DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR
SCHOOL OF MINES AND METALLURGY, state colleoe, pa.

GEOLOGIC ATLAS

OF TH

UNITED STATCES

WARTBURG FOLIO
TENNESSEE

description

FOLIO 40

SOHOUX wr Mas
AND METALLUFG

EXPLANATION

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The
two are being issued together in the form of an atlas, the parts of which are called folios. Each folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys,
hills, and mountains; (2) distribution of water called drainuge, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.
Reliet:-All elevations are measured from mean sea-level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of
all parts of the area mapped, to delineate the horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. This is done by lines connecting points of equal elevaat regular vertical intervals. These lines are called contours, and the uniform vertical space called contours, and the uniform vertical space
between each two contours is called the contour interval. Contours and elevations are printed in brown.

The manner in which contours express elevation, form, and grade is shown in the following sketch and corresponding contour map:

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand-bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply in a precipice. Contrasted with this precipice is
the gentle descent of the left-hand slope. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade

1. A contour indicates approximately a certain
height above sea-level. In this illustration the height above sea-level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at $50,100,150,200$ feet, and so on, above sea-level. Along the contour at 250 feet lie all points of the surface $2 \tilde{0} 0$ feet above sea; and
similarly with any other contour. In the space between any two contours are found all elevations above the lower and below the higher contour. Thus the contour at 150 feet falls iust below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours-say every fifth one-are accentuated
and numbered; the heights of others may then and numbered; the heights of others may then numbered contour.
2. Contours define the forms of slopes. Since contours are continuous horizontal lines conforming to the surface of the ground, they wind
moothly about smooth surfaces, recede into all moothly about smooth surfaces, recede into all about prominesces. The relations of contour curves and angles to forms of the landscape can be traced in the map and sketch.
3. Contours show the approximate grade of
any slope. The vertical space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones For a flat or gently undulating country a small contour interval is used; for a steep or nountainous country a large interval is necessary. The
smallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 $20,25,50$, and 100 feet are used.
Drainage.-Watercourses are indicated by blue ines. If the stream flows the year round the ine is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted Where a stream sinks and reappears at the surface, the supposed underground course is shown by a broken blue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate conventional signs.
Culture.-The works of man, such as roads railroads, and towns, together with boundaries of details, are printed in black.
Scales.-The area of the United States (excluding Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch this would cover $3,025,000$ square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile
of ground surface would be represented by a of ground surface would be represented by a
square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map
inch in nature and corresponding distance on the map
is called the scale of the map. In this case it is "1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are 63,360 inches in a mile, the scale "1 mile to an inch" is expressed by $\frac{1}{6,3, x)}$ scale "1 mile to an inch" is expressed by $\begin{aligned} & \text { ब3, } 5 \times 5 .\end{aligned}$
Both of these methods are used on the maps of Both of these methods
the Geological Survey.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250,0 \times \infty}$, the intermediate $\frac{1}{1.55,000}$ and the largest $\frac{1}{2,5050}$, These correspond approximately to 4 miles, 2 miles and 1 mile on the ground to an inch on the map On the scale $\frac{1}{\text { ex,b00 }}$ a square inch of map surfac represents and corresponds nearly to 1 square
mile; on the scale mile; on the scale $\frac{10}{10,0,0,0}$ to about 4 square miles
and on the scale and on the scale $\frac{1,0}{\text { send,00 }}$, to ahout 16 square miles. At the bottom of each atlas sheet the scale is expressed in three different ways, one being a
graduated line representing miles and parts of miles in English inches, another indicating dis tance in the metric system, and a third giving the ractional scale.
Atlas sheets and quadrangles. - The map is being published in atlas sheets of convenient size, which are bounded by parallels and meridians The corresponding four-cornered portions of ter ritory are called quadrangles. Each sheet on the scale of $\frac{1}{\text { zso,0w }}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each
 square degree; each sheet on the scale of en entains areas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map of the United States, are laid out without regard to the boundary lines of the States, counties, or town-
ships. To each sheet, and to the quadrangle it represents, is given the name of some well-known

own or natural feature within its limits, and at

 ane sides and corners of each sheet the ndjacent sheets, if published, are printed.
Uses of the topographic sheet.- Within the mits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drainage, and culture of the district represented. Viewing the landscape, map in hand, every character stic feature of sufficient magnitude should be recognizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far a known, and in such detail as the scale permits.

kinds of rocks

Rocks are of many kinds. The original crust of the earth was probably composed of igneous rocks, and all other rocks have been derived from them in one way or another
Atmospheric agencies gradually break up igne ous rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class have been formed on land surfaces since the earliest geologic time. Through the transporting agencies of streams the surficial materials of all ages and origins are carried to the sea, where, along with material derived from the land by the action of the waves on the coast, they form sedimentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone, but they may remain unconsolidated and still be known as gravel, sand, and clay.
From time to time in geologic bistory igne ous and sedimentary rocks have been deeply buried, consolidated, and raised again above the surface of the water. In these processes, through the agencies of pressure, movement, and chemical action, they are often greatly altered, and in this ondition they are called metamorphic rocks.
Igneous rocks.-These are rocks which have cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were he igneous and sedimentary rocks of all age molten material has from time to time been forced upward to or near the surface, and there consolidated. When the channels or vents into which this molten material is forced do not reach the surface, it either consolidates in cracks ing dikes, or elsing the bedding planes, thus form in large bodies, called sills or laccoliths. Such rocks are called intrusive. Within their rock enclosures they cool slowly, and hence are gener ally of crystalline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air, acquiring a glassy or, more often, a partially crystalline condition. They are usually more or less surface are called extrusive Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragments. These materials when consolidated constitute breccias, agglomerates, and tuffs. The ash when carried into lakes or seas may become stratified, o as to have the structure of sedimentary rocks The age of an igneous rock is often difficult or mpossible to determine. When it cuts across a sedimentary rock, it is younger than that rock, nd when a sedimentary rock is deposited over it, the igneous rock is the older.
Under the influence of dynamic and chemical forces an igneous rock may be metamorphosed.
The alteration may involve only a rearrangement of its minute particles or it may be accompanied by a change in chemical and mineralogic composi tion. Further, the structure of the rock may be
changed by the development of planes of divi sion, so that it splits in one direction more easily than in others. Thus a granite may pass into gneiss, and from that into a mica-schist.
Sedimentary rocks.-These comprise all rocks
which have been deposited under water; whether in sea, lake, or stream. They form a very larg part of the dry land.
When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. Thes may become hardened into conglomerate, sand stone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment if deposited with the aid of life, it is called an organic sediment. The more important rock formed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in successive layers are said to be stratified The surface of the earth is not fixed, as it seems to be, it very slowly rises or sinks over wide of the ocean are changed: areas of deposition ma rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississipp and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes than this have repeatedly occurred in the past. The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamor. phism of a sedimentary rock, just as in the metamorphism of an igneous rock, the substances of which it is composed may enter into new combinations, or new substances may be added. When these processes are complete the sedimentary rock becomes crystalline. Such changes transform sandstone to quartzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger forma. tions have generally escaped marked metamor. phism, and the oldest sediments known, though generally the most altered, in some localities remain essentially unchanged.
Surficial rocks.-These embrace the soils, clays, sands, gravels, and howlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumulations are often washed or blown into valleys or other depressions, where they lodge and form deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are
spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, and bowlders which is known as till. It may occur as a sheet or be bunched into hills and ridges, forming moraines, drumlins, and other special forms. Much of this mixed material was washed away from the ice, assorted by water, and rede-
posited as beds or trains of sand and clay, thus
forming another gradation into sedimentary deposits. Some of this glacial wash was deposite acteristic ridges and mounds of and and gravel, known as gars, or act and kam material deposited by the ice is called cre drift: that washed from the ice onto the glacia land is called modifed drift. It is usual also to land is called modified drift. It is usual also to class lakes and rivers that were made the san time as the ice deposit.

