfoliated, equigranular, dark-
gray biotite-oligoclase-quartz-microcline granite. Tends to form pavement out-
crops and weathers to a dark-red clayey soil  

Lithonia Gneiss, undivided (Devonian)—Lithonia Gneiss is a complex of 
metagranites and granitic gneisses. The most common rock type is a light-gray to 
grayish-white, medium-grained, poorly foliated metagranite that is cut by 
numerous pegmatite and aplite dikes and sills of several generations; dikes of 
different generations crosscut older dikes. This rock type probably forms about 80 
to 90 percent of all rocks mapped as Lithonia Gneiss in the Athens quadrangle, 
whereas in the Atlanta and Griffin quadrangles, it may form only about 40 to 50 
percent. The remainder of rocks mapped as Lithonia Gneiss are migmatite gneiss 
that belong to the Mount Arabia Migmatite of Grant and others (1980; also see 
Covert, 1986; and Size and Khairallah, 1989), which is included in this unit on 
this map. The Mount Arabia Migmatite of Grant and others (1980) is a light-gray 
to whitish-gray, medium-grained muscovite-biotite-microcline-oligoclase-quartz 
gneiss with well-defined, contorted, generally 3-mm- to 1-cm-thick gneissic 

layering. The migmatite gneiss is the prevalent rock type in Lithonia Gneiss near 
its edges, whereas the metagranite is far more prevalent away from the edges of 
most outcrop areas of Lithonia Gneiss. Garnet segregations in lenses as large as 2 
m by 2 m are locally present in the migmatite gneiss. Scattered xenoliths, mainly 
of amphibolite, are present in the metagranite and the migmatite gneiss, but are 
probably more abundant in the migmatite gneiss. Pavement outcrops are 
characteristic of both the metagranite and the migmatite gneiss, and where deeply 
weathered both form light-whitish-yellow sandy soils. Both the metagranite and 
the migmatite gneiss are extensively quarried for crushed-stone aggregate and 
curbstone, and the migmatite gneiss is extensively quarried for monumental stone

Lithonia Gneiss with amphibolite—This facies of the Lithonia has more abundant 
amphibolite xenoliths than undivided Lithonia Gneiss

Hornblende-plagioclase amphibolite bodies—Identical to Ropes Creek Metabasalt 
but apparently lack magnetite quartzite. Probably large xenoliths and (or) roof 
pendants

Austell Gneiss (Early Silurian)—Medium- to coarse-grained, light- to medium-gray, 
well-foliated, biotite (±muscovite)-oligoclase-quartz-microcline (quartz monzonite) 
orthogneiss with megacrysts of microcline that make up 20 to 50 percent, but 
commonly 25 to 30 percent, of the rock. Accessories are garnet, ilmenite, 
sphene, tourmaline, magnetite, allanite, apatite, and zircon in general order of 
abundance. Microcline megacrysts, as long as 4 cm, but more commonly 1 to 2 
mm, and biotite define the foliation, which is an fe foliation modified by fen 
folding associated with dextral slip on the Chattahoochee fault at the 
northwestern edge of the Brevard fault zone. Near its contacts the gneiss is 
mylonitized in many exposures and the feldspar megacrysts are augen. Forms 
extensive pavement outcrops and weathers to a yellowish, sandy soil. Early 
Silurian age based on nearly concordant U-Pb-Th age on zircon of 430 Ma and 5 
point Rb-Sr isochron of 432±8 Ma with initial 87Sr/86Sr ratio of 0.7073±0.0005 
to give interpreted age of about 430 Ma (Higgins and others, 1997). Extensively 
quarried for crushed stone

Unnamed granitic gneiss (Paleozoic)—Medium- to coarse-grained, light-gray to 
whitish-gray, muscovite-biotite-potassium feldspar (generally microcline)-quartz-
plagioclase (generally oligoclase) gneiss with xenoliths of amphibolite ranging 
from less than one meter to hundreds of meters long. Locally forms pavement 
outcrops. Weathers to orange-pink clayey soil. Some gneiss locally has microcline 
megacrysts as large as 3 cm. Probably belongs with Lithonia Gneiss  

 GRANITE/COUNTRY ROCK MIXED UNITS 

Granite/country rock mixed units (ages vary)—Units in which fibrous sillimanite 
has grown across foliation in pelitic country rocks and numerous small sills and 
dikes of granitic and “sweat-out” pegmatite material make up 40 to 60 percent of 
most outcrops. Age of mixed unit varies according to the age of the country rock 
and the age of the pluton  

Ben Hill Granite intruding Stonewall Gneiss

Ben Hill Granite intruding slabby Stonewall Gneiss

Palmetto Granite intruding Stonewall Gneiss

Palmetto Granite intruding Clarkston Formation

Palmetto Granite intruding Wahoo Creek Formation

PARAUTOCHTHONOUS LAURENTIAN CONTINENTAL 
MARGIN ASSEMBLAGE

Northwest of Emerson fault 

Fort Payne Chert (Lower Mississippian)—Light- to medium-gray, locally vitreous, 
bedded silty and clayey chert interbedded with fissile, argillaceous siltstone and 
fine-grained sandstone. Near the Emerson fault the Fort Payne consists of 
breccias made up of angular fragments of recrystallized chert and siltstone 
cemented together by silica and iron oxides. Contains a shelly fauna of Early 
Mississippian (Osagean) age (Cressler, 1970). In the Atlanta quadrangle the Fort 
Payne rests unconformably upon the Middle Ordovician Rockmart Slate (Or). The 
brittle deformation of the Fort Payne Chert must have occurred after Early 
Mississippian time

