UNITED STATES GEOLOGICAL SURVEY

GEOLOGIC ATLAS
 OF TEE
 UNITED STATES

MOUNT MITCHELL FOLIO

NORTH CAROLINA - TENNESSEE

\qquad

UNV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographi ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called retief, as plains, plateaus, valleys, hill and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or for or all slopes, and to line the hrol in evel, the altitudinal intercal represented by the exe betwen lines being the thugh each map. These lines are called contours, and the miform altitudinal space between each two contours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
frm, and grade is shown in the express elevation, and corresponding contour map (fig. 1).

. The sketch represents a river valley between two iills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours The following explanation may make clearer the manner in which contours delineate elevation form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along 200 feet, and so on, above mean sea ove. Along the contour at 250 feet lie all points he contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet surounds it. In this fre 250 the contours are numbered, and those for 250 and 500 feet and ccentuated by being made heave utars and then the accentuating and numbering of certain fhem-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind reentrant angles of ravines, and project in passing about prominences. These relations of contou curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountain ous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismar wamp. In mapping greal mona For in liste rlif contour intervals of 10,20, 55,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, draw to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. would be represented by a inear inch on the
This relation between distance in nature and corresponding distance on the map is called the scal The scale may be cappressed also by and. The scale may be expressa also thaction of which the num the resth on the map and the denominator the correspong leng in nature expressed in the same the scale " 1 mile an inch" is expressed by $\frac{1}{6,3,50}$,
a inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Atlas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { gasivile }}$ contains one-sixteenth of a square degree. he are of the corresponding quadrangs. Tha 20 square
an and parts of one map the United States, disregard political boundar hips. To and to the quadrangle it represents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.-On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating ditchs, provide educational material for schools and homes and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguisted as igne netamorphic
Igneous rocks.-These are rocks, which have or from a state of fusio rom time to time been molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within the channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thin, and laccoiths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pac fialy coys fully aydine in ther in but are the tor tions. The pors por Explows are usa, panies voleanio eruptions causing eections of dut ash, and larar fragents. These materials, consolidated, constitute breccias, arglomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited.
The chief agent of transportation of rock débris i water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sond, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a grea variety of rocks, And; and lid The most characteristic of the wind-borne or eolim deposits is loess, a fine-orainel euth; the most chr deposits is loess, a ine-g. ite che most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
subsides the shore lines of the ocean are chatyed. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.

Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper par, wher anally distinguised by a moils, he sols being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism he substances of which a rock is composed may enter into new combinations, certain substances nay be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single puar iss. Such changes transform solify other rocks in various ways.

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately paralle, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lepertrary line, and in some cases the dist fossils. An almost entirely on the contained fossis. ane fore bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having common haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentany deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance; in except in regions of intense disturbance; in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which hey are found. Onher types passed on from period to period, and thus linked the systems together, forso a chain of frem the time of the oldest fors the Whe other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. T'opographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till) and moraines (vidges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of àny colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown
on this map by fainter color patterns. The areal on this map by fainter color patterns. The areal
geology, thus printed, affords a subdued backgeology, thus printed, affords a subdued background upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectic
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner kinds of rock

Schists. ,

Fig. 3.-Symb

cons to represent diferent k

The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the sec tion to correspond to the outcrops of a bed of sand of this bed form the surface. The upturned edge valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is mposed of schists which are traversed by masses and their
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
the upturned, eroded edges of the bean rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underyyng formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 ground along the section line, and the depth from he surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events oplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DEscription OF THE MOUNT MITCHELL QUADRANGLE.

By Arthur Keith

geography.

geveral relations.

Location.-The Mount Mitchell quadrangle lie almost entirely in North Carolina, but in its north west corner includes about 2 square miles of Ten nessee. It is included between parallels $35^{\circ} 30$ and 36° and meridians 82° and $82^{\circ} 30^{\prime}$, and conYancey, Mitchell Piles, divided betwell and Ruth erford counties of North Carolina.
In its geographic and geologic relations thi quadrangle forms part of the Appalachian province, which extends from the Atlantic Coastal Plain on the east to the Mississippi lowlands on the west and from central Alabama to southern New York history, recorded in its rocks, its geologic structure, and its topographic features. Only a part of this history can be read from an area so small as that the individual area in its relatio to the entire province
Subdivisions of the Appalachian province.-Tke Appalachian province is composed of three well marked physiographic divisions, throughout each of which certain forces have tended to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the entire length of the province, from northeast to south west The central division is the Appalachian Valley. It is the best defined and most uniform of the
three. In the southern part it coincides with the three. In the southern part it coincides with the belt of folded rocks which forms the Coosa Valley East Tennessee and Virginia Throughout o central and northern portions the eastern side only is marked by preat valleys-such as the Shenandoah Valley of Virginia, the Cumberland Valley of Maryland and Pennsylvania, and the Lebanon Valley of eastern Pennsylvania-the western side being a succession of ridges alternating with narrow valleys. This division varie lined on the southeast by the Appalachian Mountains and on the northwest by the Cumberland Plateau and the Allegheny Mountains. Its rocks are almost wholly sedimentary, and are in large measure calcareous. The strata, which must origi nally have been nearly horizontal, now intersect The surface features vary with the outcrops of dif ferent kinds of rock, so that sharp ridges and narrow valleys of great length follow narrow belts of hard and soft rock. Owing to the large amount of calcareous rock brought up on the steep folds of this district its surface is more readily worn down by streams and is lower and less broken than the divisions on either side.
The eastern division of the province embrace the Appalachian Mountains, a system which is made up of many minor ranges and which, under various local names, extends from southern New York to central Alabama. Some of its prominent parts are the South Mountain of Pennsylvania, the
Blue Ridge and Catoctin Mountain of Maryland Blue Ridge and Catoctin Mountain of Maryland and Virgimia, the Great Smoky Mountains of Mountains of Georgi The eastern division also Mountains of Georgia. The eastern division also which, as its name implies, lies at the foot of the Appalachian Mountains. It stretches eastward Appalachian Mountains. It stretches eastward Alabama, and passes into the Coastal Plain, which borders the Atlantic Ocean. The Mountains and the Plateau are separated by no sharp boundary but merge into each other. The same rocks and but merge into each other. The same rocks and
the same structures appear in each, and the form of the surface varies largely in accordance with the ability of the different streams to wear down the rocks. Most of the rocks of this division are more or less crystalline, being either sediments which have been changed to slates, schists, or simila rocks by varying degrees of metamorphism, or
igneous rocks, such as granite and diabase, which have solidified from a molten condition The western division of the Appalachian provpheny Mountains and the lowlands of Tennessee Kentucky, and Ohio. Its northwestern boundary is indefinite but moy Its northwestern boundary line coinciding with the eastern boundary of the Mississippi embayment as far up as Cairo, and Mississippi embayment as far up as Cairo, and
then crossing the States of Ilinois and Indiana. Its eastern boundary is sharply defined along the Appalachian Valley by the Allegheny Front and the Cumberland escarpment. The rocks of this division are almost entirely of sedimentary origin and remain very nearly horizontal. The character of the surface, which is dependent on the character and attitude of the rocks, is that of a plateau more or less completely worn down. In the southern half of the province the Plateau is sometime extensive and perfectly flat, but it is oftener much divided by streams into large or small areas with flat tops. In West Virginia and portions of Penn-
sylvania the Plateau is sharply cut by streams, leavsylvania the Plateau is sharply cut by streams, leav-
ing in relief irregularly rounded knobs and ridges ing in relief irregularly rounded knobs and ridges which bear but little resemblance to the original
surface. The western portion of the Plateau has surface. The western portion of the Plateau has
been completely removed by erosion, and the surface is now comparatively low and level, or rolling. Altitude of the Appalachian province. - The Appalachian province as a whole is broadly dome 500 feet alts surface rising from an altitude of about 500 feet along the eastern margin to the crest of westward to about the same and thence descending Mississippi rivers.