AGES OF ROCKS

Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent of origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass of different materials, it is convenient to call the mass throughout its extent a formation, and such a formation is the unit of geologic mapping. Several formations considered together are
designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some larger fraction of a system, a period. The rocks are mapped by formations, and the formations are are mapped by formations, and the formations are
classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian system, Cambrian period.
As sedimentary period.
the younger rest on those that are older and the relative ages of the deposits may be discovere by observing their relative positions. This rela tionship holds except in regions of intense dis tionship holds except in regions of intense dis
turbance; sometimes in such regions the disturbance of the beds has been so great that their ance of the beds has been so great that their
position is reversed, and it is often difficult to position is reversed, and it is often difficult to positions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and nimals which lived in the sea or were washed from the land into lakes or seas or were buried in urficial deposits on the land. Rocks that con tain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from those of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones ived on in modified forms life became more varied. But during each period there lived pecular forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types the systems together, forming a chain of life from the time of the oldest fossiliferous rocks to the present.
When two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in Fossil determine which was depos of different reas, provinces, and continents, afford the most important means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colo in the table in the next column. The names of certain subdivisions of the periods, frequently used in geologic writings, are bracketed against the appropriate period name.
To distinguish the sedimentary formations of ny one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception of the first (Pleistocene) and the last (Archean). The formations of any one period, excepting
the Pleistocene and the Archean, are distin guished from one another by different patterns, made of parallel straight lines. Two tints of the period-color are used: a pale tint (the underprint) is printed evenly over the whole surface represent ing the period; a dark tint (the overprint) bring out the different patterns representing formations

Each formation is furthermore given a letter ymbol of the period. In the case of a sedimen. tary formation of uncertain age the pattern is printed on white ground in the color of the period which the formation is supposed to belong The number and extent of surficial formations f the Pleistocene render them so important that, to distinguish them from those of other periods and from the igneous rocks, patterns of dots and circles, printed in any colors, are used.
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous. Whether sedimentary rocks are also included is not determined. The Archean rocks, and all metamorphic rocks of unknown origin, of whatever age re represented on the maps by patterns consisting of short dashes irregularly placed. These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the rock is known to be of sedi mentary origin the hachure patterns may be combined with the parallel-line patterns of sedi mentary formations. If the metamorphic rock is recognized as having been originally igneous, the hachures may be combined with the igneous hachures

thern.

Known igneous formations are represented by patterns of triangles or rhombs printed in any the letter-symbol of the formation is preceded by he capital letter-symbol of the proper period If the age of the formation is unknown the letter mbol consists of small letters which suggest the name of the rocks.
the various geologic sheets.
Historical geology sheet.-This sheet shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. co ascertain the meaning of any particular colored pattern and its letter-symbol on the map the ymbol in the legend, where he will find the name and description of the formation. If it is desired oo find any given formation, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of the reologic history. In it the symbols and names are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary, and neous-and within each group they are placed at the top.
Economic geology sheet.-This sheet represents he distribution of useful minerals, the occurrence of artesian water, or other facts of economic opography and to the geologic formations. All the formations which appear on the historical reology sheet are shown on this sheet by fainter color-patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive formations may be emphasized by strong colors. A symbol for mines is introuced at each occurrence, accompanied by the ame of the principal mineral mined or of the stone quarried.
Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface.

In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which xhibits those relations is called a section, and th ame name is applied to a diagram representing the relations. The arrangement of rocks in the arth is the earth's structure, and a section exhibi The anrog is is limited, however, to the atural and artificial cuttings for his inform conrang the rarth's structure Knowing the manner of the formation of Knowng the tred out the fion of roks, and having fare in lit face, he can infer their relative positions att they pass beneath he surface, draw section widerable doph
 xhibiting what we seen in the side of deep. This is illustrated in the following figure

Ficture, with a landscape beyond

The figure represents a landscape which is cut off sharply in the foreground by a vertical plane that cuts a section so as to show the undergroun relations of the rocks.
The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes, These symbols admit of much variation, bat following are generally used in sections to repr ent the commoner kinds of rock

Lentils in strata. Schists. Igneous rocks.
The plateau in fig. 2 presents toward the low pment, or front, which is made u of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section.

The broad belt of lower land is traversed by everal ridges, which are seen in the section to correspond to beds of sandstone that rise to the surface. The upturned edges of these beds form the ridges, and the intermediate valleys follow the outcrops of limestone and calcareous shales
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred.
When strata which are thus inclined are traced underground in mining, or by inference, it is fre quently observed that they form troughs or arches, such as the section shows. But these sandstone sea in nearly flat sheets. That they are now bent and folded is regarded as proof that forces exis which have from time to time caused the earth' surface to wrinkle along certain zones.
On the right of the sketch the section is com posed of schists which are traversed by masses of igneous rock. The schists are much contorted and their arrangement underground can not be delineates what is probably true but is no known by observation or well-founded inference.

In fig. 2 there are three sets of formations, dis tinguished by their underground relations. The first of these, seen at the left of the section, is th set of sandstones and shales, which lie in a hor zontal position. These sedimentary strata are now high above the sea, forming a plateau, an the change of elevar show a portion the earth mas from lwer to a h. Thel of this set Ther, 1 which form are the The which form arches and troughs. These strat have been by derion like bea raved by degradation. The bels These of the first set, are conformable.
the upturned, eroded edges of the beds of second set at the left of the section lying deposits are their posid lying deposits are, from their positions, evidently bending and degradation bave ccurred between the dhe cition the beds and the becumula the When younger strat thus rest upon an erod Wura younger strat the unconformable one, and their surface of contact is unconformable
an unconformity.
an unconformity
The third set
The third set of formations consists of crystal line schists and igneous rocks. At some perio of their history the schists were plicated by pres
sure and traversed by eruptions of molten rock sure and traversed by eruptions of molten rock. have not affected the overlying strata of the second set. Thus it is evident that an interval of consid set. Thable duration of the schists and the beginning of deposition the strata of the second set During this interval the schists suffer motaro D . scene of suptive activity; and they were deeply eroded. The conctity, and they were deeply third m a ine ind betw periods of rock formation, is another unconormity.
The section and landscape in fig. 2 are ideal but they illustrate relations which actually occur The sections in the structure-section sheet ar related to the maps as the section in the figure is related to the landscape. The profiles of the su face in the section correspond to the actual slope of the ground along the section line, and th depth of any mineral-producing or water-bearin stratum which appears in the section may be measured from the surface by using the scale of the map.
Columnar-section sheet.-This sheet contains concise description of the rock formations which occur in the quadrangle. The diagrams and verbal statements form a summary of the fact relating to the character of the rocks, to the thicknesses of the formations, and to
The rocks are described under the correspond ing heding and their characters are indicated the columnar diagrams by appropriate symbols. the columnar dagrams by appropriate symbol. the heading "Thickness in feet," in figures which state the least and greatest measurements. The average thickness of each formation is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sedi a ment: the oldest formation is placed at the bottom of the column, the youngest at the top, and igneos rocks or ther formations, when present, are indicated in their proper relations The formations are combined into system which correspond with the periods of geologi history. Thus the ages of the rocks are shown and also the total thickness of each system.
The interval of time which
events of uplift and degradation and constitut interruptions of deposition of sediments may be indicated graphically or by the word "unconform ity," printed in the columnar section.
Each forma
ar by its name a dection character its lettersymbol as used in th maps and their legends.

CHARLES D. WALCOTT,
Revised June, 1897.

DESCRIPTION OF THE WARTBURG QUADRANGLE.