Rockmart Slate (Middle Ordovician)—Dark-gray to nearly black, fine-grained, 
generally calcareous clay slate that weathers to tan or yellowish brown. About 90 
m thick. Contains Middle Ordovician graptolites (Cressler, 1970; Bergström, 
1973; Finney, 1980), Zone 9–10 of Berry (1960).  Mined for light-weight 
aggregate production about 7 km northwest of Yorkville, in the Rockmart area, 
Cartersville 30' x 60' quadrangle

Southeast of Emerson fault

Cover Sequence

Bill Arp Formation (Lower Ordovician? to Cambrian)—In the Austell-Frolona 
anticlinorium the Bill Arp consists of dark-brown to dark-gray, medium-grained, 
locally feldspathic, generally slightly calcareous, biotite-metagraywacke beds, 
about 0.3 to 3 m thick, interbedded with fine- to medium-grained, locally slightly 
graphitic, biotite-muscovite phyllite/schist rarely containing widely scattered, small 
pink garnets and, locally, small "cross-biotite" crystals. Fine-grained disseminated 
ilmenite and magnetite are common, and vein quartz characteristically contains 
platy ilmenite as large as 5 cm. In streams the metagraywacke beds stand as riffles 
separated by troughs where pelite beds have weathered out; this can be seen in 
the Dog River. In the Mulberry Rock structure and between the Mulberry Rock 
structure and the Emerson fault the Bill Arp consists of fine-grained 
metagraywacke units and chlorite-sericite phyllite units of about the same 
thickness; scattered blue-quartz granules and rounded subhedral microcline grains 
are found in the metagraywackes and are interpreted to indicate a Middle(?) to 
Late Proterozoic Corbin Metagranite (ZYc) basement source

A northeast-trending zone of Bill Arp Formation rocks in the Austell-Frolona 
anticlinorium in which small pink garnets are scattered in phyllites

A zone of Bill Arp Formation rocks in which the garnets are common and larger 
than in Oebc. In these garnet-bearing zones the pelites are generally schists 
rather than phyllites and are generally slightly graphitic. Where garnets are 
common the titanium mineral is rutile instead of ilmenite. Smoky quartz is often 
found where the schists contain relatively common small garnets 

A zone of Bill Arp Formation rocks with large and abundant garnets has been 
mapped south of the intersection of Georgia Highway 5 and Interstate 20.  
Locally the massive metagraywackes in the Bill Arp contain ellipsoidal, zoned 
calcareous concretions (Sanders and others, 1979) and these calcareous zones 
are also within the garnet-bearing area as are rocks that have "cross-biotite." 
Graded bedding is common and well preserved in the metapelite-metagraywacke 
sequences, with facing generally determinable by sharp bottoms and diffuse tops 
of metagraywacke beds. Along unpaved roads the most common cuts consist of 
pelite beds separated by quartz-bearing clay-saprolite derived from weathering of 
the metagraywacke beds 

Informal schist of Hulett facies—Tan-weathering, finely schistose, (±garnet)-biotite-
plagioclase-muscovite-quartz schist that contains abundant small red garnets in 
many outcrops and no garnets in others. The schist generally contains at least 
two schistosities and original layering has been transposed; the finely spaced 
schistosity, though a secondary feature, is characteristic. May be equivalent with 
garnetiferous Bill Arp rocks (Oebc, Oebb, Oeba) 

Illinois Creek Formation (Cambrian)—Composed of interlayered, dark-gray, 
slightly graphitic to moderately graphitic metapelites (phyllite/schist); tan to 
cream-colored, nongraphitic metapelites (phyllite/schist); and lenses of fine- to 
coarse-grained, quartz- and feldspar-pebble/granule metaconglomerate that 
contain blue-quartz and microcline granules/pebbles indicative of a Corbin 
Metagranite source (McConnell and Costello, 1980; Crawford and others, 1999)

Sweetwater Creek Formation (Cambrian)—Composed of interlayered, dark-gray, 
slightly graphitic to moderately graphitic metapelites (phyllite/schist); tan to 
cream-colored, nongraphitic metapelites (phyllite/schist); gray to brownish-gray, 
fine- to medium-grained metagraywackes and feldspathic metagraywackes; and 
lenses of medium- to coarse-grained quartz- and feldspar-pebble/granule 
metaconglomerate that contain blue-quartz and microcline granules/pebbles 
indicative of a Corbin Metagranite source and chips of graphitic phyllite/schist 
suggesting that the underlying Nantahala Formation supplied detritus to the 
metaconglomerates (McConnell and Costello, 1980; McConnell and Abrams, 
1984; Crawford and others, 1999)