Each division of the province shows one or nore culminating points. Thus the Appalachian in Alabama to more than 6700 feet in western North Carolina. From this culminating point North Carolina. From this culminating point
they decrease to 4000 or 3000 feet in southern Virginia, rise to 4000 feet in central Virginia, and descend to 2000 or 1500 feet on the MarylandPennsylvania line.
The Appalachian Valley shows a uniform Ancrease in altitude from 500 feet or less in nooga, 2000 feet at the. Tennessee-Virginia line and 2600 or 2700 feet at its culminating point on the divide between New and Tennessee rivers. rom this point northward it descends to 2200 feet in the valley of New River, 1500 to 1000 fee in the James River basin, and 1000 to 500 feet in the Potomac River basin, remaining about the same through Pennsylvania. These figures represent the average elevation of the valley surface, below which the stream channels are sunk from
50 to 250 feet, and above which the valley ridges 50 to 250 feet, and above which the valley ridges
rise from 500 to 2000 feet. rise from 500 to 2000 feet.
The Plateau or wester
The Plateau or western division increases in Thitude from 500 feet at the southern edge of the province to 1500 feet in northern Alabama, 2000 feet in central Tennessee, and 3500 feet in southeastern Kentucky. Its height is between 3000 and
4000 feet in West Virginia, and decreases to 2000 feet in Pensylvania, tude along its eastern edge, the its greatest altigradually westward, although it is Pateau slopes rated from the interior lowlands by an abrupt escarpment.
Drainage of the Appalachian province.-The rainage of the province is in part eastward into in part westward into the Mississippi. All of the western or Plateau division of the province, except small portion in Pennsylvania and another in Alabama, is drained by streams flowing westward to the Ohio. The northern portion of the eastern or Appalachian Mountain division is drained eastward to the Atlantic, while south of New River all except the eastern slope is drained westward by tributaries of the Tennessee or southward by tribu taries of the Coosa.
The position of the streams in the Appalachian

Valley is dependent on the geologic structure. In eneral they flow in courses which for long dis ances are parallel to the sides of the Great Valley, hllowing the lesser valleys along the outcrops of he softer rocks. These longtadinal streams empty into a number of larger, transverse rivers, which ley. In the northern portion of the province they form Delaware, Susquehanna, Potomac, James, and Roanoke rivers, each of which passes through the Appalachian Mountains in a narrow gap and flows astward to the sea. In the central portion of the province, in Kentucky and Virginia, these longiudinal streams form New (or Kanawha) River which flows westward in a deep, narrow gorge hrough the Cumberland Plateau into Ohio River. From New River southward to northern Georgia the Great Valley is drained by tributaries he broad he Plateau, valley and, entering a gorge through f Chattanooga the streams flow directly to the Gulf of Mexico.
detailed geography of the mount mitchell
Mountain ranges.-The Mount Mitchell quadrangle is included in the Mountain division of the ppalachian province. In the southeastern part of the quadrangle a few irregular tongues of the iedmont Plateau separate the foothills of the nountain mass. The quadrangle is occupied by a brge number of mountain ranges, separated here by rolling plateaus and there by deep, narrow val cys. dice lang through the Buae Ridge, which uns aagonaly hrough the quadrangle, winding ack and forg the Atlantic from river basin aters. Reaching north from this in the center of the quadrangle is the U-shaped crest of the Black Countains, the most prominent range of the region. On this is situated Mount Mitchell, 6711 feet in tains. Other prominent ranges are the Great Craggy Mountains; the Bald Mountains, in the horthwest corner of the quadrangle; and the Yellow Mountains, in the northeast corner. The Big Bald is 5530 feet above sea; Yellow Mounain is 5330 feet; Craggy Dome is 6105 feet; and he Black Mountains for more than half their and Black mountains closely follow the trend of the rock formations. The same is true, though in less measure, of the Hickorynut Mountains. Al of the other ranges in the quadrangle take their eneral directions regardless of the course of the ormations.
The sides of the various mountains are steep and made up of smooth, flowing slopes. One of their riking features is the rarity of large cliffs. The arge bodies of mica-gneiss which form the Black nd Great Craggy mountains are among the hardest ocks in the quadrangle and cause long lines of liffs and great ledges. Similarly, the granite ains form a great series of cliffs. With these two xceptions, the even slopes of the weathered rock re seldom broken, and the cover of heavy forest Valleys on the high and low ground alik
Valleys and plateaus.-The valleys intervening V-shaped at their heads, and descend rapidly to ertain definite levels, at which they widen out into rounded and plateau-like valleys.
These plateaus are alike in orisin
at there is considerable variation in their in form, They rise gradually toward the heads of the rivers, ach major stream having its own set of plateau altitudes. On the two forks of Toe River its plateau is well developed along the north edge of the quadrangle at an altitude of 2600 feet above sea Cane River, emptying into Toe River just north of this quadrangle, has carved its plateau at substantially the same height. Ivy River, Swannanoa

River, and Cane Creek, all emptying into French Broad River, have plateaus ranging from 2100 to 300 feet. Catawba River, lying southeast of th Blue Ridge and draining into the Atlantic, ha much the lowest plateau of all, its
tions ranging from 1200 to 1400 feet.
The different plateaus consist near the stream heads of a series of gently rolling and smoothly rounded summits only slightly varied by shallow valleys. The summits rise to heights which are valleys. The summits rise to heights which are
remarkably uniform over large areas, and the plain which they once formed is readily to be seen from any of the summits. Nearly all of the plateaus of the streams lying northwest of the Blue Ridge belong to the same period of erosion. The streams have cut them at different altitudes, according to the amount of water and the differing hardness of the rocks over which they pass. The plateau outheast of the Blue Ridge are parts of the great Piedmont Plateau and were formed at a late period of erosion, whose action did not produce similar features on the streams which drain into the Mississippi. The streams southeast of the Blue Ridge take shorter courses to the Atlantic and hav een able to establish lower grades clear to their headwaters. Into all these plateaus the rivers have unk their channels in canyons during the late periods of erosion. These have steep and rocky borders and are so narrow as to be easily overDrainage. -Then close at hand.
Drainage.-The drainage of the quadrangle is early evenly divided between the streams flowing the Atlantic and to the Gulf. The waters of wannanoa, lvy, and other branches of the French Toe rim a Corn ther and oe Ohio into the Mississipi and pass throug hows direct to the Atlantic as doe Bror River which has its healwa in piver which hadrangle. Thus in the souther part of the quadrangle. Thus ne streams radial of the Blue Ridge south of the Black Mountains. From their heads high up on the mountains th treams fall with heavy grades down to the level of the plateaus. For considerable distances nea those levels the grades are light, until the heads of the secondary canyons are reached; thence downtream the currents descend swiftly, with many vaterfalls and rapids. Thus South Toe River heading in the Black Mountains above 6000 feet, descends with rapidly lessening grades to its plateau at 3000 feet. Along this it flows for 7 ' mile lown to 2700 feet. Below that point the river descends more rapidy as the newly cut canyon i atered, and goes out of the quadrangle, 30 mile from its head, at an altitude of 2100 feet.

GEOLOGY.
general geologic record
Nature of the.formations.-The formations which ppear at the surface of the Mount Mitchell quad rangle and adjoining portions of the Appalachian province comprise igneous, ancient metamorphic and sedimentary bodies, all more or less altere since their materials were first brought together arliest known period They, gong back h^{2}. wo wo groups, (1) ign and ag cluding gneiss schist granite diorite and simit ar fornations; and (2) sedimentary strata, of lowe Cambrian ase including conglomerate, sandstone hale Jimestone and their metamorphosed equiva lents. The older of these groups occupies the reater area, and the younger the less. The reater area, and the younger the less. The composed were originally gravel, sand, and mud, derived from the waste of older rocks, and the remains of plants and animals. All have been greatly changed since their deposition, the alterneisses and schists as to destroy their original nature.

