DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
OHO
UNIVE CHARLES D. WALCOTT, DIRECTOR

GEOLOGIC ATLAS
 OF PGE

UNITED STATES

AUSTIN FOLIO
TEXAS

EXPLANATION

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The
two are being issued together in the form of an atlas, the parts of which are called folios. Each folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainuye, as streams, lakes, and swamps; railroads, boundaries, villages, and cities. rallroads, boundaries, villages, and cities.
Reliet:-All elevations are measured from me sea-level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the
horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. This is done by lines connecting points of equal elevation above mean sea-level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical space between each two contours is called the contour interval.
The manner in which contours express eleva tion, form, and grade is shown in the following sketch and corresponding contour map:

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand-bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply in a precipice. Contrasted with this precipice is
the gentle descent of the left-hand slope. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates approximately a certain
height above sea-level. In this illustration the height above sea-level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at $50,100,150,200$ feet, and so on, above sea-level. Along the contour at 250 feet lie all points of the surface $2 \tilde{0} 0$ feet above sea; and
similarly with any other contour. In the space between any two contours are found all elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours-say every fifth one-are accentuated
and numbered; the heights of others may then and numbered; the heights of others may then numbered contour.
2. Contours define the forms of slopes. Since contours are continuous horizontal lines conforming to the surface of the ground, they wind
moothly about smooth surfaces, recede into all moothly about smooth surfaces, recede into all about promines of ravines, and project in passing curves and angles to forms of the landscape can be traced in the map and sketch.
3. Contours show the approximate grade of
any slope. The vertical space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones For a flat or gently undulating country a small contour interval is used; for a steep or mountainsmallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 $20,25,50$, and 100 feet are used.
Drainage--Watercourses are indicated by blue ines. If the stream flows the year round the line is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted. Where a stream sinks and reappears at the surface, the supposed underground course is shown by a broken blue line. Lakes, marshes, and othe priate conventional signs.
Culture.- The works of man, such as roads, railroads, and towns, together with boundaries of townships, counties, and States, and artificial etails, are printed in black.
Scales.-The area of the United States (exclud ing Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch this
would cover $3,025,000$ square inches, accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by of ground surface would be represented by a
square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map
in in nature and corresponding distance on the map
is called the scale of the map. In this case it is "1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are 63,360 inches in a mile, the scale "1 mile to an inch" is expressed by $\frac{1}{6,3 \times 20}$ scale "1 mile to an inch" is expressed by बes, 5.
Both of these methods are used on the maps of Both of these methods
the Geological Survey.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250,0 \times \infty}$, the intermediate $\frac{1}{1.55,000}$ and the largest $\frac{1}{a, 5050}$ and These correspond approximately to 4 miles, 2 miles and 1 mile on the ground to an inch on the map On the scale $\frac{1}{\text { ex,bi0 }}$ a square inch of map surfac represents and corresponds nearly to 1 square
mile; on the scale $\frac{1}{185,000}$, to about 4 square miles; mile; on the scale $\frac{1}{12,000,}$ to about 4 square miles;
and on the scale At the bottom of each atlas sheet the scale i expressed in three different ways, one being a graduated line representirg miles and parts of
miles in English inches, another indicating dismiles in English inches, another indicating dis-
tance in the metric system, and a third giving the tance in the me
fractional scale
Atlas sheets and quadrangles. - The map is being published in atlas sheets of convenient size, which are bounded by parallels and meridians. The corresponding four-cornered portions of ter ritory are called quadrangles. Each sheet on the scale of $\frac{1}{2 \text { so,00 }}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each
 a square degree; each sheet on the scale of $\frac{1}{2}$
contains one-sixteenth of a square degree. The areas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map the United States, are laid out without regard to the boundary lines of the States, counties, or town-
ships. To each sheet, and to the quadrangle it ships. To each sheet, and to the quadrangle it represents, is given the name of some well-known
town or natural feature within its limits, and at aje sides and corners of each sheet the n
djacent sheets, if published, are printed.
Uses of the topoyraphic sheet.- Within the mits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drainge, and culture of the district represented. Viewing the landscape, map in hand, every character stic feature of sufficient magnitude should be recognizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far a known, and in such detail as the scale permits.

kinds of rocks

Rocks are of many kinds. The original crust of the earth was probably composed of igneous rocks, and all other rocks have been derived from them in one way or another
Atmospheric agencies gradually break up igne ous rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class have been formed on land surfaces since the earliest geologic time. Through the transporting agencies of streams the surficial materials of all ages and origins are carried to the sea, where, along with material derived from the land by the action of the waves on the coast, they form sedimentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone, but they may remain unconsolidated and still be known as gravel, sand, and clay.
From time to time in geologic bistory igne ous and sedimentary rocks have been deeply buried, consolidated, and raised again above the surface of the water. In these processes, through the agencies of pressure, movement, and chemical action, they are often greatly altered, and in this condition they are called metamorphic rocks.
Igneous rocks.-These are rocks which have cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were deposited on the original igneous rocks. Through the igneous and sedimentary rocks of all ages molten material has from time to time been forced upward to or near the surface, and there consolidated. When the channels or vents into which this molten material is forced do not reach the surface, it either consolidates in cracks ng dikes, or in large bodies, called sills or laccoliths. Such rocks are called intrusive. Within their rock enclosures they cool slowly, and hence are gener ally of crystalline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air, acquiring a glassy or, more often, a partially crystalline condition. They are usually more or less prface are called extrusive Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragments. These materials when consolidated constitute breccias, agglomerates, and tuffs. The ash when carried into lakes or seas may become stratified, o as to have the structure of sedimentary rocks. The age of an igneous rock is often difficult or mpossible to determine. When it cuts across a sedimentary rock, it is younger than that rock, nd when a sedimentary rock is deposited over it, the igneous rock is the older.
Under the influence of dynamic and chemical forces an igneous rock may be metamorphosed. The alteration may involve only a rearrangement of its minute particles or it may be accompanied tion. Further, the structure of the rock may be
changed by the development of planes of divi sion, so that it splits in one direction more easily than in others. Thus a granite may pass into gneiss, and from that into a mica-schist.
Sedimentary rocks.-These comprise all rocks
which have been deposited under water; whether in sea, lake, or stream. They form a very laro part of the dry land.
When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. Thes may become hardened into conglomerate, sand stone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment if deposited with the aid of life, it is called an organic sediment. The more important rocks formed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated These layers are called strata. Rocks deposited in successive layers are said to be stratified The surface of the earth is not fixed, as it seems to be, it very slowly rises or sinks over wide of the ocean are changed: areas of deposition ma rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississip and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes than this have repeatedly occurred in the past. The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamorphism of a sedimentary rock, just as in the metamorphism of an igneous rock, the substances of which it is composed may enter into new combinations, or new substances may be added. When these processes are complete the sedimentary rock becomes crystalline. Such changes transform sandstone to quartzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger formations have generally escaped marked metamor. phism, and the oldest sediments known, though generally the most altered, in some localities remain essentially unchanged.
Surficial rocks.-These embrace the soils, clays, sands, gravels, and howlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumulations are often washed or blown into valleys or other depressions, where they lodge and form deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are
spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, and bowlders which is known as till. It may occur as a sheet or be bunched into hills and ridges, forming moraines, drumlins, and other special forms. Much of this mixed material was washed away from the ice, assorted by water, and rede-
posited as beds or trains of sand and clay, thus
forming another gradation into sedimentar deposits. Some of this glacial wash was deposite acteristic rides chanels known as gars, or and material deposited by the ice is called or and drift: that wased from the ice onto the glacia land is called modifed drift. It is usual also to land is called modified drift. It is usual also to class lakes and rivers that were made the and time as the ice deposit.

AGES OF ROCKS

Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent of origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass
is essentially the same, and it is bounded by rocks of different materials, it is convenient to call the mass throughout its extent a formation, and such a formation is the unit of geologic mapping. Several formations considered together are
designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some larger fraction of a system, a period. The rocks are mapped by formations, and the formations are are mapped by formations, and the formations are
classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian system, Cambrian period.
As sedimentary period.
the younger rest on those that are older and the relative ages of the deposits may be discovere by observing their relative positions. This rela tionship holds except in regions of intense dis tionship holds except in regions of intense dis
turbance; sometimes in such regions the disturbance of the beds has been so great that their ance of the beds has been so great that their
position is reversed, and it is often difficult to position is reversed, and it is often difficult to positions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and animals which lived in the sea or were washed from the land into lakes or seas or were buried in urficial deposits on the land. Rocks that con tain the remains of life are called fossiliferous By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from those of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones ived on in modified forms life became more varied. But during each period there lived pecular forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of pask in which they are found. Other types the systems together, forming a chain of life from the time of the oldest fossiliferous rocks to the present.
When two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in them may determine which was deposited first.
Fossil remains found in the rocks of differen reas, provinces, and continents, afford the most important means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colo in the table in the next column. The names of certain subdivisions of the periods, frequently used in geologic writings, are bracketed against the appropriate period name.
To distinguish the sedimentary formations of ny one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception of the first (Pleistocene) and the last (Archean). The formations of any one period, excepting
the Pleistocene and the Archean, are distin guished from one another by different patterns, made of parallel straight lines. Two tints of the period-color are used: a pale tint (the underprint) is printed evenly over the whole surface represent ing the period; a dark tint (the overprint) bring out the different patterns representing formations

Each formation is furthermore given a letter ymbol of the period. In the case of a sedimen. tary formation of uncertain age the pattern is printed on white ground in the color of the period which the formation is supposed to belong The number and extent of surficial formations of the Pleistocene render them so important that, to distinguish them from those of other period and from the igneous rocks, patterns of dots and circles, printed in any colors, are used.
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous Whether sedimentary rocks are also included is hether sedimentary rocks are also included is morphic rocks of unknown origin, of whatever age are represented on the maps by patterns consisting of short dashes irregularly placed. These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the rock is known to be of sedi mentary origin the hachure patterns may be combined with the parallel-line patterns of sedi mentary formations. If the metamorphic rock is recognized as having been originally igneous, the hachures may be combined with the igneous pattern.

thern.

Known igneous formations are represented by patterns of triangles or rhombs printed in any the letter-symbol of the formation is preceded by he capital letter-symbol of the proper period If the age of the formation is unknown the letter ymbol consists of small letters which suggest the name of the rocks.
the various geologic sheets
Historical geology sheet.-This sheet shows the reas occupied by the various formations. On the margin is a legend, which is the key to the map. o ascertain the meaning of any particular colored eader should look for that color, pattern, and ymbol in the legend, where he will find the name and description of the formation. If it is desired oo find any given formation, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of the reologic history. In it the symbols and names are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary, and igneous - and within each group they are placed in the order of age, so far as known, the youngest the top.
Economic geology sheet.-This sheet represents he distribution of useful minerals, the occurrence of artesian water, or other facts of economic opography and to the geologic formations. All the formations which appear on the historical reology sheet are shown on this sheet by fainter color-patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive formations may be emphasized by strong colors. A symbol for mines is introuced at each occurrence, accompanied by the ame of the principal mineral mined or of the stone quarried.
Structure-section sheet.-TThis sheet exhibits the relations of the formations beneath the surface.

In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which xhibits those relations is called a section, and th ame name is applied to a diagram representing he relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibit The arrogist is not limited, however to the ar artical conrang the rarth's structure Knowing the concer of the formation of Rnowng the trace out the rition of rock, and having fare in face, he can infer their relative positions after they pass beneath he surface, draw section widerable doph,
 exhibiting what we seen in the side of deep. This is illustrated in the following figure

picture, with a landscape beyond.

The figure represents a landscape which is cut ff sharply in the foreground by a vertical plane that cuts a section so as to show the undergroun lations of the rocks
The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes These symbols admit of much variation, but following are generally used in sections to repr ent the commoner kinds of rock

Lentils in strata. Schists. Igneous rocks.
The plateau in fig. 2 presents toward the low pment, or front, which is made u of sandstones, forming the cliffs, and shales, con stituting the slopes, as shown at the extreme left of the section.