Sweetwater Creek and Illinois Creek Formations, undivided

Graphitic phyllite/schist (between Emerson fault and Mulberry Rock structure) 
(Lower Ordovician? to Cambrian)—Dark-gray to black, fine-grained graphitic 
phyllite and (or) schist, generally sheared. Locally contains small, pink-red garnets.  
Locally contains small pyrite cubes. May be thin fault slices of Nantahala 
Formation (more likely) or lenses of graphitic phyllite in the Bill Arp Formation.  
See text section on Mulberry Rock structure for discussion of assignment

Chilhowee Group

Nantahala Formation (Cambrian)—Dark-gray to black, fine-grained, graphitic 
metapelite (slate/phyllite/schist) rhythmically interbedded with fine-grained, dark-
brown, iron-rich metasiltstone, and locally containing lenses of blue-quartz- and 
potassium feldspar-granule- and, rarely, pebble metaconglomerate. Schist 
contains small, pink-red garnets in many outcrops, and in higher grade rocks both 
schist and metasiltstone contain staurolite crystals. Slate, phyllite, and schist 
locally contain small pyrite cubes. Has button texture (Higgins, 1971; C-S texture 
of Berthé and others, 1979; S-C mylonite texture of Lister and Snoke, 1984) in 
some outcrops. Assigned to Nantahala Formation based on physical continuity of 
identical rocks in the adjacent Cartersville 30' x 60' quadrangle with those of the 
type locality along the Nantahala River in North Carolina

Laffingal Member—Dark-gray to black, fine-grained, very graphitic phyllite and (or) 
schist locally interlaminated with quartzose and feldspathic phyllite and locally 
containing lenses of blue-quartz- and potassium feldspar-granule- and, rarely, 
pebble metaconglomerate. Locally contains lenses of fairly clean quartzite. Locally 
contains small, pink-red garnets. Locally contains small pyrite cubes. Has button 
texture (Higgins, 1971; C-S texture of Berthé and others, 1979; S-C mylonite of 
Lister and Snoke, 1984) in many outcrops. In higher grade rocks in Austell 
Frolona anticlinorium window and Crawfish Creek structure graphitic schist 
locally contains small, blue kyanite crystals

Crawfish Creek Formation (Cambrian and Cambrian?)—Garnet-muscovite-
biotite-plagioclase-quartz schist with abundant quartz stringers and pods that 
contains relatively abundant medium-size (~0.5 mm to ~1 cm, but locally larger) 
garnets. Generally contains lenses and stringers of clean quartzite as thick as 
several meters, but more commonly less than 2 m

Clean quartzite units that are locally mappable within some units of the Chilhowee 
Group

Sandy Springs Group

Chattahoochee Palisades Quartzite (Cambrian?)—White to yellowish, sugary to 
vitreous, slightly graphitic to nongraphitic quartzite with accessory muscovite, 
garnet (generally flattened and elongated), and aluminosilicate minerals, in layers 
and beds about 0.3 to 1.2 m thick, interbedded with feldspathic quartzite and 
garnetiferous quartz-muscovite schist. Commonly adjacent to and gradational into 
the aluminous schist unit (eas). Chattahoochee Palisades Quartzite holds up low 
ridges that stand 30 to 60 m above intervening valleys and weathers to a quartz-
sand saprolite/soil that is locally mineable for quartz sand where the unit is 
stratigraphically and (or) tectonically thickened. Within the Brevard fault zone, 
where it was originally named and where the type locality and type section are 
located (Higgins and McConnell, 1978), the quartzite is generally massive, 
vitreous, white to bluish, and generally continuous for many kilometers  

Aluminous schist unit (Cambrian?)—Consists of light-gray to silvery gray, 
generally reddish-weathering kyanite or staurolite-garnet-biotite-plagioclase 
(generally oligoclase)-muscovite-quartz schist, locally with abundant aluminosilicate 
minerals, locally with abundant garnets. Contains layers of quartz-muscovite 
schist, thinly layered, red, micaceous quartzite, and lenses of clean quartzite. 
Commonly contains abundant pegmatites. Commonly found adjacent to 
Chattahoochee Palisades Quartzite 

Thin  (<2 m thick) mappable units of muscovite quartzite that may be fault slices of 
Chattahoochee Palisades Quartzite (ecp)

 Basement

Corbin Metagranite of the Allatoona Complex (Middle? to Late Proter-
ozoic)—Light- to dark-gray, medium- to coarse-grained, biotite-quartz-microcline 
gneiss with microcline megacrysts as large as 8 cm. Tends to form boulder 
outcrops. Blue quartz is characteristic. Borders of bodies are generally highly 
sheared in the Atlanta quadrangle and even the centers of the larger bodies are 
augen gneiss or mylonite gneiss. To the northeast in the Cartersville 30' x 60' 
quadrangle, the large, massive body at the type locality contains numerous shear 
zones where the Corbin is mylonite gneiss or mylonite schist or phyllonite 
(terminology of Higgins, 1971). Locally the gneiss is so highly sheared that it is 
transformed into biotite schist. Corbin Metagranite is enriched in zirconium, 
titanium, light rare earth elements, and especially barium (chemical analyses given 
in Higgins and others, 1988, appendix B). Dated radiometrically by two methods 
and by regional relations. See text section on Middle(?) to Late Proterozoic Corbin 
Metagranite for discussion of age assignment