From the relations of the formations to one another and from their internal structures many events in their history can be deduced. Whether the crystaline rocks were formed at great depth or
at the surface is shown by their structures and textures. The amount and the nature of the pressure sustained by the rocks are indicated in a measure by their folding and metamorphism. The composition and coarseness of the sediments show the depth of water and the distance from shore at which they were produced. Cross-bedding and ripple marks in sandstones indicate strong and variable currents. Mud cracks in shales show that their areas were at times above and at times below
water. Red sandstones and shales were produced water. Red sandstones and shales were produced
when erosion was revived on a land surface long subject to decay and covered with a deep residual soil. Limestones show that the current were too weak to carry sediment or that the land was low and furnished only fine clay and substances in solution. Coarse strata and conglomerate indicate strong currents and wave action during their formation.
Principal geologic events.-The rocks themselves thus yield records of widely separated epochs from the earliest age of geologic history through the Pale-
ozoic. The entire record may be summarized as ozoic. The entire record may be summarized as follows, from the oldest form
shown in this general region
Earliest of all was the
Earliest of all was the production of the great bodies of Carolina gneiss. Its origin, whether
igneous or sedimentary, is buried in obscurity. It represents a complex development and many It represents a complex development and many
processes of change, in the course of which the processes of change, in the course of which the
original characters have been largely obliterated. The gneiss is, however, distinct from and much older than any other formation yet identified in the province, and the time of its production is the earliest of which we have record.
During succeeding epochs masses of igneous rock were forced into the gneiss. The lapse of time was great; igneous rocks of many different kinds were intruded, and later intrusive masses
were forced into the earlier. The granitic texture were forced into the earlier. The granitic texture
of some of the formations and the lamination and schistosity of others were produced at great depths below the surface.
Upon these once deep-seated rocks now rest lavas which poured forth upon the surface in pre-Cambrian time. Thus there are in contact two extremes of igneous rocks-those which consolidated at a considerable depth, and those which cooled at the surface. The more ancient crystalline complex had therefore undergone uplift and long-continued erosion before the period of volcanic activity began. The complex may safely be referred to the Archean period, being immeasura-
bly odder than any rocks of known age. Whether bly odder than any rocks of known age. Whether Archean or are of Algonkian age is not certain The latter is more probable, for they are closely The latter is more probable, for they are closely
associated with the Cambrian rocks. Yet they are separated from the Cambrian strata by an unconseparated from the Cambrian strata by an uncon-
formity, and fragments of the lavas form basal conglomerates in the Cambrian.
Next, after a period of erosion, the land was submerged, and sandstones, shales, and limestones were laid down upon the older rocks. In these sediments are to be seen fragments and waste from the igneous and metamorphic rocks. The differof Cambrian or later age, according to the fossils which they contain. Remnants of these strata are now infolded in the igneous and metamorphic rocks, and the portions thus preserved from erosion cover large areas of the mountains. The submergence which caused their deposition began at least as at least into Silurian It is possible that the beginning was earlier and the end not until the close of Carboniferous time; the precise limits are not yet known.
These strata comprise conglomerate, sandstone, slate, shale, limestone, and allied rocks in great variety. They were far from being a continuous series, for the land was at times uplifted and areas of fresh deposits were exposed to erosion. The sea gradually advanced eastward, however, and land Cambrian were covered by later Paleozoic deposits. Cambrian were covered by later Paleozoic deposits. and the Miscissipi basin. The area of the Mount Mitchell quadrangle at first formed part of the Mitcher quadro of the
which the rocks are composed were derived largely tion of the eastern shore line of this ancient sea is known only here and there, and it probably varied from time to time within rather wide limits Cycles of sedimentation.-Four great cycles of sedimentation are recorded in the rocks of this region. The first definite record now remaining was made by coarse conglomerates, sandstones, and shales, deposited in early Cambrian time along the eastern border of the interior sea as it encroached upon the land. As the land was worn down and still further depressed the sediment became finer until in the Cambro-Ordovician Knox dolomite very little trace of shore material is seen. After this long period of quiet came a slight elevation, producing coarser rocks; this uplift became more
and more pronounced, until, between the Ordoand more pronounced, until, between the Ordo-
vician and Silurian, the land was much expanded vician and Silurian, the land was much expanded and large areas of recently deposited sandstone wreat lifted above the sea, hus completing the firs great cycle. After this elevation came a second depression, durng which the land was again wor the accumulation of the Devonian black the accumulation of the Devonian black shale After deposited, recording a minor uplift of the land, which in northern areas was of uplift of the land, whe third ance. The thind bences mulated, containing scarcely any shore waste. third uplift brought the limestone into shallow water-portions of it perhaps above the sea-and upon it were deposited, in shallow water and swamps, the sandstones, shales, and coal beds of the Carboniferous. Finally, at the close of the Sation of except along its borders in recent times
The columnar section shows the composition, name, age, and, when determinable, the thickness of each formation.

Description of the formations

pocks of the ouadrangle

The rocks exposed at the surface in the Mount Mitchell quadrangle comprise three great classester are found inneous, and sedimentary. The lat Blue Ridge from Cane Creek and dying out on the headwaters of Catawba River. They cover barely 2 per cent of the quadrangle. Igneous rocks are very generally distributed throughout the quadrangle, the greatest areas being fourid in its southeastern and northwestern portions. The remaining area, about 80 per cent of the quadrangle, is
underlain by the metamorphic rocks of the Carunderlain by
olina gneiss.
The sediments consist of one group of micaschist, conglomerate, and graywacke, and anothe of black slates and schists. The slate group contains thin beds of limestone and marble in areas age of the slates is not well determined, but they ar probably Cambrian and are so considered in this discussion. The conglomerates are of unknown age.

Of the igneous rocks, granites are found in two large, irregular areas in the southeastern and northwestern parts of the quadrangle. Other igneous rocks are diorite, hornblende-gneiss, and dunite with no definite grouping. The width and fre quency of the bands increase somewhat toward the north. The Carolina gneiss, which underlies most of the quadrangle, consists mainly of micaschist and mica-gneiss throughout its entire extent. The masses which form the Great Craggy and Black mountains contain much cyanite, to whose greater resistance to weathering is due much of the height of those mountains. Garnetiferous bands are also frequent in the formation, especially near the borders of the Roan gneiss areas.
Practically all of the igneous and metamorphi rocks are of Archean age. There are, however, few exceptions to this. The Brevard schist is regarded as Cambrian, and the neighboring conglomerates may possibly belong to the same sys
tem. In the northern tem. In the northern part of the quadrangle, on the drainage of Cane River, are found many dikes of diabase. These are part of a series which out
crops extensively in the adjacent quadrangle toward crops extensively in the adjacent quadrangle toward the north and northeast. They cut through al results of deformation For this reason they
later than the Carboniferous and are probably of Triassic age. At many places in the Carolina and Roan gneisses dikes and small bodies of finegrained granite are also found. These seldom exceed a few feet in thickness and are not of sufficient size be to represented on the map. That they are much younger than the other granites of the region is shown by the almost entire absence of the schistosity which appears in the other forma this of the mountains. The latest time at which this schistosity was produced was post-Carboniferous. The granite dikes, therefore, are clearly later
than Carboniferous, although they may produced during the later part of the deformation period.
There is probably a difference in age between the Cranberry granite on the north and the Hen derson granite mass on the south. Whether the interval between them is great or not can only be surmised. Both of them cut the Carolina and Roan gneisses, but they do not come into contact with each other. There is no substantial difference in the degree of metamorphism of the No granite masses. The northern one contain wore biotite as a rule and is seldom porphyritic ally porphyiti The diference poril ove ly porphytic. the in and distinguish the two formations, both in respect to their original under which they were formed It is proble that the southern mass, the Henderson granite, is the later of the two
In the columnar se
and probable age of the different formations, these will be described in order of age as nearly it is known.

archean rocks

Distribution.-The greater part of the quadran gle is covered by the Carolina gneiss, which is so named because of its extent in North and South Carolina. Most of the large areas of this formation are connected with one another and in reality form one large mass penetrated by many bodies of the different igneous rocks. In addition to being the principal formation of this quadrangle, it is also the oldest, since it is cut by the igneous rocks
and overlain by the sediments. Inclosed within and overlain by the sediments. Inclosed within its areas are numerous igneous and metamorphic
rocks. Although these are too small to be shown on the map, they can readily be assigned to forma ons which are elsewhere mapped in larger bodies General character.-The formation consists of an chist, mica-gneiss, garnet-gneiss, cyanite-gneiss, and fine granitoid layers. Most of them are light and fine gra in layers. Most of them are ligh and greenish Much the greater part of the formation consists of mica-gneiss and mica-schist The schists are composed chiefly of quartz musco ite, a little biotite, and very little feldspar. The chists have a fine orain and a marked schistosity but their texture is even and the minerals are uniformly distributed. In most of the formation the component minerals are segregated into layers, either singly or in combinations, thus producing gneiss with a marked banded appearance This rock usually has more feldspar than the schist. A few thin layers in the mica-schist have a bluishgray or black color, largely due to grains of iron oxides. These are most numerous in those portions of the formation near the Brevard schist. They strongly resemble the coarser portions of the Brevard schist; the component minerals are about the same, and the dark color given by the iron oxides is the most prominent characteristic of each The similarity in appearance near the contacts suggests that part of the Carolina is of sedimentary origin. The possible origin of the Carolina is dis cussed under the heading "Metamorphism." That part of the formation which is adjacent to the Roan gneiss contains thin interbedded layers of hornblende-schist and -gneiss, precisely like the Roan gneiss and of the same origin, which constitute a transition between the formations. For this reason the boundary between the formations is often indefinite on the ground, notably so along
the lower parts of North Toe, South Toe, and Cane the low
-In a belt 6 or 8 miles wide, pass ng along the line of Black and Great Craggy moun