GEOGRAPHY

General relations.-The region represented by he Wartburg atlas sheet lies entirely in Tenne ee. It is included between parallels 36° and 36° 30^{\prime} and meridians $84^{\circ} 30^{\prime}$ and 85°, and it contains 963 square miles, divided $\begin{gathered}\text { Extent of } \\ \text { 吕体rangle. }\end{gathered}$ between Scott, Morgan, Cumberland, and Fentres ounties.
In its geographic and geologic relations this quadrangle forms a part of the Appalachian province, which extends from the $\begin{aligned} & \text { Definition of } \\ & \text { Atlantic coastal plain on the east to } \\ & \text { the province. }\end{aligned}$ Atlantic coastal plain on the east to the province.
the Mississippi lowlands on the west, and from central Alabama to southern New York. All parts of the region thus defined have a common history, recorded in its rocks, its geologic struc ture, and its topographic features. Only a part of this history can be read from an area so small as a single quadrangle; hence it it necessary to
consider the individual quadrangle in its relaconsider the individual qua
tions to the entire province.
Subdivisions of the Appalachian province.The Appalachian province may be subdivided into three well-marked physiographic divisions throughout each of which certain forces have produced similar results in sedimentation, in geologic structure, and in topography. These divisions extend the entire length of the province from northeast to southwest.
The central division is the Appalachian Valley t is the best defined and most uniform of the three. In the southern part it coincides with the belt of folded rocks which forms the Coosa Valley of Georgia and Alabama and the Ger. East Tenn Alabama and the Great Valley of Last Tennessee and Virginia. Throughout the central and northern portions the eastern side only is marked by great valleys-such as the
Shenandoah Valley of Virginia, the Cumberland Valley of Maryland of Pennsylvania, and the Lebanon Valley of and Pennsylvania, and ar he western side being a succession of ridge alternating with narrow valleys. This divisio varies in width from 40 to 125 miles. It is sharply outlined on the southeast by the Appalachian Mountains and on the northwest by the Cumberland Plateau and the Allegheny Mountains. Its rocks are almost wholly sedimentary and in large measure calcareous. The strata, which must originally have been $\begin{gathered}\text { Relation of } \\ \text { chin } \\ \text { character. }\end{gathered}$ nearly horizontal, now intersect the surface at various angles and in narrow belts The surface differs with the outcrop of differen kinds of rock, so that sharp ridges and narrow valleys of great length follow the narrow belts of hard and soft rock. Owing to the large amount of calcareous rock brought up on the steep folds of this division, its surface is more readily wor down by streams and is lower and less broke than that of the divisions on either side.
The eastern division of the province embraces the Appalachian Mountains, a system which i made up of many minor ranges and which, unider various local names, extends from southern New York to central Alabama. Some of its prominent parts are the South Mountain of Pennsylvania, the Blue Ridge and Catoctin Mountain of Maryland and Virginia, the Great Smoky Mountains of Tennessee and North Carolina, and the Cohutta Mountains of Georgia. Many of the line, being either sediments which have rocks. of the been changed to slates and schists by varying degrees of metamorphism, or igneous rocks, such as granite and diabase, which have solidified from a molten condition.
The western division of the Appalachian provale embraces the Cund the lowlands Allegheny Mountains and the lowlands $\begin{aligned} & \text { The Cumber- } \\ & \text { of Tennessee, Kentucky, and Ohio. Its }\end{aligned}$ tand Plateau northwestern boundary is indefinite, but may be regarded as an arbitrary line coinciding with the Mississippi River as far up as Cairo, and then crossing the States of Illinois and Indiana. Its eastern boundary is sharply defined along the Appalachian Valley by the Allegheny front and Appalachian Cumberland escarpment. The rocks of this division are almost entirely of sedimentary origin
and remain very nearly horizontal. The char acter of the surface, which is dependent on the haracter and attitude of the rocks, is that of a pateau more or less completely worn down. In the southern half of the province the plateau is sometimes extensive a perfectly flat, but it is oftener much divided by In West Virginia and portions areas with flat tops, In West Virginia and portions of Pennsylvania he plateau is sharply cut by streams, leaving in relief irregularly rounded knobs and ridges which bear but little resemblance to the original sur face. The western portion of the plateau has been completely removed by erosion, and the
surface is now comparatively low and level, or surface
Altitude of the Appalachian province.-The Appalachian province as a whole is broadly dome-shaped, its surface rising from an altitude of about 500 feet along the eastern margin to the crest of the Appalachian Mountains, and thence escending westward to about the same altitud Eat Ohio and Mississippi rivers.
Each division of the province shows one or more culminating points. Thus the Appalachian Mountains rise gradually from less han 1000 feet in Alabama to more han 6600 feet in western North Caro lina. From this culminating point they decrease o between 4000 and 3000 feet in southern Virginia, rise to 4000 feet in central Virginia, and descend to 2000 or 1500 feet on the MarylandPennsylvania line.
The Appalachian Valley shows a uniform ncrease in altitude from 500 feet or less in Ala bama to 900 feet in the vicinity of Chattanooga, 2000 feet at the Tennes- $\begin{gathered}\text { Attitudes of } \\ \text { thiAp } \\ \text { chian } V \text { liley }\end{gathered}$ ee-Virginia line, and 2600 or 2700 feet at its culminating point, on the divide between the New and Tennessee rivers. From his point it descends to 2200 feet in the valley f New River, 1500 to 1000 feet in the James River basin, and 1000 to 500 feet in the Potomac basin, remaining about the same through Pennylvania. These figures represent the average levation of the valley surface, below which the tream channels are sunk from 50 to 250 feet, and above which the valley ridges rise from 500 to 2000 feet.
The plateau, or western, division increases in ltitude from 500 feet at the southern edge of he province to 1500 feet in northern
Alabama, 2000 feet in central Tennes- $\begin{gathered}\text { Altetudes of of } \\ \text { region }\end{gathered}$ ee, and 3500 feet in southeaster Kentucky. It is between 3000 and 4000 feet in West Virginia, and decreases to about 2000 feet in Pennsylvania. From its greatest altitude long the eastern edge, the plateau slopes gradu ally westward, although it is generally separated from the interior lowlands by an abrupt escarp ent.
Drainage of the Appalachian province.-The rainage of the province is in part eastward to the Atlantic, in part southward to the Gulf, and in part westward to the Mis. $\begin{gathered}\text { Direction of } \\ \text { outiow. }\end{gathered}$ issippi. All of the western, or plateau, division of the province, except a small portion in Penn ylvania and another in Alabama, is drained by treams flowing westward to the Ohio. Th orthern portion of the eastern, or Appalachian Mountain, division is drained eastward to the Atlantic, while all of the area south of New River except the eastern slope is drained west ard by tributaries of the Tennessee River southward by tributaries of the Coosa
The position of the streams in the Appalachian Valley is dependent upon the geologic structure In general they flow in courses which for long distances are parallel to the $\begin{gathered}\text { Arrangement } \\ \text { ofstrams. }\end{gathered}$ sides of the Great Valley, following the lesser valleys along the outcrops of the softer rocks. These longitudinal streams empty into a number of larger, transverse rivers, which cross one or he other of the barriers limiting the valley. In he northern portion of the province they form Roanoke rive, Susquehanna, Potomac, James, and Appalachian Mountains in a narrow gap and flows eastward to the sea. In the central portion of the province, in Kentucky and Virginia, these
ongitudinal streams form the New (or Kanawha) River, which flows westward in a deep, narrow Ohio River From New River sout into the Ohio River. From New River southward to northern Georgia the Great Valley is drained by ributaries of the Tennessee River, which at Chattanooga leaves the broad valley and, entering gorge through the plateau, runs westward to directly to the Gulf of Mexico.
Local geography of the Wartburg quadrangle. Within the limits of the Wartburg quadrangle only one geographic division, the Cumberland lateau, appears. By far the greater part of this ancon plateau, but along its eastern and southern border irregular mountains rise to considerable heights above the
plateau level. The drainage of the region is ributary to several river systems. The southe half of the area is drained through the Obed and Emory rivers into the Ten. ${ }^{\text {Local inver }}$ nessee River, the northern half through the South Fork of the Cumberland River into the Ohio, and the western edge by Obey River into Fork of the Cumberland River and the Obey Fork of the Cumberland River and
River head within' the quadrangle. River head within' the quadrangle.
The streams of the mountains fall rapidly from heir sources to a level of 1400 or 1500 feet, from which altitude they descend less rapidly to 800 or 900 feet at the borders of this quadrangle and near the edges of the plateau. The streams of
the plateau head upon its surface at 1500 to 1800 the plateau head upon its surface at 1500 to 1800 feet above the sea, fall rapidly near their head waters, and have many sluggish stretches in their
lower courses. Their valleys are deep, and the lower courses. Their valleys are deep, and the slopes rise
the divides.
Through most of the plateau the large stream re sunk in deep, narrow channels, which are ined by high cliffs and are from 300 to 1000 feet below the level of the plateau. In this region the topography varies much, depending in all ases upon the influence of erosion on the differint formations. Such rock-forming minerals as arbonates of lime and magnesia, and to a less extent feldspar, are readily
removed by solution in water. Rocks containing these minerals in large proportions ar therefore subject to decay by solution, which breaks up the rock and leaves the insoluble matter less firmly coherent. Frost and rain and streams break up and carry off this insoluble residue, and the surface is worn down. According to the nature and amount of the insoluble matter the rocks form high or low ground. Calcareous rocks, le
The topography of the plateau is entirely unlike that of the adjacent Great Valley. The straight valley ridges are wanting. The plateau The rocks of the plateau are composed mainly of two classes, sandstone and shale, and each, with different varieties, has a characteristic ffect on the surface forms. Sandstones make cliffs, table-topped heights, and benches which stand out sharply from the smoother shale slopes. Inasmuch as the rocks are practically flat, these features are conspicuous by their regularity of evel. Exceptions to this are seen along the southern border of this quadrangle in Peavine rchard mountains, and on the slopellow the olded Lee conglomerate
The divides in the mountainous portion of the lateau vary in height from 2000 to 3100 feet, ver the plateau proper the summits rise gradually westward from 1500 up to 1800 feet usually narrow and flat, though many of them have small areas of easy slope, capable of cultivation. The table of the plateau. vines and narrow, V.shaped valleys. From the ops the spurs branch and fall rapidly to the treams, with here and there a level table or nar ow bench. Throughout the plateau the streams and branches have cut narrow, deep canyons and abrupt valleys, with lines of cliffs, in the broad, level tables or gently sloping tops. The surface
very much broken, and travel is difficult except by following along the tables.