ALLOCHTHONOUS OCEANIC ASSEMBLAGE

Paulding Volcanic-Plutonic Complex of the Paulding allochthon (Middle 
Ordovician? to Late Proterozoic?)—A chaotic mixture of mafic and felsic rocks 
marked by an overall meta-igneous, veined, faulted, disrupted, gray to epidote-
green appearance. Consists mainly of light-green-weathering, epidote-rich, 
generally chloritic, green or blue-green hornblende- and (or) actinolite-plagioclase 
amphibolites (~50–60 percent) intimately interlayered with light-gray to nearly 
white, amphibole-bearing granofels, biotite-bearing gneisses, and biotite- and  
feldspar-rich schists (~20–30 percent). Dikes, sills, and small plutons of potassium 
feldspar-poor granitic rocks and potassium feldspar-bearing granitic rocks are 
ubiquitous and numerous (~15–20 percent), and pods of epidosite are common.  
Thin layers and lenses of vermiculitic mica also are common. Pods of ultramafic 
rocks are common and in places make up 60 to 80 percent of exposures. At 
Soapstone Ridge in southeastern Atlanta, pods of ultramafic rocks are so 
abundant that the unit was once thought to be a mafic-ultramafic sheet (Higgins 
and others, 1980); areas of high concentrations of residual/colluvial boulders of 
ultramafic rock are outlined by dashed lines in the Soapstone Ridge outcrop area 
of Paulding Volcanic-Plutonic Complex. The most common ultramafic rocks are 
coarse, altered metapyroxenite and soapstone, but altered metadunite, 
metaperidotite, and serpentinite also are found. Serpentinite (OZus) is most 
commonly found adjacent to faults. Siliceous "hardpan" is locally found above the 
rocks. At Soapstone Ridge the most common ultramafic rock is dark-green, 

coarse- to very coarse grained, highly altered metapyroxenite. The large (4–6 cm) 
euhedral and subhedral pyroxene crystals generally are completely altered to 
fibrous meshes of chlorite, talc, tremolite, and actinolite 

Altered meta-ultramafic rock (Middle Ordovician? to Late Proterozoic?)—A 
wide variety of chloritized and (or) serpentinized ultramafic rocks generally in small 
bodies, tens of meters in diameter. Commonly found as cobbles and boulders. 
Includes soapstone and light-green to emerald-green, but mostly chlorite-green, 
lumpy to spheroidally weathering chlorite-schist, generally with blue-black 
manganese-stained joint faces/S-planes

Serpentinite (Middle Ordovician? to Late Proterozoic?)—Light-green, fine-
grained serpentinite with numerous S-planes  

Metapyroxenite (Middle Ordovician? to Late Proterozoic?)—Commonly 
composed of large (>4 mm), subhedral to euhedral pyroxene crystals that have 
been partially to totally replaced by a mesh of chlorite and serpentine minerals.  
Tends to occur as rounded boulders in or over a dark-red soil. Large bodies 
support sparse vegetation

Stonewall Gneiss (Middle Ordovician? to Late Proterozoic?)—Gray to grayish-
brown to dark-gray, medium- to coarse-grained, commonly schistose, generally 
pegmatitic biotite-muscovite-quartz-potassium feldspar gneiss with generally rare 
but locally fairly common layers, lenses, and pods of hornblende-plagioclase 
amphibolite. Locally contains small, red garnets.  Characteristically and commonly 
contains small pods and lenses of altered ultramafic rocks, now mostly soapstones 
and serpentinites, but originally probably pyroxenites, dunites, and peridotites. 
Some have original crystal textures of pyroxenites, but the crystals of pyroxene 
have been completely serpentinized and (or) uralitized, and many rocks are now 
soapstones. Intensely deformed in most outcrops. Fresh outcrops are relatively 
rare because unit weathers deeply; fresh rock exposed along large streams. 
Weathers to a uniform, slightly micaceous, dark-red saprolite and clayey, dark-red 
soil; vermiculitic mica is characteristic of soils formed from the Stonewall Gneiss. 
Lack of outcrops and the dark-red soil also are characteristic; outcrops are even 
rare on steep hillsides of secondary streams. Most ultramafic bodies in the 
Stonewall are archaeological sites because of the refractive quality of the 
soapstone and because of its ease in sculpting bowls, cooking utensils, and heat-
retaining devices thought to have been used as bed/shelter/food warmers. Bowl 
fragments can be found at many sites; occasionally bowl blanks can be found still 
attached to the rock  

Stonewall Gneiss that has been extensively intruded by poorly foliated to unfoliated 
biotite-quartz-potassium feldspar-plagioclase granite, so that soil has 
characteristics of undivided Stonewall Gneiss, but presence of many residual 
boulders make weathered areas resemble those of Crider Gneiss

Stonewall Gneiss that weathers to slabs 

Kalves Creek Member—Coarse-grained, whitish-yellow- to white-weathering, fibrous 
and spindly graphite-sillimanite-feldspar-quartz schist. Graphite is in tiny platelets 
on fibrous sillimanite. Generally shows voids and iron stains where sulfide 
minerals have weathered out. In fresh core schist contains as much as 20 percent 
pyrite