This mineral is distributed along distinct layers of the gneiss and occurs in crystals an inch or less in length, giving the rock a decided porphyritic appearance. These are usually parallel with the foliation and the other minerals of the inclosing of the Black Mountains, while the layers in which they are contained are parallel to the other layer of the gneiss, the crystals of cyanite cross the layer at a considerable angle. The crystals correspond in position to a minor and secondary foliation which has been produced in the gneisses by later folding. It thus seems that the cyanite is of a later age than most of the other mineral composing the gneiss. The cyanite forms stubby flat crystals or blades of a light-gray or dark-gra color. On weathered surfaces these stand out prominently from the rest of the rock. Asso ciated with these cyanite layers in many places These prominent large patchy crystals of muscovite These are distributed through the rocks just as the cyanite crystals are and, like them, probably have a secondary origin. Where they are frequent hey give a noticeable silvery appearance to the chist or gneiss. Small garnets are often found i Garnet-gneiss. - carnetschist coarse muscovite Garnet-gneiss.-Garnet-schist and garnet-gneis These are more prominent in the southern and western portions of the quadrangle southern and They begin to be noticeable on the headwaters of Cane River and increase in a southerly direction Thus, in this quadrangle they characterize bodie of gneiss 3 or 4 miles in width and 20 miles in length. They are also prominent along the Blue Ridge as far northeast as the head of Crabtre Creek. South of Catawba River they are also found in many narrower bands. The latter occurrences accompany the contacts of the Roan gneiss and the Henderson granite and are apparently due to them. In many parts of the main garnetiferous belt, northwest of the Blue Ridge, a similar relation holds. In most of the large areas, however there is no apparent connection between eruptive rocks and the production of garnets, many of the garnets being miles from any outcrop of the Roan gneiss. If the igneous rocks caused the productio of all the garnets, they must have accomplished this by inducing an extensive circulation of min eralizing waters. The garnets are small, seldom exceeding one-fourth of an inch in diameter. In those portions of the formation near the areas of Roan gneiss, and on the drainage of Ivy River, biotite is an abundant constituent. Its distribu tion in this way suggests that it is partly a contact feature of the Roan gneiss intrusion.
Granite-gneiss.-The granitoid layers of the geiss contain quartz and feldspar, with small mounts of muscovite and biotite. In the light parse. The granitoid layers and mescovite are parse. The granitoid layers and the schists alter . 2 feet thick Layers similar in hes foo rying from onetenth of in on . hickness he north and east in this quadrangle the granitoid layers increase in amount. In them the mineral re much less distinctly parallel than in the schist ad gneisses. The parallel arrangement is usually cen more or less roughly, however, and its prom nence depends largely on the amount of mica in the rock.
Marble.-About 8 miles northeast of Burnsvill here is found with the Carolina gneiss a band of white marble, which extends from North Toe River bout half a mile up Sinkhole Creek. It outcrop only near the streams and may extend considerably farther than can now be seen.
In the section along the river there are two bands of marble alternating with mica-gneiss, diping southeastward at an angle of about 50 . The ntire series is cut through by an irregular pegdin in ein, which passes in places across the beds of the marble is about 70 feet thick and the lowe bout 8 feet; the intervening mica-gneiss is about 0 feet thick.
The marble is rather coarsely crystalline and has a white color in all cases observed. It i composed of 55 per cent of carbonate of calcium and 45 per cent of carbonate of magnesium, forming a dolomite. The ledges of marble have a dark is some disintegration, and the carbonate crystals
weather into coarse crumbling grains. There are few impurities in the shape of thin sheets and or represent originally different layers in the rock although the silica is secondary. The contacts of the marble and mica-gneiss are sharp, and there is no transition to be seen. Along one of them lickensides show that there has been recent motion. The contacts with the pegmatite are equally shar the latter being younger. For several feet at the bottom of the pegmatite there is a thin contac vein of actinolite which grades into the marble nclosed in the lower body of the marble ther is also a small mass of serpentine and actinolite The marble appears to be of practically the same ge as the inclosing gneiss and to have suffered similar amount of metamorphism. The intersecting pegmatite vein is also metamorphosed. The only reasonable explanation of so extensive a deposit of marble is that it formed an original sedimentary deposit. It is accordingly probable that he inclosing Carolina gneiss was in part of a sed mentary nature.
Pegmatite. - Included in the formation are numerous veins or beds of pegmatite. These to 25 feet in thickness. Some of the largest of 025 feet in thickness. Some of the largest of The lenses can be readily followed for 2 or 3 miles, The smaller ones, however, can not be traced surely to the foliation of the ouneiss for the most part, but sometimes cut the latter abruptly. These pegma tites are most conspicuous near the contacts of the Carolina and Roan gneisses, but are not closely limited to those localities. They are also more prominent in the northern and eastern portions of the quadrangle. They consist chiefly of very coarsely crystalline feldspar, quartz, biotite, and muscovite. Crystals of orthoclase feldspar attain iensions of 2 or 3 feet, oligoclase 1 foo, an nd valuable minerals, including beryl, emerald, tourmaline, garnet, cyanite, columbite, samarskite autunite, and uraninite. The last four mineral are found in a few mica mines within a radius of 2 miles from Spruce Pine and furnish ore of some of the rarer metals, including radium Much merchantable mica is procured from the pegmatites, and the area lying north and east of he Black Mountains is the principal mica-produc ing district of the State.
Many of the minerals of the pegmatite have been crushed and folded by the second deformation which folded the gneisses. The pegmatites therefore, are older than this deformation. Their connection with the contacts of the Roan and Carolina gneisses is not sufficiently marked to in areas farther southwest pegmatites pave been n areas farther southwest pegmatites have bee xhich is eruptive in the gneiss, but no such asso ciich is eruptive in the gneiss, but no such assoppear to have been formed by deposition from ppear to have been fors the deposition from Owing to the considerable alteration of the perma ite contacts, however, it is difficult to determin this with precision.
Intrusive granites.-Inclosed within the gneiss and schist areas is a series of bodies of intrusive granite, very different in character from the gneiss. These vary in thickness from a few inches up to he difficulty in tracing them, they are not repr sented on the map. They cut the gneisses at very conceivable angle. They are much more common along the western border of the quad angle, but are not conspicuous at any point. Th ranite is fine grained and very uniform in tex ure, and has a light-gray or whitish appearanc The smaller dikes are somewhat highter colored han the large ones on account of the larger proportion of quartz and feldspar. The compo nent minerals are quartz, orthoclase and plagioclase feldspar, biotite, and muscovite, the micas being subordinate in amount. As a rule, these beds are massive and fairly free from the schistosity which marks all of the adjoining formation.
For this reason it is concluded that they were For this reason it is concluded that they were intruded into the gneisses after the principal part plished. They are accordingly later than the Carplished. They are accordingly later than the Ca
boniferous in age. oniferous in age.
Of similar nat

Mount Mitchell.
the beds of Cranberry granite included in the Carson granite also sends off many small sheets and dikes from its main bodies into the Carolina gneiss. Many areas of this granite which are too small to be mapped are represented with the Cardlina gneiss. The contacts are seldom single lines, but are rather zones of transition, with many alternating bodies of granite and gneiss.
Metamorphism. - The Carolina gneiss covers greater area than any other formation in this region. On account of the uniform aspect of its beds over large areas, no true measure of its thickness can be obtained; even an estimate is of no value. The thickness is apparently enormous, having been increased many times by the folding and the very great metamorphism to which the gneiss has been subjected. The original nature of this gneiss is uncertain. It is possible that the whole mass was once a granite. Some of the material has a granitic character now, and its local metamorphism to chist can be readily seen. Other and similar material might easily have been altered into the ceasily be ottributed to the Such an origin can less asiy lo f of bor layers and banding. May par f tion-for ing Many parts of the ing gneisses-are doubtless of sedimentary origi Morever, the presere of sedimentary ates makes it possible to distinguish the lare are f sedimentary rocks in the $\mathrm{S}_{\text {wannanoa }}$ Mountains The apparent transition of the Carolina into the sedimentary Brevard schist indicates that other parts of the Carolina are sedimentary. It is very likely that still other sedimentary masses have not been distinguished from the Carolina because of their total metamorphism and similarity to the Wha
Whatever their original nature, one deforma ion produced a foliation of these rocks, and a subdanes deformation folded and crushed the earlier pegmatites were mashed by the second deformation and retain in many places only a fraction of their original coarse ness. In most of the formation excessive metamorphism has destroyed the original altitudes and most of the original appearance of the rocks. The rocks of the formation are now composed entirely of the netamorphic minerals. These are usually arrange with their longer dimensions nearly parallel to one another and to the different layers. Where the layers have been bent by the later deformation the places where by the second deformation curves. In chistosity by the sed this mistosity parallel was prodsed, thos sch cusits in Since the schistosity is produced more lreug by the mis strongly by the milas a lest schistose and the and chists most so.
Decomposition.-The schistose planes of the arious layers afford easy passage for water and destroyed the feldspar the resultant clay is filled with bits and layers of schist, quartz mica, and ranite. Solid ledges are seldom found far from the stream cuts and the steeper slopes. Near the Blue Ridge many large ledges and cliffs appear The cyanite-gneiss of the Black Mountains, especially, forms long lines of cliffs and rocky slopes The cover of clay on the decayed rocks is thin, and the soil is light on account of the large proportion of quartz and mica that it contains. Accordin the natural growths are poorly sustained, eve been well decomposed. These soils, however, a susceptible of great improvement by careful tillage. In the mountain areas, where slopes are steep and resh rock is nearer the surface, the soils are riche nd stronger and prodace good crops and fine imber. The greater amount of soluble matter nd clay in the gneiss renders its areas somewh more productive than those of the schist. The those of ordinary gueiss, and the garnet- and cyan ite-gneiss areas are somewhat less so.

roan anerss.

