DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEYCHARLES D. WALCOTT, DIRECTOR

GEOLOGIC ATLAS

$O F^{2} \mathrm{SE} E$
UNITED STATES
MUSCOGEE FOLIO

INDIAN TERRITORY

UNIV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographi ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or for or all slopes, and to line the hrol in lelion evel, the altitudinal intercal represented by the el, between lines being the each map. These lines are called contours, and the miform altitudinal space between each two con ours is called the contour interval. Contours and levations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour matp (fig. 1).

. The sketch represents a river valley between two iils. which is partly closed by hooked sand bar. On terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , 100,150 , and 200 feet, and so on, above mean se ovel. Along the contour at 250 feet lie all points he contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet fallis just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet sur ounds it. In this fir numbered, and those for 250 and 500 feet and ccentuated by being made heave utars and then the accentuating and numbering of certain them-say every fifth one-suffice, for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothly about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismar wamp. In mapping greal Ti 25,50 , and 100 feet are used
Dramage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where stream sinks and reappears at the surface, the supposed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn
to the scale of 1 mile to the inch, would cov to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scal" The scale. may be expressed also by a fractio, The scale may be expressca a mo thaction of which the numor the resth on the and the denominator the correspong leng in ate 63.360 inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,530}$.
an inch" is expressed by $\frac{1.35}{6,360}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{1 \text { 15, mox }}$, and the largest $\frac{1}{6 . \frac{1}{2050}}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{0^{2} \text { min }}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Atlas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of som contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { tasivile }}$ conoins one-sixteenth of a square degree. The aren of the corresponding quadrangs.

Thand 250 square

a line United States, disregard political boundar hips. To each sud to the quadrangle it represents is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.- On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ail ways prelminary surveys in locating ditch provide educational material for schools and home and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the top graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igneous, sedimentary, and netamorphic
Igneous rocks.-These are rocks which have or from a state of fusio rom time to of all ages molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within theso channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thin, and lacco liths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in he air, and acquire a glassy or, more often, a pac tialy cysare fully cyolline in ther
 mons. The less por Explows are usa, manies voleanio eruptions causing eections of dut ash and lare fragments. These materib, whe consolidated, constitute breccias, arglomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have bee ried to a different place and deposited
The chief agent of transportation of rock débris ater in motion, including rain, streams, and th 3 water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sond, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a grea variety of rocks, And; and lind. The mot characterstic of the wind-borne or eol deposits is loess, a fine-orainel euth; the most char deposits is loes, a ine-g.ite ill, he most charmixture of bowlders and pobbles with clay or sand Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chatged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper pars, wor anally distinguish by a moits, he sols being organic matter
Metamorphic rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single puart is. Such changes transform sandify other rocks in various ways.

From time to time in geologic history igheous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessury to separate twq contiguous formations by dep itrary line, and in some cases the distinction An almost entirely on the contained fossils. aneous formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance; in except in regions of intense disturbance; in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked the systems together, fong a chan of life from the time of the oldest fors the Whe other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, the characteristic dossil types which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams. that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till) and (soranes (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of àny colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formamation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal
geology, thus printed, affords a subdued backgeology, thus printed, affords a subdued background upon which the areas of productive A min
tions may be emphasized by strong colors. A min symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Trangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

ing a vertieal sectio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes symbols admit of much variation, but the following
are generally used in sections to commoner kinds of rock:

Schists.

Massive and bedded igneous rocks.

 sections toof rocks.
The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the sec tion to correspond to the outcrops of a bed of sandof this bed form the surface. The upherediat valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is mposed of schists which are traversed by masses and their much contorted
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strata are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the upturned, eroded edges of the bean rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underyyng formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an uncon formable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds to the actual slopes of the ground along the section line, and the depth from the surace of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.

The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE MUSCOGEE QUADRANGLE.

By Joseph A. Taff.

INTRODUCTION.

location and area.
The Muscogee quadrangle is bounded by paral lels of latitude $35^{\circ} 30^{\prime}$ and 36° and by meridians of longitude 95° and $95^{\circ} 30^{\prime}$ and contains 968.7 creses. It is located in the Cherokee and Creek nations, Indian Territory, approximately the eastern to--thirds being in the former, and Shoctaw Nation. Its name is taken from Muscogee the principal town in the Creek Nron which is located near the junction of Verdigris and Neosho rivers with Arkansas River
hysiographic relations.
The Muscogee quadrangle may be separated, physiographically, into two nearly equal parts, one of which belongs to the physiographic provther to that of the Prairie Plains. The two provinces meet in this quadrangle in a broad, hallow basin occupied in part by Neosho and in art by Arkansas River. The Ozark Plateau i ow and nearly flat in this, its extreme southwestern part, where it approaches these rivers, and from them the Prairie Plains rise gradually toward the west. Brief descriptions of the salient topographic features of the Ozark Plateau and of Prince f mil assist in maring the topography of the Muscogee quadrangle.

The Ozark region is a broad, relatively flat, The Ozark region is a broad, relatively flat,
dome-shaped, dissected highland. In parts of this region, notably the southern and the eastern, the greater elevations attain considerable prominence and are widely known as the Boston and St. Francis mountains. Elsewhere there re numerous lower elevations, remnants of dissected subordinate plateaus, to which names have been given and which are locally called mounains, although they do not generally deserve recognition as such. In general geography the egion is known as the Ozark Mountains, but he name has not been applied to any mountain or definite collection of mountains in the province ig. 1 shows the main physical features of the egion and the location of the Muscogee quad angle.

Fra. 1.-Diagram showing relations of Ozark region to sur rounding ghys
of the region.

Physiographically, the Ozark region is bounde s follows: On the north and west the low he Prairie Plains. On the east the Mississippi he Prairie Plains. On the east the Mississipp meets it along a sharp line, near which runs the St. Louis, Iron Mountain and Southern Railway On the south the upland extends to the southern border of the Boston Mountains. In outline the Ozark Plateau has rudely the form of a quadrilateral whose sides are nearly 225 miles in length.

The Ozark Plateau is limited, approximately, on north, east, and south sides by Missouri, Mississippi, and Arkansas rivers, respectively. On he west its border is followed closely by Neosho (or Grand) and Arkansas rivers in Indian TerriMissouri. White, Black, St. Francis, Mivers in and Gasconade rivers have their source in the lateau near the main water the plateau through narrow, deep, and crooked valleys.
Considered in a broad sense the Ozark region is made up of three dissected plateaus, the general character as well as the topographic detail of tudes of the rocks. These plateaus succeed one another concentrically westward from the St. Francis Mountains as a center. They cross the axis of the Ozark uplift and the main divide, which nearly coincide, and are inclined in the general direction of the dip of the strata. The hysiography of the Ozark Plateau in Missour as been clearly described by C. F. Marbut (Physical features of Missouri: Geol. Survey Missouri, vol. 10, 1896). Geologic mapping by the Arkansas Survey disclosed the same features in their southern extension in Arkansas (Arkan-
sas Geol. Survey, vol. 4, 1890). The first of these , 4, 1890).
The first of these plateaus has been termed by the Missouri Survey the Salem platform. It occupies southeastern Missouri and a large part
of northeastern Arkansas. The magnesian limestones, cherts, and saccharoidal sandstones of the Cones, chers, and sacchan and sandstones of the platean, and slope gently away from the St. Franis Mountains. The edges of these lower deposits form distinct escarpments facing the lowlands surrounding the St. Francis Mountains. Higher formations of limestone and chert crop out in uccession farther away, making subordinate platforms and escarpments. The intervening softer accharoidal sandstone beds occur in the lower back slopes of benches and in the bases of the scarpments. The Salem platorm is in genera deeply cut by stream erosion and the tops of the higher ridges and hills of its dissected escarpments stand at the same general level. Thus She Salem platform has been developed reated edges of a number of formations. Back of the Salem platform, surrounding it on plain of chert and limestone named by Marbut plas Springield structural plain, which harben developed on the surface of the bo tion. Its inner border south of Osage River is marked by a pronounced escarpent - the River edge of the Boone formation, which overlooks the Salem platform. The Springfield plain slopes westward at low angles in Missouri and farther south and west, in northern Arkansas, following the dip of the formation. In Missouri, Coal Measure shales succeed the Boone formation, producing lowland. In northeastern Indian Territory and Arkansas alternating formations of limestone, shale, and sandstone occur above the Boone formation in low terraced hills and mountains that stand as remnants above the Springfield structural plain.
Such topographic features may be seen at the borSuch topographic features may be seen at the bor-
ders of the Boone formation, in the northeastern ders of the Boone formation, in the northeastern
part of the Muscogee quadrangle. The Springpart of the Muscogee quadrangle. The Spring-
field plain is also deeply dissected by the larger field plain is also deeply dissected by the larger
streams which flow through it in narrow, crooked valleys. Near the inner border of the Springfield plain the Boone formation has been longer ment a tortuous and ragred outline. Hills and buttes, cut off from the escarpments, stand out ${ }^{-1}$ on the divides between the streams above the Salem platform, their crests marking points in the former extension of the Springfield plain. Between the principal drainage lines lie large tracts of land from which the younger formations have been

emoved, leaving broad, flat surfaces of deeply

 athered chert.The third plateau is that of the Boston Mountains, which rise back of and above the Springfield plain. These mountains are not well defined, but may be said to extend from the Mississippi lowIndian Territory, ending near the woutheast of the Muscogee quadrangle
The Boton M
The rise above the Springfield than any other part of the Ozark highland, b become lower westward from near the Arkansas Indian Territory line. Viewed from eminences on the Springfield plain the Boston Mountains have the appearance of a bold, even escarpment with level crest. Actually, however, instead of having an even northward front, this escarpment sends out finger-like ridges and foothills, which descend by steps as successively lower, hard rocks come to the surface. Toward their northern ends many these foothills are intersected, becoming flat-topped athiers on the Springfield plain
The rocks that cap the Boston Mountains and axtend down the southern slope are the thick sand stones and shales of the Winslow formation. The sandstones, being the more resistant to erosion, form the salient features of the mountins. The beds of make the tops of the ridges in the middle and uppr courses but in the southern sope shaly strat higher in the section oeerr, so that the Boton plateau is approximately a structural plain Struc turally the mountains are monoclinal, with gradu ally increasing steepness of dip toward the south The Boston Mountains are deeply dissected by streams. Some of these flow down the southern slopes; others have eaten, by headwater erosion, into their northern border. The crests of the numerous ridges, which slope southward from the main divide to the border of the Arkansas Valley, define what may properly be called an nclined plain or sloping dissected plateau.
Near the east end of the Boston Mountain Where the capping sandstone formations are thicker and lie more nearly horizontal and where Whit River in its deep valley approaches its norther front, the escarpment attains its greatest height Here high, flat-topped, precipitous ridges, 1000 to 1500 feet high, project northward on a level with escarpment. Farther west, toward the Arkage Indian Territory line the Winglow formation, specially in its cundstone beds, becomes thinn and more shaly and in proportion it changes in thickness and nature the Boston Mountains decreas in elevation and in distinctness of topographic form. Northward, beyond the west end of the mountains the change in the character of the rocks and in the topography is pronounced. In the Muscogee quadthick and the Boston plateau is not conspicuous being represented by low, sloping table-lands with northward-facing escarpments. Farther north, on the east side of Neosho River, the Winslow for mation gradually decreases in thickness and in hardness of beds until it loses its identity in the northeast corner of Indian Territory. Correspond-
ingly, the topographic form changes from the low, ingly, the topographic form changes from the low, sain bordeping, dissected plateau to the lowlan astern part of Kansas

The physiographic province of the Arkansas Muscogee quadrangle It i border of the north, as has already been stated, by the Bos ton Mountains; on the south by the Ouachita Mountains of Southwestern Arkansas and southeastern Indian Territory; on the east by the Mississippi lowland at Little Rock, Ark.; and
on the west by the Prairie Plains across the western part of the Choctaw Nation, Ind. T The Arkansas Valley is made up of a great thickness of sandstone and shale formations of the Pennsylvanian series. These beds have been deep structural trough corresponding with th deep structural trough corresponding with the Indian Territory to the. Mis. pposite Little Rock. These folded rocks were beveled off by erosion until their edges forme a peneplain now standing approximately 800 feet above sea level. A few exceptions to this ceneral statement may be noted in some of the broader synclinal folds in the south side of the valley. Protected by massive sandstone strata, whos resistance to erosion was aided by their attitude in the broad, basin-like folds, the rocks in such place remain as conical mountains with crests 900 to 2000 feet above the surrounding plain. Such are Sansbois, Cavanal, Sugar Loaf, and Magazine mountains, whose crests give some idea of th former high level of the whole region. Since the development of this peneplain of the Arkan sas Valley the land has been raised and erosio has cut more rapidly into the shaly beds, leaving the sandstones, which make low, narrow, an sharp-crested, but generally level, ridges. In many tone beds cap low buttes and hills in the saneral level of the pheplain. This minne gene westward into the region of the Prairie Plains. The crests of the hills in the southern part of the Muscogee quadrangle west of Arkansas Rive mark levels in this peneplain. The flat valleys of the larger streams and the alluvial lands of Arkan sas River are in the lower plain, being developed on the softer rocks.

pratrie plates.