The broad belt of lower land is traversed by several ridges, which are seen in the section to correspond to beds of sandstone that rise to the surface. The upturned edges of these beds form the ridges, and the intermediate valleys follow the outcrops of limestone and calcareous shales
Where the edges of the strata appear at th surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred.
When strata which are thus inclined are traced underground in mining, or by inference, it is fre quently observed that they form troughs or arches, such as the section shows. But these sandstone sea in nearly flat sheets. That they are now bent and folded is regarded as proof that forces exist which have from time to time caused the earth's surface to wrinkle along certain zones.
On the right of the sketch the section is com posed of schists which are traversed by masses of igneous rock. The schists are much contorted and their arrangement underground can not be delineates what is probably true but is no known by observation or well-founded inference

In fig. 2 there are three sets of formations, dis tinguished by their underground relations. The first of these, seen at the left of the section, is th set of sandstones and shales, which lie in a hor zontal position. These sedimentary strata are now high above the sea, forming a plateau, an their change of elevation shows a a portion the earth mass has whem wwer to a hol i. The, a which form are troush The which form arches and troughs. These strat have been like ben The those of the first set, are conformable.
the upturned, eroded edges of the beds of the second set at the left of the section. lying deposits are their poside lying deposits are, from their positions, evidently bending and degrada the bave ccurred between the dhe cition the beds and the becumula then When younger strat thus rest upon an crod Wura younger stra the unconformable one, and their surface of contact is unconformable on
an unconformity.
an unconformity
The third set
The third set of formations consists of crystal line schists and igneous rocks. At some perio of their history the schists were plicated by pres
sure and traversed by eruptions of molten rock sure and traversed by eruptions of molten rock. have not affected the overlying strata of the second set. Thus it is evident that an interval of consid set. Thate duration of the schists and the beginning of deposition the strata of the second set During this interval the schists suffered motamor Dism; the scene of suptive activity; and they were deeply sconed. The activiy, and they were deeply third m a periods of rock formation, is another unconformity.
The section and landscape in fig. 2 are ideal but they illustrate relations which actually occur The sections in the structure-section sheet ar related to the maps as the section in the figure is related to the landscape. The profiles of the su face in the section correspond to the actual slope of the ground along the section line, and th depth of any mineral-producing or water bearing stratum which appears in the section may he map the map.
ar-section sheet.-This sheet contains concise description of the rock formations which occur in the quadrangle. The diagrams and
verbal statements form a summary of the fact relating to the chacter of the rocks, to the thick nesses of the formations, and to the order accumulation of successive deposits.
The rocks are described under the correspond ing heading, and their characters are indicated in the columnar diagrams by appropriate symbols. The thicknesses of formations are given unde the heading "Thickness in feet," in figures which state the least and greatest measurements. The average thickness of each formation is shown i the column, which is drawn to a scale-usually 1000 feet to 1 inch . The order of accumulation of the sediments is shown in the columnar arrange ment: the oldest formation is placed at the bottom of the column, the youngest at the top and igneous rocks or other formations, whe present, are indicated in their proper relations. The formations are combined into system. wherespond with the periods of geologi andory. Thus the ages of the rocks are
The intervals of time which yoter
events of uplift and degradation and constitut interruptions of deposition of sediments may be indicated graphically or by the word "unconform ity," printed in the columnar section.
Each formation shom in the
bach by its name, a columnar section character and its lettersymbol as used in it maps and their legends.

CHARLES D. WALCOTTT,
Revised June, 1897.

DESCRIPTION OF THE AUSTIN QUADRANGLE.

By Robert T. Hill and T. Wayland Vaughan.

GEOGRAPHY.
Geographic position and relations.-The Austin quadrangle embraces one quarter of a square legree of the earth's surface, and contains 1029.8 $30^{\circ} 30^{\prime} \mathrm{N}$, and meridians $97^{\circ} 30^{\prime}$ and $98^{\circ} \mathrm{W}$ The adje quadrangles that ber The adjacent quadrangles that have been topo graphically mapped are the Bastrop on the east
Georgetown on the north, and Blanco on the west. To the northeast is the Taylor quadrangle, to the northwest the Burnet, and to the southeast the Flatonia. The Austin quadrangle lies southeast of the center of the State, at the interior border

Fig. 1.-Provinees and minor subdivisions of the Texas region. the geologic map
with the outcrop of these formations as shown on

two types of topograpity.

Notwithstanding the partial destruction of original surfaces by erosion, causing the present diversiied relie, it is evident that the general dissected plain which leading from the Couli位seted plin, which, la
 is sharply divisible, within the are of the quad rangle, into two types of country - a higher dis rangle, into two types of country - a higher dis
trict in the western third which is physiographic province of physiographic province of
the Texas region known as the Edwards Plateau, and a lower district to the east which Iphysiographically margin of the great Atlantic Coastal Plain. (For a de tailed description of the physiography of the Texa region see Topographic Survey, 1900.)
bdwards platiau.
Balcones scarp.-A not worthy topographic feature of the quadrangle is a high escarpment along the border between the Edwards Pla Plain. It the Rio Grande Pain. It runs northeast and southwest from the vicinit
of the Coastal Plain and at the junction of the Central, East Central, Southern, and Great Plains provinces of the Texas region. (See fig. 1.) It and parts of Williamson, Hays, Bastrop, and Cald and parts of W
well counties.

TOPOGRAPHY.

general features.
In general the topography of the quadrangle is aried and pof rugged hills, rolling plains and lifer areas, broken by frequent streams and presenting pleasing alternation of timber and prairie. Th ighest altitudes of the quadrangle are found long the western margin, the greatest upland ltitude being 1200 feet, at the extreme northwest corner, and the least about 600 feet, along the astern margin. The valley depressions as meas ured along the Colorado vary from 600 feet at he northwestern edge of the quadrangle to 375 feet where the Colorado leaves the eastern border.
relation between formation and relef.
Nowhere is there a more intimate relation etween topography and stratigraphy than in the
of McNeil to near Drittwood post-office (Blanco uadrangle), passing by the eastern foot of Moun Bonnel and Oatmanville, and separates the two
major provinces mentioned. This escarpment is ajor provinces mentioned. This escarpment i alled the Balcones, and in its extension south re known tolt searp. It a 100 300 feet above the lower country of the Coastal Plain, and properly belongs to the Edwards Pla teau. Its front is not a vertical cliff, as on might infer from a too literal interpretation of the word scarp, but rather an indented line of loping hills leading up from a lower plain to plateau summit, as seen along the eastern front of the ridge northwest of Austin.
The country west of the Balcones scarp line which is locally known as "the mountains," con ists of bold hills, many rising 500 feet above the rainage valleys, and some of them so symmetrica contour and stratification that they appear as they had been turned in a lathe. The summits of the highest of these hills, which are usually lat topped and composed of a single geologic for mation - the Edwards limestone - have a nearl constant topographic level. These hills are the remnants of a vast dissected plateau or cut plain,
and stretch across Texas from the Brazos to the
thicket of live-oak and post-oak brush and timber The slopes of the hills are terraced or benched by the outcrops of the subhorizontal strata. Stream especialy this (dis plateau. (See fig. 2.) These valley, , in b diately a jo 1
 fion of these hills are often covered with a wrow juniper and Texas laurel (Sophora) while the high summits are usually (covered with a dens growth of scrub oak and live oak That portion of the Edwards Plateau which is north of the Colorado has been termed the Lampasas Plain.
coastal platin
The area of that part of the quadrangle which is situated to the east of the Balcones scar although presenting within itself several diverse raphi, constitutes a portion of the great physio Plain. older, higher, and more eroded interior margin, and in general, except along the southeaster margin and western border, is largely a region of undulating upland prairie, mostly of the type which is known in Texas as rolling prairie land and which has been called the Black Prairie. The highest points of this plain rarely rise over 750 feet above the sea. This feature is subdivis ible, in the Austin quadrangle, into several dis inct northeast-southwest belts of country, which may be enumerated, in the order of their sequence from west to east, as follows: Bear Creek coun try, Manchaca belt, White Rock country, Taylor rairie, Littig Prairie, and Lytton Springs country. Besides the above. there are exceptional Plain which will be d all nd terrace will be described
Bear Creek country.-Immediately adjacent to the foot of the Balcones fault and extendin pproximately eastward toward the International and Great Northern Railway is a narrow plain o from 700 to 900 feet. This rounges in altitud with the outcrop of the geologic formations else where described as the Edwards and George town limestones, shown on the map east of the Balcones fault. Owing to the stony character of the surface, the shallowness of the soil, and th hick growth of brush, the region has been locally termed "hard scrabble." This plain is cut i places by steep creek gorges, while its surface is usually broken by projecting limestone ledges and aved with a thick growth of post oak and live oak. In some places the surface is covered with vast numbers of oxidized residual fints, which are uggestive of alluvial deposits, but which are the residua of the flint-bearing layers of the under ying Edwards limestone. The hard scrabble belt as a whole is a downfallen fault block
pots of forest, growing upon the Eagle Ford and Buda formations, the former bearing mostly hackWard of the latter live oak, as seen in the Sixth Ward of the city of Austin and along the eastern bank of shoal Creek. West of these areas are mall spots of prairie land, whor day the gren wio bushes cover with a mesquite also marked by hogwallow. The vaious fer ures of this belt are complicated owing to the tures of this belt are complicated, owing to the North of the Colorado the belt narrows to less than half a mile in width, or even is absent in places. A unique feature of the Manchaca belt are the cliffs of Buda limestone seen along the creek valleys.
White rock country.-A broad belt of country extending north and south through the center of Austindrangle, marked by the outcrop of the Austin chalk, may be known as the White Rock ountry. The formation is especially well exposed Hiskvile, Austin, South Austin, Manchaca Springs, and Mountain City. This belt is a district of gently rolling, hilly land like the English lowns, and is characterized by glaring white outcrops of the Austin chalk on the slopes and in the bluffs of the creeks. Graceful clumps of live The residual soil of this belt, which is usually hin, is black and of this belt
Taylor Prairie.-Immediately east of the White Rock belt is the main district of the Black Prairie lands of the country underlain by the Taylor and Webberville formations. This is an area of rolling prairie land, consisting of a deep mantle of black waxy soil wich is the The. The rn portion is called the Taylor Praine. Mano Pflugrville and Ma Sping ast Pflugerville and Manchaca Springe are near it
western edge.
Littig Prai
Tha Prairie.-In the extreme eastern part of the quadrangle, to the east of Manor and Creedmoor, and extending to Texas Hill, there is oil and covered by a growth of chaparral, large opuntios, and mesquite. This country known as the Littig Prairie, is underlain by the Webberville formation so far as can be determined, thinly veneered by Pleistocene surficial deposits.
Lytton Springs country.-The area covered by this division lies in the southeast corner of the quadrangle and extends from one and one-half miles northwest of Lytton Springs to near Elysium. This area consists of rather low, gently ounded hills having an altitude of from 400 to 650 feet above the sea. The soil is sandy and subject to rapid erosion. The timber consists mostly of post oak and other trees, such as characterize the southern extension of the East Texas imber belt, of which it is a part.
Alluval plains and terraces.-Extending along the margins of the Colorado and the larger creeks

Texas region, and the Austin quadrangle is a \mid Rio Grande. In the Austin quadrangle the remvery fine illustration of this relation. In fact, nearly all the natural features, especially those raphy, soil, flora, and the occurrence of structura raphy, soil, flora, and the occurrence of structura or influenced by the peologic formations E el or influenced by the geologic formations. Each expression of some of the geologic formations to be described later, and is coincident in extent

Rio Grande. In the Austin quadrangle the remnants of this plateau stand at altitudes
1100 feet along the western border to about 975 feet at the edge of the escarp. $\begin{aligned} & \text { seatast diss- } \\ & \text { seac. plas- }\end{aligned}$ ment, having a slope of about 20 feet rom the Lone Tree triangulation station I places, such as the termed the Jollyville Plateau on the map considerable the Jols old plateau exist. These are covered with a dense

While not well adapted to agriculture, this por tion of the country is utilized for grazing pur poses, and contains an occasional small area of illable lan
Manchaca belt.-Immediately east of the Bear Creek belt is another narrow strip of exceptiona Eagle Ford formations (See Historical Geolog heet.) This consists of alternations of woodel hills and prairies. Along its eastern margin are
to overflow; above these there is usually a series of more or less connected terraces, now standing above the line of overflow; and still higher, upon some of the divides, there are areas of gravelly vial material which has been brought down by the streams.
The Colorado, being the oldest and most deeply ncised stream, has more extensive bottom lands and strea, hiore extensive both lan
somewhat similar in character of soil and vegeta tion, being usually composed of red loam and gravel derived fom the central provinces of the Tate and covered by a growth of post-oak timber The bottoms and terraces of the larger creeks are derived from the Cretaceous formations of the adjacent Edwards Plateau.
The old terraces may be divided into two classes: (1) high gravel terraces, which rise from classes: (1) high gravel terraces, which rise from and which are now largely of a stony nature (2) wide, flat terraces elevated only from 40 to 50 feet above the streams, usually of good soil and devoted to agriculture. These terraces, which have their greatest development within the Coastal Plain east of the Balcones scarp line, increase in area down the stream and in places attain a width of 5 miles or more.
Westward, in the Edwards Plateau country the terraces narrow in width and are reduced in number, although they continue to be a marked feature in the canyon of the Colorado.
Onion Creek basin.-Along Onion Creek, extending from a little above Buda to Pilot Knob, is a wide, flat constructional valley plain standing about 100 feet above the present streamway, terminating in a deep gorge through the Pilot Knob hills. The surface of the plain is very level, its elevation rising from about 500 feet at Pilot Knob to a little over 700 feet at Buda. This plain appears once to have been an old lake basin,
which has been drained by the canyon later cut through the northern side of the Pilot Knob dome.

