DEPARTMENT OF THE INTERIOR
OHIO S
UNIVER
UNITED STATES GEOLOGICAL SURVEY

GEOLOGIC ATLAS
 OF THE

UNITED STAT灾S

OLIVET FOLIO

SOUTH DAKÓTA

EXPLANATION.

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The tlas, the parts of which are called folios. Fack thas, the parts of which are called fors. Lach oologic maps of a small area of country togeth with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of wate (3) the works of man, called culture, as road railroads, boundaries, villages, and cities.
Relief.-All elevations are measured from mea sea level. The heights of many points are accu rately determined, and those which are most important are given on the map in figures.
It is desirable, however, to give the elevation of It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the
horizontal outline, or contour, of all slopes, and to horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. Thi is done by lines connecting points of equal eleva-
tion above mean sea level, the lines being drawn at regular vertical intervals. These lines ar called contours, and the uniform vertical space between each two contours is called the contour
interval. Contours and elevations are printed in brown.
The mor in which contours expera tion, form, and grade is shown in the following sketch and corresponding contour map:

1 sketch and corresponding contour map.
The sketch represents a river valley between wo hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On ach side of the valley is a terrace. From the terrace on the right a hill rises gradually, whil from that on the left the ground ascends steepl in a precipice. Contrasted with this precipice he gentle descent of the slope at the lett. In the map each of these features is indicated, directly The following explanation may make clearer the nener in which contours delineate elevation, form, and grade:
orm, and grade:
height above sea level. In this illustration the ceight above sea level. In this illustration the tours are drawn at $50,100,150,200$ feet, and so on, above sea level. Along the contour at 250 feet lie all points of the surface 250 feet above sea; and imilarly with any other contour. In the space between any two contours are found all elevation above the lower and below the higher contour Thus the contour at 150 feet falls just below th edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but. less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours - say every fifth one-are accentuated and numbered; the heights of others may then ,e ascertained by counting up or down from numbered contour.
2. Contours define the forms of slopes. Since解 to the continuous horizontal lines conformgo the surface of the ground, they wind reentrant angles of ravines and project in passing bout prominences. The relations of cotto be traced in the map and sketch.
3. Contours show the appros
y slope. The vertical space betwee grade of ours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given heigh on a gentle slope one must go farther than on steep slope, and therefore contours are far apart n gentle slopes and near together on steep ones. For a flat or gently undulating country a small contour interval is used ; for a steep or mountainous country a large interval is necessary. Th mallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal wamp. In mapping great mountain masses, lik those in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 0, 25,50, and 100 feet are used.
Drainage.-Water courses are indicated by blue nes. If the streams flow the year round the ne is drawn unbroken, but if the channel is dry Whart of the year the line is broken or dotted. ace the supped underound cours is shan ace, the supposed our is sher bodies of water are also shown in blue, by appropriate conventional signs.
Culture.-The works of man, such as road ailroads, and towns, together with boundaries of ownships, counties, and States, and artificia Scales.-The are of thack
Scales.-The area of the United States (exclud map with the scale of 1 mile to the inch thi map with the scale of 1 mile to the inch this
would cover $3,025,000$ square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map i called the scale of the map. In this case it is " 1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the correspond ing length in nature expressed in the same unit cale of " 1 mile to an inch" is expressed by $\frac{1}{6,3,6 \pi}$ Both of these methods are used on the maps he Geological Survey
Three scales are used on the atlas sheets he Geological Survey; the smallest is $\frac{1}{200,0,0}$, th
 and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{\text { c.s.jo }}$ a square inch of map surface epresents and corresponds nearly to 1 squar and on the scale $\frac{1}{125, b 50}$, to about 4 square miles At the bottom of each atlas sheet the scale i expressed in three different ways, one being raduated line representing miles and parts of miles in English inches, another indicating dis ance in the metric system, and a third giving th fractional scale.
Atlas sheets and quadrangles.- The map being published in atlas sheets of convenient size which are bounded by parallels and meridians. The corresponding fourcornered portions of ter itory are called quadrangles. Each sheet o he scale of $\frac{1}{20 w e w}$ contains one square degree, i. e., a
degree of latitude by a degree of longitude; each degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{125,000}$ contains one-quarter square degree; each sheet on a scale of $\frac{1}{6+50}$
contains one-sixteenth of a square degree. The reas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map the United States, are laid out without regard to hips. To each sheet, and to the quadrangle it ents, is given the name of some well-know town or natural feature within its limits, and at

the sides and corners of each sheet the adjacent sheets, if published, are printed

 adjacent sheets, if published, are printed.Uses of the topographic sheet.-Within the of ses of the topographic sheet.- Within the limit of scale the topographic sheet is an accurate an and culture of the district represented, Viewing the landscape, map in hand, every feature of sufficient marnitude should be reco nizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminar urveys in locating roads, railways, and irrigation ditches; provide educational material for school and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographi base map, the distribution of rock formations on hap shows their underground relations, as far map shows ineir underground relations, as far
known and in such detail as the scale permits.

kinds of rocks.

Rocks are of many kinds. The original crust of the earth was probably composed of igneou ocks, and all other rocks
Atmospheric agencies gradually break up igne us rocks, forming superficial, or surficial, deposit f clay, sand, and gravel. Deposits of this clas have been formed on land surfaces since the agencies of streams the surficial materials of al ges and origins are carried to the sea, where along with material derived from the land by the action of the waves on the coast, they form edimentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone but they may remain unconsolidated and still be called "rocks" by the geologist, though popularly nown as gravel, sand, and clay
From time to time in geologic history igneou and sedimentary rocks have been deeply buried onsolidated, and raised again above the surface of the water. In these processes, through the gencies of pressure, movement, and chemical ction, they are often greatly altered, and in th ondition they are called metamorphic rocks. Igneous rocks.-These are rocks which ha cooled and consolidated from a liquid state. A las been explained, sedimentary rocks wer deposited on the original igneous rocks. Through holten material has from time to noten material has from time to time been forcel Wh When the his molten material is fored do not rowh urfaee it may consolidate in crats or f rossing the beading planes, thes forming dike r spread out between the strata in lase alled sheets or laccoliths, or form large irregula cross-cutting masses, called stocks. Such rocks are called intrusive. Within their rock inclosure they cool slowly, and hence are generally of crys talline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air acquiring a glassy or, more often, a partially crys talline condition. They are usually more or les porous. The igneous rocks thus formed upon the surface are called extrusive. Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragment hese materials when consolidated constitut breccias, agglomerates, and tuffs. The ash when arried into lakes or seas may become stratified, so The the sture of sedimentary rocks. The age of an igneous rock is often difficult or dime to deth. When it cats across and what rock the igneous rock is the older.
Under the influence of dynamic and chemica orces an igneous rock may be metamorphosed The its mina may involve only a rearrangene by a change in chemical and mineralogic
tion. Further, the structure of the rock may b changed by the development of planes of divi than in others. Thus a granite may moss easily gneiss, and from that into a mica-schist
sedimen from that anchist.
hich hare be desited under in sea late or therm Thery part of the dry land
When the materi
When the materials of which sedimentary rocks water and deposited as gravel sand or or mud by deposit is called a mechanical sediment. Thes nay become hardened into conglomerate, sand tone, or shale. When the material is carried in solution by the water and is deposited withou the aid of life, it is called a chemical sediment if deposited with the aid of life, it is called a rganic sediment. The more important rock ormed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, ignite, and coal. Any one of the above sedinentary deposits may be separately formed, or he different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of yyers or beds which can be easily separated These layers are called strata. Rocks deposited The surfe layers are said to be stratified be. it very slowly rise nor ind be, it very slowly ris sinks over wide expanses, and as the she line ise above the water and become land areas, ard hind areas man below the water a, an reas of depito If No radually to sink a thousand feet the sea would fow over the Atlantic coast and the Missi ip and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would ecome anes , and the ocean's shor would traverse Wisconsin, Iowa, and Kansas, and xtend thence to Texas. More extensive change than this have repeatedly occurred in the past. The character of the original sediments may be hanged by chemical and dynamic action so as to produce metamorphic rocks. In the metamo phism of a sedimentary rock, just as in the met norphism of an igneous rock, the substances of which it is composed may enter into new com ninations, or new substances may be added. When these processes are complete the sedimen tary rock becomes crystalline. Such changes ransform sandstone to quartzite, limestone to arble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the rigide beds or strata at any angle. Rock Rock of any priod the sur Rocks or any period of the ear his fions be really hism, and gene shen then enerally the most altered in bealitie remain essentially unchanged

Surficial roch. Thanged

Surfoial roks.-These embrace the soils, clays, whether derived from the breaking op or surface ration of the underlying rocks by atmospheric gencies or from glacial action. Surficial rock that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and henc re known as residual products. Soils and sub soils are the most important. Residual accumu ations are often washed or blown into valleys of other depressions, where they lodge and form eposits that grade into the sedimentary clas. urficial rocks that are due to glacial action are formed of the products of disintegration, togethe with bowlders and fragments of rock rubbed fro he surface and ground together. These ar pread irregularly owe tho tory occupie
 nd bowlers whe known It may ccur as a sheet or be bunched into hills and o., Mo the mix washed away from the ite asorted by water, and
redeposited as beds or trains of sand and clay, thus forming another gradation into sedimentar deposits. Some of this glacial wash was deposited in tunnels and chanelsin the ice, and forms char known known as osass, ar eskens, a ines. . drift, that washed from the ice onto the adja land is called modified drift. It is usual also to class as surficial rocks the deposits of the sea and of lakes and rivers that were made at the same time as the ice deposit.
ages of rocks.
Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass is essentially the same, and it is bounded by rocks
of different materials, it is convenient to call the of different materials, it is convenient to call the mass throughout its extent a formation, and su
a formation is the unit of geologic mapping.
Several formations considered together al designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some
larger fraction of a system, a period. The rocks larger fraction of a system, a period. The rocks are mapped by formations, and the formations are
classified into systems. The rocks composing a classified into systems. The rocks composing a
system and the time taken for its deposition are ystem and the time taken for its deposition are iven the same name, as, for instance, Cambria ystem, Cambrian period
As sedimentary deposits or strata accumulate the younger rest on those that are older, and the relative ages of the deposits may be discovered by observing their relative positions. This reladisturbance; sometimes in such regions the in turbance of the beds has been so great that the position is reversed, and it is often difficult to determine the relative ages of the beds from their positions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and
animals which lived in the sea or were washed from the land into lakes or seas or were buried in surficial deposits on the land. Rocks that contain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from thos of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived pecular forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of ock in which they are found. Other types passed on from period to period, and thus linked he yime of the old hast fosiliferous of life from present.
hen two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in
Fossil remains found in the rocks of different
reas, provinces, and continents afford the mos mportant means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colors and symbol assigned to each, are given in the table in the next column. The names of certain subdivisions and groups of the periods, frequently used in geologic writings, are bracketed against the appropriate period names.
To distinguish the sedimentary formations of any one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception
of the one at the top of the column (Pleistocene) of the one at the top of the column (Pleistocene)
and the one at the bottom (Archean). The sedi-
mentary formations of any one period, excepting the Pleistocene and the Archean, are distinguished from one another by different patterns, made of parallel straight lines. Two tints of the periodcolor are used: a pale tint is printed evenly over
the whole surface representing the period; a dark tint brings out the different patterns representing formations. Each formation is furthermore given