The Prairie Plains include a broad region which Ises in a gradual slope from the Ozark Platea westward across Indian Territory until it merge no the plateaus of the Great Plains. Southwest ward and eastward through eastern Kansas, north ern Miseostward through eastern Kalas, nof th Great Lakes. In Indian Territory it is a rollin or undulating land interspersed or broken by re characterized ridges and hills. The ridges land-and-escarp by form of the land-and-escarpment form of topography. The table-lands and benches slope pently to the bound ng plain. The rocks of this region in India Territory are chiefly soft shales in which lie beds or formations of hard sandstone, the whole dippin at a low inclination westward, in a direction oppo site to the general slope of the plains. The thick ness of these sandstone deposits varies, decreasin northward along the outcrops. With the change in thickness there is a gradual diminution of the prominence of the ridges and of the bench and terrace features of the topography. The mai drainage channels trend eastward with the slope of he plains, and many of the smaller streams have cut by headwater erosion into the table-lands an benches, giving tortuous outlines to the escarp-
ments. The western half of the Muscogee quadrangle illustrates the Prairie Plains topography i Indian Territory

topography

The topographic features east and west of Arkansas and Neosho rivers differ markedly lying to the east and the various phases of the Prairie Plains to the west. Neosho River an Arkansas River below the mouth of the Neosh have modified the somewhat indefinite boundar between the two provinces by erosion and have masked it with alluvial deposits.

ozark highladid.

In the northeastern part of the Muscogee quadrangle there are tracts of gently rolling land. These areas are parts of the Springfield structural plain,
which has been developed on the Boone formawhich has been developed on the Boone forma-
tion in northwestern Arkansas, southwestern Mistion in northwestern Arkansas, southwestern Mis-
souri, and northeastern Indian Territory. On this souri, and northeastern Indian Territory. On this
an exceedingly durable surface mantle of disinan exceedingly durable surface mantle of disin-
tegrated porous chert has been formed by weathtegrated porous chert has been formed by weath-
ering. Waters falling upon it pass downward and gradually reach the valleys or issue in springs gradually reach the valleys or issue in springs
through subterranean solution channels. Thus only valleys of considerable size afford streams of sufficient power to corrade the fresh rock or even to remove the fragmentary chert. The result of these conditions is that broad, level tracts are
developed on the surface of the Boone formation. developed on the surface of the Boone formation.
The hard sandstone beds of the Winslow formaThe hard sandstone beds of the Winslow forma-
tion thin out or give place to shales northward in eastern Cherokee Nation. As a result of this change in sediments, erosion has reduced large areas in the northeastern part of the Muscogee quadrangle to wide, shallow valleys having the general in the valleys of Greenleaf Creek east Braggs, east of Fort Gibson, and on Fourteenmile and Double Spring creeks are in this low plain. In the western part of the Ozark region this plain is In the western part of the Ozark region this plain is
generally developed on the Boone formation, but in the northeastern part of this quadrangle it extends also over areas underlain by the Winslow, and may be said to extend to Arkansas and Neosho rivers and to join the Prairie Plains through the valleys of Bayou Manard and Fourteenmile Creek.
It has been stated that the hard sandstone beds of the Winslow formation constitute the salient features of the Boston Mountains and of their lower westward extension, or foothills, in eastern Cherokee Nation. The sandstone beds become thinner and more shaly westward to Arkansas
River and thence northward east of Neosho River, River and thence northward east of Neosho River,
and produce correspondingly reduced topographic and produce correspondingly reduced topographic
features. The crest of the Boston Mountain plafeatures. The crest of the Boston Mountain pla-
teau slopes westward from an elevation of 2000 feet teau slopes westward and San Francisco Railroad in
near the St. Louis and near the St. Louis and San Francisco Railroad insas to 1600 feet near the Arkansas-Indian Arkansas to 1600 feet near the Arkansas-Incian
Territory line and to 900 feet in the southeast Territory line and to 900 feet in the southeast
corner of the Muscogee quadrangle. The westcorner of the Muscogee quadrangle. The west-
ward extension of the Boston Mountain plateau in the southeastern part of this quadrangle is marked by the crests of the flat-topped ridges and hills which slope southward and westward to the level of the Prairie Plains along Arkansas River. Remnants of the same plateau may be seen in side of the valley of Bayou Manard and between Bayou Manard and Fourteenmile Creek. Similar features, less pronounced, occur north of Fourteenmile Creek.
Near the middle of the Winslow formation there are some thick beds of hard sandstone which now cap the higher ridges of the plateau. Where these beds have come to the surface there are small tracts of table-land or flat benches. Similar phases of topography occur where certain beds of hard sand the buttes and bills of limestone in the underlyin the buttes and hills of limestone in the underlying in the detached hills south of Bayou Manard and Double Spring Creek. The lower sandstone mem Double Spring Creek. The lower sandstone mem-
ber of the Winslow also makes the bluffy timbered ber of the Winslow also makes the bluffy timbered
hills facing Arkansas River on the west side of the valley south of Coata Creek. The sandstone beds are thinner and the hills proportionately less prominent along the western border of the Neosho River flood plain. From the bluffs overlooking the valleys of these rivers the surface slopes down with the dip of the strata to the line of the Prairie Plains. The Morrow, Pitkin, and Fayetteville formations,
composed of resistant beds of limestone alternating composed of resistant beds of limestone alternating
with soft shale, form the lower northern slopes of with soft shale, form the lower northern slopes of
the Boston plateau and the outlying hills on the the Boston plateau and the outlying hills on the
Springfield plain. They produce minor though Springfield plain. They produce minor though
distinct bench-and-terrace forms of topography, distinct bench-and-terrace forms of topography
which are not sufficiently large to be represented which are not sufficiently large to be repre
on a map having 50 -foot contour intervals. Throughout the Boston plateau in Arkansas the ornward-acing escaph. In Indin Territory, illustrated in the Muscogee and Tahlequah quad rangles, the entire plateau district is dissected by treams which flow southward and southwestward
across it from the Springfield plain. The larger streams have cut relatively deep and narrow valleys or canyons, such as that of the Illinois River
in the southeast corner of the quadrangle. The in the southeast corner of the quadrangle. The
sources of these streams are among the detached hills near the northern edge of the Boston Mountain plateau. The country between them is intricately dissected and the small tributary streams, which flow only during abundant rainfall, descend in steep, sharp valleys.

amer puans.

The topography of the Prairie Plains in Indian Territory is typically illustrated in the western half of the Muscogee quadrangle. The country west of Neosho River is an open, undulating prairie. Thin sandstone and limestone beds in the softer shales make low terraces and narrow
benches which border the shallow valleys, but benches which border the shallow valleys, but these terrace features are not sufficiently promi-
nent to be shown on the topographic map and ant to be shown on the topographic map and re scarely pere there the vuite or the al priwi hill is perved by capping of harde ical prairie hill is preserved by a capping of harder rata. A typical instance is the conical hill 2 nounted a triangulation station. This rolling prairie is characteristic of large areas of the prairie is characteristic of large areas of the
Prairie Plains in northern Indian Territory north of the Arkansas and west of the Neosho, where relatively few thick beds of hard rock occur in the shales to interrupt the flat features of the land. Farther south, however, along the strike of the rocks, the sandstone formations become thicker and harder. With the change in the sediments sandstone ridges and hills rise higher above the
general level of the plain. The broad stretches of eneral level of the plain. The broad stretches of
olling prairie immediately south of the Arkansas rolling prairie immediately south of the Arkansas
Valley in the Muscogee and Okmulgee quadranValley in the Muscogee and Okmulgee quadran-
les decrease gradually in width southward until gles decrease gradually in width southward until
 gra-sloping timbered hills. In the Muscoger raphy is seen west of Arkansas River.
The district 8 to 10 miles in width about Musco ee is an open, undulating prairie. The timbered ills along the Arkansas southeast of Muscogee escarpments and flat-topped buttes bound it on the vest, near the border of the quadrangle. Toward we south the river hills and escarpments converge until they approach on each side of Dirty Creek at the southern border of the quadrangle.
Another band of flat prairie land lies paralle to the escarpment of the Rattlesnake Mountains, tending down the wide valley of Butler Creek. The Rattlesnake Mountains are a typical instance Prairie Plains in Indian Territory. The eastwardacing escarpment is abrupt, and the table-land which slopes westward with the general inclinaion of the rocks to a belt of rolling prairie that rosses the southwest corner of the quadrangle, is boken into lobes by streams that have cut through by headwater sapping of smaller drainage lines, ined the location of the table-lands and cearp ments, and the shale outcrops coincide with the rolling or flat lands and with the lower slopes of the escarpments.

river valleys.

The principal rivers in the Muscogee quadrangle are the Arkansas, the Verdigris, and the Neosho. permanent low grades; that is, each river in any one part of its course is not eroding or cutting down its channel more rapidly than in other parts, and each is scarcely more than able to remove the sediments which are being brought down and depos-
ited by the floods. These rivers may be spoken of, ited by the floods. These rivers may be spoken of,
therefore, as graded streams. The transported seditherefore, as graded streams. The transported sediments make relatively wide and almost flat plains,
and in these surficial deposits the streams meanand in these surficial deposits the streams mean der back and forth,
rocks at the borders.
A large part of the surficial deposits in the Arkansas Valley is above the river's present flood ficial deposits, the highest of which are above the highest points reached by the river at the present time. The sediments in the lower of these terrace
have not been deposited long enough to be appre-
ciably affected by erosion. Some of the high terclably affected by erosion. Some of the high ter-
races reach altitudes more than 150 feet above the present flood plain of the river, and have had developed on them distinct drainage and topographic features. Erosion of these terraces has advanced so far that large parts of them have been removed and the remnants have been deeply etched by small intermittent streams.
Illinois River has a steeper grade and a narrower valley than the Arkansas. It approaches the latter through the more elevated and hilly country of the Ozark highland, and its valley is canyon-like, typical of the larger streams of that region.

dratinage.

Four rivers drain the Muscogee quadranglethe Arkansas, Verdigris, Neosho, and Illinois. The largest is the Arkansas, which flows across the central part of the quadrangle in a southeast-
erly course. From the Prairie Plains it flows ery course. From the Prairie Plains it hows eastward, touches the southwestern border of the course. South of the southeast corner of the quad ransle the river turns eastward again and continues parallel with the southern boundary of the Ozark region to the Mississippi lowland.