Powers Ferry Member—Biotite gneiss identical to that in the undivided Stonewall 
Gneiss interlayered with biotite-muscovite-feldspar-quartz schist (~20–35 percent 
of unit) and minor scattered amphibolite  

Quartzite—Generally thin, granular quartzite locally present in or over the Stonewall 
Gneiss

Clairmont Formation (Middle Ordovician? to Late Proterozoic?)—Light-gray to 
bluish-gray, medium- to coarse-grained, generally porphyroblastic, locally 
porphyroclastic, generally ductilely tectonized, streaky to finely layered to granitic 
biotite-plagioclase-potassium feldspar gneiss containing fragments, chips, blocks, 
and slabs (exotic blocks) of amphibolite; amphibolite and light-gray granofels; 
light- to medium-gray, equigranular biotite granitic gneiss; epidosite; light-gray 
granofels; metagranite; clean quartzite; and rare ultramafic rocks. Autoclastic 
chips, blocks, and slabs (native blocks of Hsü, 1968) are common. Matrix is 
pervasively penetrated by innumerable anastomosing, recrystallized shear planes 
that do not pass into or through the clasts. Foliation and folds within all types of 
clasts (including the autoclastic clasts) terminate abruptly against the surrounding 
matrix. Rocks of the Clairmont have a granitized look as if they were on the verge 
of melting, but under the right pressure-temperature conditions so as not to 
complete the process. Clairmont is interpreted to be high-grade granitized mid-
crustal(?), ductile tectonic mélange (Bates and Jackson, 1987, p. 410), consisting 
of a mélange paleosome probably composed chiefly of Middle Ordovician(?) to 
Late Proterozoic(?) Stonewall Gneiss and a neosome (possibly Devonian) of 
anatectic granite similar to the neosome of Lithonia Gneiss. The Clairmont is 
considered to be a facies of the Stonewall Gneiss (OZs) and to generally have a 
gradational contact with the Stonewall. Weathered Clairmont that has the 
appearance of Stonewall Gneiss with characteristic Clairmont exotic and native 
blocks can be seen in roadcuts along dirt roads south, east, and southeast of 
Millers Mill in the southeastern corner of the Atlanta quadrangle (Stockbridge and 
Kellytown 7.5-min quadrangles)

Crider Gneiss (Middle Ordovician? to Late Proterozoic?)—Gray to nearly white, 
massive to slabby, medium- to coarse-grained, poorly to well-foliated biotite-
muscovite-quartz-plagioclase gneiss that is locally contorted and generally 
weathers to a light-tan to dark-yellowish-tan soil containing corestones of gneiss.  
The gneiss commonly is found as residual boulders where the unit is deeply 
weathered  

Beds and lenses of finely laminated to massive calc-silicate rock bearing diopside 
and, locally, diopside and garnets in a 5-km-long belt of Crider Gneiss northwest 
of Villa Rica; this calc-silicate-bearing gneiss is similar to some calc-silicate-bearing 
gneisses in the Wahoo Creek Formation  

Ropes Creek Metabasalt (Middle Ordovician? to Late Proterozoic?)—Fine- to 
medium-grained, dark-green to greenish-black, ocher-weathering, massive to 
finely layered, locally laminated, locally pillowed, locally chloritic, commonly 
garnetiferous, locally magnetite-bearing, generally pyrite-bearing, generally 
epidotic, hornblende-plagioclase and plagioclase-hornblende amphibolites with 
insignificant amounts (generally less than a very small fraction of a percent) of 
fine- to medium-grained, generally amphibole-bearing granofels. The final 
weathering product of the amphibolites is a characteristic dark-red, clayey soil. 
Thinly layered, medium-grained, magnetite quartzite (OZmq), in units about 0.3 to 
6 m thick, is common in and characteristic of the Ropes Creek Metabasalt 

Kyanite quartzite, 5 to 20 m thick, containing as much as 30 percent blue and 
green kyanite and 10 to 15 percent sulfide 

Amphibolite containing ~5 to 15 percent interlayered, light-gray to white, white-
weathering, biotite (<10 percent)-quartz-plagioclase gneiss that strongly resembles 
metatrondhjemite gneisses (OZmt) and the Villa Rica Gneiss (OZv)

Plagioclase-hornblende gneiss composed of blackish-green, ochre-weathering, flaggy 
to massive, medium- to coarse-grained plagioclase-hornblende, with little or no 
felsic material

Coarse-grained hornblende-plagioclase gneiss that weathers to a medium-red soil 
with spheroidal boulders; present in a fault slice in the Oak Mountain fault zone 
near Ithaca, south of Villa Rica. Locally there are mappable units of sheared and 
altered amphibolite (POra) that also contain dikes and sills of granitic material

Spheroidally weathering amphibolite (Middle Ordovician? to Late 
Proterozoic?)—Dark-green, medium- to coarse-grained, salt-and-pepper-
textured, massive and flaggy, spheroidally weathering amphibolite. Holds up low 
ridges and knobs. Weathers to a dark-red soil with residual cobbles and boulders 
or flags  