	Рвйо.	ssysoo.	Coros.
Cenozoic	Pleistocene	P	Any colors.
	Neocene $\left\{\begin{array}{l}\text { Pliocene } \\ \text { Miocene }\end{array}\right\}$	N	Buffs.
	Eocene, including Oifocene.	E	Olive-brow
	(Creataceous	k	Olivegreens.
Mesozoic	Juratrias $\left\{\begin{array}{l}\text { Jurassie } \\ \text { Triassic }\end{array}\right\}$	J	Blue-greens.
	$\left\{\begin{array}{c}\text { Carboniferous, includ- } \\ \text { ing Perulian } . . .\end{array}\right.$	c	${ }_{\text {Blues. }}^{\text {Blue }}$
Paleozoic	$\left\{\begin{array}{l}\text { Devonian........ } \\ \text { Silurian including }\end{array}\right.$	D	Blue-purples.
	Silurian, including $\begin{gathered}\text { Ordovician. }\end{gathered}$	s	Red-purples.
	Cambrian	ε	Pinks.
	Algonkian	A	Orange browns.
	Archean	A	Any colors.

a letter-symbol composed of the period letter combined with small letters standing for the formation name. In the case of a sedimentary formatio of uncertain age the pattern is printed on white round in the color of the period to which the cormation is supposed to belong, the letter-symbol of the period being omitted.
The number and extent of surficial formations, chiefly Pleistocene, render them so important that, to distinguish them from those of other periods and from the igneous rocks, patterns of dots and The oricin in any colors, are used
The origin of the Archean rocks is not fully Whether sedimentary rocks are also ing igneous. not determined The Archean rocks, and all metamorphic rocks of unknown origin, of what consisting of short dashes irrregularly placed These are printed in any color and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the metamorphic rock is patterns to be of sedimentary origin the hachur patterns of sedimentary formations. If the rock is recognized as having been originally igneous the hachures may be combined with the ignesus pattern.
Known igneous formations are represented by patterns of triangles or rhombs printed in any brilliant color. If the formation is of known age the letter-symbol of the formation is preceded by the capital lettersymbol of the proper period If the age of the formation is unknown the letter-symbol consists of small letters which uggest the name of the rocks.
the various geologio sheets
Areal geology sheet.-This sheet shows the areas occupied by the various formations. On hap. To ascertain the meaning of any particula colored pattern and its letter-symbol on the map the reader should look for that color, pattern, and nd description of the formation. If it is desired to find any give formation, its 10 whe be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of th geologic history. In it the symbols and nam are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary nd igneous - and within each group they are
placed in the order of age, so far as known, the youngest at the top.
Economic geology sheet.-This sheet represents the distribution of useful minerals, the occurrence of artesian water, or other facts of economic inter est, showing their relations to the features of topo graphy and to the geologic formations. All the heet are shown on this sheet by fainter color pat terns. The areal geology, thus printed, affords subdued background upon which the areas of pro uctive formations may be emphasized by strong colors. A symbol for mines is introduced at each
occurrence, accompanied by the name of the
principal mineral mined or of the stone quarried Structure-section sheet.-This sheet exhibits th In cliffs, the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different bed to one another may be seen. Any cutting which same name is liel to di the relations. The arrangement of recks in the earth is the earth' structure and a section eshilit arth this arrangement is called a structure section The geologist is not limited, however to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the manner of the formation of rocks, and having traced out the relations among beds on the sur face, he can infer their relative positions after they pass beneath the surface, draw section which represent the structure of the earth to considerable depth, and construct a diagram exhibiting what would be seen in the side of utting many miles long and several thousand fee deep. This is illustrated in the following figure
parts slipped past one another. Such breaks are ermed fault
On the right of the sketch the section is composed of schists which are traversed by masses of gneous rock. The schists are much contorted and their arrangement underground can not be inferred. Hence that portion of the section known by observation or well-found in no In fie a there are thre sets formation In fig. 2 there are three sets of formations, disfirst of these, seen at the left of the section, is the set of sandstones and shales, which lie in a horizontal position. These sedimentary strata are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has swelled upward from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable.
The horizonal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying deposits are, from their positions, evidently younger than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds and the accumulation of the younger. When younger strata thus rest upon an eroded surface of older strata the relation between the wo is an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the sch eruptions of molten presBut thi prose ad intrusion of imotens have not affected the overlying strat of the second set. Thus it is evident that an interval of considerable duration elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets, marking a time interval between two periods of rock formation, is another unconformity.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections in the structure-section sheet are related to the landscape. The profiles of the surface in the section correspond to the actual slopes of the ground along the section line, and the depth from the surface of any mineral-producing or waterbearing stratum which appears in the section may be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a concise description of the rock formations which occur in the quadrangle. It presents a summary the thicknesses of the formations, and the order the thicknesses of the formations, an
The rocks are described under the correspond ing heading, and their characters are indicated in the columnar diagrams by appropriate symbols. The thicknesses of formations are given in figures which state the least and greatest measurements. The average thickness of each formation is shown in the column, which is drawn to a scale -usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrange. ment: the oldest formation is placed at the bottom of the column, the youngest at the top, and igneous rocks or surficial deposits, when present, are indicated in their proper relations.
The formations are combined into systems which correspond with the periods of geologic history. Thus the ages of the rocks are shown, and also the total thickness of each system.
The intervals of time which correspond to events of uplift and degradation and constitute interruptions of deposition of sediments are indicated graphically and by the word "unconformity." CHARLES D. WALCOTT,
Revised January, 1902.
Director

DESCRIPTION OF THE OLIVET QUADRANGLE.

GEOGRAPHY.

eneral relations.

Eastern South Dakota lies on the Great Plains in the broad, indefinite zone in which these plains merge into the prairies of the Mississippi Valley It is comprised within the area of glaciation and most of its surface features show the characteristics of a drift-covered region. The country is mostly level or presents low, rolling slopes rising out of broad expanses of plains. The principal elements morainal accumulations left by the ice along lines marking various pauses of glacial advance and retreat. Further diversity of topography has been produced by the excavation of the valleys, especially that of the Missouri, which has cut a trench several hundred feet deep, mostly with steeply sloping sides. Between the moraines there are rolling plains of till and very level plains due to the filling up of glacial lakes. The upper James River Val ley presents a notable example of this lake-bed topography.

location.

The Olivet quadrangle is located between longitude $97^{\circ} 30^{\prime}$ and 98° west, and between latitude 43° and $43^{\circ} 30^{\prime}$ north. It embraces portions of Hutchinson, Bonhomme, and Yankton counties, South Dakota, its northern line being also the northern boundary of Hutchinson County, and has an area of about 871 square miles. It lies mostly within the drainage basin of James River, which enters the quadrangle near the center of its northern boundary, and, atter an irregular course, leaves the quadrangle in the southeastern portion. A directly into Missouri River.

topography.

The region is in general flat, and its features are, with few exceptions, those of very subdued glacial with few exceptions, hose of very subdued glacial separated, and the swells very low. Rougher areas occur in the morainic regions, which are shown on the Areal Geology sheet. At some points the swells rise into hills from 15 to 25 feet high, which are more fully described under the heading "Moraines." The surface varies in altitude from 1175 to 1625 feet above sea level, the average being about 1400 feet. By neglecting the channels of the less important streams, it may be said that the lower portion of the plain follows James River as an axis, and is broader near the center of the quadrangle, where it has a width of at least 12 miles and is very little more than 1300 feet above sea. From this plain there is a very gradual rise to the east, the northern half of the eastern border of the quadrangle being more than 1400 feet above sea level. There is a similar gradual rise toward the southwest, to the Choteau Creek Hills, which rise to 1620 feet above sea along the southern half of the western border of the quadrangle. Extending eastward from the Chotesu Creek Hills there is a low swell nearly 1500 feet in altitude at the west and declining towa the east. It continues nearly to James Ridge in the southeast corner of the quadrangle, which, just beyond the castrn margin 1500 the q Thgle, rises abruptly to more than 1500 feet The quale the Choten Crel Within the quadrangle, the They Creek Hills being the most conspicuous. They are largely of morainic an elevation on the pre-Clacial surface. They have a nearly north-south axis and an ill-defined outline, the country rising gradually toward them. They present two distinct members in the Olivet quadrangle, a higher central nucleus and an outer quadrangle, a higher central nucleus and an outer
rim, separated by a curved valley which contains the headwaters of Emanuel Creek. The rim is best defined at the north end, near Tripp, and declines toward the south.

James Ridge is a much more distinct but less xtensive and less elevated divide than the Choteau Creek Hill axis exter has sides are abrupt, and its greatest altitude is about 1550 feet above sea level, or 180 feet above the 1550 feet above sea level, or 180 feet above the
surrounding country. Only the northwestern third lies within the quadrangle. Its extreme northern end is separated from the higher and principal mass by a valley which drains to the principal mass by a valley which drains to
south on one side and to the east on the other.
The principal valley is that of James Rive Its average width is a little more than half a mile and its average depth a little more than 100 feet. It is bounded by abrupt sides having an average slope of about 35°. The slope of the flood plain is about 25 feet in the distance of about 35 miles traversed in crossing the quadrangle. Its altitude at the northern boundary is about 1200 feet above the sea. This valley is joined by those of the tributaries, which are, however, much narrower and most of them extend but a few miles back from the main river. The principal tributary valleys are those of Twelvemile Creek (which is divided into two principal branches), Wolf Creek, Lonetree Creek, Dawson Creek, and Prairie Creek. In the extreme southeast corner the valley of Beaver Creek leads outward and joins James River beyond the boundaries of the quadrangle. The valley of Emanuel Creek, in the southwest corner, is broader, and shows abrupt banks for only
a few miles north of the southern boundary of the a few miles
quadrangle.