Distribution.-Areas of this formation are foun generally throughout the quadrangle. As a rule,

Black Mountains they diminish much in size and frequency, while northeast of that range they occupy many large areas. Along the northern border of the quadrangle a large number of these form one larglly unite, so that as a whole they of the bands which cross the southern border of the quadrangle is over one-eighth of a mile in width. The formation receives its name from Roan Mountain, on the boundary of Tennessee and North Carolina, north of this quadrangle.
Relation to Carolina gneiss.-The Roan gneiss appears to cut the Carolina gneiss, but the contacts are so much metamorphosed that the fact can not well be proved. Moreover, the rocks included in the Roan are less altered as a whole than the Carolina gneiss, and so appear to be younger. arrow, dike-like beds of the former in the latter support this view, some of the Roan diorites in these narrow beds being plainly of an igneous nature. In fact, the shape and continuity of be explained only on the theory that they represent original dikes cutting the Carolina gneiss. The frequent derlong The frequent de bordor of evidence of contact metamorphism by the intrusion of the latter.

ion of the latter

Character.-The Roan gneiss consists of a great schist, and diorite, with some interbedded schist and mica-gneiss. The hornblendic beds are dark greenish or black in color and the micaceons beds are dark gray. In thickness the hornblendic rocks vary from mere seams an inch or two thick up to great masses thousands of feet in thickness. The mica-schist and -gneiss beds range in thickness from a few inches to 50 or 60 feet, and are most frequent near the Carolina gneiss, into which they form a transition. This interbedding is undoubtedly due in part to the close folding which the formations have undergone, a relation which can be seen in the case of many of the smaller beds. It is also probable that much of it was due to the intrusion of many separate dikes of the Roan gneiss into the Carolina near the general line of contact. Later metamorphism of the rocks has so acted as to render the different beds more or less parallel to one another.
In composition the mica-schist and mica-gneiss eds are exactly like the micaceous parts of the Carolina gneiss and contain quartz, muscovite, bioschists make up a large feldspare of The hornblendechists make up a large share of the formation and are interbedded with hornblende-gneiss through-
out. The schists are most prominent north and west of Burnsville, near the Cranterry west of Burnsvile, near he Cranberry granite masses. The schit rods from onetent entirely half an inch long with a very small and biotite feldspar, and quartz The ones is com posed of layers or sheets of quartz or feld posed ed led with sheets of hornblende-schist. In places these are very regularly disposed and give mineral frequently seen is garnet. As already stated, this occurs in the Carolina gneiss near the contacts of the Roan gneiss, and it is common also in the Roan gneiss in similar positions. The garnets are seldom larger than a quarter of
diameter and as a rule are much smaller.
In the northeastern part
nany lenses and patches of epidote, hornblende and quartz are to be seen in the gneiss. These are of late origin and replace the older hornblende more or less thoroughly. They are associated with veins of epidote, and neither variety has been deformed. Seldom are they more than 3 feet long or over a few inches thick
Here and there the hornblende, feldspar, and
quartz are found with the structure of diorite or quartz are found with the structure of diorite or gabbro. Some of these beds are very coarse and massive. Good instances of this are to be seen just north of Swannanoa and in the gap at the head of Ivy River. Many of the beds of the formation which consist almost entirely of hornderived from gabbro. Of this kind to have been derived from gabbro. Or this kind are the horntose. So thorough is the alteration, however, that tose. So thorg is hor, hat the Roan gneiss tho certain. At many points in of pegmatite of secondary growth, precisely similar
those described under "Carolina gneiss." They seldom, ho
importance.
Metamorphism.-Deformation and recrystallization have extensively changed the original rocks of this formation into schist and gneiss. The exact measure of the alteration is usually unknown because the original character of the rock is uncertain. It is probable that most of the mass was originally diorite and gabbro of much the same mineral composition as now. A few of the coarse masses still retain much of their original texture. The minerals in most of the formation are secondary, however, and are arranged as a whole in parallel layers, causing the schistosity. These minerals and schistose planes were afterward bent and closely folded in many places to an extent equal to all the folding of the later formations. Thus the Roan gneiss has passed through two deformations, one producing the foliation, and a second folding the foliation planes and minerals. During or before the second deformation the bands of quartz and feldspar of the gneiss appear to have Weather. In a 1 Weathering.-In reducing the surface of the formation, the first stage is the decomposition of the ers and way of the harder hornbled ers and why dicher sery slowly, howerer Their outcrops form cliffs and heavy ledges near the streams and oreatly retard the reduction of the surface. As a whole, the formation is somewhat less resistant than the Carolina gneiss and far weaker than the Cranberry or Henderson granites. Consequently its areas are reduced to plateaus in the large stream valleys and form gaps and depressions in the high ground away from the rivers. The rise of the mountains beyond its areas is quite noticeable in most cases. In this respect the formation differs much from its habit farther northeast in the Roan and Cranberry quadrangles. The clays accumulating on this formation are always deep and have a strong, dark-red color; the soils are rich and fertile and well repay the labor of clearing. The hilly surfaces keep the soil well drained, and yet the clayey nature of the latter prevents serious wash. Hence, the soils are extensively cultivated in situations remote from the principal settlements.

soapstone, dunitr, and serpentine.

Distribution.-Many areas of these rocks are found within the quadrangle. While most of them are less than half a mile in length, a few exceed that considerably. The largest areas are on and on Ivy River just hew Swanna Tir just berat. The ern Appolachians and has a length of 4 miles ond ern Appalachian, and contains nearly all of the different varieties of the formation and might well be considered the type It is nearly all in contact with Carolina gneiss, but there are two narrow bands of Roan g.isss, but eastern end. In this respect this area differs considerably from most others of the formation, for its association with the Roan gneiss is close and marked. There are in this quadrangle only a few exceptions to this rule.
Relations.-The rocks of this group break through and across the beds of Roan gneiss and are thus seen to be distinct from and later than the gneiss. From the constant association of the two formations, however, and the rarity of the soapstone group in other situations, the difference in age can not be considered great. In the northwestern part of the quadrangle a number of outcrops of the soapstone are found in the Cranberry granite. In places they are accompanied by beds of Roan gneiss and in places they are actually inclosed in granite. Although it was not possible in any case to find the precise contact relations, the soapstones appear to be fragments caught up in granite at the time of its intrusion. Thus it appears that the soapstone is older than the Cranberry granite. Its alteration is as great as or that of the Cranberry granite, so that it appears to have shared in the have shared in the earlier period of metamorphism which involved the Roan and Carolina gneisses. It Charaeter: The group compries many diferent rocks, such as soapstone, dunite, and serpentine,
and many other combinations of minerals derived from the original rocks by metamorphism. The impure soapstone containing many hornblendi minerals. There are also many bodies of dunite composed almost entirely of olivine. These are most common near Swannanoa and Democre and on the extension of the latter belt north of Burnsville. The soapstones are white and light gray, while the other varieties of the formation have a greenish color, either bright or dull. In some localities the soapstone contains little but talc and is fit for industrial uses, but, as a rule it contains much chlorite and crystals of tremolite, actinolite, or other hornblendic minerals. Th bodies of tale and pure soapstone are usually found around the borders of the dunite masses All the varieties of the formation may be presen in a single ledge, or one variety may occupy the whole of an area. The latter relation is most com mon where soapstone alone is seen. The dunite is usually more or less altered to serpentine. This change may appear in considerable masses of the rock, or in small patches or seams, and is very rregular in its distribution.
Many minor mineral deposits of later origin are found in the formation. Nickel ores form thin ite, and corundum occupies small veins and dun e, and corundum occupies small veins and patche Asheville quadrangle there are frequently to she quad pure fibrous tale few in t hickness a little of the talc of this kind thickness. A little of the tale of this kind is portant in this quadrangle. Here and there unimveins of asbestos are found in the dunite. They occur in the shape of both small veins and of rregular rounded crusts between portions the dunite. These are prominent on the Paint Fork of Ivy River and also near Democrat, and the dunite itself is much altered to serpentine On both forks of Ivy River and near Swannanoa this is commonly to be seen. The alteration proceeds along cracks into the mass of the ock, replacing the dunite more and more near the urface.
Metamorphism.-In their original form these rocks were peridotite and pyroxenite, composed of olivine, with more or less feldspar and pyroxene The change from these to the soapstone group is ny of the other formations. The minerals which now appear, however, are closely related in chemcal composition to those of the original rock. The this andes of ateration are obscure or absent fected the peridotites anges seem to have easily解 onate shistos Tes are in places selistose in consequene of arallel arrangement of the talc and chlorite scale a few places in this quadrangle a schistose nature ghe the rock by parallel crystals of tremolit rare in this quadrangle for the uswal alteratio to soapstone and serpentine Entirely differe the arrangement of the actinolite erystal in nany localities, for they form bunches and radiating clusters in the soapstone.
An exception to the general altered aspect o hese rocks is the dunite, for it appears to be one of the least metamorphosed rocks of the region The serpentine, which is a common alteration prodct of the dunite, is not due to such metamor phism as the schistose rocks, but to hydration. In his process the water worked in through the crack and joints of the original dunite and united chemcally with the olivine to form serpentine
Weathering.-Few rocks are slower to disintegrate han those of this formation, and its areas invariably show many ledges. In extreme cases, such a re seen 2 miles northwest of Ledger and also the ame distance south of Bakersville in the Roan Mountain quadrangle, almost the entire area of he formation is bare rock. In the great dunite ass near Swanar come to he surface and large bowlders are scattered every here. The rock is not much affected by solution, at freally and usually occupies low ground. The great mass jecting slightly above the adjounded hills proFinal decay leaves a cover of stiff yellow clay of
little depth and much interrupted by rod

cranberrix grantte.