Upland gravel plains.-There are several high divides and small upland plateaus within the Coastal Plain area which are covered with old gravel deposits. These are so distributed as to
indicate that nearly all of the area of the Coastal indicate that nearly all of the area of the Coastal Plain in the Austin quadrangle was once veneered
with alluvial débris from the Edwards Platean One of these peculiar gravel deposits is in the One of these peculiar gravel deposits is in the named the St. Elmo Plateau. Its surface is level and the soil consists of black, waxy, calcareous clay containing gravel. It is mostly open prairie, clay containing gravel. It is mostly open prairie,
except a few mesquite trees. The elevation of this plateau is from 550 to 700 feet. Another high divide that reaches across from the rolling black prairies and into the sandy Lytton Springs area is Mustang Ridge, which stretches from the confluence of Mahard and Cedar creeks, in the southeast section of the quadrangle, in a westerly direction to the International and Great Northern Railroad about 2 miles south of Buda. This ridge is covered with gravel, which in the areas of the Taylor and Webberville formations is embedded in calcareous clay; in the Eocene area, in loose sands or loamy clays. The vegetation consists mostly of mesquite, or the land may be prairie in the Black Prairie region. In the Eocene area post-oak timber may be abundant. The summit of the ridge is very nearly level, the elevation being from 650 to 800 feet. Bald Knob, a conspicuous hill west of Manor, is also capped with this material
Volcanic hills.-An exceptional feature of the country is the small group of volcanic hills known as Pilot Knob, about 7 miles southeast of Austin. These occupy an area of about 3 square miles and about 100 feet above the adjacent prairie. They about 100 feet above the adjacent prairie. They is apparently limited to their surface, growing on is apparently limited to their surface, growing on of hard, basaltic rock.
At various other
At various other places in the region, as shown this material, constituting exceptional feature within their areas.
drainage.
The waters of the Austin quadrangle reach the sea principally through the Colorado River, although a few streams on the northern edge lead to the Brazos, and some on the southern edge to the San Maveos. The Colorado drains over ninetenths of the total area.
The streams, except in time of flood, are not copious; in fact, they present peculiarities of flow which may be classified as perennial, interrupted,
and intermittent. The Colorado is perennial or constant in flow, although variable in volume,
being subject to great floods. Other streams, like being subject to great floods. Other streams, like
Barton and Onion creeks, are interrupted, presenting alternate stretches of running water and dry ing alternate stretches of running water and dry
bottom. Still others, such as the secondary bottom. Still others, such as the secondary
streams of the eastern margin, are intermittent, having no water except in time of rainfall.
The streamways have certain distinctive char acters in each of the two greater topographic acters in each of the two greater topographic
divisions. In the Edwards Plateau they are usually encased in deep and narrow canyons, like usually encased in deep and narrow canyons, like
those of the Colorado and Barton Creek west of Austin. In the Coastal Plain the valleys are usually broad and terraced by older alluvial plains leading up to the rounded divides described under a separate head.
It is interesting to note that the courses of the larger streams are sinuous in all the topographic divisions. Thus the Colorado River flows in great sweeping curves, sometimes almost join ing, in both the country above the Balcones escarpment and in the plain
country southeast of Austin. The meanders ar as thoroughly established in the canyon part of the Colorado as in the prairie country in the east The portion of the quadrangle.
The Colorado, a great through flowing river (i. e., one that rises beyond the province and runs through it), crosses the quadrangle from northwest to southeast. It rises in the breaks of the Mexico. It meanders empriess into the Gulf of Mexico. It meanders across the quadrangle in great oxbows, and occupies a deep valley some 500 feet below the presen a deep ravel of the dwar f an most important drainage channel of the region, most important drainage channel of the region although it receives water from many intermittent streams in time of rainfall, from a few gravity springs in the northwestern portion of the quadrangle, and from some fissure springs between the foot of Mount Bonnel and the city of Austin.
The principal secondary streams are Barton and Onion creeks, which rise along the western border of the quadrangle south of the Colo Baiter the latter stream to the eastward. Barton Creek is peculiar in that it runs closel deep canyons into the Edwards Platean, almost equal to those of the Colorado $\begin{gathered}\text { Barnoon. Creek }\end{gathered}$ itself. Furthermore, this stream, except in time of flood, is eccentric in the intermittent character of its drainage. Within the Edwards Plateau its bed is at first a dry arroyo for several miles, which is succeeded by 6 or 7 miles of running water serived from gravity springs; then follows a dry
stream bed for 5 or 6 miles, to within a mile of its mouth for 5 or 6 miles, to within a mile of (Barton Springs) arise from fissures within its bed and supply a beautiful and constant stream which empties into the Colorado. Barton Creek is also notable for the relatively small amount of country drained by it laterally
west on theek ris inadrangle, west of the Austin quadrangle, and flows nearly the entire distance across the latter
emptying into the Colorado River near valley. the eastern margin. It is somewhat different in that it ipic chacter for Conek in that it is apparently not so deeply incised and Slaughter, and Williamson creeks, thereby draining a very large area of the quadrangle. Its headwater portion is normally a long dry arroyo, with occasional pools rising in the hills of the
Edwards Plateau of Blanco County. As it enters the Austin quadrangle it shows some long and beautiful pools of permanent water derived from gravity springs. Crossing the Bear Creek country it is a dry and stony arroyo inclosed in a rocky canyon. From Buda to the Pilot Knob upho and older alluvial plain elsewhere described as the Onion Creek Basin. On reaching the western side of the Pilot Knob uplift it enters a steepwalled canyon cut directly across the uplift for a distance of about 3 miles. After passing the latter obstacle it continues its way through the
Taylor Prairie and the Colorado bottom to the Colorado River.

In the extreme southwest corner of the quad River, a tributary of the San Marcos, which iver, a tributary of the San Marcos, which The port of the 4 soun The portion of this stream here shown is embedded
in a steep and almost impassable vertical canyon nearly 300 feet deep.

The secondary streams in the eastern half of the quadrangle, such as Cottonwood, Wilbarger, Gilleland, Walnut, Cedar, and Mahard, are usu ally dry arroyos which have an occasional pool of standing water and are incased in valleys with rounded clay or gravel slopes.
These stream courses show peculiar and interesting adaptation to the geologic structure and changes of lev \lrcorner, elsewhere discussed in this paper. In technical terms the Colorado River is antecedent to the Edwards Plateau and consequent to the Coastal Plain. Barton Creek and the Blanco relative to the plateau are also antecedent and inherited, but of later origin than the Colorado. Onion Creek and the numerous smaller tributaries are still newer consequent streams which have adjusted
themselves to the regional slope and to the deepthemselves to the regional slope and to the deep ening of the Colorado Valley as the land was
elevated. Many of the streams which we have called consequent are really antecedent in the western part of the quadrangle and, in their lowe courses, especially as they enter the old alluvial plains of the Colorado, are controlled by the flood Barton Creek in South Austin and Onion Creek arton Creek in South Austin and Onion Creek near its mouth, each of which, on reaching the down the valley and runs parallel with the Colodown the valley and ru
rado for some distance.
Some of these streams in portions of their features following the joints and fissures of the Balcones fault zone. Such is the case with that portion of the stretch of the Colordo between the foot of Mount Bonnel and the city dam. Barton Creek just above the springs, Onion Creek west of Buda, near the western margin of the quadran gle, and Shoal Creek in the city of Austin show similar adaptation to fault lines.
culture.
The Austin quadrangle has a comparatively dense population, but nine-tenths of its inhabit ants are found on the Coastal Plain, east of the Balcones scarp, the Edwards Plateau
The densest rural population is found in the White Rock and Taylor prairies and the Colorado bottoms, nearly the entire areas of which are minor crops. The few people inhabiting the
Edwards Plateau are engaged in raising cattle and cutting cedar timber from the hills to supply the city of Austin with fuel. Occasionally farmers cultivate small areas of alluvial soil in the alleys of this district
There are a number of towns. Austin, the capital of the State, occupies both banks of the Colorado near the center of the quadrangle. It is a city of 30,000 inhabitants and contains many handsome public buildings, including the capito nst about 5000 inhabitants $\mathbf{M c}$ Neil rural village o bout 5000 inhabitants. McNeil, Manchaca, and national Gret Nor Ther towns on the map such as Oak Hill W otter Pflugerville, Sprinkle Bluff Springs, New Sweden, and Fiskville are small villages with one or more stores and a few houses.
The principal railways are the International and Great Northern, running approximately north and south across the quadrangle; the Houston and Texas Central, extending from Austin eastof the Houston and Texas Central Railroad, running northward nearly to the northern edge of the quadrangle, when it turns westward toward Burnet.
Highways radiate from Austin in all directions. They may be classified under three heads: county roads of the first order, which lead from Austin to the neighboring county seats; lanes leading
from the main highways to small communities or
farms; and country roads, originally made by wood cutters, which meander through the region of th Edwards Plateau. Many of the first-class high ways are macadamized in places, and commendable County in their improvement people of Travi bridges span the Colorado the westernmost of bridges span the Colorado, the westernmost of thers at Austin and Monolis to vehicles the It is interesting to note ons, to vehicles. courses of the princinal railwass and highway are governed by the geologic structure.

orkst and woodland.

In the Austin quadrangle there is a diversified flora, which, like other features, varies with the underlying geologic formations. The highest summits of the Edwards Plateau, where patche of the Edwards limestone are preserved, are covered with a thick growth of post-oak, live-oak and scrub-oak timber. The numerous slopes of this region were formerly covered with a dense growth of juniper, locally called cedar, which for nearly fifty years has furnished the principal domestic fuel of Austin. In the region of the Coastal Plain the Bear Creek belt is forested with post oak similar to that capping the high sum-
mits of the Edwards Plateau. The Del Rio soils mits of the Edwards Plateau. The Del Rio soils of the Manchaca belt sustain a growth of mesquite trees, while the outcrops of the Buda formation are generally covered with live oak. The principal arborescent growth of the Eagle Ford formation consists of hackberry trees. The White Rock belt presents an open, park-like aspect, with here and there a clump or "motte" of gigantic live oaks, while upon the rocky slopes, as in South
Austin, a thick growth of juniper may The Mar malso occur The Manor belt is usually devoid of arborescen Taylor Prairie is cccupied by a peculas. The char Prairie is occupied by a peculiar flora of between which are of the bushe nopal, a pecies of cactus belonging to the gean Opuntia. The western margin of the upland Atlantic timber belt, consisting of a growth of post-oak and blackjack trees, mantles the Litti post-oak and black-jack trees, mantles the Littig
country. In the bottoms of the Colorado and alluvial valleys of the other creeks grow stately pecans, as well as other large trees.

GENERAL GEOLOGY.
The geology of this quadrangle is comparatively simple. It is an area of evenly bedded rocks which, in common with all the strata of the Regional Coastward Slope, have been uplifted without serious deformation except faulting. It presents typical examples of the geologic structure of the eastern margin of the Edwards Plateau and the interior margin of the Coastal Plain, as seen between the Brazos and the Rio Grande and as shown in the Nueces and Uvalde folios (folios 42 and 64).
Classification.-The rocks found within this quadrangle are of three kinds-sedimentary, surcial, and igneous. The sedimentary rocks occupy the greater portion of the area and the surficial rocks are of considerable extent, whereas the The lim and subsequary rocks were deposited in the sea nurface They land surface. They now consist of eveny bedded hori zonstitute the foundation of the country. The surficial rocks consist of material derived from the marine sedimentary rocks and the igneous rocks brought down from the northwest by streams and deposited as a veneer over the uplands, as terraces along the streams, and in occasional temporary lake basins. They are fluviatile or lacustrine sediments. The igneous rocks consists of solidi fied molten rock in fissures and neeks and associ ated lava and volcanic ash.

gedimentary rooks.

cretaceous period
All of the marine sedimentary rocks of this quadrangle except the Lytton formation belong to the Cretaceous system. These rocks also are most important from the standpoint of economic geology, since they yield the richest soils, furnish the best material for road and building purposes,
and determine the distribution of the greater portion of the underground water.
These rocks are classified into two greater categories, termed "series," each divisible into a number of units termed "formations," which in turn may sometimes be divided into beds and layers. For convenience two or more formations of the series, especially in cases where they are not readily separable, are collectively discussed as divisio" (" " ") a 1 ing table:

Skrıa.		Fовкатох.
$\begin{gathered} \text { Gulf series. } \\ \text { (Cretaper } \\ \text { Cretaus.) } \end{gathered}$	Montana.	Webberville formation. Taylor marl.
	Colorado.	Austin chalk. Eagle Ford formation.
	Dakota.	(Missing.)
Comancheseries.(LowerCretaceous.)	Washita.	Buda limestone. Del Rio clay. Georgetown limestone.
	Fredericksburg.	$\begin{aligned} & \text { Edwards limestone. } \\ & \text { Comanche Peak lime- } \\ & \text { stone. } \\ & \text { Walnut clay. } \end{aligned}$
	Trinity.	Glen Rose formation. Travis Peak formation.

One of the most complete sequences of the ocks of the Cretaceous period to be found in our country is revealed in the outcrops of the Austin quadrangle, especially in the section along the valley of the Colorado. Hence these rocks will be described in detail.
The Cretaceous formations succeed one another to the eastward in more or less regular belts, the outcrops of the oldest formations being found along the western margin of the quadrangle and successively newer ones being encountered to the eastward. The continuity of this sequence is broken, however, at the Balcones fault line, as is further explained under the heading "Geologic
structure." structure."

comanche series

This series is composed largely of limestones, although there are arenaceous beds at its base and many beds of marly clay interspersed through it posed almost entirely of clay.
The rocks of the Comanch
The rocks of the western half series are in outcrop to the western half of the quadrangle, Plateau, the Bear Creek belt, and most of the Manchaca belt. The eastern border of their outcrop passes near Round Rock, beyond the north border of the quadrangle, through Austin, to the east of Davis Hill, and to the west of Mountain City, as shown by the boundary between the Buda and Eagle Ford formations on the geologic map.

trinity divison.