GENERAL GEOLOGY.
The surface of eastern South Dakota is in large part covered with a mantle of glacial deposits conpart covered with a mantle of glacial deposits con-
sisting of gravel, sand, silt, and clay, of varying thickness, which are described in detail below, under the heading "Pleistocene deposits."
The underlying formations of the region are they outcrop in some of the hills where the drift is thin, and a few of the streams afford natural exposures, The numerous deep wells throughout the region have, however, furnished much information as to the underground structure. There are extensive sheets of clays and sandstones of Cretaceous age lying on an irregular floor of granite and quartzite of Archean and Algonkian age. Under most of the region this floor of "bed rock" is over a thousand feet below the surface, but it rises gradually to the surface to the northeast. There is also an underground quartzite ridge of considerable prominence, which extends southwest ward from outcrops in southwestern Minnesota to he vicinity of Mitchell, S. Dak.
The lowest sedimentary formation above the quartzite is a succession of sandstones and shale of wide extent termed the Dakota formation, which furnishes large volumes of water for thousands of wells. It reaches a thickness of 300 fee or more in portions of the region, but thins out and does not continue over the underground ridge
above referred to. It is overlain by several hunabove referred to. It is overlain by several hun dred feet of Benton shales, with thin sandstone an of Niobrara chalk to the worth Whand ang into limy clay the surace . Whe these formations appear at the surface they rise in an anticlinal arch of conof quartzite, but they dip away to the north of quartzite, but they dip away to the north the north-central portion of the State. In the Missouri Valley they rise gradually to the south east and reach the surface in succession, the Dakota sandstone finally outcropping in the vicinity of Sioux City and southward. The Pierre shale extends in a thick mantle into eastern South Dakota, lying under the drift in the greater portion of the region, except in the vicinity of the higher
portions of the anticlinal uplift above referred to It was no doubt once continous over the entire area but was extensively removed by erosion prior to he Gamie formations Doubless hen Mils and River, but they also have undergone widespread River, but they also have undergone widespread
erosion and few traces of them now remain in the extreme northern portion of the State. Tertiary deposits also appear to have been laid down over part of the region, as is shown by small remnants still remaining in the Bijou Hills and other higher ridges.
The Olivet quadrangle is covered with glacial drift, with the exception of the alluvial flats along hich streams and a few exposures of stratified rocks Numerous borings made in sinking artesian wells have furnished many data concerning the underlying strata, which have a nearly horizontal attitude.

algonkian system.

Sioux quartzite.-The oldest rock known in this quadrangle, reached in borings though not outcropping in the quadrangle, belongs to a formation which has been called the Sioux quartzite, from its type locality along Big Sioux River. This formaon, which is of Algonkian age, consists for the most part of red or purplish quartzite of intensely compact and durable character. It is extensively exposed a few miles north of the quadrangle, both Wolf Creek and on James River, and has been struck in borings at perhaps a score of localities Dakota fairage. It seens to nadie the Dakota formation throughout the quadrangle, and It is stratified, the layers being frequently 2 or 3 It is stratified, the layers being frequently 2 or 3 inches. While it is usually perfectly consoli dated, at some points the grains of sand have been only imperfectly cemented. On Wolf Creek, southwest of Bridgewater, just outside the quad rangle, the quartzite is locally so loosely cemented that it is easily worked with a spade and is used as plastering sand. Associated with this quartzite is plastering sand. Associated with this quartzite is is best known at Pipestone, Minn., but a weathered form of it has been found near Bridgewater and in a boring 2 miles east of Elmspring, where it is reported to have a thickness of 12 feet and to be of a blood-red color. The quartzite has been penetrated to a depth of 145 feet at Milltown, and to
a depth of about 85 feet at Elmspring. At Elmspring the rock is reported to be thin bedded, so that the boring was carried on rapidly.
The configuration of the upper surface of the quartzite is represented on the Artesian Water sheet by special contour lines which indicate the height above sea level of the surface of the rock as determined by the deeper wells. In a number of places deep borings have been made without sriking the rock. Naturally the localities at which the quartzite has been reached are much more numerous toward the northeastern corner of the quadrangle, where the formation comes nearer the rrace. It will be noticed that a ridge of this for mation is incated as extending southwestward fom Wor Creck. This reprsentation is based on repored wisg of the con ripp, together whe so that they are uppor mouth of Wolf Creek. The force of the last the dence will apper in a subsequent section. These ontour lines are largely conjectural in n. These the borings are not numerous.
This area is remarkable for the entire absence f rocks of Paleozoic age, which is indicated not only by the borings within the quadrangle but by observations made in the adjoining regions, for the Paleozoic formations that are exposed on the eastern flank of the Rocky Mountains do not appear at any point around the outcropping Algonkian and Archean areas in eastern South Dakota and central

Minnesota. Borings as far west as Missouri Rive ing not clearly revealed any formations interven ng between the Sioux quartzite (or in some case Doubtless, therefore, this quadrangle and the sur ounding region were dry land throughout the surgees during which the coal field of the long United States and the great limestone beds in the entral States were forming. This is further attested y the uneven surface of the quartzite, which, so ar as revealed, is deeply trenched, indicating lon exposure above sea level.

retaceous system.

Apparently only the Upper Cretaceous is repreented in the Olivet region, but it is possible that nere are also present the equivalents of the Lakota stone and underlying shales of the Black Hill urassic is are of Lower Cretaceous age. The deposition was far to the west.

dakota formation.

The Dakota formation consists mainly of finerained, sof sandstones in thick sheets, eac sually capped by a few feet of harder rock and parated more or less completely by strata of clay or shale, the sandstones greatly predominating in most portions of the area. The formation doe not outcrop in the region, but lies from 250 to 800 feet below the surface, the depth increasing gradu dly to the southwest because of both the dip of
 direction. It is absent in the northeast corner of噱 quadrangle where it abuts against the sioux quartite along an old shore line which extend Wittear Mabel post-office southeastard to nea ittencerg por wher a short ortheast Along this northern limit it lies at epth of from 20 to 250 fet The hown on the geologic map as Dakota sandstone been found to belong within the Benton formation. This determination was made on the evidence of fossils and structure in the adjoining regions, after the map was printed and therefore too late to b modified.
The sections of the Dakota formation given in figs. 1 and 2 are those which show most completely

the nature of the Dakota formation in this quad ngle. The section at Scotland includes a forma ion doubtless older than the Dakota, probably part the Sioux quartzite imperfectly consolidated The overlying Benton and Niobrara formations ar also represented.

cotorado grour

This group includes two formations which were rst separated by F. V. Hayden. The lower is omposed mostly of shale and clay with thin sand development near Fort Benton, Mont.; the upper is composed largely of chalkstone, and is called

Niobrara. These two subdivisions, though usually differing considerably in lithologic characters, are grouped on the Areal Geology sheet because

FIA. 2.-Section of well at Tripp. Furnished by Adam
Friederich of Parkston. The great thickness of the
chalkstone is exeeptional and probably 100 feet or more chalkstone is exeeptional and probably 100 feet or more
of the upper portion should be erpesented as till. This
would harmonize this section with oshers
the line between them is not easily mapped, the chalk in many places grading into clay and shale, and sometimes having a bluish tint resembling that

of the shale. It is very difficult to recognize these subdivisions in the reports furnished by well borers

FIg. 4.-Section of well on Lonetree Creek, in SE. 7 sec. 27 ,
T. 98 N., R. 59 W .
One will report that within a given region he has struck no chalk, only shale and clay; another will distinguish between the chalk and clay, recognizing the difference between the former and the blue shale or "soapstone;" while a third may record the chalk as a fine sand. Practically the distinction which is most obvious to the well borers is that chalk is

not plastic when wet, but acts more like fine sand: is frequently called, becomes plastic and sticky, and is not easily distinguished from the clay, except by its hardness. Typical sections of the except by its hardness. Typical sect
Colorado group are shown in figs. $1-5$.
The Colorado group is exposed in this quadrangle along James River from Elmspring to Milltown and below the mouth of Wolf Creek, on the north and south forks of Twelvemile Creek, on the next creek to the south, on Wolf Creek about 6 miles above its mouth, on the creek $2 \frac{1}{2}$ miles southeast of the village of Wolf Creek, and, still more prominently, in the vicinity of Scotland.
Benton formation.-In this region this forma-
tion includes thick deposits of dark shale and plastic clay with at least one widespread stratum of sandstone near its top, which for a time was looked upon as the top of the Dakota and is so represented on the Areal Geology sheet. Above this sandstone there is often a stratum of clayey material which varies much in consistency and thickness. In places it is wet and plastic and in consequence slips down the slopes, so that usually it is not wel exposed even when the drift above it has been remover in sec $33, \mathrm{~T}, 100 \mathrm{~N}$ of 59 W In wa areas it is locilly much houden, but not in thi quadrangle It is absent in many places and at quadrangle. It is absent in many places and at underlying sandstone bed

nderlying sandstone be

The sandstone bed is generally fine grained, though it sometimes shows considerable coarse It is often obliquely laminated and usually friable except where it is consolidated by iron oxide, which is more prevalent in the upper portion. It varies much in thickness; in some places it may be less than 10 feet, and in others over 50 , as in the well at Tripp. It seems also in places to be subdivided by shale intercalations and locally to be replaced by shale or shaly sandstone. It frequently contains sharks' teeth, but no other fos-
sils were found in it in this quadrangle. Near sils were found in it in this quadrangle. Near Mitchell fossil wood is sometimes found in it, and thin layers of lignite have been reported from apparently this horizon.
In the northwest corner of T. 100 N., R. 59 W., the top of the Benton formation rises 50 or 60 feet above James River, and the sandstone bed forms low cliffs in places along the stream. Below it there is doubtless shale, which, though not distinctly shown, is indicated by the occurrence of springs, and is penetrated by borings in the vicinity. The areas marked Dakota on the geologic map are all exposures of this sandstone of the Benton formation. It appears along Twelvemelew, and of Wolf Crown below the mouth of Wolf Creek, where it seem to be the summit of a low anticline rising to the
northeast as if overlapping a ridge of underlying quartzite.
The lower shale of the Benton, which intervene between the sandstone just described and the top of the Dakota, is also of indefinite thickness thickness of 200 feet or more, while toward the northeast it may be less than 75 feet thick. It lower limit, the top of the Dakota, is ill defined at some localities in this quadrangle, owing to the incomplete data furnished by well records.
With the limitations defined above, the Colorado group may thicken from 25 feet at the north east corner to possibly 400 feet in the Choteau

Creek Hills.

he bluff, the following section was obtained:
Section at Elnenvin

All except No. 1 and No. 6 belong to the Benton formation of the Colorado group. The sandstone bed outcrops in the side of the bluff only a few rods a 2 well. A similar secton wabe in a well 2 miles east. The
measured in the river bank:

Section of river bank $1 \frac{1}{2}$ miles south of Elmsyring.
$\underset{\substack{\text { Thickness } \\ \text { cent } \\ 50}}{ }$

Section of Milltown well.