GEOLOGY.

stratigraphy.
The general sedimentary record-All of the rocks appearing at the surface within the limits of the Wartburg quadrangle are of sedimentary origin. They consist of conglomerate, sandstone, shale, coal, and limestone, all presenting great
variety in composition and appearance. The variety in composition and appearance. The materials of which they are composed
were originally gravel, sand, and mud,
rocks. of the were originally gravel, sand, and mud, rocks.
derived from the waste of older rocks, and the derived from the waste of older rocks, and the
remains of plants and animals which lived while remains of plants and animals which lived while
the strata were being laid down. Thus some of the strata were being laid down. Thus some of
the great beds of limestone were formed largely the great beds of limestone were formed largely
from the shells of various sea animals, and the from the shells of various sea animals, and the
beds of coal are the remains of a luxuriant vegetabeds of coal are the remains of a luxuriant vegeta-
tion, which probably covered low, swampy shores. tion, which probably covered low, swampy shores.
The sedimentary rocks of the Appalachian The sedimentary rocks of the Appalachian province afford a record of sedimentation from
early Cambrian through Carboniferous time. Their composition and appearance indi- what the cate at what distance from shore and stratamea in what depth of water they were deposited. Sandstones marked by ripples and cross-bedded by currents, and shales cracked by drying on mud flats, indicate shallow water; while limestones, especially by the fossils they contain, indicate greater depth of water and scarcity of sediment. The character of the adjacent land is shown by the character of the sediments derived from its waste. Coarse sandstones and conglom erates, such as are found in the Coal Measures, were derived from high land on which stream grades were steep, or they may have resulted from wave action as the sea encroached upon a sinking coast. Red sandstones and shales, such as make up some of the Cambrian and Silurian formations, result from the revival of erosio on a land surface long exposed to rock decay and oxidation, and hence covered by a deep residual soil. Limestones, on the other hand, if deposited near the shore, indicate that the land was low and that its streams were too sluggish to carry of coarse sediment, the sea receiving only fine sediment and substances in solution,
The sea in which these sediments were laid down covered most of the Appalachian province and the Mississippi basin. The Wartburg quad rangle was near its eastern margin, and the mate rials of which its rocks are composed were there fore derived largely from the land to the east. The exact position of the eastern shore-line of this ancient sea is not known, but it probably varied from time to time within rather wide limits.
Four great cycles of sedimentation are recorded the rocks of this region. Beginning with the first definite record, coarse sandstones and shales were deposited in early $\begin{gathered}\text { Geiologic } \\ \text { tht of of } \\ \text { the orvince }\end{gathered}$ Cambrian time along the eastern border
of the interior sea as it encroached upon the land. As the land was worn down and still further depressed, the sediment became finer, until in the Knox dolomite of the Cambro-Silurian period very little trace of shore material is seen. Following this long period of quiet was a slight elevation, producing coarser rocks; this became more and more pronounced, until between the lower and upper Silurian the land was much expanded and large areas of recently deposited sandstones were lifted above the sea, thus completing the first great cycle. Following this elevation came a second depression, during which ffording condin worn down nearly to basel the Devonian black shale. After this the Devonian shales and sandstones were deposited, recording a minor uplift of the land, which in northern areas was of great importance. The third cycle began with a depression, during which the Carboniferous limestone accumulated, containing scarcely any shore waste. A third uplift brought the limestone into shallow water-portions of it perhaps above the sea-and upon it were deposited, in shallow water and swamps, the sandstones, shales, and coal beds of the Carboniferous. Finally, uplift ended the deposition of sediment in the

Appalachian province, except along its borders recent times.

The rocks of this area.-The columnar section ows the composition, name, age, and thickness each formation which outcrops within the quad rangle. There are also added to the columna formations, which underlie the plateau, although they do not appear at the surface in this region. The rocks of this quadrangle were deposited entirely during the Carboniferous, and they rep esent a large number of the strata formed during that period. The formations lie in three group of but slightly different age. Over the astern half of the region are spread the later formations, those above the Lee conglomerate. The latter formation make the surface of the remainder of the plateau, while in the deep stream-cuts in the northern and west ern part of the plateau appear the underlying Carboniferous limestones and shales. The first group is siliceous, argillaceous, and carbonaceous,
the second is mainly siliceous; and the last is chiefly calcareous. All of the formations lie in chearly horizontal layers, seldom being noticeably folded. Accordingly the belts of rock follow horizontally all the irregularities of the slopes and ravines. The rocks will be described in order of age.