The Verdigris River owland,

The Verdigris River drainage lies within the Prairie Plains. Rising in Kansas, it flows in a the center of the Muscogee quadrangle. Like the Arkansas in the Prairie Plains region, it flows across the strike of the rocks.
Neosho River has its source southeast of the center of Kansas, near that of the Verdigris. Its course is southeasterly until it approaches the border of the Ozark highland, near the northeast corner of Indian Territory. Touching the Ozark highland here, it is deflected southward and follows the highland border until it empties into the Arkansas near the center of the Muscogee quadrangle.
Illinois River collects its waters entirely from the Ozark highland. It rises in the northern foothills of the Boston Mountains, in northeastern Arkansas, and flows northward into the Spring-
field plain, thence westward and southwestward, with the pitch of the rocks, and enters the Arkan sas near the southeast corner of the Muscogee quadrangle.
The eastern part of the Muscogee quadrangle is drained by Fourteenmile, Double Spring, and Greenleaf creeks, Bayou Manard, and Illinois River, besides numerous small tributary streams. The last three streams named flow directly into the Arkansas; Fourteenmile and Double Spring creeks are tributary to the Neosho. All these treams are fed by springs that issue chiefly from f extended drought.
The smaller streams in the western half of the quadrangle drain the Coal Measure shales and sandtones and are intermittent, their flow depending on the rainy season. During extended droughts dry and the waters of the larger creeks stand in dry and the
isolated pools.

DESCRIPTIVE GEOLOGY.
All the rocks exposed in the Muscogee quadrangle are stratified deposits formed in Carboniferous time. They are represented on the columnar section sheet, and their comparison with related rocks in northern Arkansas is shown in the corformations afford some idea of the geologic history of the region. The interpretation of the available parts of this geologic record is given under the head-
ing "Historical geology," page 6. The determiing "Historical geology," page 6. The determination of fossils and the statements concerning
the age, classification, and correlations of the formations resulting therefrom are the work of Dr E. O. Ulrich.
stratigraphy.
pre-carboniferous rocks.
The oldest rocks exposed in the Muscogee quadangle consist of Carboniferous chert and limestone, chert, which occurs in a number of areas in the
northeastern part of the quadrangle, where much of it has been worn away. In the adjoining TahCarboniferous rocks, exposing Devonian, Silurian, and Ordovician strata in parts of the deeper val leys, and the same pre-Carboniferous rocks have been cut through in drilling a deep well at Fort Gibson, near the center of the Muscogee quadrangle. A brief description of these rocks will probably be of service, especially in view of the active prospecting for oil now being carried on by deep-well drilling in the Muscogee quadrangle. The pre-
Carboniferous rocks will be described in the order Carboniferous rocks will be described in the order
in which they are encountered in drilling, beginin which they are encountered in drilling, beginning with the Devonian.

chattanogaa shale.

The top of the Devonian is encountered at a depth of 800 feet in the well at Fort Gibson. The rock is a black, slaty shale about 30 feet thick When dry or powdered it assumes a brownish-
black hue. A bed of sandstone or conglomerate black hue. A bed of sandstone or conglomerate
occurs in places at the base of the shale in the Tahlequah quadrangle. This local sandstone is of the same age as the shale and is classed as a of the same age as the shale and is classed as a
member of the formation. The formation has member of the formation. The formation has
been correlated with the Chattanooga black shale of the southern Appalachian region and has been more fully described under this name in the Tahlequah folio.

st. claitr marbik.

Beneath the Devonian black shale lies a formaion of yellowish-blue and white marble, or limestone, 62 feet thick. It is supposed to be the same as the St. Clair marble, which occurs immediately beneath the Chattanooga formation in the Tahlequah quadrangle. Before the Devonian shale was deposited the rocks beneath it in eastern Indian Territory and northwestern Arkansas were folded and then eroded to a generally fat Marble . Near Marble, in the southern part of the Tahlequah less than 200 feet thick. It is entirely absent, less than 200 feet thick. It is entirely absent, Tahlequah, and is generally lacking throughout northwestern Arkansas and southwestern Missouri. Whether the frequent absence of the St . Clair marble is due to original local nondeposition or to removal during periods of erosion preceding the deposition of the Devonian is a problem not yet solved.
The St. Clair marble belongs to the Silurian system. It was first described by the Arkansas Geological Survey in 1890 (Ann. Rept., vol. 1, 1891) and named St. Clair, for St. Clair Springs, north of Batesville, Ark., where it is well exposed.

tyner formation.

Beneath the St. Clair marble in the Fort Gibson well there is a formation consisting of greenish,
bluish, and reddish-oray shale and thin-bedded bluish, and reddish-gray shale and thin-bedded sandstone, aggregating 116 feet in thickness. This Tyner formation lion corresponds to the Ordovician nois River est nois Ressentally the Caneq h, wh in thickne ess as at Fort Gibson. Some variable beds of limestone in the upper part of this formation contain fossils of Trenton age. The formation has tain fossils of Trenton age. The formation has
received the name Tyner from a small stream near the northern border of the Tahlequah quadrangle, on which it is typically exposed.

burgev sandstone.

Beneath the Tyner formation in the Fort Gibson well there is a deposit of light-gray to yellow sand 80 feet thick. This sand corresponds in character and position with the Burgen sandstone, which underlies the Tyner formation east of Tahlequah. It is massive and consists of round, limpid quartz grains loosely cemented together. No fossils have been found in the Burgen sandstone. Its age is inferred from its stratigraphic position. It lies between the Tyner formation, which is of Trenton or late Ordor coge, tion, which is of Canadian or early Ordovican age. A study of the St. Peter or "Saccharoidal" sandwhich the Burgen is correlated by Dr. E. O. Ulrich, causes him to class it as early Ordovician.

yeliville formation.

From the base of the Burgen sand down to the bottom of the Fort Gibson well there are 78 feet of light-blue magnesian limestone. A formation in Missouri beneath the St. Peter sandstone, to which, as stated above, the Burgen sandstone in the Tahlequah quadrangle is believed to corre spond. This formation of magnesian limestone contains fossils that have been classed as earlier Ordovician in age. It has been named from the town of Yellville and described by G. I. Adams in 1904 (Zinc and lead deposits of northern Arkansas: Prof. Paper U. S. Geol. Survey No. 24, 1904, pp. 18-20).

Carboniferous system.
 MISSISIPPIAN SERILS boone formation

Character:-Only the upper part, probably 200 feet, of the Boone formation is exposed in the Muscogee quadrangle. The rocks consist, for the most part, of interstratified chert and cherty limeing Tahlequah quadrangle thin limestones free ing Cahlequah quadrangle thin occur locally, while at other localities the chert rests on the Chattanooga black shale without intervening limestone beds. This shale without intervening limestone beds.
lower limestone is thick enough to be classed as a member of the formation, and although not exposed in this quadrangle, will be briefly described. It consists of fine-textured, even-bedded, and dense, white to pinkish, marble-like limestone and lightto 15 feet in thickness. Its position in the formation and its lithologic character strongly indicate that it should be correlated with the basal St. Joe member of the Boone formation in the northern part of the Fayetteville quadrangle and farther east in northern Arkansas. Near the northern boundary of the Tahlequah quadrangle, in the east side of Illinois River Valley, also, there are basal beds which consist of dull-blue, earthy, fossiliferous limestone in the lower part, on which rest beds of thicker and harder lime stone, the whole aggregating 6 feet in thickness. These beds contain fossils of Kinderhook age, an the Boone formation. They are, howere, to thin and linited in exposure to jutify se, description and name.
The upper bed of the St. Joe member is a lightercolored, often pink, and generally crystalline cricolored, often pink, and generally crystalline cri-
noidal limestone, which, together with the lower part of the cherty limestone overlying it, contains a Burlington fauna.

The succeeding cherty limestone constitutes a most the whole of the Boone formation and is the part exposed in this quadrangle. The exposed beds are made up essentially of calcareous chert or flint, with variable bands or beds of limestone. Fresh exposures occur in but few places. They are found in steep bluffs and cliffs where the larger streams meander against the sides of their valleys or, more rarely, in the beds of the smaller streams, in their middle or lower courses, where the grades are sufficiently steep and the volume of water is great enough to induce active erosion. The chert element is so much more abundant than the that almost the entire surface rock consists of anion that almost the entire surface rock har che the diers and fragments
formation consists of light- to Gibson the Boone and argillaceous limestone, with 20 feet of lightgray limestone at the base. The samples of drillings obtained from the well indicate that the character of the surface rock has been produced by the removal of a large part of the original lime by solution and by segregation of the silica as chert.
Fossils.-The cherts in the upper part of the formation are locally very fossiliferous. The fore-

Amplexus fragilis White and St. John. Glyptopora keyserlingi Prout.
Glyptopora keyserlingi Prout. Fenentella multisisionas Ullich. Polypora macooyana Urich
Polypora macooyana Ulrich. Hemitrypa proutana Ulrich.
Hemitrypa proutana Ulirich Pimnatopora striata Ulrich. Spirifier logani Hall
Spirifiter logani Hall Retieularia pseudoli
Produatuas setigerus Orthall. Orthothetes keokuk Hall.
Capulus equilaterus Hal
Muscogee.

going list includes the species most commonly found; their
Keokuk age.

Keokuk age.

Thickness.-The Boone formation at Fort Gib son is estimated to be 184 feet thick, and probably as much is exposed in the northeastern part of the the Tahlequah quadrangle, where full sections are exposed, its thickness ranges from 100 to 300 feet. Except in a few localities the top and base are separated in outcrop by several miles, and the rocks are so concealed by surface chert débris that determinations of thickness are at best only approximate. Name.-The formation was named for Boo County, in northern Arkansas, and was first described by Dr. F. W. Simonds in 1888 (Arkansas Geol. Survey, vol. 4, 1889).

fayetteville formation.

Character.-The Fayetteville formation consists of dark-blue to black fissile shale, with usually thin limestone beds. The larger part consists of shale, in which the limestones are inclosed as thin In the Museds localy varle in thickness. In the Muscogee quadrangle two of these beds of limestone seem to be constantly present. On the formation. In many place where the rock are not well exposed the lower limestone the rock to be in contact with the underlying cherty beds of the Boone formation, the bed of shale that in more complete sections underlies the limestone being absent. However, where the contact between the Fayetteville and Boone formations was well exposed the shale was always found to be present in greater or less amount.
The layers making up this lower bed of limestone are mainly fine grained in texture and vary from an inch or two to a foot or more in thickness. Their color varies from light to dark blue, or even black when fresh, but the weathered surface of the rock commonly displays shades of drab or yellowish blue. The thickness of the whole bed ranges from 5 to 15 feet. These extremes were observed
in near-by exposures in the northeastern part of in near-by exp
the quadrangle.
Fossils.-Fossils are extremely rare in the shale, but the limestone beds generally afford a varie the names of the prinipal fossils of the low the names of
limestone bed:
A large undeseribed crinoid, related to Eupachyerinus but
having uniserial arms. The plates of the calyx, being thick having uniserial arms. The ples.
and bublbous, are striking fossils.
Productus unnamed
Productus, unnamed specie
Camarotsechia sp. undet.
Camarotechia sp. undet.
Archimedes of. A. communis Ulich.
Orchimedes of. A. communis Ulirich.
Orthothetes kaskaskiensis MeChesney.
Chonetes n . sp. of the type of C. geinitzanus Wen
(rare).
Productus ef. P. cora and P. tenuicostus.
Prole
Productus estriensis. Worthen.
Seminula subquadrata Hall.
Seminula subquadrata Hall.
Cleiothyris sublamellosa Hall
Spirifer incerebescens Hall.
Spirifer of the type of S. pinguis; ef. S. seobina Meek.
Spiriferina transversa Mecheens.
Diels.
ielasma ef. D. formosum Hall.
Of the above list the first three are very abundant and characteristic.
The upper limestone bed is thin, rarely exceeding 3 or 4 feet, and occurs about 10 feet below the lop of the shale. It is argillaceous and more or less ferruginous, and weathers in thin, hackly slabs
or plates. Many of the layers are composed prinor plates. Many of the layers are composed prin-
cipally of fossil shells, which weather unequally cipally of fossil shells, which weather unequally
with the ferruginous and argillaceous matrix with the ferruginous and argillaceous matrix.
Such beds disintegrate to lumpy masses or slabs of loosely cohering shells and fragments of fossils. The rock when fresh is bluish in color, but change to yellowish brown on weathering.
The fossils of the upper limestone are distinguished from those of any part of the formation below by the greater abundance and variety of

> Pentremites sp. undet. (a large form between P. godoni
nd \mathbf{P}. conoideus).
> Septopora cestriensis Prout.
Fenestela sp. nov. (a commo
> Fenestella sp. nov. (a common Chester form).
Archimedes compactus Ulrich
> Archimedes companunis Ulrich.
> Arehimedes intermedius Urich.
Archimedes swallovanus Hall.
> Polyporae octricososananus Hirich.
Productus cestriensis
> Productus cestriensis Worthen.
Productus sp. of the type of P. cora.
> Productus sp. of of the type of P. P. cora.
Seminala subquadrata Hall. p. punctatus.
> Seminula subquadrata Hall.
Reticularia setigera Hall
Spiriferina spinosa N. \& P.