The Scotland and Tripp well logs, shown in figs. 1 and 2, also give good sections of the Benton formation
Niobrara formation.-From a study of the formations along Missouri River it is inferred that the Niobrara chalkstone is evenly stratified and compact, with some of its layers forming a hard lime stone, but frequently the clayey material is more a thickness of from 150 to 200 feet.
At Scotlond 150 to 200 feet.
At scouriel for building. When the stone ha it is easily cut with a knife and shaped to any form desired. When thoroughly seasoned it resists weathering so that buildings formed of it have stood twenty-five or thirty years. When exposed stood twenty-five or thirty years. When exposed and becomes a white, earthy mass. The protoxide of iron, which stains it blue or light gray, when exposed to the weather becomes a yellow oxide or a carbonate which is leached out so that near the surface the rock presents a light-yellow or pure white color. It contains the fossils that have been found in it elsewhere in the Missouri Valley, viz, Ostrea congesta, different species of Inoceramus, some of them rather large but seldom perfect, large shell which apparently is a species of Pinna, and numerous scales and teeth of fishes, both of sharks and common bony fishes. Elsewhere the bones of large reptiles have been found in this formation, but as yet not in this area. The chalk rarely shows noticeable shells of Foraminifera, but the mass of the deposit is found, by microscopic xamination, to be composed of coccoliths and ther minute organisms found in the chalk else where. At some points the chalk passes laterally into a light-gray clay, and it would seem that chalk and clay might have been formed contemporaeously in different parts of the sea bottom. The ifficulty in determining the thickness of the chalk not readily distinguish it from the beren nd underlying clays and shat oces its thickness been reported to be In no case has feet excent at Tripp where it is said to be nearly 300 feet but probably this it is said to be nearly of the yellow drift clay at the top. The chalk probably varies in thickness in different localities, though in general it appears to increase toward the southwest, for not so much of it has been removed by erosion in the region lying in that direction.

ifrre shale.

This formation follows next in succession the Colorado. Along Missouri River it is very thickly developed above the Niobrara, and there is no question that it overlies that formation to some but from fact that it is heavily covered with drift we have very little evidence of its extent. It i not improbable that in the Choteau Creek Hills it may have a thickness of 50 feet or more above the chalkstone. From its outcrops elsewhere it may be said that in its general appearance it resembles closely the Benton, which is a dark-colored shale or clay containing occasional remains of marine animals and a rather large proportion of calcareous material, which is sometimes concen trated in large concretions.

tertiary deposits.

No distinct exposures of the Tertiary deposits have been discovered in the quadrangle, though it is not unlikely that in the Choteau Creek Hills there may be fresh-water deposits similar to those observed in. Turkey Ridge and at corresponding levelisely that the White Piver debosito. It farkely that the White River deposits extend so far east, but possibly an outlier of the Loup Fork, may eventually be found in the Choteal Creek may ev
region.
A de

A deposit of doubtful age and origin, which may prove to be Pliocene, or possibly very early Pleistocene, has been noted between the chalkstone
and the drift. quadrangle is in the side of a ravine in sec. $4, \mathrm{~T}$ 98 N. , R. 57 W . It is a cream-colored loam, suggesting a secondary formation from the chalkstone and yet partaking more of the character of loess. The section at the exposure is as follows:

Section in sec. 4, T. 98 N., R. 57 W.

	Lope of pebie
3.	Chalky layer
4.	Slope showing here and th
5.	Chalk with a convex upper surface.

No. 2 is of uneven thickness, because of the irregularities of the eroded surface of No. 3. pleistocene deposits.
Extent and classification.-The Pleistocene mantle is very prominent in the quadrangle, covering practically the whole surface, as shown on the Areal (in chronological order) as follows: (1) Circumlacial sands and gravels; (2) glacial till or bowlder lay, embracing an upper, yellow, and a lower, blue portion; (3) moraines, which include those of two istinct epochs with minor subdivisions; (4) terraces nd ancient channels, which may be referred to hree or four stages of the glacial occupation of the ountry; and (5) alluvium.
Circumglacial deposits.-The pre-Glacial surface was probably covered with silt and clays resembling hose found in the region west of the Missouri. he surface there, however, is probably being oded faster now than at that time, for the base evels controlling drainage channels were rela vely much higher then than now. Consequently he valleys were probably much broader and of gentler grade. The hillside wash and alluvium ere perhaps more marked than now in the trans Missouri region, but as the ice sheet, which esembled that of Greenland at the present time lowly advanced from the north, there was spread efore it almost everywhere an apron or fringe of orrential deposits. Heavy sand and gravel bar cumulated along the channels of the principa reams leading from it. A smaller amount of milar deposts was acculouated in all wate lied from the metting ice Hence much of th bied from the melng lo. Hence much of the yyer of sand and gravel over which the ic fvanced, and as the result of the process -day find nearly everywhere below the till or blue day of the region stratum of and and gavel con aining in most cases abundant water. The fine portions of pre-Glacial soil and surficial denosit portions of pre-Glacial soil and surficial deposits
of that time seem to have been washed away, leaving the sand clean and porous. This deposit of sand, which may be compared to a blanket, lies ver the uneven surface of the Cretaceous clays, mantling the upland as well as the lowland. It generally thinner, probably, upon the higher points, where its accumulation may be due in part to the action of winds. The sands of this deposit contain, like the bowlder clay above, pebbles of ranite, greenstone, and limestone. The deposit is arely exposed, but there are a few places along the base of the bluffs of James River where it appear. he more notable ones are about a mile below filltown and in a stretch extending for 2 or niles above the mouth of Wolf Creek. It may be recognized at other points by the appearance of prings near the level of the stratum. It appears, usually with less thickness, above the older rock wherever they are exposed. In these places, howver, it is not so frequently the source of springs, because such points are more elevated and becaus he bowlder clay has crept down and more fre quently covered it than where it has been recently
exposed by the action of the stream. In some exposed by the action of the stream. In some places this deposit may attain a thickness of 100 set, bities it is andy in othe calities it is enyly wang, so that the well
 rmation plays import part in the ply of the region, and will be further described py of the region,
under that head.
Till or bowlder clay.-The till presents th features that are found in similar regions elsewhere, s in central Minnesota, Iowa, and Illinois. It is n unstratified mixture of clay, sand, and worn pebbles and bowlders, the latter sometimes having a diameter of several feet. In this formation are found local developments of stratified sand channels of considerable length, and sometime
sheets that locally separate the bowlder clay into wo or more members. The till of this region much more clayey than at points farther east deeply eroded the dark-colored Cretaceous clays. For this reason the erratics are perhaps less fre quently striated and planed. The bowlders most diely distributed are gray and reddish granites of a straw color or clear white. The latter contain Fuvosites and cup corals, with occasional brachiopods, indicating their Paleozoic origin. Next i prominence are bowlders of a fine-grained trap or greenstone. Besides these, in some portions, a large percentage of the erratics, usually of smaller size, consists of fragments derived from a red quartzite ridge a few miles farther north. The disribution of these will be mentioned in connection with the description of the moraines.
The till varies in thickness at different localiti from 80 to 250 feet. In general it is thicker on higher elevations, as for example, the Chotea Creek Hills and James Ridge. Near the expoares of the older rocks, which may be suppose o represent points that have resisted pre-Glacial rosion, so that they are relatively more elevated he till has a thickness of 80 feet, as near Scotland nd Elmspring, but over the even surface between Parkston and Olivet it has a depth of from 125 . 10 nd James Ridge the thequently 300 eet. It is probably not very uniform, a thin short distances it varies greatly. The surest evidence that the bottom of the tirl has been promptly and to a considerable heioht Well promptly and tha fact more distinctly than difference of materials, for pebbles and bowlders re found in both the till and the sand below. No infrequently two neighbors sink wells and one i bliged to go to a depth of 250 or 300 feet before btaining water, while the other obtains it within 50 or 200 feet. This evidence is not always deciive, though, as has already been said, there are sometimes local developments of sand within the till which afford a copious water supply. Howver, in many cases the wells have gone farther and demonstrated the fact that in such cases no till is found below the sand.
It has been noted in other regions that the till consists of two or more members belonging to diferent epochs, and it would seem not improbable hat such occurrences may be discovered in this quadrangle, but thus far they have not been found This is the more remarkable when we consider the number of borings that have extended not only hrough the till, but to the Dakota formation below. However, since well borers are not discriminating in this matter, more careful observations may evenually reveal the fact that such a division of the till really exists, at least in the vicinity of moraines, In this connection should be mentioned a singula phenomenon occurring about 6 miles east of Wolf reek. In 57 W, ane in 8 N., R. 57 W., and in the sections adjoining t depths of from 55 to 55 fet, while 11 miks fer her west no water is obtained until a depth of bout 150 feet is reached, and then it has not suf ficient head to flow. This would suggest a separaion of the till into two members, with a sand eposit between, which does not extend to the econd locality. It may prove to be a separation of the earlier and older deposit of till, which may extend farther east, caused by the recession and between the Altamont and the Gry moraine Another explanation may be equally satisfactory iz, that at one time there existed in the region of he flowing wells a subolacial channel which deposted a sheet of sand on the till already laid down by the glaciers. This sand deposit would be strictly subglacial, while the till above would be of englacial origin, having been laid down upon the and deposits of the stream during the final melt ng of the ice sheet. The same hypothesis may explain similar flowing wells both north and sout of the area described, and also east of Parkston. The upper part of the till weathers to a light buff or yellowish color, which is so prevalent that it is only at unusually recent natural exposures, or
in the digging of deep wells, that the blue

Olivet.
unweathered till appears. An impression prevails hat the blue till differs materially in characte in considerable quantity, and supplies the shatlo or surface wells. It is a general rule that if suffi cient water is not struck before the blue clay i reached, no more should be expected until that formation is completely penetrated. The blue till is frequently called joint clay, from the fact that it is usually divided into polygonal masses by irregular joints crossing one another. These joints permit slight motion wherever the formation lies upon a slope, so that, though it is less plastic than he Cretaceous clays, in the vicinity of streams it is subject to landslides which cause it to cover the onderlying sands.
The surface of the till in this area, as elsewhe outside of the quadrangle, abounds more or le in shallow basins, which in the wet season may filled with water. In some localities these basin are so deep that year atter year they contain severa feet of water; but more frequently they dry up in ummer, and are capable of tillage. Since rainwater is their only source of supply, even the deepest are like
dry years.
Moraines.-These are local developments of the fill in the form of elevated ridges, usually with ougher surface than elsewhere. In other words, o heights of 25 or 30 feet, though the best exam ples of such topography are not found in thi quadrangle. The intervening depressions and basins are also more numerous than they are in he surrounding areas. Moreover, the morain and bear other marks of abundant and free grave, water. They are generally looked upon as mark ing an area where the edge of the ice remained stationary for a considerable length time. While the ice gradually brought material to that point, the process of melting prevented is advance, and the clay and gravel contained in it were dropped along its edge. With this explana tion we can easily understand how some areas are much more abundantly supplied with material than thers because of difference in velocity and in load of the ice, and its relation to attendant waters. We rarely find the edge of the ice sheet clearly marked for any great distance by morainic deposits. The moraines are usually best developed at higher levels. Where the edge of the ice sheet rested in still water, whether in a lake or a sluggish stream, the material brought by the ice would be widely distributed by the water, and a comparatively level urface would be formed. Again, where the edge of the ice was washed by a stream for some disance, material contributed by the ice would be carried away, instead of being deposited as an

In this quadrangle are portions of two systen f moraines, with probably representatives of thre or four subdivisions of each. This is shown not so much by the facts presented in this quadrangle as by the relations of the moramal deposits to thos within the areas. The quadrangle lies wholly within the area occupied by the ice sheet during he adace kown stage, apresented and were first distinctively that State This was one of the more studied the principal advances of the ice sheet, and unlike he prier advances, marked its different, and, unlik formation of conspicuous moraines. These how ever, are not so well marked in this quaseng in Wisconsin or in the northern part of South Dakota.
The oldest, or first-formed, moraine, is called the
Altamont, from its development near the town of that name in South Dakota. The earliest member of this moraine is found in the higher portions of he Choteau Creek Hills, in the extreme western portion of Ts. 95, 96, and 97 N., Rs. 60 and 61 W. This member was formed first, or was the first bare ground uncovered upon the recession of
the ice from this quadrangle. Portions of a secon member of this moraine are recognized in a consicuous ridge west of Tripp, forming the rim of the Choteau Creek Hills, and lying east of Emanael Valley, and in the higher and older portion of James Ridge as it is found developed from sec. 36, T. 96 N., R. 57 W. southeastward.