Distribution.-The Cranberry granite is limited o the northwest corner of the quadrangle, where here is an irregular area interrupted by several belts of Roan gneiss and Carolina gneiss. The granite forms part of a great mass which extends Guyot quadrangles and northeastward far into Virginia. It is typically developed in the vicinity of Cranberry, N. C., from which it receives its name Relations.-The formation consists of granite of arying texture and color and of schist and gran he gneiss derived from granite. Included within lo areas mapped as Cranberry granite are smal hyolite, pegatite sitose basalt, metadiabase, meta yolite, pegmatite, dikes of fine granite, and smal and soapstone, as already stated. The metadiabs nd metarhyolite are eruptiv. The metadiabas ndoubtedly correspond in age to similar Algon ian rocks in the Roan Mountain and Cranberry quadrangles to the northeast. The metarhyolit ccurs in the shape of sheets and dikes ranging from a few inches to a few feet in thickness. Out Baps are found on the southern slopes of the Big Bala, but they can not be traced connectedly and ar The same is true of the dikes of recent granite sued s were described in the Carolina gne gramite, such places it is difficult to decide whether or not to represent the included bodies of Roan and Caroina gneisses. The latter are cut repeatedly by the ranite dikes, and the beds of each wary from for nches up to many feet in thickness, alternam a fe reat frequency. In only a few cases do the bound aries which are shown on the map represent ingle contact between two large masses, but rather they indicate a narrow zone beyond which one rock or the other predominates. Some areas shown neiss may contain many small beds of granite while others may be substantially all gneiss. On he other hand, many small bodies of gneiss are included in areas represented as granite. Thes may be continuous with one another or may be disonnected inclusions. Unless these bodies we disregarded in the mappin
Character. -The granite is an igneous rock composed of quartz and orthoclase and plagioclas eldspar, with biotite, muscovite, and hornblende ditional minerals. Most of the rock is made up of the feldspars, the quartz being next in imporance. Minor accessory minerals are magnetite pyrite, ilmenite, garnet, and epidote. In the icinity of the Big Bald hornblende is common
in the granite, but in other localities is comparanithe granite, but in other localities is compara-
tively rare. The most notable variation of the tively rare. The most notable variation of the
rock is in the size of the feldspar crystals. As hese change the formation ranges from rocks with fine, even grain to those with a decided porphy tic appearance. The latter is seen only in the the Big Bald. In the coarse varietie feldspar is by far the most prominent mimera he rock. The same is true of many of the nar dikes penetrating the geeisses. In a few eases the feldspars of the granite are so filled with iro xide that the rock has a marked red appearance With this variety epidote is often associated in mall veins and segregated masses.
Melamorphism. - The granite suffered great changes during the deformation of the rocks, both by folding and by metamorphism, the latter
 were formed in the rock mass, along which meta rorphism took place. As the process went on the guartz was broken and recemented, the feldspa eveloped into mica, quartz, and new feldspar, nd chlorite replaced part of the biotite and hornlende. These minerals crystallized in general parallel to planes of motion in the rock; inasmuc is these were the result of broad general stresse, the planes of schistosity are fairly uniform in position over large areas. Very rarely do the schist how secondary folding, and never any of the close rinkling so common in the schists of the Carona. The results vary in extent from rocks with no change, or with mere cleavage, to those com-
pletely altered into siliceous schists and gneisses.

The latter are commoner near the borders of the formation than elsewhere. Thin parallel layers nd striations composed of different minerals are schists bear no resemblance to the original rock The thin sheets of metarhyolite which cut through the granite have been extremely metamorphosed. The original flow banding is now very seldom to be seen. Here and there porphyritic feldspar crystals occur, but most of the rock is a fine black schist composed chiefly of quartz and muscovite with a little of the black iron oxides Weathering.-Under the action of the weather he varieties of granite behave differently. The oarse granites are very durable and stand out edges and bold cliffs; the finer grades, by the decomposition of their feldspars, weaken to a crumbling mass which does not outcrop much excep on steep slopes. The schistose portions of the for mation break up most readily, and the planes of schistosity seem to afford a ready passage for the dissolving waters. In spite of its weathering the ormation occupies high ground, on account of he great mass of its insoluble materials. A notable instance of this is the Big Bald. In eneral the granite forms knobs and mountain are usually smooth and rounded. Many parts of its area are cultivated, and the soils are light loam of moderate depth and strength.

Distribution.-The rocks of this formation lie in large, irregular mass in the southeastern portion f the quadrangle. From this main body tongue project into the surrounding gneisses. In the vicinnation is nearly separated into two by the gees The extensive areas and exposures of the oranite Henderson County, N. C., give the formation name.
Relations.-This granite is intrusive in all of the The end rocks with which it comes into contac. he surro some of the granite bodies pass unde lines. The schistose planes of the gneiss arch over and dip away from the granite as if pushed up by the granite from below. This is plaine bout 3 miles east of Old Fort. In most places however, the granite appears to lie between the hyers of gneiss, he whole mass having a derate ip to the southeast. On the east the granit xtends only a short distance beyond this quad rangle into the adjoining Morganton quadrangl ut toward the sounwest it increases greatly in width and reaches far into South Carolina.
Character.-The granite is composed mainly of ithoclase and plagioclase feldspar, quartz, musco vite, and biotite, enumerated in order of thei mount, the lit a great deal in amount, but is usually subordinate. Porphyritic characteristic of the rock. The porphyritic vari ies are not limited to any particular position he gravite mass, but are irregularly distribut over the entire area They grade into rraites uniform grain, and the two varieties may be pres in a single ledre Along the southern border his quadrangle around Stone Mountain and i he extension of the granite northeast from Old Fort, considerable masses of it have a porphyriti appearance. In other portions of the formation he porphyritic feldspars are a decided character istic of the rock. This is most strikingly the case along the south edge of the quadrangle, on the drainage of Broad River and Cove Creek. The rock has a general gneissoid aspect and many of the phenocrysts are drawn out into lenses (or augen) etain their original shape they are an inch or les in length.
The massive granite which appears in the vicin ity of Stone Mountain is usually of fine or mediu rain and conains very hulte biotite. The feld pars nese up ang or the rok a decided white color. Southwest from Turkey Cove, and nearly to Old Fort, massive or slightly porphyritic granite composes the whole formation The micas are plentiful in that part of the granite, usual in the massive varieties. The minerals are mewhat coarser toward the northeast, and north of Marion the biotite forms large patchy crystals.