carboniferous rocks

Newman limestone.-This formation, which derives its name from Newman Ridge, Hancock County, Tennessee, where it occurs in great out along the northwestern part of the plateau. It consists of massive blue and dove.
 he top with thin layers of green and purple calcareous shale. About 300 feet of the wert in the form of black banded concretions of hert in the form of black banded concretions or of white chalcedonic nodules. Geodes lined with uartz crystals are often to be observed. Chert frequent. The limestones contain many frag ments of crinoids, corals, and brachiopods of ments of crinoids, corals, and brachiopods of
Carboniferous age, and the chert also is frequently full of fossils, chiefly crinoids. The quently full of fossils, chiefy crinoids. The and decreases in a westerly direction. In its upper portion, in Poplar Cove, occur thin beds of formed of limestone pebbles, which indicate erosion of the formation in some neigh boring locality. Alternations of limestone and green shale form a passage upward into the Pen 10 to 30 feet thick, lies 150 feet from the top of the formation; in adjacent regions toward the west this bed thickens and becomes an important tratum. Near the base of the formation in the northwestern part of this quadrangle many
of calcareous shale appear in the limestones.
of calcareous shale appear in the limestones.
Below this formation and grading into it lie he Waverly shale, consisting of calcareous and sandy shales, shaly sandstones, limestones, and cherty masses. All of these beds have
ingly dark color, and the shales are requently tinged with red or brown, The chert is very prominent near the
base. This formation does not out-
base. This formation does not out. ${ }^{\text {arill cores. }}$ crop in the Wartburg quadrangle, but it is
encountered in the borings for petroleum and is encountered in the borings for petroleum, and is introduced in the columnar section with the underlying Devonian and Silurian formations. The Waverly shale does not appear at the sur face in the adjoining Briceville quadrangle, but dies out near the eastern edge of the Wartburg In the structure section the Waverly is included with the Newman limestone.
The soluble nature of the Newman limestone asually consigns it to the valleys, where it forms a rolling surface. Its cherty portions resist solu ion well enough to form rounded hills and low ridges or, in places, obscure benches. Decay of the formation produces a stiff, red clay mingled with chert, and the soils thereon afford fairly fertile land. The best soil is found on the upper portions, where the accumulation of chert is not great, but these usually lie at rather steep slopes near the Lee conglomerate or are removed by erosion.
Pennington shale.-Outcrops of this formation are found, like the Newman limestone, in deep
cuts in the plateau, occupying narrow belts pro
tected by the Lee conglomerate cliffs. The shale receives its name from Pennington Gap, Clinch Mountain, in Virginia, where it occurs promiof calcareous shale of red, purple, and reen colors, and contains many beds of blue and dove-colored limestone and

 ray, sandy shale. In the limestone ossils are found similar to those of the Newman limestone. Along the border of the plateau south of this region this formation does not appear; it thins out at some place in the central hickness from 145 to 250 feet along the western and northern parts of the plateau.Decay proceeds rapidly in this formation, owing to its softness and solubility, and usually only a few bright-colored shale beds project through a brownish clay. Its soils are naturally rood and fertile, but they lie in small areas and their steep slopes are strewn with wash from the Lee conglomerate.
Lee conglomerate.-Almost one-half of the pla eau in this quadrangle is occupied by a broad belt of this formation. It consists in the main massive sandstone, but it includes many beds of shale, and two layers in its lower portion are largely quartz
conglomerate. The siliceous layers are thick and very massive, so that they form a series of cliffs, from 40 to 300 feet high, which rim th of cliffs, from 40 to 300 feet high, which rim the narrow canyons in the plateau. The topmost
member of the formation consists of cross-bedded member of the formation consists of cross-bedded
sandstone from 50 to 80 feet thick, which, with a shale bed 50 to 100 feet thick underlying it, is very regularly found, and invariably makes a very regularly found, and invariably makes a
series of cliffs. Around Helenwood and along Emory River these members are finely shown In this uppermost sandstone on Emory River is ound a 3 -foot bed of coal, which is mined at everal points. This seam outcrops at many points over the eastern part of the plateau and other coal seams occur, usually in the shale beds but they are rather irregular in thickness and extent. The most important coals occur in the shales occupying the lower part of the formation nd shown on the Economic Geology sheet. West f Jamestown openings have been made in these rata on coal seams from 2 to 4 feet thick. These eams extend to the north and south for con iderable distances, and are found by drilling as ar southeast as Clear Fork. In this area the ormation varies greatly in thickness. Ten miles outheast of Wartburg it is 900 feet thick; at the ead of Obed River, 400 feet; a boring at Rugby ave 500 feet, and one at Rugby Road gave 700 eet, while the Cumberland River exposes 500 feet. Between Rugby Road and
bottom bed, consisting of 250 feet of andsom bed, consisting of 250 feet of to 80 feet, as was shown by the bor 80 feet, as was shown by the bor- stone. sandings, and farther west it dies out, so that the intermediate shales and coal beds at Rugby Road form the base of the formation at Jamestown.
South of Jamestown, toward Obed River, the reverse change takes place, and the conglomerate reappears beneath the shale body. In the
columnar section of the formation for the adjoincolumnar section of the formation for the adjoin-
ing Briceville quadrangle it is seen that the conglomerate and sandstone have thickened mmensely, while the shales have practically disappeared. Similar but smaller unconformities
are exhibited at many points along the gorges of are exhibited at many points along the gorges of Cumberland and Emory rivers, where sudden changes of thickness of 40 and 50 feet can fre-
quently be observed. Evidence of the strength quently be observed. Evidence of the strength found in the size of the conglomerate pebbles and the frequent cross-bedding of the sandstones. Owing to the extreme hardness of the siliceous beds in this formation solution makes little head-
way, and the hard layers are broken down by the way, and the hard layers are broken down by the low undermining of the shale beds. Where the
formation comes to the surface it makes a plaeau, whose level abruptly changes at the canyon dges to lines of cliffs and steep descents. Many of the cliffs along the larger streams attain a height of 200 or 300 feet and form serious obstructions to travel. Since the sandstone beds thus form most of the surface, the soils are thin and sandy. They repay careful cultivation, but are worn out easily and are subject to drought on account of their easy drainage and poor supply of water.

Briceville shale.-Many areas of this formation are found in the eastern half of this quadrangle. Its name is taken from Briceville, Anderson its areas. The ferm is sed mainly bluish-gray and black argillaceous and sandy shale, and it contains many work- Dafk shane able seams of coal and small beds of sandstone. Like the Lee conglomerate, this for mation thins toward the north and west, so that a thickness of 400 feet on the lower Emory River is represented by 350 feet at Wartburg and by 200 to 250 feet north of Helenwood. The indi vidual beds of sandstone vary from 1 to 10 or 20 feet in thickness, and differ in appearance only by being massive or thin-bedded. Added import which are located upon its coal seams.
The shales, owing to their fine grain, offer little resistance to weathering, and the formation never occupies high ground. The sandstone beds ar hard enough to form ledges and small tabletopped knobs, but are not thick enough to produce prominent ridges. Some of its sandstones the overlying Wartburg sandstone. The clay soils produced by the shales are thin and poor soils produced by the shales are thin and poor
and are considerably modified by waste from the sandstone beds.