An early development of the second or Gary moraine, so called from the town of that name in Deuel County, S. Dak., is represented by a broken, Ridge, by the hills north of Lesterville, by the elevations in secs. 33 and 34 , T. 96 N., R. 58 W., by the stony hill in the northern limits of Scotlan and by scattered elevations west of Olivet. later member of the Gary moraine is recognized in the system of low ridges forming a strip 2 or 3 miles in width extending across the nearly level plain, from the northwest corner of T. 100 N., R. 60 W., to James River above Olivet. The outline of the strip is not sharply defined, there being a very gradual transition from the undulation of the surrounding plain to the rougher portions whic mark a distinctively morainic area. There are also slight ridges northeast of James River, lying along the river bluffs from near Milltown to Worf Creek, and another ridge, which enter the quad rangle at Elmspring. As determined in the Alexandria quadrangle, the ridges northeast of Jame River are part of a third morainal belt, and the one at Elmspring is the end of a fourth belt. A discussion of the formation of these ridges
and the correlation of the different phenomena and the correlation of the different phenomena attending it are given under the heading "Geologic history.
The hills forming the earlier members of the Gary moraine near Lesterville and at James Ridge rise 25 or 30 feet above the intervening valleys, and some of the basins in them contain permanent lakes. In the later member the ridges are rarely more than 10 or 15 feet in height, and are be from a half to thre fourth of a mile apart old terrace and chansel apart description already given, and from a conside ation of the ice sheet, it is evident that at different stages in its occupation of the region there must have been lines of drainage different from those occupied by the present streams. The channel occupied by the present streams, especially by James River, could not have been utilized freely until the ice had entirely withdrawn. It follows also that each stage in the ice sheet would have its peculiar avenues of drainage, so that we may recogine, according to the minuteness with which investigate the deposits, many or few of the differ ent systems. A general discussion only will be epresented The channels herein referred to at cepresented on the Areal Geology sheet and the by numbers associated with the letter symbols.
During the formation of the Choteau Creek Hills the whole quadrangle was covered by the ice sheet, and the only drainage was west and south from the head of the Choteau Creek Hills into some of the open branches of Choteau Creek. As the ice melted away and uncovered areas farther east, a stage the valley of Emanuel Creek. At the same tim probably, the lower end of James Ridge was begin ning to be uncovered, so that the water from th region drained southeastward by the lower part of Bere limited thll more the ore 1 w 1 er Jomes Rid ice edge lay ge no the Rugo
 of Scotland. At that time the dwinge chane just west of Lesterville probably carrid away from he ice large quantities of water, and not unlikely a channel farther west drained a large shallow, and comparatively temporary lake covering the regio northwest of Scotland. The outlines of this chan hel have not been distinctly observed, and it probable that the water which accumulated along the western side of the ice lobe very soon found its way southeastward beneath the ice, down the presen hannel of James River. At the same time wate was escaping in considerable volume to the south, he soue west side of James Ridge, and also to the ice. Beaver Creek Valley was wholly uncovered, and probably was full of water.
The course of the drainage during the forma tion of the later portion of the moraine is plainly defined. It is especially marked along the lower the creek to the southern bend of Dry Creek.

Shallow deposits of gravel and sand abound in this channel and cover the terraces that rise from 60 to 80 feet above the valley of Lonetree Creek and from 80 to 100 feet above James River. The broad area occupying the upper valley of Dry Creek exhibits the peculiar topography of a shallow lake bed partially filled, and contains only clay and silt, with few or no erratics, and has more less ditan is found elsewhere in the region. A of the dinct channel close along the outer ridges in the northwest corner of the quadrangle possibly existed. Farther northwestward it is evident that at one time the drainage from the west side of the ice lobe which occupied James River Valley discharged, for the most part, down such a marginal channel, for it is well marked east of Plankinton and northward up the valley of Firesteel Creek. Another stage of the streams was reached when the ice withdrew from the second portion of the Gary moraine sufficiently to permit the water to escape down the course or James River from Milltown to Wolf Creek. This occurred before the excavation of the present trough of the river. A well-developed gravelly terrace extends, at a height of 90 feet above James River, down the lower Milltown, Twelvemile Creek, on the spur west of Milltown, across the lower valley of Dry Creek, and thence easward untir concides with the present course of the river. The lower portion of Riv Valle, ina freek to 11. T 99 N R W Where it for
 ond ing of ser sace dep allays
description, tant. On the retreat of the ice from the area north of James River, Wolf Creek became a prominent water course, and a well-defined terrace was formed 120 feet above the present stream. Deposits were also spread over the shallow depressions to the west, draining in part into Wolf Creek and in part into James River. As the ice receded farther up James River Valley, the water gradually eroded the deep trough which is now occupied by that river.
Alluvium.-All of the streams that traverse the region are subject to sudden floods, caused not only by occasional excessive rainfall but by the rapid melting of abundant snows during certain seasons. The gravels of these ancient channels and lake basins, already referred to, are thickly covered with fine silt, which is in part due to floods and in part to the deposition of dust from the air. The alluSome portions of it are dry and are well adapted Some portions of it are dry and are well adapted to cultivation, other parts are marshy, and all are vial deposits are from 10 to 20 feet in thickness, the upper 3 to 5 feet being usually fine black loam, the lower portion sand.

GEOLOGIC HISTORY.

As the area exhibits no rocks older than the later Algonkian, the earliest phases of the history of the region of which this quadrangle is a part may be stated very briefly. At some stage preland surface composed of granite and schists ace pied central Mise of pied central Minnesota, and possibly extended From that land area mater wa derivel, both by he action of stream and by wave erosion along the shore, which was laid down erosion along occupied at present by the Sioux quartzite. The deposit was mainly in the form of stratified sands, although occasionally thin beds of clay accumulated. Possibly the deposits were laid down more thickly toward the center of the area, in the vicinity of the underground ridge of quartzite which now'extends, as a broad peninsula, in a southwest direction, from the vicinity of Pipestone, Minn., and Sioux Falls, S. Dak. After such deposition there seems to have been an epoch of slight disturbance and gneous intrusion. This is indicated by a dike of olivine-diabase near Corson, S. Dak., and in borings at Yankton and Alexandria, S. Dak., and by a dike of quartz-porphyry near Hull, Iowa. Through silicification the sandstone was changed into an intensely hard and vitreous quartzite, and the clay beds were transformed into
pipestone and the more siliceous into red slate, as at Palisade. Microscopic examination shows that the silicification was effected by the crystallization of quartz around the separate grains of sand until the intervening spaces have been entirely filled. The material of the quartzite was laid down in the sea, and at first may have included scores, or even hundreds, of feet of material above that which is now found. In time the region was lifted above the sea, and during some part or all of the long period of the Paleozoic it was a peninsula. It may at times have been submerged and have received other deposits, but if so, they have been eroded. That it was not far from the ocean, at least during a portion of the time, is
attested by the occurrence of Carboniferous rocks attested by the occurrence of Carboniferous rocks under Ponca, Nebr.; and since rocks of several of the different ages of the Paleozoic and of the Jurassic and Triassic are found in the Black Hills, it is evident that the shore line during those ages repeatedly crossed the State some distance to the west. With the beginning of the Cretaceous period the sea began to advance over the land; in other words, this quartzite area began to subside relatively. As the wien gay fing and currents carried away finer material and left well-washed smas spread as more or less regular the shallow sea to the Rocky Mountains From the shallow sea to the Rocky Mountains. From and finer material, or mud, was deposited, or we may suppose that both the sands and the mud were being laid down contemporaneously in different areas. It is not unlikely also that strong tidal currents sweeping up and down the shallow sea over the area mentioned may have played an important part in distributing so uniformly the sands and clays. Where the currents were vigorous, sands mainly would be laid down; where they were absent or very gentle, clay would accumulate, and not improbably, these tidal currents would shift from time to time by the variable warping of the sea bottom and the shore. At any rate, we know that several continuous sheets of sand lie over this region and are more or less perfectly separated by intervening sheets of clay. The process left behind the Dakota formation.
The fossils found in the Dakota formation are some fresh-water shells and leaves of deciduous trees, like the sassafras, the willow, the tulip tree, and the eucalyptus.
During Colorado and still later Cretaceous times marine conditions prevailed and the region was further submerged until the shore line was probably as far east as central Minnesota and Iowa. During most of this time only clay was deposited in this quadrangle, but calcareous deposits accumuated in the form of chalk during the Niobrara epoch, when
During these epochs the sea morg reptiles, some of sigantic abounded in swimming repules, some of gigantic size, whose remains have been found several points; also sharks and a great variety of other fish, although the
of these are not abundant at most points.
of these are not abundant are the Cretaceous period the sea seems to have receded rapidly toward the northwest, and all eastern Dakota again became dry land.
During the early Tertiary, when, according to the prevalent view, large rivers deposited widespread sediments in the region to the west and southwest, this area received but little material and probably abounded in vegetation and animal life which exhibited features not markedly different from those of the present age. Probably the climate was then much warmer and moister.
Later the streams, which had already become
located, cut deeper channels and found outlets toward the south, somewhat as at present. At that time James River Valley was occupied by a larger river which received from the west the various streams that now join the Missouri. It had not, however, cut to the depth at which we find James River to-day, though the valley had been so long occupied that its breadth was much greater than that of Missouri River.
During the Pleistocene period the great ice sheet moved down James River Valley, entering it probably from the north and northeast. It slowly advanced, preceded by waters from the melting ice, which gradually spread a mantle of sand and gravel sheet flowed according to the slope of the pre-Gla-
cial surface, moving more rapidly on the lower and more open portions of the valley, and becoming almost stranded on the higher elevations. It ertainly extended as far as the outer, or Altamont, extended Some geologists are confident that confluent with the similar sheet flowing down the Minnesota and Des Moines valleys, both sheets extending into Kansas and central Missouri. However that may be, during the formation of the Altamont moraine the ice filled the whole Jame River Valley and extended westward at different points to the present channel of Missouri River, near Andes Lake, Bonhomme, and Gayville, so that the Altamont moraine forms an almost continnous ridge or system of stony hills around the edge of the ice sheet of that epoch, except where it was removed or rearranged by escaping waters. Morainal deposits of this stage are found in this quadrangle in only the higher portion of the Choteau Creek Fills.
For some unknown cause or combination of influences the ice began to recede, and at a later stage of what is considered part of the Altamont this quadrangle in the higher part of James Ride this quadrangle in the higher part of James Ridge and near Tripp. At that time the water was dis-
charged copiously down Emanuel Creek, but other charged copiously down Emanuel Creek, but other
lines of drainage in the quadrangle were covered by the ice sheet.