Villa Rica Gneiss (Middle Ordovician? to Late Proterozoic?)—Light-gray to 
white, medium-grained, massive biotite-quartz-sodic plagioclase metatrondhjemite; 
biotite is minor. Locally layered near contacts. Sea-floor pelites of the 
allochthonous oceanic assemblage locally have very large garnets for tens of 
meters from their contact with the Villa Rica Gneiss, but it is indeterminate 
whether or not the garnets are the result of contact metamorphism caused by 
intrusion of the plutonic protolith of the Villa Rica Gneiss. Tends to form 
pavement outcrops where poorly jointed. Has many xenoliths of Ropes Creek 
Metabasalt and, locally, xenoliths of ultramafic rocks. The ultramafic rocks occur 
in a linear fashion suggesting tectonic emplacement, but lack of exposure 
prevents determination of the nature of the gneiss between the ultramafic pods. 
Weathers to white soils that overlie pink to white clayey saprolites. In north-
central part of Villa Rica Gneiss body a thick dike of vein-quartz and altered gneiss 
around it have been mined for gold (Pate, 1980)  

Unnamed metatrondhjemite gneisses (Middle Ordovician? to Late 
Proterozoic?)—A complex of several varieties of potassium feldspar-poor 
gneisses and metatrondhjemites. The most common variety, which probably 
makes up 85 to 90 percent of the unit, is identical to Villa Rica Gneiss. Other 
varieties include a coarse-grained, poorly foliated biotite (generally less than 2 
percent)-quartz-plagioclase gneiss/granofels with minor amounts of a dark-green 
amphibole; and a biotite-quartz-plagioclase gneiss that weathers to a dark-pink 
saprolite. Fresh rocks are rare enough to be anomalous. Most structural 
measurements are on amphibolites within the gneisses  

Informal migmatite of Kennesaw Mountain (Middle Ordovician? to Late 
Proterozoic?)—Massive, light-gray to nearly white, medium-grained, potassium 
feldspar-poor, biotite-quartz-plagioclase gneiss identical to metatrondhjemite 
gneisses (OZmt) and Villa Rica Gneiss (OZv), but with abundant xenoliths of Ropes 
Creek Metabasalt (OZr)  

Wahoo Creek Formation (Middle Ordovician? to Late Protero-
zoic?)—Composed of a wide variety of lithologies, the Wahoo Creek char-
acteristically forms knobby and hilly topography. The most common lithology in 
the Wahoo Creek is slabby, finely layered to massive biotite gneiss, identical to 
the biotite gneiss of the Stonewall Gneiss, that weathers initially to a clayey 
saprolite with vermiculitic micas and finally to a dark-red featureless soil with 
vermiculitic micas. The Wahoo Creek also includes light-gray to nearly white, fine- 
to medium-grained, muscovite-plagioclase-quartz-potassium feldspar gneiss that is 
distinctively slabby, generally finely layered, and commonly contains 
porphyroblasts of potassium feldspar and pitted weathering surfaces. Interlayered 
with the light-colored gneiss, and diagnostic of the formation, are thinly  
(centimeter-size) and evenly layered, epidote-, calcite-, and green diopside-bearing 
calc-silicate gneisses that appear to scale-off in outcrop. Salt-and-pepper-textured 
amphibolite and epidote amphibolite are also common lithologies, and 
hornblendite also is found in the Wahoo Creek. Another characteristic lithology is 
a dense, glassy-appearing, hard (nearly flint-like), dark-bluish-gray epidote 
quartzite. The wide variety of lithologies in the Wahoo Creek has been 
documented by Wallace (1981). The contacts between the Wahoo Creek, 
Stonewall Gneiss, and allochthonous assemblage mixed unit (OZm) are difficult to 
map where only saprolite is present, because all three weather to identical dark-
red saprolite and soil that contains vermiculitic mica; the contacts are chosen on 
the basis of topography (Wahoo Creek is more resistant to erosion and forms 
rugged, relatively high-relief topography; Stonewall Gneiss is commonly less 
resistant to erosion and tends to produce more subdued topography with little 
relief; mixed unit tends to form topography intermediate between the other two, 
with low, narrow ridges held up by magnetite and (or) manganiferous quartzites), 
presence of residual slabs of slabby gneiss (Wahoo Creek), and presence (Wahoo 
Creek) or absence of calc-silicate gneiss, and presence (mixed unit) or absence of 
magnetite and (or) manganiferous quartzite

Informal mixed unit (Middle Ordovician? to Late Proterozoic?)—Lustrous, 
medium- to coarse-grained (±garnet)-sillimanite-biotite-muscovite schist that is 
locally slightly graphitic and is commonly slightly manganiferous; medium- to 
coarse-grained, locally porphyroblastic biotite-quartz-plagioclase and biotite-
quartz-potassium feldspar-plagioclase gneisses; light-gray, medium-grained granite 
gneisses; and fine- to medium-grained, dark-green, ocher-weathering hornblende-
plagioclase and plagioclase-hornblende amphibolites. Locally contains garnet 
(±chlorite)-biotite-muscovite-quartz-feldspar gneisses. Generally contains pods and 
lenses of chlorite, hornblende, and actinolite schists. Characteristic of the mixed 
unit is the presence of scattered 0.3- to-1-m-thick beds of fine-grained, blocky and 
sooty weathering, (±magnetite)-spessartine quartzite (gondite, coticule rock) 
(OZmm), commonly interbedded with medium-grained, pink- to purple-weather-
ing garnet-sillimanite-biotite-quartz-muscovite schist and fine- to medium-grained, 
dark-green to blackish-green, ocher-weathering hornblende-plagioclase 
amphibolite. Brown- to blackish-weathering manganiferous schists commonly are 
interbedded with the manganiferous quartzite, and manganiferous schists also 
occur without the quartzite  

Garnet-rich schist—Gray, lustrous, tan- to yellowish-weathering, quartzose, garnet-
rich muscovite-biotite schist containing medium to large (6 mm–1.5 cm) garnets.  