Travis Peak formation.--These beds are espec ally well exposed on both slopes of the valley of Colorado River between the mouths of Sycamore and Cypress creeks, in Burnet and Travis counties. They were so named because they are well exposed in the vicinity of Travis Peak post-office (See First Ann. Rept. Geol. Surv. Texas, 1890, p. 118.)

While these beds are arenaceous in composition and porous in texture, like the basement beds of the Comanche in general, they differ considerably from the allied beds to the northward. They consist in part of conglomerate, composed of rounded pebbles of Silurian and Carboniferous from the gdanite, Llano schists, quartz derived ross.bedded pack what, white siceus cross-bedded pack sand, white siliceous shell clay. The base is formed usually of conglomer clay. The base is formed usualy of conglome cross-bedded sand, which becomes more $\begin{gathered}\text { Basan cone } \\ \text { giomerate }\end{gathered}$ finely triturated until it reaches the condition known in Texas as "pack sand"- i . a very fine-grained, loosely consolidated sand, cemented by carbonate of lime
The sands show occasional patches of red and greenish-white clays, whose tints resemble very much the characteristic colors of the Potomac beds of the Atlantic coast, and they sometimes contain lignite and fossil bones. The sandstone contains
grains of silica varying in size from that of a pea to that of microscopic particles, and small subangular
fragments of clay in the cement of lime. Only fragments of clay in the cement of lime. Only the upper 80 feet of the formation are exposed in
the quadrangle. A complete section down to the Paleozoic rocks, as exposed in the Colorado bluff west of the quadrangle, is presented on Columnar Section sheet 2 .
Fossils occur in these beds as low down as the contact conglomerates, but they are neither plenlike nor well preserved. The upper or coquinalike beds are full of casts and molds, among which f Cucullea Trigoria Pholadomya and Cura In these beds also oyster agglomerates of the Comanche oyster agglomerates of the Comanche
series. This is composed of a solidified series. This is composed of a solidified
mass of large oyster shells, forming a mass of large oyster shell, forming a just below the junction of Post Oak and Cow creeks.
Accompanying the oyster breccia there is epsom salts, or magnesium sulphate. The oyster-shell bed eflloresces into a powdered earthy substance accompanied by the epsom salts. Magnesium and pyritiferous layers occur in other horizons higher in the division, and are no doubt in part the cause of the mineral character of some of the artesian waters, especially those of wells which are not At At the top of the sandy beds in the Colorado tone a yellow, arenaceous, fossiliferous limeappearance of the peculiar fossils Mon lowest (Caprotina) and Requienia, and indicates the beginning of the conditions which finally produced the Glen Rose formation
The Travis Peak formation records a subsidence of the land during its deposition. As the waters deepened the deposits changed from coarser to calcareous at the top of the beds until the and calcareous at the top of the beds, until the sand grains are so fine as to be almost mperceptible to "magnesion" in thole mass
The following ppearance
, Ann. Rept. Geol. Surv. Texas, 1892, p. 295) will the formation as exposed in the valley of the Colorado betwee Travis Peak postoffice and Smithwick Mill, Burnet County (See Columna Section sheet 2.)
Hickory Creek section of the Travis Peak formation, begin-
ning at the top of the divide between Hickory and Cond creeks and continuing to the Colorado River level at the creehs and continuing to the Colorado
nouth of Hickory Creek, Burnet County.
Bands of conglomeratic and calcareous sandstone,
alternating with beds of arenaceous limestone, the arenaceous limestone predominating.
11. Ca
11. Calcareous sand at base, grading upward
limestone at the top, barren of fossils
9. Yellow ealcareous sand, stratified
9. Conglomerate similar in character to No. 2, with the exception that the pebbles are smaller and more
oner worn, grad
8. Red sand ancononsolida

Red sand, unconsolidat
Friable yellow sand...
Crosssbedded shell
ross-bedded shell brecia, containing many small
rounded grains and pebbles of quartz, flint, and granite sand. Fossils: Trigosonia and small bivalves,
nd Ammonites justinu......... and Ammonites justine Breceiated grit, composed of worn fragments of oyster fine pebbles, stratified in false beeds.
fine pebbles, stratitied in false beds.............. tratified. Fragments of oyster shells are common 2. Basal conglomerate of pebbles of limestone, quartz, chert, granite, and scbist, well rounded in a cement
of ferruginous yellowand red gritty sand. Some of
the pebbles at the base are from 4 to 6 inches in diameter. They decrease in size, however, apward
from the base, until a false-bedded calcareous shell from the base, until a fa
Total thickness of Travis Peak beds.
Laminated, flaggy, Carboniferous sandstones and fri-
able light-blue clay of the Carboniferous (Coal easures) formation, from the Colorado River level
wward to the base of the Cretaceous conglomerate the eaminated sandstones containing prints of ferns, Total

Glen Rose formation.-The Travis Peak forma on grades upward into the Glen Rose without any abrupt change in the character of the sediments, as can be seen in the high bluff of Cow Creek imme-
diately below Mr. Hensel's house at Travis Peak post-office, in the western part of Travis County.

The basal beds of the Comanche series have been described as being predominantly of an arenaceous character. The Glen Rose formation may be distinguished as being essentially calcareous Each of these subdivisions, however, is accom panied by material similar to that of the other as an accessory. Thus the calcareous Glen Rose for mation is slightly arenaceous at its base, the arenatriturated that consisting of siliceous grains so triturated that they are reduced to an almos ully diminishes in. Tuantity upward and the ally diminishes in quantity upward, and the lime clay proportionately increase
the numerous hills of therops on the slopes and forms the bluffs of Mount Bonnel and the and fon the Colorado (See fig 9) The tocks consist of beds of white and yellow limestone alternating with softer beds of limestone or clay The thickness is from 500 to 700 feet. In the northwestern part of the quadrangle, near the western boundary, the formation is thinner than at Austin, thickening southeastward.
The lowest beds of the Glen Rose formation are marked by the appearance of strata of homogeneous texture, such as "magnesian" marls and hard layers in which the fossil Requienia occurs. The term magnesian has long been applied to certain yellow strata in these beds. The writers can not state positively whether these strata are or are not magnesian in composition. The name "Caprotina Horizon No. 1 " has also been applied to these beds, because in the earlier geologic literature the fossils now called Requienia were termed Caprotina.
In nearly all complete sections the Glen Rose formation shows three marked subdivisions. The lower and upper thirds are composed of thinbedded alternating marl and flags, usually weath. ering into terraced slopes; the middle third is wae up thicker and more massive beds, which base of the thons. Some of the beds near the base of the thicker layers are chalky in texture and carry many peculiar fossils, especially notebesides many a ts of large mollusks. The lower portion of the formation ceous material in addition to the arena material and its indurated and unindurated beds do not occur in such uniform alternations beds those of the upper third For instance there will be 10 or 12 feet of soft, friable material and then a thin layer (less than a foot) of indurated tone. In weathering this results in wide terraces with steep slopes.
The yellow "magnesian" strata also increase thickness in ascending series, and become very conspicuous in the middle portion, often
being from 5 to 15 feet in thickness, as as $\begin{gathered}\text { conspicuous } \\ \text { sitone layers } \\ \text { sione laers }\end{gathered}$ seen in the bluffs of Mount Bonne
near Austin. These limestones are soft and of a cream or brownish-yellow color, and alternate with strata of marls similarly constituted, and are sometimes accompanied by pockets or nodules of calcite, aragonite, strontianite, celestite, and epsomite.
The upper third of the formation, as seen at the top of Mount Bonnel, presents alternations of fri. able marls and hard limestone strata. The limestone strata usually average less than a foot in thickness. These alternations occur with great regularity and persistence. Clay is the chief accessory of the calcareous beds. The marls are soft and laminated and are composed largely of minute shell fragments, giving the beds a distinctly granular, oolitic character. They have Whitle clay and imbibe moisture very freely
bilities, the bassal or alternating beds aral possi of producing valuable building waterial Some of producing valuable "magnesian" buft
yellow colors, while some of the white $\begin{gathered}\text { Limestone } \\ \text { curtabie } \\ \text { carvin. }\end{gathered}$ yellow colors, while some of the white
unlaminated limestones suitable for
carving resemble the Caen stone of France, which is imported into this country. Some of the beds may also be valuable for the manufacture of hydraulic cements, although at present they are not utilized. The formation also contains unde-
veloped beds of epsom salts, strontianite, and other materials.
The alternations of horizontal beds of soft marls and hard limestones above described produce the bench-and-terrace topography of the slopes of
many of the canyons and along the margin of the Edwards Plateau from the East Fork of the Nueces to the Colorado, where the streams have cut downward through the Edwards limestone. The beautiful bluffis of the Colorado as seen from Mount Bonnel westward to the Burnet County ne are of this character.
The accompanying detailed section of the entire thickness of the beds of the bluff on the south Ford, Travis County is the vicinity of Lohmann Ford, Travis County, is typical. (See Columnar with Mr. Taff's It coincides almost exactly nolit ide fiver (Thid Ann Rep Geol. Surv. Texas, 1892, pp. 298-299.)

Section from top of high hill south of Round Mountain and
east of road from Bee Caves to Lohmann Ford on the
Colorado River. or
40. Limestone, breaking easily; firm slabs at top..... Feet. Walnut clay:
39. Yellow calcareous elays with large Exogyra tex.
ana; forms a shelf...................................... 38. Shaly limestone; not very fossiliferous.
38. Shaly limestone; not very fossiliferous. 10
37. Alternating hard and soft strata of limestone;
stome thin slabs about base; not fossillerous \ldots.
36. Alternating hard and soft yellowish limestone;
not very fosesilf
 Shaly limestone, fossiliferous; contains a few indi-
viduals of Cardium mediale and a few other species....................
34. White limestone; breaks easily
33. Marly material, forminy a terra
33. Marly material, forming a terrace...................
32. Alternation of soft argillaceoss or marly lime.
stone with harder thin layers of purer limestone

29. Slope and shelf.
28. Thin, hard ledg.
27. Slope, ery gent
26. Bed of Monoplew
thin, a ooptor or two in hard, yellowish limestone-
25. Hard, perforated limestone....................
24. Alternating thin, hard layers and soft, thick layers;
the thin layers 6 inches to 1 foot, the soft 3 to 4

 Soft, chalky, argillaceous limestone with Exogyra
texana at base, with harder layers that form
shelves -11 hard ledges. Twenty feet from the shelves -11 hard ledges. Twenty feet from the
top of hase beds the hard ledge is honoycombed
by solution, and is arenaceous. In the lower 20
 17. Hard ledges of honeycombed (perforated) lime
stone. The limestone, hard. yellowish, con
tains many poorly preserved calcitized foss shells, largelp the remains of nerineas..
16. Hard lede of limestone; many Caraim
15. Soft, argiliaceous, chalky imestone
14
15. Soft, argillaceons, chalky limestone...............
14. Ledges, 6 inches to 1 foot thick, with soft, sha
14. Ledges, , inche
layers betwee
13. Soft limestone
13. Soft limesto
12. Fard legge