he ice sheet. After this

Atter this came a period of still more extensive indefinite distance to the north. It is not unlikely that it retreated considerably within the line of the Gary moraine. As has already been suggested, it is probable that along the eastern side of the quadrangle it may have retired from the head of TurKey Ridge into the eastern part of T. 98 N., R. 57 W. and in the western portion farther east than
he drainage channel from Dry Creek to Lonetree Creek; but there is little evidence on this point. Then came a stage during which the edge of the ice was stationary or advanced slightly until it rested against James Ridge west of Lesterville and near Scotland. About this time a shallow,
fluctuating lake was formed by the waters which fluctuating lake was formed by the waters which
ran down the western side of the ice lobe and ran down the western side of the ice lobe and accumulated in the region northwest of Scotland,
submerging the site of that place also. At times submerging the site of that place also. At times
the lake apparently overflowed through the chanthe lake apparently overflowed through the chan-
nels west of Lesterville into the valley of Beaver nels west of Lesterville into the valley of Beaver
Creek. At other times temporary outlets may have Creek. At other times temporary outlets may have
been formed underneath the ice along the present been formed underneath the ice along the present
course of James River. To the presence of this course of James River. To the presence of this
lake is probably due the level surface of the counlake in probably due the level surface of
try absence of morainic accumulations along that por tion of the edge of the ice during the earlier stage explain, although from a study of this quadrangle explain, although from a study of this quadrangle alone the explanation seems clear; since, however,
the morainic accumulations of corresponding age the morainic accumulations of corresponding age
are from 150 to 220 feet higher along the eastern edge of the ice lobe near Freeman and between Marion and Parker, the solution is not so apparent. There is apparently no adequate reason for so heavy a deposit along the eastern edge of the ice lobe at such an elevation, while along the western edge there is a broad sheet of nearly level till. It would seem that this lake, although so transient that it appears to have left no beaches, was able to render the englacial till so plastic that it was very smoothly spread. Moreover, it not improbably caused a bay to form on the western side of the ice toward thecing a distinct on the geologic map Possibly also it may have started a transverse current which rendered the action upon the eastern edge of the lobe less vigorous during the later stages of the moraine. During the formation of the later portions of the Gary moraine and in stages shortly subsequent, the drainage changed rapidly from one system of channels to another, as is indicated on the Areal Geology sheet, and as has been explained
more fully under "Old terrace and channel deposits.'
Eventually the ice again receded, vacating the whole area. Its last occupation of any portion of the quadrangle was possibly east of Elmspring, and its final disappearance was evidently attended by abundant sands were laid down, forming a pitted
of Wolf Creek along the western line of T. 100 N R. 57 W . The lake beds that abound not only in the morainic areas but here and there over the whole surface are due to the unevenness of the deposition of the material included in the ice. Some of the depressions may be due to temporary torrents plunging from the ice, others to blocks of ice-detached portions of glaciers-which became buried in the accumulating till or sand beds. The sandy region just mentioned is especially marked by such depressions, but unlike similar basins elsewhere in the till, these depressions rarely hold water. It would seem that the sand was so deep and the clayey material so scarce that wherever
water accumulated in them it was very promptly water accu
absorbed.
Since the retirement of the ice the basins in the till have gradually been filling from the accumula tion of dust and the wash from the adjacent sur face. In some cases erosion has opened them so heen filled to draned, but in most cases they have
 in this reeded in for that baring age found lewhere are occupied by tamack swamps in which peat has accumulated in some cases to a depth of several inches, and in some of these basins trunks of tamarack 8 inches in diameter have been found. The more notable cases of this sort are in northern Douglas County

ECONOMIC GEOLOGY.
No mineral ores or beds of coal or lignite are found in this quadrangle. The rusty sandstones along James River around Milltown may contain local thin beds of lignite, but as they have not yet been discovered either upon the surface or in the beds of value occur in this area
building stone.
The most abundant stone in the quadrangle is that brought by the glaciers of the Pleistocene. It is in the form of bowlders, which are scattered over most of the country but are much more abundant
in the morainic areas. They consist mainly of granite, limestone, and red quartzite. They are not easily prepared for ordinary building purposes,
because of their hardness and toughness, and thus far their use has been principally confined to the laying of foundations.

sandstone.

Between Milltown and Elmspring the Benton Cormation contains a bed of moderately durable an sanastone of inegular grain which so far has been adapted only to the building of rough ans, auality might be obtained. The color varie from shades of rusty yellow to black, due to the iron which it contains. Locally it has been used for building purposes and the quarries are indicated on the Areal Geology sheet. Blocks of this stone are found several miles to the south, in the drift along James River.
halkstone.
This rock occurs along the South Fork of welvemile Creek and also along Pony Creek, 2 or 3 miles from Milltown. The quarries are shown on the Areal Geology sheet. More extensive exposures are found near Scotland, where some years ago the rock was used in the erection of buildings of considerable size which exhibit the durable character of the stone when well seasoned. The blocks, however, need to be carefully selected, else weather-
ing will cause them to crumble. The slopes where the rock is naturally exposed show little besides white earth with small chips of stone. When moist, if exposed to the frost, it seems to disintegrate very rapidly. Because of the difficulty of selecting durable pieces, and of its association with srata unsuited for cutting into proper shape, it has late years been little used. When fresh it can it seems not impossible that quarries of considerable importance may be opened near Scotland and at ther points where the formation is doubtless deeper within the earth the blocks are
much less broken than toward the surface, and at number of points quarries of considerable extent could easily be opened.

Lime.

The chalkstone and limestone bowlders of the Trift were used in the carly settlement of the country for the manufacture of lime, but with indifferant success. The limestone bowlders are largely magnesian.

clay

Although the till is composed largely of clay, it so mixed with gravel, and especially with calcareous matter, that it has nowhere been success fully used for economic purposes, not even in the manufacture of brick. Cretaceous clay is so little exposed that there has been no attempt to utilize . Considering the good quality of the lower par of the Colorado group near Mitchell, as has been hown experimentally, it would seem probable that here are similar valuable deposits near the junction Pony Creek with Twelvemile Creek, in sec. 33 T. 10 N., R. 59 W. No trial has been made of exposed but from the sliping of on the slopes in that vicinity it may be inferred on the slopes in that vicinity
that the clay is of good quality.
sand and gravel
Plastering sand and gravel suitable for ordinary purposes are found at many points, especially along the ancient channels and terraces, and in some of the knolls in the morainic areas.
water resources.
Under this head is included an account of the most important natural resource of this quadrangle water, which is readily divided into surface wate and underground water. Under the former ar included lakes, springs, and streams, and under the latter the sources which furnish shallow wells, artesian wells, and tubular wells.

surface waters.

Lakes.-Lakes receive their waters directly from the rainfall, and endure according to the extent of the drainage basins, the depth of the reservoirs, and the sufficiency or lack of precipitation. The rainfall of the region varies greatly in different sea sons, but it averages about 25 inches a year. The lake beds over the whole district are filled with water after a succession of wet years, and usually in the spring, if there has been much snow during the winter, but in the latter part of summer most of the ponds become dry. Some of the more promi nent are marked upon the map as lakes. Within he last twenty-five years some of these lakes have remained throughout a summer with 10 or 15 feet
of water, while a few years later they would be dry nough for tillage.
Springs.-Permanent springs are rare, but a few occur along James River and its principal tribu formations which are discussed more fully under th head of underground waters. Certain under the which perhaps are not often recognized as such, which perhaps are not often recognized as such, derive their waters from the rainfall that seep
through the upper part of the drift into the wate through the upper part of the drift into the water
courses. Since their water is contained in isolated courses. Since their water is contained in isolated
basins or water holes occurring in stream beds, many may not recognize the fact that the water is many may not recognize the fact that the water i
supplied, to some extent, from beneath the surface but this is doubtless the fact. The purity of the water of these springs is due to its constant movement as is more fully explained under the heading "Underground waters." Other springs derive their water from the gravel and clay deposits capping the ancient terraces or lining the old drainage courses of the Glacial epoch. As an example of this class may be mentioned a spring in the southwest corner of sec. 34, T. 100 N., R. 59 W., which is upplied from the gravel deposits in an old channe of James River about 100 feet above the present tream. Another spring, less copious, appears in sec 3 , where the same channel meets the deeper valley of Dry Creek. Still another, from these same deposits appears in or near sec. $15, \mathrm{~T} .99 \mathrm{~N} ., \mathrm{R} .59 \mathrm{~W}$. It is probable that careful examination would reveal thers of similar origin. Still other springs deriv These fail to bring water to the surface except
in areas where underlain by clays, probably of $/$ mate depths to the bottom of the drift in the Olivet the Cretaceous system, although this may not quadrangle are shown in fig. 6 always be easily demonstrable. Springs of this log the right bank of Jame of the f points between the mouths of Dry Creek and Wolf Creek It is probable that further seareh would discover many more.
fouth f more
trom the sandstone of the seems to be supplied Springs of this kind have been Boted a mile or two south of Elmspring, where the water escapes from the base of the sandstone as it rests upon the shaly clay below. Other springs believed to be supplied from the same stratum are found near Olivet. They are two in number, the smaller appearing 10 or 20 rods southeast of the bridge crossing James River east of Olivet, the other about a quarter of a mile farther south, within a few rods of the edge of the bottom adjoining the river. Both of these springs, or ponds, as they may be called, are of circular form and are surrounded by bullrushes. The water rises nearly to the level of the bottom land, which is 10 feet higher than the ordinary stage of James River, near by. Since they are more than a half mile from the base of the bluffs on the east, and since the water is higher than that found at ordinary stages in James River within 2 or 3 miles upstream, it seems evident that the supply is derived from an underlying stratum of the Benton, and that we have here natural artesian feet in the largen has a diameter of about 150 ullo It is prable that imilar leaks from buriesin Jom Bire bed the artesin ser hat are found on the flood plain may derive their water from this source, although probably most f them are supplied from the sand sheet below the till.
Streams.-James River is the only stream that can be depended upon to contain water throughout the year. Although the lower portions of Wolf Creek, Twelvemile Creek, and Lonetree Creek are arely entirely dry, in the latter part of summer the water seldom flows continually more than a mile or two above their mouths.

waters.