Bryozoa and by the presence of Pentremites. The fauna of this limestone is more closely related to that or the overlying . ing black shale the upper limestone of the Fayte ville formation would be included with the Pitkin The species of common occurrence in this upper limestone are given in the foregoing list.
Name.-The formation is named for the town Fayetteville, in Washington County, Ark., and described in the Fayetteville and Tahlequah folios Thickness.-The thickness of the Fayettevill formation is estimated to vary from 20 feet in it sonthern exposures to 60 feet in the northeaster part of the Muscogee quadrangle. Both the shal and the included limestone beds vary in thicknes. Toward the east the Fayetteville formation changes in character. In the northeastern pat of the Tahlequah quadrangle and in the Fayette ville quadrangle the shale in the central and uppe part of the formation is lighter in color than it in the Muscogee quadrangle and includes a thick lentil of sandstone called the Wedington sandstone nember. With the change in character eastward In the northeastern part of the Tall rangle the thickness is 170 feet and in the Fayste ville quadrangle it probably exceeds 200 feet.
There is apparent perfect conformity in
Muscogee quadrangle between the Fayettevill formation and the contiguous Boone formation and the Pitkin limestone. Toward the east, in the Fayetteville quadrangle and at other places in northwestern Arkansas north of the Boston Mountains, the basal shale is locally separated from the underlying Boone formation by the Batesville sandstone. Where this sandstone is nore or less eroded surface of the Boone. In the Muscogee quadrangle the even contact between
the Fayetteville formation and the overlying Pit kin limestone appears to be perfectly conformabl

pititin limestone.

The Pitkin limestone consists of light-blue to brown, granular, earthy, slightly oolitic strat The granular and oolitic types of rock layen The granular and oolitic types of rock are the acterize the formation. The thickness of bed s variable ranging from thin platy strata to 1 or 2 feet thick. The thinner strata are usually nore argillaceous, and thin shale layers not uncommonly separate them.
The Pitkin limestone is considered to be the top of the Mississippian series of the Carboniferous The fossils listed as from the upper limestone of the Fayetteville formation are equally characteristic of the Pitkin.
In thickness the Pitkin limestone in the Mus cogee quadrangle varies but little from 50 feet, such slight changes as probably occur being due oo erosion of its upper beds prior to the depositio of the overlying formation. Where the shaly bed is concealed the boundary between the Pitkin and
Morrow formations is difficult to determine without a careful study of the fossils in the limestones both above and below the contact. In places shale, found above the Pitrin limestone The may the Hale sandston mas the Morrow form tion, which is well developed in the Tahlequa tion, which is well developed in the Tadrangle and farther east in Arkansas.
The Pitkin limestone crops out generally at the bases of hills and in steep slopes, bluffs, and escarpments of the higher Morrow and Winslow formations, the talus from which frequently conTahlequah contact. Toward the east, beyond the in isolated areas and crops out along the norther foothills of the Boston Mountains in northwester Arkansas. Typical exposures occur in the north slopes of the Boston Mountains near Pitkin, on the St. Louis and San Francisco Railroad, from which place the name of the limestone has been taken. The formation was described by Dr. F. W. Simonds (Arkansas Geol. Survey, vol. 4, 1889), by whom it was called the Archimedes of the characteristic fossils, not being an apr priate designation for a formation, a name of geographic significance has been substituted.

pennsylvandian serigs morrow formation.

Variations.-The Morrow formation as devel ped in this region consists of limestone and hale, with local beds of thin sandstone. Th shastene greatly precursminates in thickness. Th of the formation, but is found in places both at th base and near the middle of the main body of imestone. The quantity of lime in the formation decreases toward the east, and in the same direc ion there is an increase of both shale and sandsone. The shale found locally at the base in the Muscogee quadrangle becomes more sandy as it grows thicker, until, in parts of the Tahlequah and in the Fayetteville quadrangle, it assumes the importance of a separate formation or member the Tahlequah and Fayetteville folios it Morrow formation. In parts of the Fayetteville and adjoining quadrangles the formation consists almost entirely of shale and sandstone. Still far ther east, in the vicinity of Yellville, the lime tone, it is reported, is entirely absent. As will bow form in dsenssing the relations of the Mor variations in the constituents of the Morrow local to be attributable chiefly to overlap and to varia ions in character and mount of simer ng to relative distances from the shore line which the sediments were deposited.
The main limestone, with its included shale Constituting the lower and larger part of the for mation, will be described as limestone of the Mor row formation. The succeeding shale, with it thin limestone and local sandy beds, will be discussed as shale of the Morrow formation.
Limestone of the Morrow formation.-The main
limestone of the Morrow formation consists of relatively hard, blue, fine-textured rock. Usually in the middle part a deposit of blue clay shale occurs, interbedded with which here and there are thin andstone and limestone layers. In places shale also occurs near the top of the member, interbedded with the limestone; in such places there is gradation from the limestone into the shale
above. Again there is an abrupt change upward frove. Again there is an
frestone into shale.
Some layers of this important limestone member are full of small gasteropods and pelecypods, of pecies mainly undescribed. Other layers are are nearly all new to science, but when compared with known species their alliances are in nearly every case nearer Pennsylvanian than Mississippian types. A subramose Michelinia (near eugenes White) is abundant, also another coral comparing rather closely with Trachypora austini Worthen. Both of these corals are of service in distinguishing the horizon from the lithologically similar Pitkin imestone. Among the brachiopods, which class is epresented by a number of undetermined specie, Hustedia (ct. mormoni Marcou) affords perhap the most reliable evidence of the Pennsylvanian rather than the Mississippian age of the Morrow formation. Several very fine species of crinoids ccur in the lower limestone, but as they are al new they throw very little light on the age of the Mississippian rocks and in part at least in mue Hississippian rocks and, in part at least, in much rinods are known from the latter series that it not yet posible to estimate properly their value a evidence of the age of the rocks Pentremites rus ticus Hambach is one of the common fossils. It is from this fossil that the old name of the member Pentremital limestone, described as a formation by the Arkansas Geologieal Survey, was derived.
The limestone of the Morrow formation is locally variable in thickness. In places some of the upper beds were removed by erosion prior to the deposition of the succeeding Winslow formation, but the variations are not due in all instances to such removal. South of Manard the limestone is 100 to 150 feet thick. The shale that belongs above the limestone was found in this district whereve exposures could be noted. The thickness decreases hough not regularly, oward the northeast. On E the limestone is nealy 100 f. 16 ., R. L., the limestone is hy 100 Win mation rest on the limestone, the shale that usually
ntervenes having been removed, it is presumed, prior to the deposition of the Winslow sediments. Near the northeast corner of the quadrangle the feet. The same conditions occur near the bound ary of the quadrangle, farther south, in Tps. 16 nd 17 N., R. 22 E.
Shale of the Morrow formation.-The deposi above the main limestone consist of blue and black shale, with thin beds of limestone and sandstone locally developed and more rarely with thin coal in the lower part. The thin limestones and the shales interbedded with them are usually light blue and weather to shades of yellow. They resemble the limestone and associated shale lower in the formation. The shale in the lower part of ciated with the coal is black, being impregnated with ciated with the coal
bituminous matter.
The fauna from the upper thin limestone and sandy beds of the Morrow consists for the most
part of brachiopods and bryozoans. All the forms part of brachiopods occur also in the main limestone below. Essentially a single fauna pervades the whole ormation.
The shale in the upper part of the Morrow formation is usually concealed by sandstone débri and overwash of soil from the overlying Winslow frmation. It crops out near the hilltops or in he sides of valleys near the sources of drainag channels. In consequence of these relations estimates of its thickness can be but roughly approxmate. In places the massive sandstone of the Winslow formation rests on the limestone belong ing below the shale; at others a belt of sloping clay soil, from which thin ledges of limestone project, ranging from a narrow strip to a slope 40 fee in height, indicates the thickness of the upper shal nember of the Morrow formation.
Name.- The Morrow formation is named for the he rocks is exposed in Washington County, bout 5 miles east of the Indian Territory line
Relations to contiguous formations.-The
Relations to contiguous formations.-The strati-
raphic relations of the bottom and top of the Morfow formation to the underlying Pitkin limeston and the overlying Winslow sandstone, respectively, and the over ying Winslow sandstone, respectively, out, however, in any case exhibiting any marked discordance of stratification. That the relation are unconformable is generally determinable only through comparisons between the beds on eithe side of the contacts in separate exposures.
At and south of Fayetteville the Hale sandstone at the base of the Morrow formation, is an impor tant member. The relatively small amount of silicoous sand it contains in the Muscogee quadrangle and the increasing prevalence of such material in the more easterly and northerly outcrops point to he Ozark region, which at that time was land, as the main source from which
The unconformity at the top of the Morrow formation seems to be greater in the Muscogee quadangle than in the more eastern localities where Here the upper Morrow beds, that is, the strata above the main limestone, are locally absent. While the pper shale member ranges from a knife edge to only 40 feet in thickness in the exposures studied in the Muscogee quadrangle, it is not less than 140 eet in the Fayetteville and Winslow quadrangles and at least 275 feet in the southern part of the Yellville quadrangle. Part of this inequality in hickness is doubtless due to the diminution west ward of the quantity of the clastic material derived from the Ozark land of the time, but the greater part must be ascribed either to nondeposition or o erosion, or to both. In any event a considerable hiatus between the Morrow and Winslow forma tions is indicated in the Muscogee quadrangle.
Correlation.-The Morrow formation in the Muscogee quadrangle includes stratigraphic rep-
resentatives of a group of rocks which were sepa resentatives of a group of rocks which were sepaby the Arkansas Geological Survey (Ann. Rept, vol. 4, 1888). The lowest of these, called the Washington shale and sandstone (a called th name), is described in the Fayetteville and Tahequah folios as the Hale sandstone member of the Morrow formation. The locally sandy shales occurring at the base of the Morrow formation in the
uscogee quadrangle doubtless are to be correlated Hale sandstone member in its typical exposures. The upper part of that member, however, is always more or less calcareous and locally includes real limestone, and may be provisionally correlated with the lower part of the main limestone of the formation in the Muscogee quadrangle. According to this interpretation, only the upper part of the main limestone is the equivalent of the Pentremital limestone of the Arkansas Survey and the Brent-
wood member of the Morrow formation, described wood member of the Morrow formation, described
in the Fayetteville folio. The lower part of the the Fayetteville folio. The lower part of the hale, which contains the local coal beds, is the Coal Bearing shale" of the Arkansas Geological part or the Morrow is to be correlated with the Kesler limestone of the same report.
winslow formation.
Character.-The Winslow formation consists of bluish and blackish clay shale, sandy shale, brown andstone, and thin beds of coal. The sandstone beds for the most part occur in two groups, on near the base
he formation.
The rocks near the base and below the lowe body of sandstone are interstratified sandstone and hale beds. The sandstones are for the most part hin or shaly, but in places are thick and massive and occur at the base in contact with the limestone of the underlying Morrow formation. Locally they are coarse grained at the base and may contain small rounded pebbles of quartz
This pebbly character increases eastward until, in This pebbly character increases eastward until, in he northern foothills of the Boston Mountains of north western Arkansas, the rocks become conglomratic. It may be said that these alternating sand ne ans whits lie 200 to 400 fetker sand one deposis which lie tho to 400 feet above the ally time the amount of lime in the sh, that perts of it become very calcareous and it ains beds of shaly limestone.
The sandstone deposits have
raphic expression in the southeir strongest topoquadrangle, where they are thickest. The beds of heavy sandstone in the upper part of the series cap the local table-lands east of Illinois River and the timbered hills lying along the west side of Arkanas Valley from the southern border of the quadangle to a point opposite Muscogee. Farthe orth and east of Arkansas and Neosho rivers and ordering the valley of the latter the topographic features incident to these sandstone beds are less pronounced. The forest also, which is influenced by the occurrence of the sandstone, becomes gradually thinner northwar
prairie on the uplands.
prairie on the uplands.
On the lower group of sandstone and shaly bed rests a deposit of shale composed chiefly of clay this position, but not of sufficient thickness or hard ness to become apparent in the surface of the land The shale dips approximately 2° toward the southvest in the southern part of the quadrangle, and its outcrop is limited to the valley of Dirty Creek Toward the middle and in the northern part of the quadrangle the dip of the rocks becomes less and the sandstone both above and below decreases in hickness, so that the surface extent of the shale ne not be outlined. A thin coal which occors in near the source of Spaniard Creek and on Sam Creek south of Muscogee. Thin coal beds, pre amably in the same shale, have been prospected 2 miles south of Wagoner. Like the deposits lower in the formation, the shale becomes more limy
horthward. Limestone beds, probably of local orthward. Limestone beds, probably of local extent, occur in the vicinity of Wagoner, and
others are reported to have been penetrated by others are reported to have be
drills in deep wells at Muscogee.
The upper
The upper group of sandstones consists of yel
owish-brown beds interstratified with bluish clay hales. These beds are in part ferrug bluish clay cenerally soft, except where segregations of iron have locally indurated the rock. The uppermost beds are thickest; these cap the escarpments and low hills that mark the outcrops of the deposits west of Dirty Creek and those at the sources of Spaniard, Sam, and Pecan creeks. The low dip slopes of the
ppermost beds extend from the top of the low ecarpments down to the wide valley at the base oward the northwest. The thickness of these andstone beds, with their included shales, near the southern boundary of the quadrangle is estimated to be more than 100 feet. Toward the northwest he sandstones become thinner and softer and it is believed that they can not be traced north of Arkansas River
From the top of the upper group of sandstone Eds shale continues to the top of the formation Locally variable shaly sandstone beds and beds of In coal occur in the shale. Accurate determinations could not be made, but it is estimated that This shale is the westward eotinuation Alins shale the wind described in the Tahlequah folio.
Name.-The Winslow formation is named for a town located at the crest of the Boston Mountains on the St. Louis and San Francisco Railroad, in north western Arkansas. The greatest development of the formation, especially that of the sandstone deposits in the lower part, occurs in the Boston Mountains. The Boston Mountains are the physiographic expression of the Winslow formation Thickness.-The thickness of the Winslow formation in the quadrangle is estimated to be 800 to 1000 feet, but an accurate determination of its thickness is not possible where the rocks are inclined at low angles, where dips are variable, or where the strata in large measure are obscured
by soil. Toward the west and north it becomes by soil. Toward the west and north it becomes thinner. Near the Arkansas-Indian Territory boundary, 25 miles east of the Muscogee quadangle, it is estimated to be not less than 1500 feet ral higher formations, agregating sand feet in their exposures along Canadian River decrease in thickness northward until they do exceed 500 fet at the India Teritory Kana boundary, In the Kanses section the Winslow formation is represented in the lower part of the Cherokee shales.