6. Arenaceons ledge, a few feet.
5. Soft ledge with many Monopleura, a few feet.
ravis Peak formation
4. Rather hard ledge, with poorly preserved fossis;;
appear to be ossters.....................
3. Soft, ebalky limestone.. 20
2. Ledge of yellowish limestone, feet, and 40 feet of
the section covered by river alluvium 1. Yellowish calcoareous sandstone at river level, Totals of above section

fredericksburg division.
Walnut clay.-At the top of the Glen Rose formation a bed of yellow, calcareous clay always occurs, which is extremely rich in two species of aysters: Eaogyra texana Roemer and Grypheca 10 to 15 feet. This is an extremely persistent bed both in its lithologic and its paleontologic characters. To it the name Walnut clay has been given. Above these clays is a soft, chalky lime stone, the Comanche Peak limestone. These two formations frequently occur near the summits of
buttes in the area of the Edwards Plateau and do not occur in the Coastal Plain, except in one smal outcrop along the eastern foot of Mount Barker, too small to be shown on the map.
The yellow clays of the Walnut formation most commonly occupy a terrace or bench resting upon a hard stratum of the Glen Rose formation, with a nipple-like hill of the Edwards limestone occurring above. This bench forms a conspicuous feature of the landscape of the Edwards Plateau.
Comanche Peak limestone.-This is a persistent Comanche Peak limestone.-This is a persistent bed of white, chalky limestone, presenting a shattered, reticulated appearance on weathering. It is partly characterized by an $\begin{gathered}\text { Persisisent } \\ \text { bate } \\ \text { batite. } \\ \text { stone. }\end{gathered}$ abundant fossil fauna containing a large number of Exogyra texana, which is especially abundant in its basal portion. It is from 40 to 50 feet thick, thinning toward the Rio Grande. Although it is insignificant as regards thickness, and may be considered the base of the Edwards limestone, it is one of the most persistent paleonIn the Austin quadrangle this formation occurs only within the area of the Edwards Platean usually as a chelky slope immediately below the asumy a Edwards immenately below the cap rock of Edwards limestone and above the bench occupied by the Walnut formation. A
typical exposure of this formation may be seen typical exposure of this formation may be seen
on the top of Mount Barker, northwest of Austin, and its section is shown on Columnar Section sheet 2 .
Edwards limestone.-The Comanche Peak limestone is the base of a thick group of limestones consisting of the Comanche Peak and Edwards formations. The upper formation contains a large number of flint nodules with vast quantities of Rudistes and aberrant Chamider, and was called by Shumard the Caprina limestone.
This formation is the most conspicuous and extensive in the Texan-Mexican region. It is composed mostly of limestone strata, but there are some marly layers. It shows slight variation in color, composition, texture, and mode of weathering. In general the beds are whitish, although layers of buff, cream, yellow, or dull gray are frequent. These colors depend much upon weathering. In composition many of the beds are as nearly pure carbonate of lime as can be found in nature, but some have small $\begin{aligned} & \text { Beas of pore } \\ & \text { admixtures of silica, epsomite, chloride } \\ & \text { fimmate of }\end{aligned}$ admixtures of silica, epsomite, chloride of sodium, and perhaps other salts as yet unde termined. Occasional bands of soft brownishyellow stone are intercalated with the limestone. These bands are popularly called magnesian, and are composed largely of exceedingly fine-grained
siliceous material, like tripoli. As these beds siliceous material, like tripoli. As these beds ten contain fints, the silex may be of organic tuent in the few marly layers. Iron is const present as pyrites, and is revealed by the red color of the clay that weathers out of a few beds. Exceedingly fine siliceous particles occur, especially southward from Comanche County-but no sand grain, pebble, bowlder, lignite, or other undoubted piece of land-derived débris has ever been found.
The limestones vary in degree of induration from hard, ringing, durable strata to soft, pul. verulent chalk that crumbles in the fingers and resembles very much the prepared article of commerce. Some of the beds are coarsely crystalline, with calcitized fossils, and are susceptible of high polish. The beds also vary in texture. Some of them are porous and pervious, while others are close grained and impervious. Some are homogeneous throughout; others have hard and soft spots, the latter dissolving by the percolation of underground water and constituting what is popularly termed "honeycombed" rocks. The harder spots in some cases seem to be in process of induration, suggesting a step in the formation of flints. The holes in the honeycombed layers often represent what were once spots containing soluble salts of iron and other accessory minerals.
The formation can usually be distinguished by the immense quantity of flint nodules
in and between the limestones and in and between the limestones and scattered over the surface everywhere.
These are of many shapes; some are
These are of many shapes; some are like warty potatoes; others are parts of extensiv, sheets.or very flat lenses. They vary in size from
that of a hen's egg to a foot or more in diameter. hey also vary greatly in color. On fresh fracture some are almost jet black; others are light blue, gray, or opalescent; still others are delicate pink in color. There is some, but not conclusive, definite horizon
In most cases the Edwards limestone may also readily be distinguished by the peculiar aberrant mollusks of the genera Monopleura, Requienia, and Radiolites - bivalve fossils which have cornucopiate form, suggesting a resemblance in shape to the horns of cows, goats, and sheep.
The formation is stratified into a succession of massive beds accompanied by very few flaggy and marly layers. Some of the strata are harder than others and project beyond the softer layers in the pre soft and quadrangle the Edwards limestone the Austin quadrangle the the und inseparath lime. The Comanche Peak strath are less con solidated, and, as they re somewhat argillaceous polidated, and, as they are somewhat argilaceous, limestone, which is usually a firm, white, ringing limestone of great hardness and durability; so that the Edwards weathers into cliffs, while the Comanche Peak is wrought into lower slopes; but in most cases reliance must be placed on paleonto logic determinations to distinguish the two forma tions.
Neither is the Edwards limestone always sharply defined from the overlying Georgetown, except by paleontologic criteria. It is true that the Georgetown limestone is somewhat more arenaceous, but the differences are so slight that their detection requires the trained eye of the geologist.
The Edwards limestone, being calcareous than any other of the Comanche series probably corresponds to the deepest submergence of the Comanche epoch. $\begin{gathered}\text { Evidence of } \\ \text { dedef s.b.b } \\ \text { merzence. }\end{gathered}$ It is true that in the Glen Rose forma tion occasional thin beds of chalk occur, and that some of these are composed almost entirely of foraminifera, but such chalks usually contain a considerable percentage of clay, recognized as an offshore deposit.
Topographically the Edwards limestone is one of the most important formations in Texas. In fact, it is the determining factor in the topography of the whe of the thand ness being superior to that of the overlying and sion has preserved it as the innumerable buttes and mes of the State and of the extensive Edwards Platean nd Grand Praive regions Not only are most of the buttes and mesas capped by it, but these are accompanied by scarps overlooking the lowerlying valley prairies which follow the stream. The walls of the canyons which many of the streams have cut are also composed largely of the Edwards limestone, especially the portions of those crossing the Bear Creek belt. The cliffs of the Colorado between Austin and Bee Creek form a conspicuous exposure of this limestone. To its hardness is also largely due the topography of the limestone mountains of Mexico.
It shows many types of weathering. Some of the strata make bold cliffs nearly 50 feet in height, the faces of which, although apparently of homogeneous texture, weather into small open caverns. This weathering sometimes brings out
a thinly laminated structure associated with white a thinly laminated structure associated with white efflorescence. The bottoms of caverns of this character are filled with a layer of white, pulverulent earth. The residual products of other massive ledges weathering into caverns are ver-milion-colored clays, in which are beautiful fossils omposed entirely of crystallized calcite.
The hard limestones weather into vertical, quare-cut blufs, while the soft and more homo geneous beds of marly or chalky tex ture form slopes. Where these hard $\begin{aligned} & \text { Series of } \\ & \text { antifitate } \\ & \text { and soft } \\ & \text { sitepses. }\end{aligned}$ is a corresponding alternation of scarps and slopes is a corresponding alternatio
in the topographic profile.
Where the Edwards formation makes tretches of level country, such mas extensive Bear Creek country between Manchaca and Oak Hill and that upon the summit of the plateau,
and where the surface stratum is of homogeneous exture, it weathers into innumerable little ridges, crests, and drainage lines, illustrating in miniature the processes of erosion and mountain carving. These minutely eroded limestone surfaces are technically known as "karrentelder," and are formed by the solvent effect of rain water upon the sunheated limestone surfaces. The crevices in these level areas of Edwards limestone country are usually grass covered, with occasional patches of scrub oak. The surface is very rocky, the karren felder protruding in jagged points through the rich but scanty soils. Sometimes residual flints occur in such immense quantities over these surfaces that one is apt to mistake them for a water The base of the Ed
The base of the Edwards limestone is found capping many of the high buttes of the Edwards Plateau, as shown on the geologic map, while the upper and greater portion is exposed along the This is well displayed in the banks on the south side of the Colorado in the western part of Austin, between McDonald's brickyard and the city dam Owing to faulting this section is some city plicated and is not continuously exposed at any ingle locality. The details as made out at three localities at Austin are shown in the accompanying sections and figures. It will be noticed that in the lower portion of the Bee Creek section which is still above the base of the whole of the formation, arenaceous marls and limestones are rather numerous. These play an important part in the artesian conditions from the Colorado south westward.
The following sections represent the entire thickness of the Edwards limestone exposed on the downthrown side of the fault in the bluffs of the Colorado between Austin and the river level at the mouth of Bee Creek. (See Columnar Sec. tion sheet 2.)
The base of the beds is concealed in the Coastal Plain, lying probably less than 100 feet below No. of section C, but can be seen on the upthrow side of the fault, capping the remnants of the plateau
Section of buut on Barton Creek about 1 mile above Barton
Spring, Travis County.
5. Grayish limestone, irregular fracture, with
Alectryyonia carinata and Gryphaca wash

Alectryonia carinata and Gryphea wash
tiensis.

Alternating layers of hard and shate............
with Alectryonia carinata, Grypheato wash with Alectryonia carinata, Gryphaa wash-
ittensis, Exogyra americana, etc.
2atensis, Exogyyra ameri
2. Hard, grayish ilinestone.

1. Sott, chalky limestone, wit

Total thicl as limestone:

49. Nodular limestone full of requienias (first
50. Noduar limestone full of requienias (first
requienia bed)........................

51. Hard, chalky limestone.................
52. Thinly laminated limestone (the socalled
lithoghie
53. White, sublaminated, chalky limestone. The White, sublaminated, chalky limestone. The
lower part of Nos. 45 and 46 contain many
fossils - Exxogyra texana, Photadomya
Tossils - Exogyyra texana,
knowtoni, ente.............
54.
55. Nodular limestone, no requienias
56. Nodular limestone with many
(seocond reaquienia bed)
e. Laminated limentone....
d. Δ series of hard limest
d. Δ series of hard limestone ledges (eight in number), separated by the thinly laminated
layers.
There are some flints, about as large as a man's fist, Radiolitites and Chon-
drodonta munsoni.......................
29.) b. Haragy liayer with discoidal filits.
e. Flaggy layer with discoidal flints............. 2
 lattened oat and very irregular in outline.
The upper part of bed contains small flints.. a. Limestone ledges, with somee flataned flints. blue variety...............
of a is Barton Creek bed.
Total thickness of strata in bluff $\overline{171}-$
Section of Deep Eddy Bluff, south of the Colorado River,
57. Nodular limestone with requienias at top (the
second requienia bed of the Barton Creek sec-
tion)
second.
tion).

58. Limestone ledges..................................
i1. Limestone lefges coutaining requenias. The
three layers above described form Limestone ledges coutaining requienias. The
three layers above deseribed form a slope to the
top of the hill (or bluff) above the face proper top of the hill
of the bhuff.
of the buff.....................................
Ledge of hard limestone, 10 inches above basal
sheet flint. The upper part of the ledge con-
tains rather small nodular tlints. tains rather small nodular flints... Limestone weathering out and giving rise to at
good deal of red elay, apparently representing
the zone of calcitized fosils the zone of calcitized fossils found in the high bluff above Moctill's Ford......................
59. Massive, thick ledges of limestone; detail not
exposed 37. Soxposed. white,
60. Soft, white, arenaceous limestone..........................
23
36 Soft, arenaeous limestone................
8
61. Ledge of limestone, rather soft, emitting odor of
10
petroleum
62. Chalky limestone, forming litte caves, oompose
of a good many small ledges; disocidal flints at

 Mealy. Nodular fints; oceasional discoidal
 in top.
63. Hard, yellowish limestone.

Hard, thick, massive ledge of siliceous lime.........
ringing under blows of havmer
ringing under blows of haumer. At the base
there is a layer, about 9 inches thick, of opalescent, pinkish or brownish flint. Apparently
the limestone is being converted into flint by replacement, and the process has not yet been
completed................................... 27. Soft, chalky limestone with very large (may be Whot long), irregularly shaped blue fints at top. White, chalky limestone, apparently siliceous;
zone of tint near top. The flints blue, discoidal, zone of tint near top. The flints blue, discoid
and tending to form sheet.................
 22. Thier, massive ledge of limestone, rather soft, Thick, massive ledge of imestone, rather soff,
yellow in celor, and sightly areuaceous Ledge of hard, yellowish limestone with a zone of
flints tending to form a sheet at base......... tlints tending to form a sheet at base...........
soft, white, slightly arenacous iliestone, com-
posed of thin ledges; ;upper 2 feet, middele 4 posed of thin ledges; upper 2 feet, middle 4
feet, lower 1 foot.a. Soft, yellowish or whitith lime.................. Soft, yellowish or whitith liuestone with layer of
flattish, bluish flits forming a sheet at top.
This is really three ledges; uper ledge with This is really three ledges; a pper ledge, with
flints at top, 2 feet; middle containing concre-
flints at top, 2 feet; middle containing concre-
tions of caleite in lower part, 4 feet; lower ledge
exposed at low water, 1 foot...............
Total, Deep Eddy section..
Section of bluff at mouth of Bee Creek.
23. Limestone slope, detail not exposed