Garnets are so abundant that they cover the ground in most places. Kyanite is 
locally present

Spessartine quartzite (Middle Ordovician? to Late Proterozoic?)—Light-gray, 
dark-pink speckled, fine-grained, blocky and sooty weathering, (±magnetite)-
spessartine quartzite (gondite, coticule rock) in beds about 0.3 to 1 m thick, 
commonly interbedded with medium-grained, pink- to purple-weathering garnet-
sillimanite-biotite-quartz-muscovite schist and fine- to medium-grained, dark-green 
to blackish-green, ocher-weathering hornblende-plagioclase amphibolite. Brown- 
to blackish-weathering manganiferous schists commonly are interbedded with the 
manganiferous quartzite. Commonly only seen weathered to "black quartzite"

Magnetite quartzite (Middle Ordovician? to Late Proterozoic?)—Thinly layered 
(<1 cm) to laminated, medium-grained, magnetite quartzite in units about 0.3 to 6 
m thick. Commonly has thin (~1–4 cm) quartz-magnetite layers, with magnetite 
crystals as much as 1 cm in size, but commonly about 1 mm, that alternate with 
4- to 8-cm-thick quartz layers with or without a small percentage of magnetite. 
Magnetite clumps that generally disrupt the layering are locally as large as 20 cm 
but are commonly about 1 cm. The magnetite quartzites are locally associated 
with thin (<0.5 m) gondites and magnetite-spessartine quartzites, and 
manganiferous schist, and locally with thin (~15 cm) layers of fibrous dravite 
tourmaline and with pyritiferous quartzite in units about 1.5 to 4 m thick. Where 
there is a considerable amount of manganiferous rocks with the magnetite 
quartzite, the quartzite has been mapped as OZmn

Manganiferous schist and gondite (Middle Ordovician? to Late 
Proterozoic?)—Gray to brown manganiferous schist containing layers and lenses 
of blocky, sooty-weathering spessartine quartzite (gondite, coticule rock), 
manganiferous magnetite quartzite, and interbedded hornblende-plagioclase 
amphibolite. Locally contains magnetite quartzite (OZmq)

Informal mixed unit of Goldmine Branch (Middle Ordovician? to Late 
Proterozoic?)—Deeply weathered, poorly exposed, feldspathic biotite gneiss, 
tan-weathering garnet-muscovite schist, and hornblende-plagioclase amphibolite, 
with scattered thin layers/lenses of manganiferous schist and thin manganiferous 
quartzite (gondite). Poorly exposed even along creeks because of deep weathering 
nature of feldspathic gneiss. Forms dark-red soil with layers of weathered schist 
and ocher-colored saprolite of amphibolite. Soil and saprolite are darker red and 
contain less quartz than that of metagraywackes in Bill Arp Formation

Clarkston Formation (Middle Ordovician? to Late Proterozoic?)—Medium-
grained, lustrous, purple- to pink-weathering, sillimanite (±garnet)-quartz-
plagioclase-biotite-muscovite schist and lesser amounts of fine-grained, dark-green 
hornblende-plagioclase amphibolite generally interlayered on a scale of 1 to 20 
m; locally contains small amounts of biotite-plagioclase gneiss. Sillimanite is 
present in nearly every outcrop, and in some outcrops it forms white to yellow 
spindles within the schist    

 XENOLITHS AND ROOF PENDANTS 
IN CARBONIFEROUS GRANITES

Sillimanite schist (Middle Ordovician? to Late Proterozoic?)—Sillimanite schist 
not assigned to any formation. Generally coarse-grained (±garnet)-sillimanite-
biotite-muscovite-quartz-plagioclase schist

Amphibolite (Middle Ordovician? to Late Proterozoic?)—Generally fine- to 
medium-grained, hornblende-plagioclase and (or) plagioclase-hornblende amphib-
olites, commonly with nematoblastic or, less commonly, salt and pepper textures
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Strike and dip of mylonitic layering—Site of measurement is at middle of side of 
triangle adjacent to strike line

LINEAR FEATURES
(May be combined with planar features; their intersection marks the site of measurement; 

where not combined, site of measurement is indicated by ball at end of or along symbol line)

Bearing and plunge of tight to isoclinal minor fold axis—Where half arrow is 
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Inclined

Vertical

Horizontal

Bearing and plunge of open fold axis—Where half arrow is shown, barb is on 
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on map because of size—Where half arrow is shown, barb is on side that 
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Horizontal 