Correlation.-Southward the Winslow formation Cescends beneath the surface in the deep trough of cogee quadrangle. Where it rises in the south side of the Arkansas Valley trough and against he Ouachita Mountain region in central Choctaw vation, the section has increased to an estimated hickness of 8000 feet. Here the stratigraphic hree formations, named the Atoka formation, the Hartshorne sandstone, and the McAlester formaHion. These formations have been mapped through their entire extent in the Choctaw Nation and have been described in the Coalgate and Atoka folios and in papers on Indian Territory coal published Innual Reports of the United States Geociea Survey The McAlester formation is eological across the Arkansas Valley trough and is found to be equivalent to the part of the Winglow forma tion in the Muscogee quadrangle that extends from the top down to the lower group of sandstones 200 to 400 feet above the base. The stratigraphic relations between the lower 200 to 400 feet of the Winslow formation in the Muscogee quadrangle and the Atoka and Hartshorne formations, aggregating more than as many thousand feet, can not be ascertained, because these rocks have not yielded ossils for accurate comparative studies.
The McAlester formation in the Sansbois quad rangle, which adjoins the Muscogee quadrangle, is verlain by the Savanna formation. South of Sansbois Mountain the Savanna is approximately
1000 feet thick. Its thickness becomes gradually 1000 feet thick. Its thickness becomes gradually less toward the north, until the sandstone beds ontained in it are lost to view near the southern boundary of the Muscogee quadrangle. This forWinslow forg and he top of the Winslow formation, being stratigraphically the seems to be in contact with the overlying Boggy formation.
ramation.
Character.-The Boggy formation is composed bluish clay shale, sandy shale, and gray or
alternate strata, and the shale in the aggregate is thicker than the sandstone. There are twelve or more groups of sandstone beds separated by stone and shaly sandstone strata.
In the Muscogee quadrangle only the lowest sandstone and its inclosing shale members are exposed. The basal deposit is a comparatively soft shale, approximately 200 feet thick. The overlying sandstone is a gray to yellowish-brown rock, and occurs for the most part in thick or massive and moderately hard beds. The lower sandstone beds are usually exposed in cliffs and bluffs at the crests of the escarpments which they produce. The upper layers make flat and gently rolling tracts of sandy loam which slope westward Toward the northwest this sandstone gradully Toward the northwest this sandstone gradually in thickness and the change in character being emphasized by the toporaphic expression of the emphasized by the topographic expression of the
rock. Near the southern boundary of the quadrangle the sandstone is marked by the quadescarpment and timbered table-land of the Rattlesnake Mountains Northwestward the escarpment becomes gradually lower and less distinct, until it is lost in the rolling prairie north of Oktaha. The lowest shaly strata, lying above the sandstone, occur in the southwest corner of the quadrangle. A bed of b occurs in this shale near the base. It should be found to crop out across the southwest corner of the quadrangle.
Name.-The Boggy formation was named for Boggy Creek, in the Choctaw Nation, and has been described in the Coalgate and Atoka folios of the United States Geological Survey. It has large exposures on Boggy Creek in the Coalgate quadover 2000 feet, Only the lower part of the Bogs formation hav. Ony the lower part of the Boggy feet, is exposed in the Muscogee quadrangle. Correlation.-The is ereatestee quadrangle. sandstone members of the Boggy formation the found along the Canadian River Valley in the Canadian quadrangle, which adjoins the Muscogee quadrangle on the southwest. From the Canadian Valley, both toward the southwest and northeast, there is a gradual thinning of the sandstone beds and of the formation as a whole. In both directions there is an introduction of limy strata in the shale, with thinning of the sandstones. This thinning of the sandstones or their gradation into shaly deposits becomes so pronounced farther north that the formation can not be distinguished north of Arkansas River. Formations lying above the Boggy have been traced from Arkansas River to the Indian Territory-Kansas line, showing that
the 2000 feet or more of the Boggy formation in the 2000 feet or more of the Boggy formation in the Canadian River Valley must be correlated with
a part of the Cherokee shales of southeastern Kansas.
quaternary system.
terrack sand.
At the borders of the immediate valleys of Arkansas and Neosho rivers, above their flood plains, lie surficial deposits of gravel, sand, and consist of fine yellow sand and silt, with small quantities of quartzose gravel locally in the lower part or at the base. The coarser sand is found in the central parts of the areas and in the sides toward the river, and resembles in all respects that now being transported by Arkansas River.
Near the borders of the terrace deposits farthest from the river the sand grades into silt which is scarcely distinguishable from the light sandy loams residual on Carboniferous rocks. These sands and silts are porous, nonindurated deposits and are easily transported, even by the smaller rivulets. As a result the upper, finer sands often conceal by overwash the lower parts of formations and their basal contacts.
The terrace deposits at the border of the Neosho River Valley locally contain chert and sandstone gravels, derived from the Boone chert and the
overlying Carboniferous rocks contiguous to the overlying Carboniferous rocks contiguous to the
valley of Fourteenmile Creek. Gravel of the same class, with less sand associated, occurs on the north side of Fourteenmile Creek across T. 17 N., R. 20 E, and extends upward from the valley to an vation of nearly 100 feet above the stream. It
occurs as a thin mantle or in local patches spread over the Carboniferous rocks.
These terrace sands and gravels extend from the borders of the river bottoms upward more than gris rivers occupies the watershed between the streams for over 9 miles. These sands have been deposited a sufficient length of time to have had developed on them a pronounced erosion topography. The larger streams have worn down channels to a depth of 50 to 100 feet and the smal tributaries have obliterated the level of the original flat surface.
Sand deposits of the same character have been mapped along Arkansas Valley in the adjoining Sansbois and Sallisaw quadrangles, and similar deposits have been reported by the Arkansas Geological Survey to occur in the same valley in
Arkansas. Terrace deposits of the same kind Acur ins. Terrace deposits of the same kis then Red rivers. The and in the Conalim ita, and Ret ralls. The sand in the Canadian and Tishomingo folios. Terrace gravels and sands in Red River Valley continue southeastward, join-解 tributed over the Tertiary rocks of eastern Texas tributed over the Tertiary rocks of eastern Texas
and Louisiana. These gravel and sand deposits descend beneath the surface near the base of the Quaternary sediments bordering the Gulf coast. Since these terrace sands in the Muscogee quadrangle are related in both composition and location to the sand transported by the river at the present time, it is concluded that they were laid down by the meandering Arkansas when it flowed at elevations 150 feet and less above its present level.

river atluviux.