Wartburg sandstone.-Areas of this sandstone are very numerous in the mountain district. Since the formation usually lies above water sandstone occupies narrow belts winding in and out around the uplands. The town of Wartburg, Morgan County, is situated upon and furnishes the name for this sandstone.
 sandstone, sandy shales, argillaceous shales, and coal beds. Perhaps as much as on half of the formation is sandstone, the two beds at the top and bottom being especially conspicuous. This is due largely to the contrast with the shales of the adjacent formations, for other sand
stone layers in this formation are equally thick stone layers in this formation are equally thick occur with these strata, and five seams of coal is mined at Glenmary. The sandstone coal bed in thickness from a few in in thickness from a few inches to 50 feet, and are from 2 inches up to 4 feet thick. Most of are from 2 inches up to 4 feet thick. Most of
the sandstones are pure and fine-grained; occathe sandstones are pure and fine-grained; occa-
sionally a small layer exhibits cross-bedding, but sionally a small layer exhibits cross-bedding, but
otherwise they are all very much alike. The formation ranges from 500 to 600 feet in thickness.
Of the many spurs and benches which are caused by the sandstone beds the most prominent is the uppermost, which is usually a long, flat. topped spur or table standing out from the overnearly as large benches and tables. All of the siliceous nature, weathering on account of their niceous nature, and cause cliffs in some portions their counc. The lowest bed almost uni versally produces a series of cliffs from 15 to 50 feet in height, while several higher beds cause
similar series that here and there may easily be mistaken for the bottom cliff. The coal beds ar readily subject to weathering, and natural out crops of coal are quite uncommon, except when
the coal bed directly underlies and is protected by a sandstone bed. Coal beds which are under lain by clay-shale or fire-clay are marked by lines of seeps and springs whose waters contain alum and copperas. The outcrops of a coal bed are usually shown by a bench from 5 to 20 feet in width. Solis derived from this formation are thin and sandy and are much encumbered with sandstone waste. As they usually lie on steep
slopes, they produce but scanty natural growth slopes, they produce but scanty natural growth Scott shale.-This formation appears in parposes. belts encircling those ridges which rise over 2000 feet above the sea-level. Its name is taken from Scott County, in which it occurs frequently The formation consists mainly of arg and sandy shales, but includes also many beds of shaly sandstone, a few
massive sandstones, and five or six coal seams. All of these strata are very similar composition to those of the Wartburg sandstone, and descriptions of individual beds would be only a repetition. In this formation, however,
the amount of shale is much greater than that of
the sandstone, the sandstones are thinner, and A short distan rarely exceed 2 feet in thicknes is found a coal seam 6 feet thick, the largest of the series. The total thickness of the formation ranges from 500 to 600 feet, with no apparent system in the variations. In a few places one or two of the upper sandstones cause cliffs from to 30 feet high, but ordinarily the formation occupies steep slopes marked by many narro benches and few outcrops. Soils of this forma tion are thin and sandy, but are occasionally tilled near the summits of ridges, where the slopes are less steep. Only scanty crops ar produced, and the timber growth is small.
Anderson sandstone.-A Areas of this formation cap all portions of the mountain district which rise above 2600 feet. It occurs frequently in that position in Anderson County, hence its name The formation consists, like the three precedin ones, of sandstones, sandy and argilla-
 massive sandstones in heavy beds from 20 to 50 feet thick, with a total of 100 to 120 feet. Above these follow 300 to 400 feet of interbedded shales and thin beds of massive
sandstone, which are capped in the higher mour tains by thick, massive sandstones like the bottom layers. Four or more coal like the found in and a short distance above the lowe massive thick as 2 feet, and they grade into carbonaceous shale. Individual beds of this formation precisely similar in precisely sing formations. Inesmuch the for wo preceding nars. In in the thickness is not known; 550 feet 0 is Owing to the extremely durable natur of Owing to the ex the marked by lines of cliffs which encirce the mountains in steps from 15 to 50 feet high. The mountins in steps make smooth, rounded summits and gentle slopes; the , broad flat tables bouded by cliff rieht sand broad, hal tables bouded by clifs. Light, sand ore here and there cultivated Over the central are her shaly portions of the formation soils a. som what more clay
on the summits.

structure

Definition of terms.-As the materials forming the rocks of this region were deposited upon the sea bottom, they must originally have lain in nearly horizontal sheets or layers. At present, howeve he beds are usually not horizontal, but ar inclined at various angles, their edges appearing at the surface. The angle at which dips beneath the surface may elsewhere dips beneath the surface may elsewhere $\begin{gathered}\text { Definition of } \\ \text { foultits. } \\ \text { fee found rising; the fold, or troug }\end{gathered}$ be found rising; the fold, or trough A stratum rising from one syncline a syncline A stratum rising from one syncline may often be ound to bend over and descend into another the fold, or arch, between two such outcrops i called an anticline. Synclines and anticlines sid by side form simple folded structure. A syn cinal axis is a line running lengthwise in th synclinal trough, at every point occupying it lowest part, toward which the rocks dip on eithe side. An anticlinal axis is a line which occupie at every point the highest portion of the anticlinal arch, and away from which the rocks dip on eithe ide. The axis may be horizontal or inclined. It departure from the horizontal is called the pitch and is usually but a few degrees. In districts where strata are folded they are also frequently broken across and the arch is thrust over upon
the trough. Such a break is called a fault. If the trough. Such a break is called a fault. If the arch is worn away and the syncline is buried
beneath the overthrust mass, the strata at the surface may all dip in one direction. They the appear to have been deposited in a continuou series. Folds and faults are often of great magn tude, their dimensions being measured by miles, but they also occur on a very small, even a microscopic, scale. In folds and faults of the ordinary type, rocks change their form mainly by motion on the bedding planes. In the more minute dis ocations, however, the individual fragments of the rocks are bent, broken, and slipped past each ther, causing cleavage. Extreme development of
growth of new minerals out of the fragments of he old - a process which is called metamorphism. distinct type the Appalachan proorn. Appal chian province, each one prevailing in a separate area corresponding to one of the three geographic divisions. In the plateau region and westward the rocks are generally flat and retain their original composi tion. In the valley the rocks have been steeply tilted, bent into folds, broken by faults, and to district, foults and folds are important features of the structure, but cleavage and metamorphism are equally conspicuous.
The folds and faults of the valley region ar parallel to each other and to the western shore of the ancient continent. They extend from northeast to southwest, and single $\begin{gathered}\text { General char- } \\ \text { and } \\ \text { and fauths. }\end{gathered}$ structures may be very long. Faults 300 miles long are known, and folds of even greater length occur. The crests of most folds continue at the same height for great distances, so that they present the same formations. Often
adjacent folds are nearly equal in height, and the same beds appear and reappear at the surface Most of the beds dip at angles greater than 10° frequently the sides of the folds are compressed until they are parallel. Generally the folds are smallest, most numerous, and most closely squeezed in thin-bedded rocks, such as shale and squeezed in thin-bedded rocks, such as shale and
shaly limestone. Perhaps the most striking feature of the folding is the prevalence of south eastward dips. In some sections across the southern portion of the Appalachian Valle scarcely a bed can be found which dips toward the northwest.
Faults were developed in the northwestern sides of anticlines, varying in extent and frequency with the changes in the strata. Almost every fault plane dips toward the southeast and is approximately parallel to the bedding planes of
the rocks lying southeast of the fault. The frac tures extend across beds many thousands of feet thick, and in places the upper strata are pushed over the lower as far as 6 or 8 miles. There is a progressive change in character of deformation rom northeast to southwest, resulting in differen types in different places. In southern New York
folds and faults are rare and small; passing through Pennsylvania toward Virginia, they become more numerous and steeper. In southern Virginia they are closely compressed and often closed, while occasional faults appear. The folds in passing through Virginia into Tennessee, are more and more broken by faults. In the central part of the valley of Tennessee, folds are gener series of narrow, overlapping blocks, all dipping southeastward. Thence the structure remains nearly the same southward into Alabama; the faults become fewer in number, however, and their horizontal displacement is much greater while the remaining folds are somewhat more open.
open.
In the Appalachian Mountains the southeast ward dips, close folds, and faults that characterize the Great Valley are repeated. The are also traved by the rosed by the of cleavage and metamorphosed by the
growth of new minerals. The cleavage planes dip to the east at from 20° to 90°, usually planes 60°. This form of alteration is somewhat developed in the valley as slaty cleavage, but in the mountains it becomes important and often destroys all other structures. All rocks were subjected to this process, and the final products of the metamorphism of very different rocks are frequently indistinguishable from one another. Throughout the eastern Appalachian province there is a regular increase of metamorphism at the border of the Great Valley can be traced thriugh greater and greater changes until it has lost every original character
The structures above described are the result chiefly of compression, which acted in a north west-southeast direction, at right angles to the trend of the folds and of the cleavage planes. The force of compression became effective early in the Paleozoi era, and reappeared at various epochs up to it culmination, soon after the close of the Carbon iferous period.
province has been affected by other fored in a vertical direction and repeat edly raised or depressed its surface
The compressive forces were limited in effect to a narrow zone. Broader in its effect and less intense at any point, the vertical force was felt throughout the province
Three periods of high land near the sea and three periods of low land are indicated by the character of the Paleozoic sediments. In postPaleozoic time, also, there have been at least four and probably more periods of decided oscillation of the land, due to the action of vertical force. In most cases the movements have resulted in the warping of the surface, and the greatest uplift Valley.
Structure sections.-The sections on the Structure sheet represent the strata as they would appear in the sides of a deep trench eut across the country. Their position $\begin{gathered}\text { Underground } \\ \text { relations of }\end{gathered}$ with reference to the map is on the line at the upper edge of the blank space. The vertical and horizontal scales are the same, so that the actual form and slope of the land and the actual dips of the strata are shown
These sections represent the structure as it is inferred from the position of the strata observed at the surface. On the scale of the map the sectrons can not represent the minute details of eralized from the dips observed in a belt a few miles in width along the line of the section.
Faults are represented on the map by a heavy solid or broken line, and in the sections by a line whose inclination shows the probable dip of the ault plane, the arrows indica ped its opposit which
sides.