At numerous localities, usually near its con acts with the Carolina gneiss, the granite shows a decided flow banding. This is due to the arrangement of the minerals in roughly parallel laye when the granite was forced in a molten condition into the other rocks. This can be well seen on Curtis Creek northeast of Old Fort. At that poin he rock marked by wavy flow bands merges Each勆 massive variety in the same ledge. Lach ment of the minerals during metamorphism planes which bear little relation to the flow banding. At the same locality the intrusion of the hown.
Metamorphism.-The formation has been greatly ffected by metamorphism. This is best shown by he porphyritic portions, where the change in the orm of the mineral particles can often be measured. As was the case with the Cranberry granite, the rock has been squeezed and mashed until large Results of this kind are gneissoid structure. cutheast of the Hickorynut prominent in and outheast of the Hickorynut Mountains. The ange is manifest in the growth of the new micas nd in the elongation of the porphyritic feldspars. imes their original length. During the and slipping under pressure large the squeezing and slipping under pressure large crystals were early parallel with the shistose place The mi flakes were turned into similar planes and the small rains of quatz and feldspar were broken and recomposed into quartz, feldspar and mica Large bodies of a very gnessoid rock (or augen-gneis) were thus produced, in which many porphyritic crystals were cracked and pressed out into eyes or strings. The amount of distortion can be plainly measured in the least extreme cases by the intervals between the fragments of one crystal. The arge feldspars retain their shape better than the finer groundmass, however, and the mica flakes in he latter are bent and wrapped around the large feldspars almost as if fluid.
Other results effected by deformation are the striated and striped surfaces which mark the granite in many places. These are due to the linear growths of new minerals with parallel arrangement. The dark stripes are composed in the main of fine bioite and fibrous hornblende, and the light stripes of quartz and feldspar, the new minerals having segregated in this unusual manner. This phenomenon best shown northeast of Old Fort, where the ock contains the most biotite. The entire mass of the granite shows the effect of pressure so extreme a to overcome the original strength of the rock.
Weathering.-As the formation is attacked by weathering agencies its surface is slowly lowered. Its siliceous composition and its great mass unite The massive portions form hish ground wheres found such as Mackey. Mountain and Stone Mounfound, such as Mackey-Mountain and Stone Mounain. The porphyntic or gne Little Pisgah and Hickoryut munt hin a leys, while the ame kind of rock above the vallong Otter Creek, close at hand. Both rarieties f the granite cause many ledges and cliffs, which are conspicuous features of the landscape along the southern border of the quadrangle and at points farther southwest. The bowlders and waste from the formation are carried for long distances over the adjoining formations. Upon complete decay the formation produces a yellowish or reddish clay, which is frequently leached out nearly white. This is mixed with sand and fragments of rock on the mountain sides and is of no great depth. In the valleys the rock is often decomposed and soft to depths as great as 30 feet, and the overlying clay is 6 or 8 feet in thickness. Except in coves and
hollows the soil is infertile and is subject to drought.

rocks of unknown age.

onglomerate and gratwacki
Age and correlation.-A single large area of conglomerate, graywacke, and similar rocks runs
from the Blue Ridge across Swannanoa River and he Swannanoa Mountains. These rocks are surrounded entirely by the Carolina gneiss and do ot come in contact with any other sedimentary formations. In the Swannanoa Mountains, however, the conglomerate belt lies very near a parallel
belt of the Brevard schist, which is also of sedi mentary origin. The rocks of the conglomerat group bear a close resemblance in all respects conglomerate about portions of the Great Smoky Asheville quadrangle. The rock types are the ame and the degree of The rock types are the o that they degree of metamorphism is simation Except for this lithologic identity and the restric ion of conglomerates to identity and the restrino evidence to define the age of these rock Between them and the adjoining Carolina gnei here is apparent conformity, and it is extremely lifficult to separate the two formations where the onglomerates are absent. The graywackes and listinguished from similar rocks in the Carolin
 The suggestion is thus made that the Carolina and he local presence of the conglomerate making present distinction possible Metamorphism hese rocks has been so great however, destroy the original contact relations and an nconformity which may have existed. If the onglomerate group is of Cambrian age there is reat difference between the basin containing the conglomerate and the basins adjoining on the outheast, which contain only black schist. Difrences like these are seen in the similar rocks of the Asheville quadrangle, and are there due to he overlap of the younger sediments upon the lder. A similar explanation would hold here although the limits within which the overlap took place are narrow
Character.-This formation contains a consider ble variety of rocks, including conglomerates, raywacke, and mica-schist. The layers of con lomerate range in thickness from 1 inch to 2 fee ad exhibit the original character of the rocks most plainly. The conglomerates form layers in the ray wacke, in some places sharply separated from , in other places grading into it. The conglomrate pebbles are composed mainly of quartz, with sme of feldspar, and seldom exceed a half inch in length. On the south side of the Swannanoa Mountains they are an inch in length, and from his they grade into the coarse and fine graywacke trial of the craywacke and rained quartz feldsper muscovite, and fine little biotite All of the rels have a decidel ray color, which becomes whitish by the weather gr of the feldspar which they contain. Interbel
 beds of gray and bluish-gray mica-schist. Thes re from a few inches up to a foot or more in thick ess and occur in rapid alternation with the gray wackes. The schists are fine grained and are com posed chiefly of quartz and muscovite Some he darker layers contain also a little biotite and minute grains of the iron oxides. The formation ccupies a synclinal basin, so that its full extent is ot exposed. The metamorphism and the uncer ainty of the dips make the thickness of the forma ion very doubtful. About 1000 feet now remain fter erosion
Alteration.-The graywacke and schist are the nost altered parts of the formation and usually an be distinguished from the Carolina gneis only with great difficulty. The graywacke con ains more feldspar and less quartz than the Caroina, as a rule, and is also slightly finer grained In its present condition the graywacke is entirely netamorphosed, and its original nature can be inferred only by observations made in the Asheille quadrangle. Judged in this way, it was riginally coarse, feldspathic sandstone. The Hakes of mica are rudely parallel to one another, by the other minerals. The proportion of the by the other mincras. The proporion of he ca is sohistosity The planes of these secondy min lip he in mot ate the stratification planes, and the two sets usualiy coincide.
sually coincide.
The layers of schist are also entirely metamor mica of which they are composed lie closely parallel to one another and form a highly schistose rock. Usually they are finer grained than the chists of the Carolina, but the difference is not striking. Many of the layers also contain small secondary garnet crystals.

Some of the conglomerate pebbles retain thei riginal rounded form. Most of them have been crushed and squeezed, however, and elongated hree or four times their original length, and correspondingly flattened. At the same time much econdary mica was developed in coarse and fine fakes. The feldspar grains recrystallized into quartz and mica during the metamorphism. The riginal character of the congolmerate is best pre ved at the southern end of the conglomerate are North of Swannanoa River metamorphism ha een extreme, and at several localities small lense and patches of pegmatite and granitoid material re developed in the beds of graywacke. At first ocks. In reality, however, they grade more or less gradually into the graywacke, of which the ppear to be merely the recomposed materials.
Weathering.-The rocks of this formation re only slowly soluble and the feldspathic mate ial is not sufficient to cause rapid disintegration. Decay works in along the planes of schistosity and the rock breaks up into slabs and small fragments. These are left in the soils, which are thin, sandy, and micaceous. High mountains are produced by he formation, and valleys also cross its course s true of the adjoining Carolina gneiss. Man edges and small cliffs are found throughout it rea and its wash is spread far and wide.

$$
\begin{aligned}
& \text { Cambrian rocks. } \\
& \text { brevard schist. }
\end{aligned}
$$

Age, name, and relations.-The strata of this for mation are the earliest sedimentary rocks recog the wimin the quadrangle with the exception of解 Transylvania County. The evidence thus far obtained is insufficient to determine their age. They form the first sedimentary deposit upon
the Archean rocks, holding a position which is the Archean rocks, holding a position which is
occupied in this region only by Cambrain strata. The rock types found in this formation can be precisely duplicated in the Cambrian rocks far ther north and west. In fact, the resemblance between this and the Hiwassee slate is very bluish-black banded slates or schists, the color varying according to the degree of metalo urg and ith thege or and lentils of blue limestone The Hiwase armation, which is a sate in its utcrops, is metamorphosed toward the southea into schists which are identical in varieties and in appearance with the Brevard schist. Th requency of limestone lenses in the Hiwasse slate and the absence of limestone from thouands of feet of strata above and below it give dded interest to the presence of these limeston enses in the Brevard schist. The latter is not now known to be connected in area with the Cambrian strata lying farther northwest, so that here is no definite proof that the Brevard and the Hiwassee formations are equivalent.
Character.-As it is displayed in this quad rangle the formation consists only of schist and slate. Most of it is schist, of a dark bluish-black or black color. Between Swanannoa Gap and Old Fort the schistose character is less pronounced and he rock is a banded mica-slate. All of the strata re fine grained except a few siliceous layers, which represent original sandy strata. The rocks are composed mainly of very fine quartz and musovite, through which are sattered countless min te grains of the iron oxides, producing the dars color. Another constituent commonly found in graphite. This is disseminated in minute grains and there concentrated into layers. Graphite is also found associated with quartz in small secondary lenses. About 4 miles northwest of Ol to mining operations abunat to within this quadrangle. They begin a few miles southwest of Fairview, however, and appear at fre quent intervals for upwards of 50 miles.
The principal variation in the appearance of the formation is in the presence or absence of garnets These are very common in the vicinity of Fairview, Old Fort. They are disseminated through the schist in small crystals, seldom over one-eighth of
an inch in diameter. Since the garnet is also abundant in the underlying Carolina gneiss the same localities, it is sometimes very difficut to distinguish between the two formations. This is particularly true where they are much weath ered. The mica-schist of the Carolina, howeve is usually distinctly coarser and lighter colored. The garnets are of secondary origin and probably were developed by the same agencies in each of the ormations during their metamorphism. Here and here in the formation crystals of dull-gray cyanite re found.
Metamorphism.-While the effects of metamorphism are not conspicuous in this formation on ccount of its fine grain, they are in reality proriginal sedimetary band be in the rolities they are tiely destroy by the odary ine The disind arg the sec eldspathic materials of the slate developed now quartz and muscovite It is probable that son of the latter seen in the less altered slates is original mineral. The quartz is in very small grains, sometimes lenticular in shape. The muscovite occurs in extremely small scales and flakes, which lie nearly parallel to one another and cause the schistosity of the rock. The iron oxides and garnet are undoubtedly secondary
Weathering. - The rocks of the formation disintegrate more readily than most of the others of the region, but the formation occupies ground
uly slightly lower than the Carolina gneiss Decay makes its way down the schistose partings, and the rock breaks up into slabs and fakes, largely by the action of frost. Red and brown clay soils are left when the rock is completely disintegrated. These are shallow and ontain many flakes of the black schist. Ledge re usually near the surface, but seldom outcrop ar from the stream cuts. The soils are light and fairly productive on the lowlands, but on the slopes and summits of the mo
port only a scanty growth of timber.

hampton shale.