Arenaceoons limestone....
Hellowish, rather hard limestone set flint at base. ellowish, rather hard limestone, somewhat sili-
ceous; thin band of chalky limestone at top;
calcite concretions near base. calcite concretions near base................
Sheet flint at top (sheet flint at top of lowest ledge of Deep Eddy Bluff); three ledges of limestone: upper, 1 foot; middle, 2 feet 6 inches; lower
(containing calleite concretions) 3 feet....... (containing calecite concretions), s feet..........
Sandy limestone with two zones of nodura rints
near midden sheet flint at base; mass of requienias just above the sheet flint................
Soft, yellow, calcareous sandstone, a part of the preeeding ledge, abont......... Three or fort ledgessone, about rather soft, whititish or yel.
lowish limestone; the upper ledge containing a great mass of requienias, the others fewer...... contains a great many requienias near top \ldots. Yellow, arenaceous limestone...
Soft, yellow, arenaceous limestone................. fragenents, gray on onular hexpessoroue, with shell
Soft, yellow, arenaceous limestone or calcareous
 indurated blotehe
flinty looking...
inches is a sabledge. In the upper part (near
top) are eoneretionary bodies that in form resem-
ble flints, but are not fints in tex
top) are eoncretionary bodies that in form resem-
ble flints, but are not flints in texture. These
bodies are hard, apparently siliceous
bodies are hard, apparently silliceous, and con-
tain white blotches, some of which appear to be
tain white blotches, som
of foraminififal origin.
4. Hard limestone, whitish.......................... $\begin{gathered}\text { blaish, without flint; } \\ \text { not fossiliferous. }\end{gathered}$,
3. Arenaceous limestone, has a tendency to lamina
is not always evident. The nopper part of the
is not always evident. The npper part of the
ledge by solution becomes porous. The rock
has a considerable absorbent power for water,
has a considerabble becomerbent porous. Therer for wate
and has a dark (wet) appearance, due to co
and has a dar
tained water.
2. Thick ledge of white limestone, not very hard,
concentrically grained structure, resembling the
rraining of pine wood. Their long axes are not
xidizing yellow from contained iron. Contains
large number of irregularly shaped flint
large number of irregulary shaped flint
nodues. These may be as wuch as 1 foot long,
but usually are erather small - - or or 4 incheses in
length. They are bluish in color and have a
xidizing y yellow from contained iron.
large number of irregularly sha
but usually are rather small -3 or 4 inches in
length. They are bluish in color and have a
always parallel to the bedding planes of the
limestone, an important exception to the usual position of the flints relative to the stratification of the limestone.
fints; in a thin or layer, about 6 inches thick,
top of this ledge there is an enormous nu
of Requienia texana
Total, Bee Creek section.
he thickness of the Edwards limestone exposed along
bluffs of the Colorado between Austin and Bee
Creek is as fows
Bluff on Barton Creek, beds 49 to 43 .
Deep Eddy Bluff, beds 42 to 24
Grand total.
Total thickness, including the 70 feet or more of the
lower part of the formation preserved on the sum.
mits of the plateau, about...............
washita division.

The Washita division, which has its greatest development in Texas to the northward, toward Red River, is represented in the Austin quadranle by three formations - Georgetown limestone, Del Rio clay, and Buda limestone
Georgetown limestone.-This formation consists of a group of impure white limestones, regularly banded, and alternating with bands of marly clay. Before exposure they are dull blue in color, but when weathered they are white or yellowish. The lower portion of the section as exposed at Austin upper. At the base there is a hard, gray, massive imestone, about 27 feet thick, which is succeeded by chalky, argillaceous limestones that become nodular upon weathering. The thickness of the ormation is from 65 to 70 feet. Intervening between the top of the undoubted Edwards limestone and the base of the Georgetown limestone is a bed of very soft, granular, chalky limestone about 13 feet thick, having a saline taste, which may be classed with either the Edwards or the Georgetown.
The Georgetown formation is paleontologically characterized by Epiaster elegans, Ammonites (Schlenbachia) leonensis, Gryphoaa washitaensis, Exogyra americana, and Kingena wacoensis. These fossils occur throughout in definite zones and associations, and some of the strata are composed almost entirely of them. Above the more massive lower layers is an agglomerate of Gryphea washitaensis. Associated with this is foun an oyster, Alectryonia carinata, a familiar Euro pean form, which occurs only at this horizon in
 of a homogeneous calcareous matrix thickly tudded with Kingena wacoensis.
These beds do not ocupy very
These beds do not occupy very extensive areas but occur from place to place in the Bear Creek belt intervening between the International and of the Edwards limestone. They are best shown of the Edwards limestone. They are best shown Railroad at the west end of Pecan street in the city of Austin (see Columnar Section sheet 2) and on the slopes of the hills near Taylor's limekiln. Del Rio clay.-This is a peculiar greenish-blu laminated clay which weathers dull brown or yellow and forms a very black soil. It is from 80 to 100 feet thick at Austin, where it has its typical occurrence in Shoal Creek, shown on Colum. nar Section sheet 2, and at Fish Pond bluff near the mouth of Barton Creek. It outcrops immediately beneath the Buda limestone and rests upon the Georgetown limestone, the uppermost band of which is characterized by the occurrence of Kingena wacoensis. It is an especially important feature of the geologic column, making a break in the monotonous sequence of limestone beds, and
sesses lithologic and paleontologic hid acters which render it easily recognizable. It can always be identified by means of a peculiar fossil, Exogyra ariet a, a 35 st tration sheet 2, figs. 35 and 36 . This occurs in the greatest abundance, weathering out by the thou to these shells, especially on the umbonal region, to these shells, especially cubes of tron pyrites. Upon decompo are small cubes of iron pyrites. Upon decompo-
sition this coats the shells with thin layers of brown iron oxide, and converts the lime into numerous crystals of fibrous selenite, which are
intercalated in the seams adjacent to the shell horizons. In places the shells are cemented into thin layers of indurated argillaceous limestone, making persistent bands in the middle of the clay beds.
Above the zone of Exogyra arietina the clay is somewhat barren of fossils, except near its summit, where it becomes slightly arenaceous and contains impure limestone slabs bearing other fossils, some of which also occur in the upper layers of
the Georgetown limestone. Among these fossils the Georgetown limestone. Among these fossils
is a gryphæate oyster, Gryphea mucronata Gabb. is a gryphæate oyster, Gryphoa mucronata Gabb.
Buda limestone.-This formation (the Shoal Buda limestone.-This formation (the Shoal
Creek limestone of previous writings) overlies the Creek limestone of previous writings, over only 45
Del Rio clay, and though very thin, being only feer hick, is a very conspicuous and easily dis tinguished for in. It occus in ledges, which, when exposed in vertical bluffs, always have bedded When they fom, wo evenly country is usually extremely rough and the limestone is full of cavities.
Its outcrop oxidize
Ths outcrop oxidizes to a slightly darker color ture it is light yellow, with blotches or on ots of pale pink as if it had been subjected to fire. In places it is very hard but in ceneral is of varying texture, usually lumpy; in some spots it is efllores. cent and decays into a soft, pulverulent material having a slightly saline taste. The minute red and pink blotches are peculiar to this lime- Red spoted stone and have given to it the local Red spone. name of "burnt limestone." Microscopic study has revealed the fact that the rock is made up largely of foraminifera, filled and coated with a mineral which in all probability is glauconite Exteriorly the limestone presents no appearance indicating that it contains foraminiferal remains, but, so far as examined, it is more largely composed of them than any other rock of the whole
series. In one thin section Rotalia, Textularia, series. In one thin section Rotalia, Textularia,
Globigerina, and fragments of three or four other Globigerina, and fragments of three or four other genera of foraminifera have been recognized.
In the Austin section the Buda limestone rests
without apparent gradation upon the Del Rio without apparent gradation upon the Del Rio clay, indicating a rapid physical change in sedimentation. It is abrupty overlain by the thin laminated bituminous clays or the Lagle Ford mation. The outcrop of this formation is propo tionately very limited, being better displayed a found in the oung in the Blar Onion Crek a Bud Characteristic exposur are seen in the steep scarps of Shoal Creek in the city of Austin, shown on Columnar Section sheet 2 and in the bluffs on the south side of the river, where Bouldin Creek enters the valley, at the crossing of the International Railroad and the Oatmanville road. It forms precipitous cliffs with toppling projections, owing to its jointed structure.

gulf series.

Strata of the Gulf series underlie all that portion of the Austin quadrangle in the Coastal Plain east of the Manchaca belt, and even include part of that belt.
The series presents four regner tions in the Austin quadrangle-Eagle Ford Austin, Taylor, and Webberville. The Wood bine (Dakota) formation, which marks the base of the upper Cretaceous in Texas and elsewhere north of the Brazos, is absent in the Austin region.
These
These formations are the result of one continuous sedimentation and pass one into the other without sharp lines of demarcation. They are composed mostly of indurated strata-marls, marly clays, and glauconitic clays-with one conspicuous chalk formation (Austin chalk) near their base. Owing to the soft nature of these formations the surface ond by flat, or gently rolling, and devoid of scarps. The man . by for area oc
series.

colorado divisoz.

Eagle Ford formation.-This formation consists of laminated bituminous clays, shales, and impure unweathered, but becoming light yellow and
white on exposure. Both the shales and the flags rocks, especially those the other Cretaceond below them, by their laminated character. The clay shales are often accompanied by
 stone, and nearly always contain a great
abundance of fish teeth and bones. (See figs. 38 to 41.) From this fact the formation has been called the fish beds. The strata also contain a few remains of mollusks, principally of inoceramus and oysters. Bones of a large saurian were also found The formation near the Deaf and Dumb Asylum. The formation is rarely over 50 feet thick any. here in the nicinty of Austi. Geologically Ford shales, so extensively devizon of the Lage Tevas. The abrupt Tesas. The abrupt contact below with the Buda break in the sedimentation of the Creta period, the only distinct one traceable in the exas region.
The formation usually occurs in low bluffs capped by the Austin chalk, or as flat areas upon the summits of the escarpments of the Buda lime. spots. It outcrops along a very narrow belt in spots north and south through the quadrangle, as
shown on the map. A typical outcrop may be seen in Shoal Creek just above the Pecan street bridge, Austin, and in the banks of the creek thence to its mouth. (See Columnar Section sheet 2.) Here it rests upon the Buda limestone It also underlies nearly all the Sixth Ward in the northwest portion of the city. It occurs soath of the river along the banks of Bouldin Creek, and is best seen where the railroad twice crosses that creek near the Granbury residence in South Austin, where it produces a small bluff about 25 feet in height. It also outcops between Man chaca and Buda in the bluffs of Onion Creek, and near Watters station, in the northern part of the quadrangle.
Austin chalk.-Surmounting the Eagle Ford hales, without break in sedimentation, is a white, chalky limestone of coarse texture, occurring in beds of various thickness, separated in places hite in color as seen in the streets of Austin and along the San Antonio road southward. Occasionally there are slight blotches of yellow from the
oxidation of the little balls of iron pyrite which it contains. Before weathering, and especially when impregnated with ground water, this chalk has a bluish tint. The rock usually weathers in large conchoidal flakes. Under the microscope
the chalk exhibits a few calcite crystals particles of amorphous calcite, and a creat number of the shells of foraminifera and other minute organisms In composition it varies from 85 to 94 per cent of calcium carbonate, the residue consisting of mag. nesia, silica, and a small percentage of ferric oxide Although sometimes so much indurated that it can be used for building purposes, it is generally too soft and crumbling for such use. It is principally used as road material, but is a poor one, the road builders preferring the far more durable he Austin chalk lower Cretaceous. The fossis of great number and variety of species, especially inoceramus, oysters, and ammonites. Its thickness is difficult to determine, but averages about 500 feet in other parts of the State. The Manor well shows the thickness in the Colorado section to be bout 410 feet.
The Austin chalk is the most conspicuous of the formations of the county, outcropping along a wide belt extending through the central portion, and constitutes the principal formation upon which the city of Austin is built. Here fine out ops alufs of Waller sreet cutlings and along South Austi Whl Wrk, in South Austin, presents excellent exposures of the through thi , wile the laing cat ished burn bluft and eanom the south side of the margin of the valley the Austin chalk forms a picturesque bluff from 2 miles below the Deaf and Dumb Asylum, finally disappearing to the eastward at the Montonolis bridge (See Columnar Section sheet 2.) Around the perim-
eter of Pilot Knob the Austin chalk has been altered in places to a firm, white, crystalline rock, almost a marble. On Onion Creek north of Pilot
Knob beds of volcanic tuff are interstratified with the chalk. (See fig. 8.)

Taylor marl.-The Austin chalk is overlain by deposit of calcareous clays, locally known as joint clays," estimated to be about 540 feet thick the Colorado River section. When fresh these beds are fine-grained, tough, unctuous, blue clays. They are apparently unlaminated until exposed to weathering, when their laminated character is developed. Their acessory constituent is lime On atmospheric exposure their color, owing to rllow. 1 a diow. Because of he raph . naracter of the naltered ay is seldon seen, well when fresh material is brought up by the cols the Blu for of miles east of Austin (fig. 7), there is a good, fresh, vertical exposure.