Bearing and plunge of mineral alignment (M) or rodding (R)—Symbols without 
R or M may be either mineral alignment or rodding
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Bearing and plunge of streaking lineation
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Horizontal

Bearing and plunge of slickensides
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 Kinematic indicators

Sense of shear derived from porphyroblasts (Simpson, 1986; Passchier and 
Simpson, 1986)—Only dextral shear indicators were seen

Sense of movement derived from minor folds
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Any use of trade, product, or firm names in this publication is for descriptive purposes 
only and does not imply endorsement by the U.S. Government 

For sale by USGS, Information Services, Box 25286, Federal Center, Denver, CO 80225

For more information about the USGS and its products: 
Telephone: 1-888-ASK-USGS;  World Wide Web: http://www.usgs.gov/ Printed on recycled paper 

Geology mapped by Stone, 1982–1992, and by Stanford and Witte, 
1984–1992; assisted by Grahame J. Larsen in 1983 and by A. Von 
Schondorf in 1985 and 1986.

.25" (6.5 mm) from nearest 
type or graphic element

Place Correlation heading below the 
map's upper neatline

Standard column width for map unit explanation is 28 picas, which allows for a explanation 
box 40x18 points and a 8 point gap between explanation box and text. Text is set at 24 picas 
with a 8 point hang indent 

Standard column width for running text is 28 picas.  
Paragraph or first line indent is 10 point.

Anchor the DOI/USGS headnote in the upper left 
corner, flush with the map's left edge (neatline). 

Size of a correlation is determined by the 
appropriate space needed to communicate 
geologic relations. Standard correlation unit 
box size is 34x16 points but can be extended 
to any size to show complex geologic 
relations.  Brackets and age names are 
normally placed on the right side of the 
correlation.
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Brackets are a .005" (.36pt) line weight 
and can be adjusted to the desired 
length by selecting and extending the 
bracket ends.

48 points

The bar code and recycle note are placed in the lower right 
corner of the map sheet.  The font Universe 57 Condensed 
6 point caps and lower case is used for the recycle note.  
The disclaimer, for sale, and more information  notes are 
placed to the left of the bar code and recycle note.  The 
Font used is Univers 45 Light 7 point caps and lower case. 

The USGS logo is placed at lower left corner of the 
map sheet. Logo size is 2 x11/16 inches with color 
options of  black, white or PMS 348 green. If there 
are additional logos for cooperators they should be 
placed to the right of the USGS logo.

For readability, running text is normally set in 
Souvenir Light 9-point as shown in the text 
columns at right.  For comparison, text for the 
explanation of map units (below) is set in 8-point 
type. Map unit labels made reference to in the 
text are set in Univers 55 Roman 8-point as they 
are on the map.

Colors for geologic map units are normally assigned according to the geologic age colors as 
identified in the Digital Cartographic Standards (DCS) for Geologic Map Symbolization.  
However when selecting color, consideration must also be given to previous publications, 
purpose of publication, and readability of map units.  The colors are defined with various 
percentages of cyan, magenta, and yellow for which the DCS has designed color charts that 
define a standard set of percentages.  For readability and to highlight certain features, complex 
geologic maps may require additional Pantone inks such as Pantone 185 Red for identifying 
folds, Pantone 354 Green for dikes, Pantone 430 Gray for base information, and Pantone 471 
Brown for topo contours.  Patterns, as identified in DCS, can be effective but should be used 
sparingly for the sake of readability. 

Geologic map unit symbols are set 
in Univers 55 Roman 8-point type 
and centered in a 40x18 point box 

All linework projected above the surface line 
within a cross section is normally dashed.  
Structurally complex cross sections may 
require solid linework.

Geologic map products should be a clear and logical presentation of 
geologic information for scientists and the general public. The design and 
layout will vary depending on the information being presented. The map is 
normally placed in the upper left corner with the cross sections below,  and 
the explanation and correlation to the right of the map. Symbols, colors, text 
and type must be consistent and meet cartographic standards.

Bar scales, mean declination arrows and quadrangle 
location maps can be acquired from the Digital 
Cartographic Standards (DCS) for Geologic Map 
Symbolization. The bar scale is centered below the 
map, with declination and location graphics 
centered between bar scale and map notes

Cartographic specifications and use of 
geologic map symbols are defined in 
Digital Cartographic Standards (DCS)

References are set with an 8-point hang indent 
and 5-point spacing between references 

This map uses the traditional fonts identified for geologic maps. For a comparison of the Digital 
Cartographic Standards (DCS) recommended fonts see the following examples. 

Helvetica 8-point type recommended in DCS            Univers Roman 8-point type used in this report
Times Roman 8-point type recommended in DCS            Souvenir Light 8-point type used in this report 

The title block is normally centered on the map sheet. The font is 
Souvenir Medium, with 24-point caps for the title, 16 point C/lc with 28 
pt. leading for the by line, 18 point C/lc with 24 pt. leading for the 
authors, and 12 point with 21 pt. leading for the date. No item on the 
map sheet should be placed below the date line.

The author affiliation note is located to the 
right of the title block , set in Souvenir 
Medium 9 point with a 5-point indent.

Note: The two columns of descriptive text 
were not part of the original map but part of 
the pamphlet text and were added only to 
provide a layout guide.