Structure of the Wartburg quadrangle.-One ype of structure prevails over nearly the whole of the Wartburg quadrangle. With a few excepions the rocks have scarcely been hey were deposited and they now lie in layers so nearly flat that the dip can seldom be measured in a single outcrop. A few limited districts are found in which the rocks have been ilted to an appreciable extent, and in one are the layers have been broken by a fault.
Along a line running north and south through Jamestown the strata have the greatest general elevation, and are practically at the same height as far south as Obed River. Eastward from this hey the strata dip gently toward the east unti passes through Armathwaite, Burrville, Deer Lodge, and Pilot Knob. Beyond this line the rocks have a more perceptible dip toward the east, the upper formations descend and occupy most of the surface, and the Lee conglomerate appears only along the stream cuts. Three similar ones pass northeast and southwest, through Helenwood, Pilot Mountain, and Wartburg outheast dips. Disturbances of greater amount appear south of Obed River in Lavender Shappear Knob, Peavine Mountain, Hatfield Sharper fond Mountain, the northern slopes of Crab Orchard Mountain, and a sharp ridge running southeast from Nemo. All of these ridges are produced by small anticlines in the Lee conglomerate, which are the terminations of folds of greater size toward the southwest. Between these anti clines synclines are formed, which are as irregular as the arches. Several minor synclines appear in the eastern part of the region, two of which, pass ing northeast, one through Melhorn Ford and the ther just east of Rugby Road, are readily dis entire area passes 3 miles southeast of Melhorn Ford and is traceable at intervals for severa miles both northeast and southwest. This break is of an unusual type, in which the rocks have been snapped directly across, even the most massive sandstones. The displacement is not great-only a few hundred feet-and the dip o the fault plane is toward the northwest, which is also an unusual feature.
In addition to these features of deformation which appear at the surface, other changes of attitude are introduced by the changes of thick ness among the different formations. Such occur

Waverly shale, Chattanooga shale, a
wood formation. All of these formations, except the Waverly shale, thicken toward the southeast, so that the layers at the bottom dip to the southeast more tha those at the top. In the Lee conglomerate the thickening amounts to 500 feet between James town and Emory River. In the same direction the Chattanooga shale increases from 30 to 50 feet, and the Rockwood formation from nothing to about 400 feet. The Waverly shale thickens toward the northwest and about equalizes the thinning of the Newman limestone. The total effect of these changes is to give to the formations below the Rockwood shale rather more than double the dip of the strata at the surface. The latest form in which yielding to pressure is displayed in this region is vertical uplift or depression. Evidence can be found of such movements at various intervals during the depo sition of the sediments. After the great period of Appalachian folding already described such uplifts again took place and are recorded in sur face forms. While the land stood in one attitude for a long time, most of the rocks were worn down to a nearly level surface, or peneplain. One such surface was strongl developed over the Cumberland Plateau and still well preserved in its broad, flat summits Its elevation varies along the stream divides from about 1500 to 1700 feet above sea-level. Since the formation of this peneplain, uplift of the land gave the streams greater slope and greater power to wear; they have therefore worn down into the old surface, to depths varying according to their size. The remains of another and earlier peneplain are obscurely seen in the summits northeas 3000 feet, which is so frequently attained farth to the east. It is probable that there were many such pauses and uplifts in this region, but thei records have been almost entirely rove Doubtless still others occurred which were not of sufficien length to permit peneplains to form and to record the movement.

MINERAL RESOURCES.

Rocks of this region are available for use in the natural state as coal, building stone, and road material. Other materials derived from the rocks their soils the formations are valuable for crop and for timber; and through the grades which they establish on the streams they occasion num erous waterfalls available for power.
Coal.-Bituminous coal occurs in many seams area is part of thentire region. The coal-bearing and southwest into the adjoining States. Mine have been opened at Helenwood, Glenmary, Mont gomery, and the lower Emory River. The co produced is used for coking, steam, and household purposes, the greater $\begin{gathered}\text { The chlet } \\ \text { openings }\end{gathered}$ part being made into coke. The mines at Helenwood and Montgomery are opened in the Briceville shale; those at Glenmary are just above the lowest bed of the Wartburg sandstone, while those along Emory River are about 30 feet below the top of the Lee conglomerate. The great a thickness as at that point, although is horizon is almost always represented by a thin seam. The Montgomery and Helenwood seams probably are the same, for, while they are not traced into connection, each is developed over a large area at practically the same position in the strata and is usually of considerable thickness. The small sections given with the stratigraphic he mines
Besides the main coal seams, great numbers of others appear at small intervals throughont the entire thickness of rocks above the Newman limestone. These seams are sandstone and Briceville shale or in the Scott shale. While many of these seams are 20 to 30 inches thick, and occasionally exceed 4 feet, most of them are less than 2 feet thick and too thin for profitable working. More than a dozen seams appear in the mountains east of Wartburg.
The seam mined in the upper part of the I conglomerate ranges over the eastern part of the plateau, but it seldom exceeds 2 feet. The coals opened west and southwest of Jamestown are
in the shales which are at the bottom of the Lee conglomerate at that point, but which form the middle portion of the formation in districts farther southeast. These coals range in thickness from a few inches to $4 \frac{1}{2}$ feet, but are quite variable, and are even absent in many sections. Although usually only one coal appears in one section, it is not probable that it is one continuous seam, for its distance below the main conglomerate stratum is very irregular-from 80 to 250 feet. The deposition of the formations of that period seems to have varied considerably from one small basin another. The coals occupy a position very Bon Air
As is shown in the structure sections, the rocks which include the coal beds are very nearly horizontal. South of Obed River the dis urbances are often considerable, but $\begin{gathered}\text { Flatnoss of } \\ \text { the coas beds. }\end{gathered}$ elsewhere they are not sufficient to affect the mining of the coal to any extent, and crushing or dislocation is practically absent. Such areas of thinning as occur may readily be due to non deposition. Nearly all of the coal seams of this region require heavy timbering, since the roof is usually of shale. Occasionally a seam is some what protected by a thin roof of massive or shaly sandstone, but never enough to do away with the timbers. The coal seam mined on Emory River however, occurs between heavy layers of sand tone with practically no shale. Floors of fire lay are very common, but frequently shale or of the mine.
Petroloum.-The occurrence of petroleum in adjacent regions 6 to 10 miles west of Jamestown as long been known, and recently fresh drilling have brought more oil to the surface. Within hown quadrangle three wells have The formation in which oil is found in quantity near
Jamestown is the Chickamauga lime- $\begin{gathered}\text { The oin-bear- } \\ \text { ing formar }\end{gathered}$ stone, the same that contains oil in the
adjacent Kentucky oil fields. In this region the formation comprises limestones and shaly lime tones These appear at the surface on both sides of Cumberland Plateau and, as shown by the drillings, continue the same beneath the pla teau. Oil was found at three levels in these rock in the Lacey well, 10 miles northwest of James town: 107, 236, and 296 feet below the Devo nian black shale. Salt water and traces of oi occurred at one horizon in the Lee conglomerate 500 feet below its top. Oil appeared at 440 fee below the top of the Newman limestone at Rugby, while in the corresponding stratum at Rugby Road only brine appeared. In the Strubbe well, on Black Wolf Creek, oil was found 230 eet below the top of the Newman limestone The amount of oil at all these levels was small Thus far none of the wells of this quadrangle have reached the Chickamauga limestone, the oil bearing formation. The productive wells north west of Jamestown at first yielded as much as 500 barrels per day, but diminished to 75 or less in ew days, and contained much salt water. The il varied in color from light-green to dark-green. The productive district is situated northwes Jamestown, upon the top of a very gentle anti cline whose southeastern slope extends to Rugby Road. At the surface the dip is about 20 feet t the mile, but the productive strata,
 tions, already mentioned, dip at a much creater rate, averaging 50 feet to the mile from general relation of dip, there is a zone of greate easterly dip passing south through Rugby, men tioned under the heading "Structure" Zones o greater southerly dip are also mentioned in the same place. South of Obed River lies the most disturbed district in this quadrangle, in which the strata are elevated to greater heights than on the anticline west of Jamestown. The well at Rugb is about two.thirds of the distance down the slope of the anticline, and the wells near Rugby Road are about at the bottom of the slope. As shown in section B, the strata rise for a shor distance to the east of this point. With the exception of this narrow zone of uplift appearing at intervals along the eastern border of the quad rangle, the strata have extremely small dips in the ro.