The rivers of the Muscogee quadrangle, and specially the Arkansas, have developed in recent time relatively broad flood plains and second botoms composed of silt, sand, and gravel. The rains to such depth that sediment in their flood de to side in them, only occasionally touching the ountry rock at the sides and beneath the surficial deposits.
The sediments deposited by Arkansas River conist of gravel, yellow sand, silts, and chocolate and red clays. The gravels are found along the river banks near low-water line and in the lower part of the older deposits, marking the beds of the river during earlier stages. The sands are most abunant near the present channel, while the finer silts and chocolate clays have been deposited more abundantly toward the outer limit of the flood plain and in other localities protected from strong currents. The larger part of the Arkansas River deposits was derived from the red strata of the Permian and the more friable Cretaceous, Tertiary, and later surficial sediments of the western plains in Kansas Colorado, so that they necessarily differ from e allains of the Verdigri nd the Neosho.
Verdigris River drains the Carboniferous rocks of southeastern Kansas and northern Indian Ter-
ritory. Its alluvium, especially that of the finer silts deposited near the borders of the flood plain, scarcely to be distinguished from the residual and local transported soils.
Neosho River receives a large part of its sedinent from the cherty strata of the lower Carbonferous in southeastern Kansas and southwestern Missouri. The silts, however, which are more limy than those of Arkansas and Verdigris rivers, resemble closely the local transported soils of the
Carboniferous shales in northern Indian Territory Carboniferous shales in northern Indian Territory. structure.
gional features.
Sedimentary rocks of broad extent, consisting o ne sand, clay, and lime, like those exposed in the Muscogee quadrangle, were originally almost flat, lightly inclined with the sea bottom on which ey were dith in mich ediments being laid down off the shores of the sediments being laid down of
After the Carboniferous period the region was uplifted and the flat strata were tilted, warped into folds, and broken by faults, as they are now found. It is not to be assumed that this tilting, folding,
and faulting occurred in a short interval, even
of geologic time. Instead, it is most likely that of geologic time. Instead, it is most likey that
the deformation of the rocks has been going on at various ages since the Carboniferous and that movements have occurred, especially in the eastern part of the quadrangle, in relatively recent time. Two structural provinces are represented in the Muscogee quadrangle. One of these is the Ozark uplift, corresponding to the physiographic prov ince of the Ozark highland; the other is the Prairie Plains in northern Indian Territory, of monoclinal structure. A brief outline of the Ozark uplift and the monoclinal Prairie Plains will give a better understanding of the structure of the Muscogee quadrangle.

ozark uplift

The Ozark uplift comprises southern Missour at part of Arkansas included in and lying nort the Boston Mountain sippi lowlands, northeastern Indian Territory eas Kansas. In fig. 1 are outlined approximately the physiographic divisions of the Ozark province. The boundaries of the uplift can not be clearly defined because of the gradual change in structure to that of the border provinces of the Prairie Plains and that of the Arkansas Valley. The strata incline gradually downward on the north and west beneath the Prairie Plains. The limits are more distinct on the south, owing to the more abrupt change from the monocline of the Boston Mountains to the folded rocks of the Arkansas
Valley. On the eastern border of the dome the Valley. On the eastern border of the dome the structure is concealed for the most part by the northern extension of the Tertiary and the recent flat sediments of the Mississippi lowlands. The exposed limit, however, is sharply marked here by which the St. Louis, Iron Mountain Souther Railway has. Loen, I.it Theran and crosses Mississippi Ruiver near the mouth of th Ohio and curves northward and then westward, including a small district of southwestern Illinois The Ozark uplift has the form of an elongated dome whose axis trends approximately S. $70^{\circ} \mathrm{W}$., through the St. Francis Mountains in eastern Missouri, toward the northwest corner of Arkansas and the Muscogee quadrangle. The axis is not marked by a definite crest, such as is usually found in distinct smaller upward folds. For long distances across the axial part the strata are flat or sightly undulating and are locally broke by normal faults. As explained, the formations neline at low angles from the northwest side of
the broad dome. Likewise, the strata pitch at low angle along the axis toward the southwest Between the axial part of the uplift and the Boston Mountains the structure is undulating and the rocks are locally faulted, resulting in a low slope
toward the south. In the southern slopes of the Boston Mountains the tilting is increased by a Boston Mountains the tiling is increased by a succession of strong dodidiping moclin ceompanied by local faulting.

The Prairie Plains constitute a broad and long physiographic province that includes rocks of varied geologic and structural character. In that part of the province, however, in northern Indian Territory, Kansas, and Oklahoma the structure is the rocks are inclined at slightly variable but low angles. 'Toward the south, in the plains near the eastern boundary, the westward pitch of the strata increases from about 20 feet per mile in eastern Kansas to nearly 100 feet per mile at the southwestern limit of the Ozark region, near Muscogee. Toward the west, in the Prairie Plains, there is, on he contrary, a gaan decrease in the inclination of the strata. Locally there is a slight warping, but it is not known to be sufficient at any place to
reverse the westward dip of the rocks. The greatest variation in the rocks.
he western border of the Ozark uplif the western border of the Ozark uplift. Undulathe Prairie Plains monocline
divind or humband
Divisions.-The Muscogee quadrangle is divided uplift and the Prairie Plains monoline Arkan
sas and Neosho rivers follow approximately the line between the two structural divisions. When viewed broadly the rocks in the quadrangle are half the average inclination is less than 20 feet per mile. Near Arkansas and Neosho rivers the mo oclinal tilting is increased to 100 feet or more per mile, and this inclination continues to and beyond the southwest corner of the quadrangle.
Structure sections and maps.-To aid in giving an understanding of the structure of the quadrangle a structure sheet has been prepared, showing the geology of two sections, one drawn across the
strike in a southwesterly direction, and the other strike in a southwesterly direction, and the other across the folded and faulted strata. These structhe formations beneath the surface, though the the fale is too small to show the minor undulation and details of folding. The sections show the tructure only near the The sections show the have been drawn, but will aid materially in the interpretation of the structure of the quadrangle a whole.
fads and faults.-The rocks in the eastern half of the quadrangle, more particularly east of Arkansas and Neosho rivers, have been thrown into relfolds, which trend northeast and southwest. These synclinal folds are separated or interrupted by no mal faults associated with incipient anticlinal fold or by unsymmetrical anticlines that in general
strike with and extend beyond the end of the strike with and extend beyond the end of the faults. Where the folds and faults are
it is necessary to describe them together
The faults may be classified into two series or groups-one in which the associated folds are more or less pronounced and one in which the folds are Thot pronounced or are incidental to the faulting. of the folded foulted district Green 1 Fore, , in their valleys, are thre brod and shllow in thes whose northern limbs are wide and undula ing and nearly flat and whose southern limbs broken and displaced downward toward the north by faults that extend generally parallel with and near the axes of the folds. The rocks on the downthrown side are strongly flexed upward toward the faults-seemingly as a result of drag produced by the faulting. The axes of the anticlines lie nea at hand south of the main faults.
The fault south of Greenleaf Creek ends east Garfield. As it dies out the slight folding with which it is associated increases and in the strike the fault there is a strong northward deflection in the rocks. This structure continues in the strik of the fault southwest to Arkansas River
A second broad syncline and associated fault of Manard. This fault is also the valley of Bayou Manard. This fault is also in the steep and narsteeply upturned on the northern or downther steeply upturned on the northern or downthrown and locally warped and is broken by three broa faults that trend parallel with the larger structures. Their down ward displacements are toward the north, as in the larger folds, but the local folding or warping of the associated strata is apparently due to the faulting. These local faults belong properly with the second class, in which the folding seems to be incidental to the faulting.
The third large fold of this series of faulted folds is in the valley of Double Spring Creek. The southern limb is narrow and faulted, as in the folds of Greenleaf Creek and Bayou Manard The rocks are strongly flexed upward against the fault on the north as the result of the drag.
To the second series belong several smaller folds. A very shallow syncline bears northeastward from Arkansas River Valley at the mouths of Greenlea and Cedar creeks. Near the boundary of the quadrangle this fold is broken by three faults which gle. The rocks between the two southernmost faults have dropped down with respect to the strata on the north and south, and a third fault crosses the quadrangle boundary a mile north a
the downthrown block. It is the west end of a fracture that extends 12 to 15 miles into the Tahlequah quadrangle. In this instance the downthrow is toward the north, resulting in a narrow, elevated, westward-pitching fault block near th
center of the main fold. In the strike of the most southerly fault, extending southwestward from its Ind th Arkansas River, there is a distinct anticline more steeply tilted than those in the norther limb, although the rocks near the quadrangle bor der are thrown downward toward the north. Toward the southeast in this fold the dips of he rocks gradually decrease to the corner of he quadrangle.
A number of faults occur between the valleys of Fourteenmile and Double Spring creeks and the northern boundary of the quadrangle. These are peculiar in respect to their relations both to on nother and to the folding of the strata. Two o N., R. 20 E., within about half a mile ., R. 20 L., within about half a mile of each downthew of the moly southeast, while the displacement of the other i downward in the pposite direction, leaving elevated block between them. To the east of thes faults are two others, which are about a mile apart and nearly parallel. The strata between these have been moved downward with respect to the adjoining rocks. This depressed block abuts against the elevated fault block just mentioned. The fault on the south of each block join in a common frac ture, while the one on the north of the downthrow area cuts across the faults bounding the elevated block.
Two other faults occur farther west, near Arkan as River, and bear toward the southwest in th general direction of the dip. The larger and mor easterly of the two has thrown the rocks dow oward the east, while the downthrow of the othe is in the opposite direction. The general inclina fion of the strata is toward the south, and the folding of the rocks, except in one small area to be drag of the bedo the lines fous. Wher hese fult have an hrow is toward the north there is an interruptio of the southwad dips and locally variable folling is produced. Where the downthrow is in th opposite direction there is simply an increase in the dip south ward near the fault contact.
In the eastern part of the quadrangle there are three peculiarly sharp local upward folds. The largest of these is near the mouth of Fourteenmile Creek. Its axial trend is nearly north and south, in the direction of the general dip of the strata. The fold is sharp and the dips are greater on the east than on the west-side. Of the two other local olds, one on Illinois River, in the southeast corne of T. 14 N., R. 21 E., is a small and sharp elliptical dome, whose axis cuts across the trend of arger faulted fold. The other, a small dome-like uplift, lies 3 miles north of Melvin and within Its axial trend is in the direction of the aner inclination of the strata. It is situated near fault and in the strike of another, but apparently is not related to either or to the warping of the strata produced by them.

Relations of folding

Relations of folding and faulting.-As has
already been explained, all the broader folds of the Ozark uplift are related to the faults, bu the general causes producing them can not be determined at the present time. That the fold ing in some instances has been accentuated by the faulting is evident, and that they occurre about the same time is probable. An example of he close relation and interdependence of the folding and the faulting may be noted in the faulted basin southeast of Crittenden, near the northeas corner of the quadrangle. In this instance the basin is apparently bisected by the fault. If fold ing had preceded the faulting or had been inde pendent of it evidence of folding of the rock should appear on both sides of the fault, but the he fault, opposite the oreatest sisplacement and reb the the ducing the fold were evidently relieved on the outheast side of the fault by the fracturing of the strata. Similar phenomena of structure will be found in the eastward extension of the faults and folds in the Tahlequah quadrangle and are illustrated in the Tahlequah folio (No. 122) by a view of a model showing the deformed surface of the Boone formation.

Geologic distribution of faulting.-The faults in \mid submergence is found in the Chattanooga black he Muscogee quadrangle affect only the Mississippian and the lower part of the Pennsylvanian rocks. Both the faulting and the folding decrease westward, and the former is not known to occu west of Arkansas and Neosho rivers. The anihe synclines, grow gradually flater and more indistinet until they are lost in the undulating monoclinal structure of the Prairie Plains region, in the western half of the quadrangle. The local variations in structure west of Arkansas and Veosho rivers are not expressed in the mapping of the Winslow formation. Could certain sandstone beds near the middle of the formation be mapped their outcrops would mark wavy lines in north-south direction near Muscogee, showing uplift. When the away of the folds of the Ozark reached, however, little effect of folding can be discerned, the irregularities of the contact at the base of the formation being due to the surface configuration of the land. Local variations of the dip of the rock occur, but as a whole the inclination of the strata is toward the west at approximately 100
feet per mile.

HISTORICAL GEOLOGY.

The rocks of the Muscogee quadrangle were deposited in water as sediments from the waste of neighboring lands and from the remains of animals and plants which lived in or near the borders of the seas when the sediments were being laid
down. These rocks are limestones, shales, and sandstones, and when they were deposited consisted of limy ooze, mud, and sand, respectively The character of these rocks when traced and studied over a wide field tells the story, though not the complete story, of the manner of their forma tion. As successive formations were deposited the forms of animal and vegetable life changed or migrated and were succeeded by other forms. A certain stages in the sedimentation gaps in the life record, accompanied by discordance in the character and structure of the rocks, show oscillations of the land and sea. The variations in the coarseive coldence as fey were itel the nature of the 1 ich hey were deposits. The fossil remains not only show the relative a dentifying and correlating formations which come to the surface in separated localities
Stratigraphically below the litie
urface in the Muscogee quadrangle lie doks at the imestones, sandstones, cherts, shales, etc., of Ordovician, Silurian, and Devonian age. These deposits, with rocks of Cambrian age, appear around the older igneous rocks of the axial part of the Ozark uplift in southeastern Missouri. The make large areas in southern Missouri and northern Arkansas, and occur in several small tracts in the adjoining Tahlequah quadrangle They reveal a record of sedimentation which is not essential to the geologic history of the Muscogee quadrangle and deserves but brief mention That a large part of the region underwent numer us oscillations of level above and below the sea is recorded by the alternation of formations of shale, and by the occurrence, of conglomerate Some, and by the occurrence of conglomerate ome of these formations have been deposited of erosion.