At the top, as seen at various places in Travis County east of Austin, the clays grade into the marls of the Webberville formation Their middle portion apparently con- $\begin{gathered}\text { Unctuous } \\ \text { and may } \\ \text { tains no well-preserved fossils, }\end{gathered}$ impressions are abundant in places. In the base of the beds Exogyra ponderosa, a large, heavy oyster, is abundant.
The marls constitute the greater part of the topographic subprovince denominated the Taylor Prairie. The hills are usually gently rounded, but frequently along the streams low bluffs are formed by the clays slipping down. They erode with great ease, enormous gullies being formed by heavy rains in a very short time. After rains the roads throughout this country are inde scribably bad, first from the readiness with which deep gullies are formed, and secondly because of the soft and extremely sticky character of the mud.
Webberville formation.-This, the highest formation of the upper Cretaceous within the Austin quadrangle, underlies the eastern margin of the aylor Prairie in the quadrangle. The marls of the Taylor formation grade upward almost imperceptibly into the clay $\begin{gathered}\text { Greanisish } \\ \text { gractic } \\ \text { marls }\end{gathered}$ mak ormation the latter containing greenish grains of glauconite and, in the upper part, impure limestones and
blacker clays. These clays do not oxidize into a clear yellow buff as does the Tapor form, clear yellow buff, as does the Taylor formation,
but are of a greenish-yellow color caused by the but are of a greenish-yellow color, caused by the
presence of the glauconite. The thickness of this formation can not be determined except by an estimation of the regional dip.
The beds contain fossils characteristic of the upper division of the upper Cretaceous (the Ripley group of the Atlantic coast, the Montana group of the Rocky Mountain region, and the Corsicana and Eagle Pass formations of northern and southern Texas). The following forms from Webberville have been identified by Mr. T. W. Stanton: Anomia conradi, Leda protexta, Corbula crassiplica, Drillia ? distans, Sphenodiscus lenticu laris. Three fossil oysters, Exogyra costata, Gryphcea vesicularis, and Alectryonia larva, are common and characteristic fossils.
Although probably not the very highest layers of the upper Cretaceous system, the Webberville beds are the highest Cretaceous exposures seen along the Colorado River, for below Webberville they are overlain by the basal division of the Eocene Tertiary. Good outcrops of the forma tion are exposed at only a few localities, although the residual soil occupies an extensive area. Low, vertical bluffs of the formation may be seen just north of the east base near Onion Creek and near the water (he Worth of Onion ar Section sheet 2.)
The topographic expression and the general case of the Taylor marl. The the same as in the case of the Taylor marl. The country is open be abundant, occur, and the soils are black and sticky. The lands erode easily and after heavy rains gullies are often produced similar to thiose described in the discussion of the Taylor marl.

EOCENE PERIOD.

There is but one formation in the Austin quad rangle which may be positively referred to th Eocene period. This is the Lytton formation.
Lytton formation.-This formation, named from Lytton Springs, situated in the southeast corner the quadrangle, consists of laminated clay lay and sand, and sandstone, the latter ofte howing is bluish but when subjected to were oxid , whe y llow, don becomes white, yellow, or reddish, depending the degree of oxidation, and the extent of leach he degree of oxidation, and the extent of leach ng. Only a few fossils were found in the area covered by this formation within the Austin Conrad, Turritella, and Culyptrea. The fauna belongs to the basal division of the Eocene and orresponds to that of the Midway formation of Arkansas and Alabama.
The relations existing
Webberville formations have not been and ively determined because actual contacts wer not found within the quadrangle. The faunal break is very complete and the abrupt manner in which the Eocene abuts gainst the Cretaceous suggests an eroon unconformity, such as has been shown to exist along the Frio River in western Texas, in suthern Arkansas, in Mississippi, and in Alabama
The area occupied by the Lytton formation lie in the southeastern portion of the quadrangle and is bounded on the northwest by a line extending pproximately from near Elysium to a point $1 \frac{1}{2}$ niles northwest of Lytton Springs. The thick ness of the formation within the quadrangle is about 300 feet
The topography consists of low hills usually having rather gentle slopes, but occasionally, wher here is a capping of sandstone, the hillsides are rather precipitous. The soil is usually sandy, but contains argillaceous and ferruginous material, rying in angith pur in large part post oak.
sUrficial rocks
The Colorado and other streams in the Austin quadrangle in past times have veneered the Creaceous and Eocene formations in places with vast divided into several categories, the oldest being hypsometrically the highest.
neocene period
Uvalde formation.-East of the great Balcones ault the surface, at an altitude of from 640 to 750 feet, is covered with a thick deposit of flint owlders, usually mixed with a marly matrix of alcareous material derived from the nearby for mations. The flints are often large and all show gns of having been rolled. The original exten of this old gravel, as well as the configuration which existed at the time it was deposited, can not be determined with exactness, because only patches of the gravel remain. So abundant are hese remnantal areas, however, that the original extent of the deposits in this quadrangle may be approximately restored. The Uvalde alluvial posit radiates out from the canyons of the Col ado, Barton Creek, and Onion Creek into a fan shaped area, with its broader edge toward the ated in the hilly district west of the ireap en now the falt by narrow terraces along the borders of the valleys of the river. The greatest body of the Williamson Creek, where it constitutes a distinct plateau. Here the gravel sheet is so mixed with the calcareous matrix that it often makes a rich, lack soil, which has usually been mistaken for he residium of the underlying Cretaceous form tion in situ. As this alluvial gravel sheet is not readily removed, it persists in places as a capping of hills or divides, while the weathering of its edges above the softer underlying formation produces sharp slopes around its margin along the lateral drainage of the Colorado and Onion Creek from 2 miles east of Oatmanville to nea the town of Del Valle, on the south side of this river. (See fig. 5.)

The Uvalde gravel also caps the round hills from Onion Creek southward toward the sout border of the quadrangle and covers the eastern half of the Mustang ridges. Denudation ha valde Plan of the onspiouos of ther Colorado is at the large butte known as Bu nob, just east of Manor, which stands about 750 eet above the river and is the highest point in the ortheast quarter of Travis County. The gravels, and it is readily seen that it is but a rem nant of a now almost destroyed area, and is the continuation of the St. Elmo Plateau of the south ide of the river. The flints of the old platean ow veneer the newer surfaces.
The innumerable flints which so largely compos the Uvalde formation were all derived
Edwards limestone of the Edwards Plateau west of the Balcones fault line, and it is evident that this great deposit of flint gravel represents the destruction of the Edwards formation, which once existed over the entral province in Burnet, Llano, and other counies. When it is considered that there is not on foot of flint to 100 feet of limestone in th dwards formation, it can be imagined how great nust have been the denudation which resulte in the deposition of the flints in the Uvald
Although the Uvalde formation now occurs a high as 300 feet above the adjacent bottom of the Colorado, it is probable that it was not originally continuous sheet across the whole eastern hal the county, but may have been deposited in an esented coastward by finer and have been rep The coast ward by The exact age of hal e stated, bul after the alcones faulting began is indicated by the exte Edwards Platean, and in every condition it the worrespond with th L ery cte form marks the close of the Pliocene and the initiat of the Pleistocene. (See Eighteenth Ann. Rep U. S. Geol. Survey, Pt. II, p. 260.)

pleistocene period

Although the Uvalde terrace has been so nearly destroyed that its former continuity can be recog. ized only with difficulty, the later terraces which ery plainly ses of the valley of the Colorado are hese, all of which may be classified into thre istinct categories - Asylum terrace, Capito terrace, and second bottoms.
Asylum terrace.-An old high-level terrace usually a mile or two back from the river, occu s the summit of a bench which marks the interio margin of the so-called Colorado bottoms. This terrace in the city of Austin is located north of the State University and forms the sandy post-oak flat on which the State Lunatic Asylum is situated bout 150 feet above the river. It is traceable or many miles toward the east.
The material of this terrace is formed almos xclusively of granitic débris derived from th ranite mass of Burnet County, in the
 plastic feldspathic material oxidizing to red clay, or of gavel consisting of larg numar pieces of quar Pheces of the Paleon fint from the Edwards limestone also occur. The material of this old terrace is so recent looking hat, were it not for its high position above the wich the progres which
The Asylum terrace is characterized by a dense rowth of black-jack and post oak. West of hoal Creek, toward the Balcones fault, smal patches of it are preserved upon the dissected sur aces. Remnants in Taylor's quarry and along ational Railroad clearly show that the Asylum errace once extended up to the fault line.
South of the Colorado the Asylum level has bee here and there, especially on the hill south of Barton Spring on the Oatmanville road and along
the river bluff north of Del Valle. In the eastern part of the county the sediments become fine
begin to spread over a large area of upland begin to spread over a large area of upland.
Capitol terrace.-Below the Asylum level the Capitol terrace.-Below the Asylum level there
are traces of several other terrace planes bordering the Colorado River, but the next in importance is that upon which the capitol and hporance is that upon whin he capitol an on University is als situoted upon it Th on errac the Paleozo graites of the Tlano decion can be traced eastward down the rive . Austin the torrastwradly me river. Last bottom of the Colorado. South of the river this terrace forms the cap of the high bluff or valley wall of the Colorado bottom at the State Asylum for the Deaf and Dumb.
Second bottoms.-The Colorado has carved still other and lower valleys below the level of the Asylum and Capitol terraces and above the pres at flood plains and east of the mouths of Barto and Shoal creeks, which are filled with rich alluvial soil. Although standing high above the present waters of the river and never overflowe by it, these lower benches are known as the "Bot ms," from the very evident fact that in late eologic time they were the flood plains of the ver. These really consist of five or more dis inct levels of sedimentation, but the differences of levation are so slight that they can not delineated on the map. The second bottom is widely cultivated and its agricultural condition are very different from those of the upland Cre aceous lands.
Flood-plain deposits.-The flood plains or true botoms of the stream are rather extensive, an arge in proportion to thestal Parently his Poully to iem Thot Colorado from Austin estward concists, first wide sand bed, occupied by the stream at low ater and during times of ordinary rises, bordere yiver of bench, from 5 to 15 feet above imes of extraodirary flood. The stream itelf lows in places over its own débris and in other places is cutting into the bed rock. The accompanying table shows the locality,
eight, and composition of some of the terraces recognized on both sides of the Colorado River The altitudes given represent as nearly as possible the original deposition surface of the formation.

Onion Creek marl.-Another Pleistocene for mation having considerable extent in the Austin quadrangle is the alluvial deposit which borders the banks of Onion Creek. For this formation we shall use the name Onion Creek marl, although contains in places some gravel. Both the mar Cretaceous area through which this stream flows. It consists of wide belts of a yellow, calcareous marl, sometimes 40 feet deep, which extends up the valley of Onion Creek from its mouth below Del Valle to west of Buda, where it emerges from the highland. The Onion Creek marl, however, is principally developed above where that creek cut its canyon through Pilot Knob, and the topog
his material, which fact has suggested the Creta ceous age of at least a part of the old Pilot Knob ruptions. Up to date no occurrence of this naterial ha
fault zone.

GEOLOGIO STRUOTURE

The geologic structure or arrangement of the rocks in the Austin quadrangle is that of a mono line broken by a zone of faulting, with intrusions s rocks on the downthrown side of the faul. The general inclination of the strata is north of west to south of east, in conformity with the inclination of the whole of the Regional
Coastward Slope between the Rocky Mountains
and the Gulf. The rate of dip is different, how ever, in the two greater provinces represented in the quadrangle, the Edwards Plateau and th Ooastal Plan. The change of inclination acco panies the faulting of bathes zone, whic rancle and which will presently be the west of the main Balcones fault the dip of the trata is almost parallel to that of the recion strata is almost parallel to that of the regional he rocks in that region lie in sheets nearly parallel o the surface. East of the main Balcones fault ine the strata have a greater inclination, and they become deeply embedded to the east by increase dip in that direction. The regularity of the di in this region is broken by numerous minor fault see figs. 3 and 6), which fact, together with the ack of good exposures along which the dips can be measured, renders it impossible to ascertain with certainty the rate of dip.
From the records of the Manor well the Austi chalk, which outcrops $5 \frac{1}{2}$ miles to the westward at Sprinkle, is reached at a depth of 590 fee below the surface and 690 feet below the altitude of Sprinkle. Hence it is apparent that the strata of the Coastal Plain in this portion of the Austin quadrangle become embedded through fault dis placement at the rate of about 130 feet to the mile
The Balcones fault zone consists of a series o teep faults running north of east and south o west through the quadrangle and principally traceable along the western margin of the Coastal Plain. This zone of faults, as a whole, results in he dropping down of the western marof Coastal Pain along the foot of the Balcones scarp. Although the one is composed of a number of minor fault long its wester margin, there is major faul rich Way Amboy the east foot of Mount Boneeod Spring nd Oak Hill This foult resulta in a downthrew nd Oak Hill. This fault results in a downthro which caps the Edwards Plateau to the westward is found some 500 feet lower on the eastern side f the river in the stretch between the eastern foot f Mount Bonnel and Austin. There are a num ber of minor faults, which produce little or no effect upon the topography, but which are visible in stratigraphic sections. This minor faulting is ell shown in Shoal, Barton, Williamson, and Onion creeks. The details, however, are very complicated, as is shown in fig. 3, which is a carefully prepared representation of a section along the south bank of the Colorado.