Water from the till.-The most accessible underground water is that which flows near the surface of the ground, seeping through the yellowish upper portion of the till toward a water course wherever conduits for it. It flows slowly through the lower portion of these sand accumulations and appears at intervals in water holes along the upper portion of the more prominent streams. In these it rarely comes forth in sufficient volume to attract attention. Where the slope of the surface is toward an undrained basin, the water of the yellow till flows out and forms an open lake, so that the general water level sinks, a condition which often exists. It may then be drawn upon by shallow wells, and for a number of years may prove to be entirely adequate for the demand of neighboring farms, but in time of drouth it is gradually exhausted. Where the surface slopes toward a water course the water accumulates in larger quantity, but it also flows away more quickly. Shallow wells, therefore, accupied by streams of considerable size during the presence of glaciers in the region, afford some of the most copious water supplies in the quadrangle. In the early seftlement of the region these hallow wells were the main dependence of the farmers. In 1881 and a few years subsequent, dry years it became exhausted, and farmers were forced to go deeper for their supply.
The next lower water is derived from the sand and gravel at the base of the drift. These are reached by penetrating the till by borings, usually an inch or two in diameter, to a depth of from 100 to 250 feet, or even 300 feet, below the surface. This depth would be a serious disadvantage were it not in a measure compensated by a rise of the
water, which in many wells in this deposit stands from 5 to 25 feet below the surface and in some cases produces flowing wells. There are in the quadrangle wells of this class which have been flowing for more than twenty years. The approxiOlivet.
quadrangle are shown in fig. 6 .
The area in which flowing waters are obtainable from this source is shown on the Artesian Water ally at moderate altitudes remote from important streams. In some cases in deep depressions the land surface is low enough to afford a flow which would not have sufficient head to rise to the surface on the adjoining higher slopes. In some localities,
as does the former. It should not, however, be considered inexhaustible, for if a tubular well fail, the failure being first appert in anderal region.
The way in which the water enters the sand within and below the till is not well understood In general, the till seems to be so perfectly imper vous that, especially at lower levels, it prevents the escape of the waters below; yet we have

41

 FIG. 6. - Sketch map of Olivet quadrangle showing approximate depths to the bottow of the drift. Water

 wells.as in a portion of the Choteau Creek Hills, there no water-bearing sand at the base of the drift. As already stated under the heading "General geology," deposits of sand and gravel are not infrequently locally developed in the till itself. These usually furnish copious supplies of water, the till. On hecrany senetratl may be absent, and in such cases no water is likely
already called attention to the joints in the clay which in certain places and at certain times, especially in the more abrupt slopes of the sur-
face and after drought, are probably opened sufface and after drought, are probably opened suf ficiently to permit some water to enter. It is not improb may the boun the the lower Pleistocene sands in such a way as to add materially to this supply. It is not unlikely
outside of this quadrangle, tubular wells appar ently obtain their water from a sandstone layer the chalkstone. Moreover, there exist in some places, although not certainly in this quad rangle, a stratum of sandstone in the chalk fortion which affords water copiously
Main artesian supply.-It is universally agreed, by those who have studied the subject, that the main artesian supply is from the sandstone and sand beds of the Dakota formation (see fig. 7), though smaller flows are obtained from sandstones in the Benton formation. The Dakota sandstone owes its capacity as a water storer to (1) its great extent, underlying, as it does, most of the Grea Plains from the Rocky Mountains eastwar elevated ninety-fifth merit moist region of the mountains and is crossed by numerous mountain streams; (3) its being largely sealed at its eastern margin by the overlapping of shales (clays) of the Colorado formation, and, where that is not the case, by the glacial till sheet; and (4) the denudation of wide areas by older streams, especially in North and South Dakota, so as to bring the land surface below the level of the pressure height produced by the elevated source of the water at the western border of the formation. Wells supplied from the Dakota and overlying sandstones may be either pumping or flowing wells. In the former the water does not rise to the surface, but must be pumped. In flowing wells the water fountain. Some wite ould ane it, as in a the word. some wians of the word artesian to the latter class of wells, in Othere wis extend to all well derivg supply fro like dop sowee, under pheir supply from a the deep source, under pressure, the water quite to the surface. The area of probably flowing wells within this quadrangle is shown on the Artesian Water sheet. The distinction between areas that will yield pumping wells and those that will vield flowing wells depends upon several factors, which are discussed under the heading "Artesian pressure." From a comparison of the sections of different wells it appears that the sheets of sandstone are more or less subdivided by intercalated sheets of clay, the permeable sandy deposits extending out as wing-like sheets. Thus there are at least three well-marked flows in the quadrangle. The first, or uppermost, probably corresponds to the stratum exposed above Milltown, which of course san not hold water under pressure sufficient to produce flowing wells in the vicinity of its exposure. The second is that which supplies most of the wells northeast of Tripp. The third is probably that reached in the deep well at Tripp. Presumably others occur still deeper in the south eastern portion of the quadrangle.
From a study of the sections of the wells it is evident that the successive flows rise somewhat toward the north in the direction of the exposures
of quartzite, but the higher water-bearing strata are of quartzite, but the higher water-bearing strata are
found to overlap very considerably those below. found to overlap very considerably those below.
In other words, the lowest sandstone of the Dakota In other words, the lowest sandstone of the Dakota does not extend so far northeast, by several miles, as the them become important questions to those sinking wells near the margin of the area for if the water in the uppermost water-bearing stratum is not under pressure enough to bring it to the surface, the drilling must be continued until a stratum

FIG. 7. -Sketch section aeross the Olivet quadrangle along the line A-A on the Artesian Water sheet, showing the artesian wells in that vicinity extend

to be reached short of the main artesian supply.
The deep wells supplied from sources in the till $\begin{aligned} & \text { that some of the flowing wells from the Pleistocene } \\ & \text { east of Parkston are supplied by leakage from }\end{aligned}$ The deep wells supplied from sources in the till ve may conveniently speak of water within the Pleistocene sands as the "tubular well supply." apply is the local rainfall, the same as that of flowing from it, as at Scotland. Its water appears shallow wells, but it is a more constant supply,
because the water enters more gradually. It is
beneath the drift, and it must be regarded as part more continuous and does not waste in evaporation, of the tubular well supply. In some areas, mainly
and water-bearing at some It seems end the original source of this localities; in fact springs are occasionally found sandstones in the older formations.
Water from the older strata. - The Niobrara lkstone is porous and water-bearing at som more continuous and does not waste in evaporation,
with sufficient head is reached. The depths to the water-bearing beds shown on the Artesian Water sheet do not always agree with the depths given by the well records. These discrepancies can be assigned largely to the fact that different horizons are tapped by different wells, but they may be produced by other factors, viz: (1) the altitude
 water-bearing strata, which in general decrease in
the direction of freest leakage, and which increase
the direction of fr
with the depth of the strata below the surface; (3) the dip of the strata, which is not great, but in this quadrangle is usually toward the south; (4) the number of underlying water-bearing strata, which
is usually three or four; and (5) the vertical disis usually three or four; and (5) the vertical dis-
tance between successive water-bearing strata. tance between sucessive water-bearing strata.
According to reports on wells in the vicinity of According to reports on wells in the vicinity of
the lower James River Valley the more important strata are from 75 to 100 feet apart. This appears strata are from following data: Flowing water from the follow s T P 57 W at 300400 and 475 fet, in the Excelsior Mill well at Yankton flows at 300 375 and 450 feet; in a well in sec. 20 , T. 94 N , R. 54 W. at 230 and 300 feet; and in a well in the southern part of T. 95 N., R. 54 W. at 250 and 500 feet, with a faint flow between. The cement com pany west of Yankton reports flows at 375,390 405,433 , and 450 feet indicating either a subdivision of the usual flows or a confusion of the facts. Most wells show fewer than three flows.

rtesian pressure.

Variation of pressure.-From a superficial study artesian wells may be obtained the idea that the water, especially that in any one artesian basin, has everywhere the same head, or would rise to the same plane. Such, however, is not the case with the pressure dind South Dakota. In general water-bearing strata. This is readily explained, as already noted, in the shallow basins, by supposing that the water is moving as a slow current toward leaks along the margin of the formation, where it joins the older rocks or where fissures may connect it with the bottom of streams. In general each flow shows this same decline in pressure oward the northeast.
Moreover, from what has been said about the relation of the Dakota formation to the Sioux quartzite and the Colorado clays, it can easily be messures, for their leakage is much loss the higher pressures, for their leakage is much less. On the "artesian Water sheet are contours representing the hydraulic oradient, From the nature of the cace hydraukic grade to represent on the of the case ure for each water-bearing stratum, and therefore the data from the more important wells have been used. In other words, the contour lines represent the pressure in the more available and accessible stratum. It is not unlikely that the sinking of wells to greater depths, or to deeper and additional flows, may increase the pressure considerably. It will be observed that the contours have a distinct curve toward the south and east. This may be ascribed, especially in the case of the 1400 -foot along James River.
The pressure in only a few of the wells of this area has been noted. Many of the wells are small and intended simply for farm supply, so that the pressure has not been an important consideration.
The following pressures were taken soon after th The following pressures were taken soon after the different wells were finished, but some of them have since declined nearly to zero: Parkston, 20 pounds; Tripp, 10 pounds; and Scotland, perhaps 4 or 5 pounds. A number of wells southeast of Parkston are reported to have a pressure of 40 pounds. At present the wells at Tripp and Scotand do not flow.
Variations of pressure in adjacent wells.-Instances are not infrequent, although not notable in point have widely different pressure In
ases it is evident that the wells are supplied from different sources, or flows; and this may be true, even when the water is from the same depth. A before stated, the water-bearing strata branch; and they do not always have the same level. More frequently, however, the variations presented by wells of this class are explained by subterranean leakage, while the pressure from the stronger flow is expending itself out,
stratum of less pressure.
Vari less pressure
Variations of pressure in the same well at differhas been explained already that lower, for more perfectly sealed on their eastward maroin and therefore display higher pressure.
Variations of pressure in the same well due to influence of the escape of water from the well may reasonably be supposed to be directly proportional to the amount of water discharged. It may be conceived that the flow of the well produces a depres sion in the pressure surface, or "head," so to speak, proportional to the amount of water discharged, somewhat as in the case of an opening in the bottom of a reservoir. If the flow is rapid, the depression may be great, so that if the well be closed its pressure at first will be perhaps several pounds below the original pressure; but as the water flows in, the pressure will gradually return to its former state. If, therefore, two wells are near each other, it should not be expected that the closed pressure of one will approach very closely he original pressure if the other be left open.
Effect of varying barometer on pressure.-As the pressure is taken with a gage which is affected by the pressure of the air, it follows that when the barometer is high the pressure of the fluid within will be correspondingly diminished. This influence is of course slight, and will be overlooked unless the pressure in the well is very weak, in which case, sometimes be sufficient to stop the flow; and may sometrely, bow to sop versely, a low barometer may increase the flow.
he weaker wells there has been not only a declis the weaker wo from tim to time an decline well. This increase has in some cases been related to the season, the spring being sometimes marked by a stronger flow. This, again, varies according by a stronger flow. This, again, varies according
o years; and it is believed to be most satisfactorily explained by supposing that the water is obtained from the melting of snows or from streams subject to floods.
Effect of leakage on pressure.-This has been observed in wells near Missouri River; when the is easily explained by supposing that there are points of leakage beneath the surface of the river, and that the increase of hydrostatic pressure from the stream checks the leakage to such an extent that it increases the pressure in adjacent wells. Although this has not been noted in this quadrangle, it is not improbable that examples of this kind occur near James River. This variation is of
course slight, and would be unnoticed except in course slight, an