After the deposition of the St. Clair marble, the only Silurian formation in the southwestern part of the Ozark region, there was a break in the sedinentary record, corresponding to the closing porthis long interval the rocks were folded into low andulations and uplifted into land. Probably while the folding was in progress, and certainly after it had occurred, the land was reduced by erosion to a low and neary level surface. This land was submerged in late Devonian time. These conditions prevailed not only in the vicinity of
the Muscogee quadrangle, as shown in the adjoinng Tahlequah quadrangle and at many localities in Missouri and northern Arkansas, but seem to have extended over nearly the whole of the marginal part of the Ozark uplift. The record of this
ubmergence is found in the Chattanooga black
hale, which was deposited over a very broad xtent of country on the south and east sides of he Ozark uplift, and in the other middle to late he uplift. These Devonian rocks are vould be formed in broad, shallow seas.
That the land had been nearly seas
Town by the fact that the Devonian seveled is rest on the eroded surfaces and slightly beveled dges of many older formations, ranging in ag from early Ordovician to middle Silurian and consisting of sandstones, shales, limestones, and dolomites; and that the submergence was comparatively apid is indicated by the fact that the remaining ainor hollows and channels were filled with quickly accumulated land wash, consisting largely of rounded quartz grains, before the more evenly pread shales and shaly limestones were laid lown. These initial deposits of this Devonian submergence make up the unequally distributed ylamore sandstone, the local member of the Chattanooga formation, a full description of which
can be found in the Fayetteville folio. The genral evenness of the old land surface and the rapidy of the submergence are further indicated by th ial in the . Devian beds that ial in the overlaph Deve that hie pon the Sylamore sandstone, although severa Tyner shale and the Burgen sandstone of the Tah lequah quadrangle, are friable rocks. Recognizqule débris from the latter occurs only in the nitial deposit, that is, in the Sylamore sandstone After the deposition of the Chattanooga shale abmergence of the region continued well into Mississippian time until the Boone limestone and chert were formed. The broad extent of this subnergence is shown by the fact that patches of the Boone formation occur almost up to the crest of he Ozark dome. In later Mississippian time the sea bottom was elevated and a part, at least, of th Ozark region became land. Oscillations of lan and sea, however, occurred until the completion of he Mississippian series, as is shown by the pres ence of locally variable formations of sand, clay and limestone.
In mid-Carboniferous time the sea withdrew, eaving the Ozark region as land beyond the boundary marked by the exposed top of the Mis hand at this time is shown by the erosion of the ighest Mississippian formations where the Penn ylvanian rocks come into contact with them In he south and southwest sides of the uplift, not ably in the Muscogee quadrangle, the unconformity is not great, but farther up toward the crest of the dome, higher rocks of the Pennsyl vanian series rest upon successively lower beds of he Mississippian. In southwestern Missouri, on the western slope of the uplift, the Boone formation shows evidence of mid-Carboniferous erosion, and the depressions in its surface contain remnan of Pennsylvanian conglomerates and shạles. In entral Missouri, on the northern slope of the Ozarks, Coal Measure shales and coal occur in inkhole-like depressions in what are probably Ordovician strata. Thus it is seen that after the elevation of the Ozark region in mid-Carboniferous time it was again submerged, but to what exten is not known, since so large a part of the formahe uplift. The waters in which the Winslow and hter formation of the Pennglvanian series were deposited were shallow; the bottoms of the seas requently rose to the surface, and the lands wer low, as is attested by the alternating and irreguands extended beyond the confines of the Ozark uplift. The Pennsylvanian sediments grow thicker and contain a greater quantity of coarse material of the the south and east, indicating the direction and especilly from which the great abundance of of this is the fat the the later beds of the Penn ylvanian deposits which overlap the old rocks of the Ozark dome decrease in thickness northward nd contain little coarse sediment.
After the close of the Carboniferous the whole recoron was raised above the sea and there is no been submerged. The features of the Ozark region
and the occurrence of later rocks on its eastern border show that the surface has oscillated and that the records of physiographic and structural history records of physiographic

MINERAL RESOURCES

The Muscogee quadrangle contains coal, oil gas, building stone, limestone, road material, and lay. To these resources may be added water, sil, and the forests, which deserve careful atten-
tion. The ores of zinc and lead may possibly be found in small quantities in the Boone fornation, particularly near lines of faulting, as his formation yields the lead and zinc ores of southwestern Missouri and of parts of northern Arkansas. The structural conditions in all these areas are very similar; that is, the rocks are essentially horizontal and are broken by normal faults.
However, no zinc ores are known to occur in comHowever, no zinc ores are known to occur in co
mercial quantity in the Muscogee quadrangle.

coal.

Bituminous coal of good quality occurs in the Muscogee quadrangle, but has not been found in beds or sucient thickess to be prontably mine pected and mind by trip.ing to a wall oxtens icht localities The locations of these propet ge shown thes. igns. \qquad
in the eastern part of sec. 2, T. $17 \mathrm{~N} ., \mathrm{R}$ 20 E . The mining or stripping is in the flat valey of Fourteenmile Creek 3 miles north of the t. Louis and San Francisco Railroad. The coal ocurs in a black shale, 30 feet or more in thickess, that lies above the thick limestone of the Morrow formation and beneath certain sandstone beds of the Winslow formation. The coal is preamed to be in the Winslow formation and is the lowest known to occur in Indian Territory. The ocks in the immediate vicinity are approximatel at and the coal lies near the surface, so that it can be mined by stripping off the surface rock.郎 bed is 22 inches thick and contains no shale r other apparent impurities. The coal has been and no analyses or tests of it have been made Several thin bed have been 1 rospected in the northwestern part of the quad rangle, south and west of Wagoner; also in the outhwestern part, 4 and 7 miles south of Muscogee. These beds occur in the shale near the entral and upper parts of the Winslow formatio and in all cases lie approximately flat. The coal is ituminous, but so far as known the beds are too hin to be mined with profit. A coal bed has been prospected and mined by stripping near the southwest corner of sec. 7 and in the northeast corner of sec. 18, T. 12 N., R. 19 E . This bed is near th op of the Winslow formation, in the horizon of he coal mined at Starvilla and at Stigler, in the djoining Sansbois quadrangle. The coal beds at 11 these localities correspond stratigraphically with he McAlester coal, in the southern part of the Indian Territory coal field. The beds in the Huscogee quadrangle are inclined 2° toward the clean, and from 18 inches to 2 feet thick. A lean, and from 18 inches to 2 feet thick. A railroad in the NE. 1 sec. 18 . The developmen airoad in the NE. $\frac{1}{4} \mathrm{scc}$. 8 . The development the output is used for local consumption.
A coal bed is mined on Elk Creek 2 miles sout of the point where the Creek-Cherokee line approaches the southern boundary of the quadrangle. the southwest corner of the quadrangle. It is a vood grade of bituminous coal 2 feet 6 inches thick, and is being mined for local consumption.

oI

The production of oil in the Muscogee quadangle is limited to the immediate vicinity o Muscogee. The productive territory at the time of investigation, in July, 1904, was located in the outheastern part of the town, on a strip of land one-fourth of a mile wide and a mile long,
extending from northeast to southwest. This land extending from northeast to southwest. This land
is not all oil bearing, however, for a group of six
wells drilled near its center proved to be barren, and a few wells drilled near the border of the town site, on the north, east, south, and west sides, did not yield oil in paying quantity. Other unprofitof Muscogee, at Fort Gibson, and at Wagoner, each to a depth reaching or passing benath the reologic horizon of the oil-bearing sand of the Muscogee field.

The discovery of oil at Muscogee was made in 1894, when two wells were drilled. In one of these a sand was encountered at 665 feet which yielded at 1100 or oil a day. Another sand, pena day. Active drilling for oil began in February, 1904, and during the year more than 30 productive wells had been drilled. Their combined capacity was estimated at 1000 barrels a day.
The Muscogee oil is greenish in color, turning to a reddish hue in transmitted light. It is of much higher grade than any other oil produced in Indian Territory, having a specific gravity of 42° Baumé. The Muscogee oil has a paraffine base, while the residuum from the other oils in Indian Territory is a bitumen or so-called asphaltum. tured moderaring rock at Muscogee is a fine-texfeet thick The hard, gray suck 12 to 18 permit a H. flow of through it, and in order permit a rapid fow of oil through it, and in order high-power explosives, a larger surface being thus gained for the passage of the oil. The oil-bearing gained for the passage of has was oil-bearing little more than 1000 feet in the north end to about 1100 feet in the south end of the field, the difference in the depth being due chiefly to the general southward inclination of the strata. The surface of the land is generally undulating and a little lower in altitude at the south than at the orth end of the field.
The wells at Muscogee were put down by several rilling companies and the same oil-bearing sand was penetrated by each. The succession of shale, sandstone, and limestone was not interpreted alike by each driller. The logs of the wells, however, accord generally in showing that shales and sandrones, with thinner strata of limestone, make the feet At this depth thick limeston wore feet. At this depth thick limestones were generto the drill. Limestone, shale, and sandstone alternating suceession continue according to reports, down to the oil-bearing sand On to paring this general record with the section determined by detailed geologic mapping east of Neosho River, it is found that the top of the limestone occurs 100 to 200 feet above the top of the Mississippian series. In this region the thickness of the Mississippian is found to range from 200 to 300 feet. According to this interpretation of the well records the Muscogee oil sand is interbedded with or lies mmediately beneath the Mississippian strata.
A well recently drilled to a depth of 1167 feet Fort Gibson furnished 65 samples of vàrious inds of rock penetrated, from which a reasonably accurate section of the rocks is obtained. From this material the fact is developed that the cherty Boone formation of the Mississippian series that is xposed at the surface in eastern Cherokee Nation depths below the level of weathering. The Boone epths below the level of weatherng. The Boone series in the Cherokee Nation and is the only part of the Mississippian known to the well driller This cherty limestone was believed to be the horizon beneath which oil was not known to occur in the Indian Territory field.
NATUKAL ©AS.