EDWARDS PLATEAU

The Cretaceous rocks of the Comanche and Gulf series, which constitute the larger part of the geologic formations, are old sea muds, composed in part of the debris of preexisting land the sea or calous .als hem and depot as the latter, at leat is the their of mans. T the lime ate , aris ponent of the Cretaceous rocks. were laid down in the margins of the Gulf of Mexico as it invaded and conquered a land which had existed in Jurassic time and progressed west ward into what is now the Rocky Mountain region of the United States. The preexisting and consisted of a complex of Paleozoic and Archean rocks, such as are $\begin{gathered}\text { Pre-creta } \\ \text { ceoust } 1 \text { ana }\end{gathered}$ now being reexposed by erosion in the Burnet quadrangle. From what is known of the history of the Cretaceous formations lying to the northward, it is probable that this period of subsidence was broken in the middle of Cretaceous time by an episode of elevation, and that hence the epoch consisted of two subsidences instead of one.
The old Cretaceous sea encroached upon the preexisting Jurassic land until the former land surface had sunk to a depth equaling the thickness of the lower Cretaceous formations, or about 1800 feet. The ${ }^{\text {Crefaceous }}$ perio. Dakota formation, which represents the littoral of the second subsidence, is missing in the Austin and other quadrangles south of the Brazos, and it is probable that in this region of the State the sea bottom did not completely emerge during the mid-Cretaccous episode, as was the caso to the northwa. The change of level, however, is ndicated in the A. Wuadianle not only by he Fagle Ford formations, but by the par hange of sediments taking place as noted in the change of sediments taking place as noted in the of the Eagle Ford clays, the former being an off hore marine foraminiferal limestone and the latter a shallow-water clay
Toward the close of th
Toward the close of the Cretaceous, regional he oceanic waters again receded by elevation and Mountain region toward the present coast line of the Gulf. This is indicated in the shallow-water character of the Taylor marl and the Webberville formation, succeeding the Austin chalk. There Cretaceous. Subsidence was renewed during the Eocene.

The history of the Coastal Plain since the development of the Balcones fault system in Eocene his history is only suffient this history is only sufficient to suggest the broad future student. Since the subject offers to the future student. Since Locene time the plain as a holong its int abore the sea along its interior margin and the sea has position.
The portions of the Colorado and other streams within the Edwards Plateau likewise present an interesting Pleistocene history. In the valley of the Colorado (see figs. 4 and 9) $\begin{gathered}\text { River terraces } \\ \text { intron } \\ \text { regitatean }\end{gathered}$ there are erosion surfaces which seem to
indicate a correspondence with the terrace deposits of the later epochs in the Coastal Plain. Onion and Barton creeks have terraces through the high. lands which are evidently of great age and seem to ndicate that those streams are more ancient than the other minor drainage. Up both these streams, as well as the Colorado, there is a distinct bench covered with flint débris, which seems to indicate that these streams also took part in bringing down the vast supply of gravel which formed the oldest or Uvalde terrace.
The Austin quadrangle furnishes many data of value for the understanding of the later history of the Coastal Plain and the successive uplifts which it underwent before the final reclamation all the great eastern and southern provinces of the Texas region from the Gulf of Mexico. These data are recorded in the drainage of the old The testimony of the Uvits of upland gravel.
The testimony of the Uvalde formation is harmonious with and corroborative of that of the topog. raphy of central Texas as to the former extent ral region and the rast denudation that mot that of its deposition the agents of erosion were very active over what is now cenwere very actival Texas and that the Coloraw cen- Che ancien emptied into the sea close to the present line of the Balcones fault. The Uvalde formation also tells the story that at the time of its deposition nd coloranitic had not cut down into the Paleozoic but was still flowing over a Cretaceous floor, for very little if any of the débris of these earlier formations, which makes so large a part of the later alluvium of the Colorado, is represented in the Uvalde terraces.
Concerning the history of the volcanic phe-
nomena little can be said. There is evidence, as
contain oil in commercial quantity, as has been Three miles experiments at Watters.
Three miles northwest of Austin a little very ne-grade paraffine oil was found in a dug well, reported to the writer by Dr. Edgar Everhardt. Unfortunately no great quantity could be pronot exist in commercial quantities in the Austin quadrangle.
truotural material
Building stone, brick clays, lime, cement, and building sand abound.
Building stones.-These occur in the lower Cretaceous rocks, where there are many layers of white and yellow limestone suitable for various解解. In the upper part of the Edwards forma tion there are certain flaggy layers which have been used for paving and curbing in Austin and which make a durable stone for fences and in the alls. These have been extensively quarried enters into the structure of many buildings in that city.
Another limestone in close proximity to this is known as the Austin marble. This is composed of an agglomerate of calcified fossils, Austin principally Rudistes and Requienia. marble. The stone in the quarry has a white, chalky color on fresh fracture, but is sometimes varied by cream-
yellow and pale-pink colors. It is susceptible of yellow and pale-pink colors. It is susceptible of
a high polish and makes beautiful marble for a high polish and makes beautiful marble for interior purposes, having a creamy tint, like the marbles of Portugal, Spain, and North Africa, which produce harmonious effects in decoration. This material is not commercially utilized for marble, although the stone is largely used for building at As may be seen in the government Edward furio. In the Gle part of the tion the textured, buff colored limghtly arenaceous, openclass known as Caen stone and the kind much used throughout the world for carving Some layers of the Austin chalk notably that taken frem the quarry near Amboy station, are also used for building purposes, but this stone is not very durable.
Many of the Cretaceous limestones are soft in the quarry, where they may be cut with a saw or axe,
atmosphere.
Brick clays.-Excellent brick clays are found in the alluvial terraces of the Colorado and are extensively used locally and shipped to various
black prairie

Fig. 3.-Section along the south side of the Colorado River, passing through Austin, showing the details of the

It is impossible to tell how far eastward thi one of faulting continues, owing to the fact th ndividual faults can not be traced in the unco olidated material of soft marl and sandy clay for ations in the eastern half of the quadrangle the White Rock Mohaca and Bear Cre and Bear Creek the faults are plainly visible.
The volcanic necks, such as Pilot Knob and th small plugs in east and south Austin, are forced The underground extent of sedimentary rock not been determined, but it is probably small.
The interpretation of the structure has
mportant bearing upon the determination of the depths of underground reservoirs and constitute an interesting problem for future students of the local geology.

GEOLOGIC HISTORY.
The rocks and configuration of the Austin uadrangle illustrate the geologic history of detailed portions of the Coastal Plain and Platean of the Great Plains, but until more detailed study is made of the larger provinces as a whole the history can not be fully understood. Hence the remarks upon the history recorded within this quadrangle can be considered only as a partial contribution to a larger subject.

Austin.

As the ocean was withdrawing over the vast area from the Rocky Mountains to the eastern margin of the Austin quadrangle, erosion and uplift were producing changes in the configuraTexas region. The and Plains provinces of the texas region. The sea border during time was approximately along the eastrn half of the Austin quadrangle, and $\begin{gathered}\text { Explanation } \\ \text { of } \\ \text { of faring } \\ \text { duiting. }\end{gathered}$ during this epoch the older rivers, such as the Colorado, were depositing great loads of land the development of the great fractures now known as the Balcones fault zone, and initiated the pres ent configuration of the Coastal Plain. This, however, is entirely hypothetical.
Since that epoch the Edwards Plateau has been aintained as a great physiographic feature in the Texas region, but its present summit level, occupied by the hard Edwards limestone, is only a lower remnant of its former surface, at one time most probably largely covered by the upper removed.
The history of the Rocky Mountain region and the Plains Province, to the latter of which the portion of the Edwards Plateau within the Austin quadrangle belongs, has been a long era of erosion and elevation, during which canyon cutting has been more or less intermittently progressing.
elsewhere shown, that during the Austin epoch of the upper Cretaceous, Pilot Knob was a marine volcano; this is indicated by the apparent contemporaneity of the deposition of its volcanic
débris and that of the Austin chalk.

ECONOMIC GEOLOGY.
The Austin quadrangle abounds in many of those mineral resources which add to wealth and commercial development, especially structural naterial-such as building stone, cement, and of agricultural soils. Metallic minerals are lack ing, and mineral fuels in commercial quantities are apparently absent.
oll.
The Webberville formation, which underlies the astern edge of the area, is oil bearing, but the quantity and commercial value of the oil have not been determined. This formation, which is the same as that which supplies the Corsicana oil, is not sufficiently embedded to justify the expectation of oil in the Austin quadrangle, but it presents a favorable field for exploitation on the western margin of the adjacent Bastrop quadrangle. The Eagle Ford shales often yield globules or ther small quantities of oil, but as these shales are very thin there is no probability that they
parts of the State. The quality of bricks produced is excellent. Both white brick of the Milwaukee type and red brick are made. The manufacture of tile, drainage pipe, and other articles of this and has not been attempted. Lime.-Lime making is an extensive industry, which is carried on at Austin and McNeill, the product being she west to the Pecific mercially known as Austin lime, is exceedingly white and pure and is made from the Edwards imestone.
Cement material.-The Cretaceous rocks of ravis County abound in materials for making renaceous limestone of the cement. Ford formation when burned in a kiln, produces a natural cement of fair quality, like that which for many years was manufactured at San Antonio. Materials for making artificial Portland cement are unusually abundant, and from them a product equal to the best foreign cements now so extensively imported nto Texas can be manufactured. This material ncludes limestones in a marly or chalky condition, clays, and sands, all of which may be procured in close proximity to one another and to lines of transportation. Hitherto the chief obstacle to the development of a cement industry has been the cost of fuel and the difficulty of obtaining sites and trackage.

Sand.-Quartz sand of excellent quality for material of the Colorado and other bottoms, while
building purposes abounds in the alluvial valley of the Colorado.
flint
Flint is found in commerial quantities in the Edwards limestone west of Austin and in the old gravel deposits of the Coastal Plain. Elsewhere material of this kind is extensively used in the arts, for sanding sandpaper, glass making, ball grinding, mixing with potters' clays, and for other purposes, and is imported into the United States from France and England. No use has yet been made of the Texas material.

road metal.

Road metal of unusually excellent quality and of many varieties may be found in the quadrangle. Limestones and siliceous hydraulic marls for making light macadamized country roads and drives are abundant: The Buda limestone and certain layers of the Edwards and Glen Rose In the experiments in road building thus far In the experiments in road building thas far made in the quadrangle soft and unsuitable layers be obtained in great quantities in the alluvial
large flint gravel of excellent quality for crushing into durable and sharp road metal abounds on the margins of the uplands within the Black Prairie.
The nepheline-basalt of Pilot Knob makes one of the hardest and most durable road metals to be of the country would warrant the present cost of crushing and utilization.

Cabinet spectmens and mineral curios
A small industry has been carried on in mining the beautiful crystals of calcite, aragonite, and strontianite which occur in the recesses of the bluffs of Mount Bonnel. Epsomite is also found in this locality in quantities suggestive of value. Some beds may possibly be capable of supplying strontianite for use in the arts. The abundant fossils, if properly collected, also have commercial value for educational uses.

glass sand.

Some of the sands of the Travis Peak formation are of sufficient purity to suggest their possible use for glass-making purposes. Their outcrop in the western part of the Austin Their outcrop in
present too rem
One of the chief natural products of Travis County is the superb group of agricultural soils which result from the surficial weathering of the
rocks. Each formation described in this folio weathers into a peculiar soil which has its ow qualities of production, as is attested by the dif ference of natural growth upon them. The rela tive merits of these soils can not be discussed here, nor has scientific investigation advanced sufficiently to give a final presentation of them. In general, however, the deep and rich soils are found in the area of outcrop of the Gulf series of rocks, while they are shallower in the region of the Edwards Plateau and in the Bear Creek and Manchaca belts. arteslan waters.
The underground waters of the Austin quad rangle are carefully discussed in more extended reports. (See Eighteenth Ann. Rept. U. S. Geol Survey, Pt. II; and Twenty.first Ann. Rept.; Pt. VII.) It may be stated, however, in a general underlain by the reservoirs of the Trinity are
and that, theoretically, the water from these will rise to the surface-at points below 600 feet in altitude.
Owing to the structural conditions previously described, these reservoirs are embedded at differ ent depths in the regions of the Edwards Plateau and the Coastal Plain. In the Edwards Plateau the basement Trinity reservoír, which is the best source of supply, is embedded from 300 feet above sea level along the western border of the quad rangle to about sea level at Mount Bonnel. In the region of the Coastal Plain the basemen reservoir is embedded about 1800 feet beneath Austin, or 1200 feet below sea level, and probably 3000 feet, or 2500 feet below sea level, in the ngitude of Manor.
There are several reservoirs above the basement Trinity sands which may be struck at shallowe depths, but these are impregnated with mineral Shar
Shallow flowing wells at depths of less than 1000 feet could probably be obtained along the banks of Lake McDonald between Volente and oun Bonnel, the depth decreasing to the west ard

May, 1900.

CGLUM NAR SECTMN SHEET

ROBERT T. HILL
T. WAYLAND VAUGHAN

Geoloyists.

ROBERT T. HILL,
U. S. GEOLOGICAL SURVEY

Showing previously eroded surface or the limestone

Fig. 6.-minor block faulting in the edwards limestone, barton creek.
Showing the type of faulting in the Balcones fault zone.

C. 5.-RESIDUAL GRAVEL OF THE UVALDE FORMATION IN THE BLACK PRARRIE REGIO

FIa. 7.-TYPICAL EXPOSURE OF TAYLOR MARL, BLUE BLUFF, COLORADO RIVER.
Remnant of a gravel terrace caps the bluff at the righ.

Fig. 8.-CLIFF OF AUSTIN CHALK, ONION CREEK
therbedded ale tif chalk, one

Fio. g.-glen rose formation, forming west bluff of mount bonnel.

ILLUSTRATION SHEET

Information Concerning

Topographic and Grologio Maps and Fohos
and Other Publicattons of the Grological Survey
mat on tor

The Direotor, U. S. Geologioal Survey
Washington, D. C.