The flow depends not only on pressure but on the freedom with which the water is delivered to the bottom of the well from the porous stratum. f the wells in the diameter from 1 inch to 3 inches. None of them is reported to have a larger flow None of them
minute, which was obtained from a 2 -inch well in sec. 7, T. 99 N., R. 60 W . A 6 -inch well at Tripp for a time delivered 700 gallons a minute, and a flow of 66 gallons a minute was obtaine 98 N., R 60 W . $98 \mathrm{~N} ., \mathrm{R} .60 \mathrm{~W}$. The others supply from 30 to 50 gallons a minute. These all receive their supOf the Dakola fronat
or how repor $1, \mathrm{~T} 98 \mathrm{~N}, \mathrm{R}$ in the north ons a minute bing the reportel volume Usull he flow is much less.

The water-bearing strata, which seem to be at least three in number, vary much in pressure. The well at Tripp probably draws from the third flow; the wells farther northeast from the second; while the higher water-bearing strata of the Dakota, or first flow, do not afford flowing wells in this region. may be sunk to a deeper flow, which very likely extends underneath, but it is doubtful whether it extends much farther northeast, for it seems to be cut out, so to speak, by the rising slope of the quartzite. Moreover, if the quartzite continues in a ridge toward the southwest, as is represented on he Artesian Water sheet, it is somewhat doubt whether even the third fow extends much east Tripp. The possibility of deeper flows in the southeastern corner of the quadrangle seems strong.

```
        cosstruction of wells.
```

Although the practical application of the follow ng suggestions belongs to the well borer, and may discussed more effectively from the standpoin of the engineer, yet some of them are closely related to the geology, and for that reason they are pre(1) Sine:
(1) Since the pressure in the upper flows is less than in the lower flows, by scores of pounds to the inch, it is very important that communication atirely cut off. Otherwise the full pressure foo he lower stratum will not be observed at the from f the well, but will be partially expended by leak ing into the higher strata. The well borer in hi desire to keep his pipe loose is often tempted to leave the bore too large, and this should be cuarded against.
(2) It is very desirable that the larger pipe lining the bore should be firmly fixed in the hard stratum above the water-bearing rock, for if the pipe is left loose and the opening in the rock is not completely stopped, water is likely to escape around the pipe, and will eventually, if not checked, destroy the well. In most localities this can be done because such a compact stone is found just (3) A well should be sunk conduct the water. istent with should be sunk as rapidly as is con been reached. Otherwise the great pressure of the water may caused it to erode an irregular opening. retention of rainfalle

From the discussion of the underground waters it is evident that both shallow wells and tubular wells are replenished by the percolation of rainfall. Hence, it is advisable, where practicable, to build dams across shallow water courses in such a
way to produce ponds, the water of which will graduall to into the ground and reach the wells in the reenforcement of the underground water
supply. The water from artesian wells may similarly be retained, the gentle slope of the country and the shallowness of the water courses being favorable to the creation of artificial bodies of water. The only disadvantage is the occupation of otherwise valuable ground; but this would certainly be more than compensated by the increased value of adjacent lands, due to irrigation

solls and vegetation

The soil of this quadrangle may be said to be generally very uniform, and to have the characteristics that are common to the soil of all drift regions. It is ufficiently clayey to keep the moisture from learing the surface, and yet loamy enough to prevent ing the surface, and yet loamy enough to prevent
caking under ordinary treatment. In some areas particularly along the larger streams and some of the terraces at higher levels, the soil is decidedly sandy, notably on the general upland level occupying considerable portions of T. 100 N., R. 58 W., around the head of and between the channel leading into James River near Milltown, and on Wolf Creek near its mouth. Here the sand seems to be so deep as in places to produce barren ground. In the lake basins which are scattered over the surface, especially in the larger ones, the soil is very clayey, and is apparently gathered by washing. In the larger basins this clay is so abundant and so pure that it interferes with tillage. There is an area east of Parkston, around the upper portion of Dry Creek, which has been described as an old lake bed, of which this statement is particularly true.
Alkali soils.-The soil in drift regions is likely to show accumulations of alkali, which sometimes interferes with the growth of vegetation. This, however, depends upon the amount of moisture. When the fertilize abundant the alkali seems rather to be reatly greatly, but it is largely carbonate and sulphate of da. Ge hell points long the higher terraces and in
Vegetation. The prevat
Vegetation.-The prevalent native grasses are loua), having the common character of being very short and thick set, and forming a mat upon the ground, the alkali grass, which abounds in the more clayey spots, and the "blue-joint" (Andropogor) of two or three species, which during wet years is generally abundant. Along the streams ordinary marsh grass (Spartina) abounds. There are no trees except along James River and the lower courses of its larger tributaries. At several points, more particularly on shaded and springy banks, considerable groves of elm, ash, cottonwood, and willow we e found by the early settlers of the country. They have largely been removed, but with a little care may easily be replaced by new groves consisting of trees of these or other species. Trees do not flourish on the upland level except with special care. The principal hindrance to their growth is the long, dry season of the latter part of the summer, which is likely to be attended by extremely dry and hot southeast winds. The groves in this region have shown luxuriant growth for a few years, during a period of moisture, then the gradual dying out of the larger trees during a succeeding period of aridity, generally extending over several years. Despite this drawback, over much of the elevated country on James River, and more particularly niear some of the lakes and moraines, there are trees of moderate size which May, 1903.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger t	No.*	- Name of folio.	State.	Price.t.
	\%		Gents.				Cents.
1	Livingston	Montana	25	50	Holyoke	Mass.-Conn.	50
2	Ringgold	Georgia-Tennessee	25	51	Big Trees	California.	25
3	Placerville	Califormia. .	25	52	Absaroka	Wyoming	25
$\ddagger 4$	Kingston .	Tennessee	25	53	Standingstone	Tennessee	25
5	Sacramento	California	25	54	Tacoma.	Washington	25
$\ddagger 6$	Chattanooga	Tennessee.	25	55	Fort Benton	Montana	25
$\ddagger 7$	Pikes Peak.	Colorado	25	56	Little Belt Mountains	Montana	25
8	Sewanee	Tennessee	25	57	Telluride	Colorado	25
$\ddagger 9$	Anthracite-Grested Butte	Golorado	50	58	Elmoro	Colorado	25
10	Harpers Ferry .	Va.-W.Va.-Md	25	59	Bristol	Virginia-Tennessee	25
11	Jackson	California	25	60	La Plata	Colorado	25
12	Estillville	Va.-Ky.-Tenn.	25	61	Monterey	Virginia-West Virginia	25
13	Fredericksburg	Maryland-Virginia	25	62	Menominee Special	Michigan	25
14	Staunton	Virginia-West Virginia	25	63	Mother Lode District	California	50
15	Lassen Peak	California	25	64	Uvalde	Texas	25
16	Knoxville	Tennessee-North Carolina	25	65	Tintic Special	Utah	25
17	Marysville	California	25	66	Colfax	California.	25
18	Smartsville	California	25	67	Danville	Illinois-Indiana	25
19	Stevenson	Ala.-Ga.-Tenn.	25	68	Walsenburg	Golorado	25
20	Cleveland.	Tennessee	25	69	Huntington	West Virginia-Ohio	25
21	Pikeville	Tennessee	25	70	Washington.	D. C.-Va.-Md.	50
22	McMinnville	Tennessee	25	71	Spanish Peaks	Colorado	25
23	Nomini	Maryland-Virginia	25	72	Charleston	West Virginia	25
24	Three Forks	Montana	50	73	Coos Bay	Oregon	25
25	Loudon.	Tennessee	25	74	Coalgate	Indian Territory	25
26	Pocahontas	Virginia-West Virginia	25	75	Maynardville	Tennessee	25
27	Morristown .	Tennessee	25	${ }_{7}^{76}$	Austin	Texas,	25
28	Piedmont.	Maryland-West Virginia	25	${ }^{77}$	Raleigh	West Virginia	25
29	Nevada City Special	California	50	78	Rome	Georgia-Alabama	25
30	Yellowstone National Park	Wyoming	75	79	Atoka.	Indian Territory	25
31	Pyramid Peak	California.	25	80	Norfoik	Virginia-North Carolina	25
32	Franklin	Virginia-West Virginia	25	81	Chicago.	Illinois-Indiana	50
33	Briceville	Tennessee	25	82	Masontown-Uniontown	Pennsylvania.	25
34	Buckhannon	West Virginia	25	83	New York City	New York-New Jersey	50
35	Gadsden	Alabama	25	84	Ditney	Indiana	25
36	Pueblo	Colorado	50	85	Oelrichs	South Dakota-Nebraska	25
37	Downieville	Califomia	25	86	Ellensburg	Washington.	25
38	Butte Special.	Montana	50	87	Camp Clarke	Nebraska.	25
39	Truckee	California	25	88	Sootts Bluff	Nebraska	25
40	Wartburg	Tennessee	25	89	Port Orford	Oregon	25
41	Sonora -	California	25	90	Cranberry	North Carolina-Tennessee	25
42	Nueces	Texas	25	91	Hartville	Wyoming .	25
43	Bidwell Bar	California	25	92	Gaines	Pennsylvania-New York	25
44	Tazewell	Virginia-West Virginia	25	93	Elkland-Tioga . . .	Pennsylvania	25
45	Boise	Idaho	25	94	Brownsville-Connellsville	Pennsylvania .	25
46	Richmond	Kentucky	25	95	Columbia	Tennessee	25
47	London	Kentucky	25	96	Olivet	South Dakota.	25
48.	Tenmile District Special Roseburg	Colorado Oregon.	25	97	Parker	South Dakota.	25

* Order by number.
\dagger Payment musber.
\ddagger These made bolios are out of stock.
Circulars show
had on application to the Director, United States Geored by any of Survery. Washington, D. C. C.