The existence of oil in the strata at thes
Wartburg-a.
lowest points has not yet been shown，and it is pos． \mid through by the stream，and low down on the slope \mid lime occurs．Most of the latter formation con－ \mid are worked together．This clay is of very fine sible that they contain only salt water．One of of the anticine．Even here，however，as in all tains too much silica in the form of chert to be and even texture and is used in the manufacture绪 layers in the Newman limestone which bears places east of the coves and gorges near James available，but many of its upper beds are pure small amount of oil at Rugby contains only salt town， 700 to 800 feet of tough Newman limestone enough for the purpose．Thus far there has been water in the well at Rugby Road，and a similar and Waverly shale must be drilled through．In almost no demand for lime，and the formation is relation may hold in the lower oil－bearing layers． Wells situated at the lower border of the east－ ward slope，if productive at all，would flow，under he pressure of the oil，in the whole slope of the anticline and would also drain much of the area of flat rocks lying toward the east．In the dis rict around Jamestown，access to the oil－bearing trata is easy on account of the great erosion of he overlying beds．Wells situated farther eas will have in most cases to pass through the entire thickness of the Lee conglomerate，which increase greatly eastward，and the Newman and Waverly mestones，all of which formations are extremely hard to drill．On the lower part of the South Fork of Cumberland River，wells can be started below the Lee conglomerate，where it is cut
the more eastern parts of this region the Rock－practically untried． wood shale comes in above the Devonian black Clays．－Clays for brick making are commonly shale and increases the thickness of rock above found in the hollows along the surface of the the productive strata．It is possible that the plateau，and also occur in many layers Rockwood shale may become the repository of imbedded in the coal－bearing strata petroleum in the eastern part of the plateau． Iron．－Many deposits of iron ore are scattered various Carboniferous shale beds．They are for the plateau．The ores occur chiefly in the widely distributed，and are of considerable size． form in limestone，and are strewn over the surface or in the clay－soils in small lumps and nodules． They result chiefly from the replacement of cal careous nodules imbedded in the shales，and are never accumulated in bodies of great size pt has been made to use these ore
seldom thick enough to be worked indepen man limestone material for the manufacture of in this region the clay and the associated coal
nd even texture and is used in the manufacture of pottery． angle is－Much the greater part of this quad tricts along the larger and only in a fetimber been removed．The covering of trees is scanty on the tables of the plateau，and the trees are only of moderate size．In the hollows and gorges soils are richer and the timber growth is strong． Such trees as hickory，chestnut，and oak make up the bulk of the forest，and pine，hemlock， and spruce are numerous near the watercourses． Lumbering is easy on account of the small amount of underbrush，but the distance to market，for the most of this region，has checked all attempts at developing this resource．

ARTHUR KEITH

May， 1897.

Geologist．

COUMNAR EECTONS

generalized section for the wartburg quadrangle． SCALE： 1000 FEET－ 1 INCH．						
Paxion．	Formation Namb．	Sxumos．	Columatar Shetion．		Character of rocks．	Character of Topography and Solus．
	Anderson sandstone．	Can		500	Sandstone，thin and massive，interbedded with sandy and argillaceous shales and thin coal beds．	Flat－topped ridges and mountains with lines of cliffs and ledges． Thin，sandy and elayey soil．
	Scott shale．	Csc		500－600	Argillaceous and sandy shales with some beds of sand－ stone and thin coal seans．	Rounded summits and steep slopes of Anderson sand－ stone mountains．
	Wartburg sandstone．	cwb		500－600	Interbedded sandstone，sandy shale，argillaceous shale， and coal beds．	Flat－topped spurs，benches，and plateaus with numerous low eliffs． Thin clay－soil on the shales，usually covered with sandy wash．
	Briceville shale．	cbv		250－400	Black，bluish，and gray，argillaceous shale with small beds of sandy shale，sandstone，and thick coal beds．	Slopes of Wartburg sandstone tables，and low hills． Thin clay－soil with sandy wash．
	Lee formation． （Shale in Lee formation．）	$\begin{gathered} \mathrm{Cle}^{2} \\ \text { (Cles) } \end{gathered}$		375－900	Massive sandstone with beds of cross－bedded sandstone and conglomerate，thin shale beds，and beds of coal．	Plateaus bounded by steep slopes and lines of high cliffs． Thin，sandy soil．
	Pennington shale．	Cpn		145－250	Purple and green，argillaceous and calcareous shales interbedded with blue limestone．	Slopes of Lee conglomerate plateans． Dark clay－soil with sandstone wash．
	（Newman sandstone－lentil．） Newman limestone．	$\begin{aligned} & \text { (Cns) } \\ & \mathrm{Cn} \end{aligned}$		400－700	Massive，blue and dove limestones with caleareous shale beds；grayish white sandstone near the top；chert nodules and layers more prominent in the lower strata．	Valleys with rounded hills and benches． Red clay－soil with many cherts and geodes．
	Waverly formation．	Cwv		0－300	Red and brown，calcareous and sandy shales，limestone， and cherty beds．	
	Chattanooga shale．	Dc		28－80	Black，carbonaceous shale．	
㟔	Roekwood formation．	Sr		0－400	Red and brown，calcareous and sandy shales with beds of fossiliferous red hematite．	
	Chickamauga limestone．	Sc		1000＋	Blue and gray limestone，argillaceous limestone，flaggy limestone，and calcareous shale，with a little chert． Blue and gray，massive limestone with a few nodules of black chert．	

NAMES OF Formations．					
Perios．					Sasprond：Gzoloex of TExnrsses， 1889.
	Anderson sandstone．	Can	Anderson sandstone．	Walden sandstone．	Coal measures．
	Scott shale．	$\mathrm{Csc}^{\text {c }}$	Scott shale．		
	Wartburg sandstone．	Cwb	Wartburg sandstone．		
	Briceville shale．	Cbv	Briceville shale．		
	Lee formation．	Cle	Lee conglomerate．		
	Shale in Lee formation．	Cles		Lookout sandstone．	
	Pennington shale．	Cpn	Pennington shale．	Bangor limestone． Fort Payne chert．	Mountain limestone． Siliceous group．
	Newman limestone．	$\mathrm{Cn}_{\text {Cn }}$	Newman limestone．		
	Newman sandstone－lentil．	Cns			
亩	Waverly formation．	$\mathrm{Cwv}^{\text {c }}$			
	Chattanooga shale．	Dc	Chattanooga shale．	Chattanooga black shale．	Black shale． Dyestone group． Trenton and Nashville group．
息	Rockwood formation．	$\mathrm{Sr}_{\mathrm{sc}}$	Roekwood formation	Roekwood formation．	
	Chickamauga limestone．	Sc	Cbickamauga limestone．	Chickamauga limestone．	

U.S.GEOLOGICAL SURVEY
 4. en wive

TOPOGRAPHIC SHEET

wartbur
TARTBURG QUADRANGI

LEGEND

 Springs
$\begin{gathered}\text { CuLTURE } \\ \text { Creekse }\end{gathered}$
cund
cinted in blaok
 -