Beds of sandstone occur in the Muscogee oil field at depths of 800 to 840 feet which yield, locally, salt water and gas. They are referred to by the driller as "salt sands." Several of the wells have yielded considerable quantities of gas from this horizon, but the supply not being large in most A gas flow was encountered at a depth of 825 feet a well near the center of the west side of the oil producing area. The capacity of this well was estimated to be $1,000,000$ cubic feet a day. The gas was utilized as fuel for some time, but later it gas was utilized as fuel for some time, but later it
was ignored and drilling was continued to the oil
sand, where a profitable flow of oil was obtained Another well, at the north end of the area, yielded
an estimated flow of more than $1,000,000$ cubi feet of gas daily, but it became flooded by a strong flow of salt water and had to be abandoned.

buldding stone

Near the base of the Fayetteville formation ther re certain beds of dense, evenly stratified limeston that may be utilized for building purposes. The strata vary from a few inches to a foot or more in varies from place to place, aggregating a maximun of about 15 feet. The fresh rock varies from dark to light blue, but on weathering it changes to drab nd yellowish blue.
Deposits of limestone similar in color and hardness to the limestone of the Fayetteville formation occur in the Pitkin and Morrow formations. Thes limestones vary from thin layers to beds nearly 2 beet thick. There is also variation from bed to dense, fine textured, and crystalline; others are dense, fine textured, and crystaline; others are
more earthy and shaly. All are more or less fos siliferous, and the fossils, particularly where abundant, will lower the quality of the stone. The quantity of this limestone is practically unlimited, and its occurrence is shown on the geologic maps by the boundaries of the Pitkin and Morrow formations.
The Winslow formation contains many beds of sandstone, some of which is adapted to certain uses in building construction. Large quantitie of stone may be obtained for foundations, fencing, and other ordinary farm improvements. Many sandstone beds are exposed or lie near the surface in the hills west of the Arkansas between Muscogee and Webbers Falls, and on both side of the Neosho. The same beds occur at the sur ace in the hills east of these rivers. Many o y thin layers of shale that permit, sepreted duarrying of the stone. Sandstone beds that pro duce building stone occur also above the middle of the formation. Some of these outcrop in th escarpment west of Dirty Creek and at the heads of Spaniard, Sam, Coata, and Pecan creeks. Large areas of the sandstone beds crop out or lie beneath the soil on the gentle westward slopes of the hills. A group of sandstone beds 30 to 40 feet thick curs in the vicinity of Muscogee and crops out from that point westward to the boundary of the quadrangle. This stone caps local table-lands in the center of sec. 23, T. 15 N., R. 18 E., and xtends on the lower ridge to the Mission. They lso cap the hill in sec. 20, T. 15 N., R. 18 E. and the table-land east of Pecan Creek. This rock occurs in both massive and thin beds, the thicker strata being usually in the central part of the sand stone group. The unweathered rock is of gray or texture and is moderately hard, furnishing free stone of a fair quality. Certain beds in the fower part of this group cap the small table-land at the northern edge of the city of Muscogee, and the rock is quarried and used successfully in large buildin is quarried and used successfully in large building
construction. In 1902 massive beds about 8 feet thick near the middle of the exposure were being quarried. On weathering stratification plane develop, separating the beds into dimension layers, and these planes are utilized in quarry ing the stone. The weathered stone assum durable shades of yellow and brown.
Large areas of sandstone are exposed in the able-land of the Rattlesnake Mountains and in the hilly district east of Oktaha. Some of the bed occur in layers suitable for quarrying and doubt less will be utilized as agriculture develops in the ontiguous district of fertile land

imestone.

Certain beds of limestone in the formations referred to as containing building stone may be utilized in the manufacure of the Fayetteville in the Pitkin and Morrow formations. . The bed differ in purity or in percentage of lime. Some of them, however, may produce commercially valuable lime. A branch of the St. Louis and San Francisco
Railroad has recently been built across the quad rangle and is conveniently situated for the devel opment of lime industries between Fort Gibso

Muscoge
nd Tahlequah. The Kansas City Southern RailFort Gibson and between Braggs and Campbell.

road material

The various classes of rocks enumerated in the liscussion of building stone may be used as mate ial for road construction. Among those suitable he Morrow and Pitkin formations and the mor indurated and thinly.bedded sandstones found in various parts of the Winslow formation. The residual chert of the Boone formation, however in the northeastern part of the quadrangle, surpasses all of these in quality as road metal. On weathering the Boone formation has left a deep and, for the most part, loose mantle of anguare. chert that can be removed with comparativ sle roadbed and with use becomes ponsolidated nd roanted into compact mass of the Boone chert occur in the Borthea part of the quadrangle and are accessible to wid tracts of country underlain by Coal Measure hales and to river-bottom lands where cood road will be in demand. This chert is also accessible by railroad to Muscogee and Wagoner and should be in demand for street improvements in these cities clay.

Clay shales occur in abundance in the Fayette ille, Morrow, and Winslow formations. All hem vary in their different parts in percentage of lime, sand, and iron.
The shales of the Morrow formation occur in its middle and upper parts. Those in the middle lie between beds of limestone and probably conthin a considerable percentage of lime. Those in he upper part are thicker, but are more variable proportion of hime and sand. There are bed which may produce brick clay.
ists of shales. These occur chifly in thation con part, though many beds are interstratified with the sandstones in the lower part. They range from very sandy deposits to purer shales which may b utilized in the production of brick. The purer shales occur in the central and upper parts of th formation, and they are believed to be almost free from lime.
The clay shales of the same formation are found in the vicinity of Van Buren, near the Arkansas ndian Territory line, where some of them hav proved to be high-class brick clays. To be tilized they require to be crushed or ground They are moderately soft, however, and their eduction may be accomplished with comparativ se. Theso shale drespe roaly, ay soils, and are not usually exposed.

water resoutrces.

The ground-water supply of the Muscogee quad rangle is limited almost entirely to the area of the Boone formation. The higher rocks, consistin hiefly of sandstone and shales, are practically of weak flow.
Springs.-Thé Boone formation, although orig nally an impervious deposit of limestone and chert, is permeated with underground solution hannels both across and along the bedding of he rocks. Many of these underground channels come to the surface in the valleys and their waten issue as springs. Others rise, the water issuing fom joint fissures or faults in the rocks. A num ber of large springs issue from the fault that extends down Double Spring Creek from the northeast corner of the quadrangle. Others issu Creek the rear reek and Bayou flow issue from the of salin springs of small flow issue from the limeston 14 N., R. 21 E The rocks here are steeply upturned and the waters appear to come up through the bedding planes of the chert and imestone of the Boone and Morrow formations springs of small flow issue from the thicker sandstone beds of the Winslow formation at favorable situations, where the beds are considerably ilted and where erosion has cut deeply into then cross the strike of the rocks. One of the most noted of these springs flows from the sandstone in

Iuscogee, on the Muscogee-Braggs road.
A number of springs issue also from the base of the terrace-sand deposits southwest of Braggs and sands are not consolidated, and a large part of the water that falls on them ultimately issues at points where they are in contact with the impervious Carboniferous strata.
Wells.-It is practicable to obtain water in wells at almost any place in the Muscogee quadangle, but the flow and quality of the wate depend on the position of the well and the kind of rock penetrated. Abundance of water of good quality may be obtained from the Boone formation and from the thicker sandstone beds of the Winsburf Boggy for Wells driven into the its yield a War Bury of ins a col commonly cuased ac "hard" while that from the andstone and surficial sand deposits may con tain an appreciable amount of iron a carbonate or sulphate. In many instances, however, it is almost pure.
Water in wells in the Winslow formation a few hundred feet in depth, located in the immediate valleys of Double Spring and Fourteenmile creeks and of Bayou Manard, may rise nearly to the surace or may overflow, but the volume is not likely to be great nor the flow to be strong. The sand stone beds that contain circulating water are usu-
ally of fine texture and do not permit water to flow freely through them. Water obtained in the hales is usually in weak flows and almost invaribly contains alkaline salts in solution. Deep ells sunk at Wagoner and Muscogee to depths 1000 to 1800 feet in serrh of and gas show pll il Mase Surfal
of smaller streams flow thrount the Muscogee
quadrangle. Two of these, Arkansas and Verdiris rivers, carry a relatively large amount of silt suspension, and the Arkansas, especially during he summer season or at times of low water, conains an appreciable amount of salts in solution. The waters of these rivers are not considered wholesome for drinking purposes during low tages or in the summer season.
With Neosho and Illinois rivers, however, the onditions are different. These streams are fed y many springs from the Ozark region, their volume is more regular, and their waters are sually clear. Many of the smaller streams east Arkansas and Neosho rivers are perennial, eing fed by springs. Those west of these rivers, inous shales, are intermittent in flow, and during dry seasons the water stagnates in pools.
soir.
Except for tracts of bottom land of transported oil distributed along the river valleys, the soils of the Muscogee quadrangle are formed in place The river deposits are mapped as river alluviun and terrace sands and are treated as formations In view of the fact that the soils, with these excepions, are residual, the geologic map may be condered as a soil map also.
The Boone formation produces a cherty soil. On weathering the chert breaks into angular locks and fragments and, because of its grea urability, forms a surface layer. The soil it prouces is fertile, but is carried downward and away y the rains, or where left in place is mixed with part of the Boone formation, especially in the part of the Boone formation, especially in the reat a depth bene th the wetherel material or reat a deph be walulat The soil under these conditions can be of service only to the forest, which seemingly thrives in accumulations of loose stone. In certain localities where the surface has remained flat for a long ime the soil is sufficiently thick to be cultivated, as in the fertile lands about Crittenden and in ther smaller tracts in the northeastern part of the quadrangle.
The limestone near the base of the Fayetteville formation assists in giving fertility to its soil, as
do the limestone beds in the upper part, and with the addition of wash from the overlying Pitkin and Morrow limestones a considerable part of the Fayetteville formation produces good agricultural lands. Where the surface is flat, however, and is mation, the soil is not highly productive.
The Pitkin and Morrow formations produce the most fertile soils in the region, but usually occur on steep slopes, where much of the rock is exposed. The fertility of these soils is attested by the luxuriance of the forest and the occurrence of walnut, locust, and other trees that grow, naturally, on fertile soils.
The Winslow formation produces a varied soil. East of Arkansas and Neosho rivers a large part of the formation is too rugged and stony to be utilized for agricultural purposes. In more level and clay, the rult is lomy 11 and clay, the result is a loamy soil well adapted to the growth of vegetables and fruits as well as of cereals. In the western part of the quadrangle
soil of the same class is found on the westwardsloping hills and ridges. In this region relatively wide tracts of sandstone approach the surface. The shale in the upper part of the Winslow formation, together with included thin limestone, sandstone, and limy strata, naturally has produced grassy, open uplands. Until recently these lands were given over for the most part to native grasses and were utilized as grazing and meadow lands. Now, however, since the lands have been allotted to the citizens, they are being rapidly opened to the cultivation of corn and cotton.
The soils of the terrace sands and river-bottom lands consist of loamy sands, loams, and silty clays. A very large part of the terrace sands and the food A . the flood plains contain deep, loamy sand of but sas and Verdigris alluvium, however, conito of highly fertile silts and silty clays The alluvial deposits of the Neosho and the limited bottom lands of the Illinois and of smaller streams in the eastern part of the quadrangle contain a larser percentage of limy material and are very fertile.

forests.

The forests of the Muscogee quadrangle consist entirely of the hard woods common to this latitude in the western part of the Mississippi Galley. They include many species of oak and hickory, besidés ash, walnut, cherry, locust, sycamore, and
cottonwood. Many varieties of wild grape abound cottonwood. Many varieties of wild grape abound on both high and low lands.
Originally all bottom lands were thickly forested with large trees. Now almost this entire forest is destroyed in those parts where the land is tillable. The areas of sandstone and limestone, which and Neosho rivers, contain a forest of variable and Neosho rivers, conain a forest of variable the Morrow and Pone formations contains a sparse forest of oat hickory, walnut, locust, etc, sparse forest of oak, hickory, walnut, locust, etc.,
especially on the northern slopes of hills. On southward-facing slopes the trees ore less. On dant and smaller, and here much open land is found. The Winslow formation bears a forest consisting chiefly of oak and hickory of only moderate size except on the northern slopes, where the trees attain larger growth. On southern slopes of hills and on tracts of shaly soil the forest is more open, being interspersed with small areas of prairie land.
The western slopes of the hills lying along the east sides of Arkansas and Neosho rivers are forested, while the opposite sides are covered by growths of stunted trees and thorny shrubs interpersed with patches of prairie
The western half of the quadrangle is almost treeless except along the immediate valleys of the streams and within a few limited areas of
thick sandstone outcrops. A small forest tract of stunted oaks occurs on the sandstone highland bordering Pecan Creek on the east. The table land of the Rattlesnake Mountains bears a similand of the Rattlesnake Mountains bears a simion the sandstone divides east of Butler Creek. Scattering trees are found on the prairie uplands, and forest trees transplanted into the same areas have prospered, showing that it is feasible to extend the forest.
May, 1905.

JOSEPH A. TAFF,
Geologist.

PUBLISHED GEOLOGIC FOLIOS