Distribution and relations.-One small area his formation is found east of Turkey Cove, at he foot of Linville Mountain. It is here assoased with the belt of Cambrian rocks which Cranberry quadrangle Thi Monant rocks is now only 10 miles away from the Bre vard schist. The strata which are now seen how ver, were much farther apart when deposited and have been brought closer together by the extren folding and faulting which have taken place. In the eastern Cambrian areas along Linville Moun tain the strata which underlie the Hampton an rest upon the Archean granite correspond in age with the Cochran conglomerate. This conglomerate overlies the Hiwassee slate, which is probably the equivalent of the Brevard schist. Thus, an overlap can be inferred between Linville Mountain and the Blue Ridge, such as appears in many places among the earlier Cambrian sediments. From this it appears that the Brevard slate was deposited along a shore which ran north and south hrough the eastern part of the quadrangle
amed from Hampton, Carter County, Tenn., hich it oceurs Th, Carter County, Tenn., nea slates derived from argillaceous shales. They are ray or blackish-gray in color, and on exposure vary to yellow or yellowish-gray. They are somewhat banded by ribbons of a light and dark gray. Though metamorphism has been sufficient to change most of the shale to a slate, yet the banding is seldom entirely destroyed. The forproducer, on account of its small area; nor does it affect the topography.

erwin quartztes.

Distribution and name.- \AA considerable body of this formation is found south and east of Turkey Cove. It passes northeastward through this and and slopes of Lin is named from Erwin, in Unicoi County, Tenn where it is conspicuously developed.
Character.-In this region it consists mainly few beds being fith a little white sandstone, a
of these beds, of very uniform appearance, occur in Linville Mountain. They are composed of grains of white sand cemented by secondary silica. The sand grains are usually very fine, but in a few places some of the upper layers contain small pebbles of quartz. The layers are very massive and range from 6 inches to 3 feet in thickness. Between them, here and there, are mall layers of slate or schist. These are more noticeable in the lower part of the formation. There are in this region no contacts visible between the quartzite and the overlying Shady marble. Toward the head of the North Fork Catawba River the latter rests on the quartzSouth of Turkey Cove and near the beat thrust fult mey Cove and near the great overhrust fur quartio was developed on and through the The devals of the 1 . a litle f sehin a ite, or flexible sandstone were produced itacoluWeather cainst the firm and insoluble bed very slowly mation. They always cause high ground and their course is marked by many ledges and white liffs. By the direct action of frost its blocks are finally dislodged and strew the mountain sides. Its crests are sharp and rocky, and the cover of soil is thin and irregular. On the flatter summits ad in the hollows a fair amount of soil accumulates and supports considerable vegetation.

shady marble.

Distribution and name.-This formation occupies three small areas adjoining those of the preeding quartzites. One of them underlies and causes Turkey Cove, and another extends up the North Fork of Catawba River for 10 miles or more. The formation derives its name from Shady Valley, Johnson County, Tenn.
Character.-The formation, as show here, consists almost entirely of marble. This is of white or gray color, with many bands and beds of dark
blue. Analyses of the marble give 33 to 41 per blue. Analyses of the marble give 33 to 41 per cent of carbonate of magnesium and 52 to 62 per ent of carbonate of calcium, so that much of the rock was originally a dolomite. The layers are very to in und Outcrops dete viny ance, laxcept in ges are seen. Outcrops are the sact, whe crable silica in the form of sand grains and chert In the extension of this formation toward the northeast its layers are somewhat less metamorphosed and the darker blue and cray colors of the original limestone prevail. Many ledges of this kind have the black weathered surface which is characteristic of the formation. The top of the formation is not shown in this quadrangle. Owing to the scarcity of exposures its thickness is hard to determine, but probably there are over 500 feet in Turkey Cove.
Weathering.-Weathering proceeds faster in this ormation than in any other rocks of this region. The rock dissolves, leaving behind a dark-red lay, and the formation makes valleys wherever it appears. In this region its course is followed by streams, the gravels of which are spread out widely over the areas of the formation. Its natural clays and soils are deep and strong and afford excellent farming land. As a rule, however, they are too much covered and impoverished by waste from the adjoining formations. In the red clays near the base of the forma deposits of brown hematite
triassic (?) rocks.
Distribution and relations.-Near the northern border of the quadrangle are found many dikes of this formation. They extend southwestward along the valley of Jack Creek from a large mass of the same rock in the Roan Mountain quadrangle. In the occurrences on Jack Creek the dikes are irregular in trend and in thickness, seldom being irregularity, it is impracticable to represent them all on the map. Their general course coincides with that of the foliation of the inclosing gneisses, but here and there they cut across this at considerable angles. Their most distinctive feature is
the absence of dynamic metamorphism, although \mid Plateau and the region lying farther west the rocks the adjoining rocks are all metamorphosed, frequently to an extreme degree. Rocks of the character of gabbro are especially subject to meta the gabbuo formed ater the that the gabbro was formed after the general period precisely this character are of frequent oceur rence among those of the Triassic period and are found at intervals in the older rocks of and are ad as there are no other formations of this char acter known in the Appalachians, this rabbro i considered to be of Triassic age.
Character. The mabbe is
Character.-The gabbro is a dense, hard rock of prevailing black or dark color, and on weathered It is composed chiefly of plagioclase feldspar, hornblende, and pyroxene, in crystals of medium size. The texture of the rock is usually massive and granular, but occasionally has the ophitic structure of diabase. Near the contacts with other formations the grain of the rock grows perceptibly finer, but it is seldom coarse at any place in this quadrangle. Plagioclase feldspar also oceurs saringly in porphyritic crystals one-half inch or less in length. Additional constituents are magnetite and garnet in small grains and crys-
tals. The latter is usually developed near the tals. The latter is usually developed near the
contacts, both in the gabbro and in the older contacts, both in the gabbro and in the older rocks, but frequently it seems to be a regular con-
stituent. stituent.
Weathering.-This rock withstands weathering most effectively. Decay works gradually in along joints, and spheroidal masses and bowlders are
formed, which are characteristic of the surface of the formation. Ledges are seldom far from the surface and the cover of seldom far from the thin. The rounded bowlders readily find their way downhill and block the readrem na theis weing about as effective in that respect as massive ledges of other rock.
structure.
introduction
Those rocks of this quadrangle that were deposited upon the sea bottom must originally have extended in nearly horizontal layers. At presbut are inclined at various angles, their edges appearing at the surface. Folds and faults of great magnitude occur in the Appalachian region, their dimensions being measured by miles, but they also occur on a very small, even a micro-
scopic scale. Many typical Appalachian folds are to be seen in the region. In the folds the rocks have changed their forms mainly by adjustment and motion on planes of bedding and schistosity. There are also countless planes of dislocation independent of the original layers of the rocks. These are best developed in rocks of an originally massive structure and are usually much nearer together and smaller than the planes on which the deformare minute disloctions the individual martics more minute dislocations the individual particles of the rocks were bent, broken and slipped past one another or were recrystallized.
Explanation of structure section
Explanation of structure sections.-The sections on the structure-section sheet represent the strata
as they would appear in the sides of a deep trench cut across the country. Their position with reference to the map is on the line at the upper edge of the blank space. The vertical and horizontal of the blank space. The vertical and horizontal slope of the land and the actual dips of the layers are shown. These sections represent the structure as it is inferred from the position of the layers observed at the surface. On the scale of the map they can not represent the minute details of structure, and they are therefore somewhat generalized from the dips observed in a belt a few miles in width along the line of the section. Faults are represented on the map by a heavy solid or broken line, and in the section by a line whose inclination shows the probable dip of the fault plane, the
arrows indicating the direction in which the strata arrows indicating the direction in which the strata have been moved on its opposite sides.
general structure of the appalachian
province.
Types of structure.-Three distinet kinds of strucure occur in the Appalachian province, each one of the geographic divisions. In the Cumberland

Plateau and the region lying farther west the rocks
are generally flat and retain their original composition. In the Valley the rocks have been steeply tilted, bent into folds, broken by faults, and to district faults and folds are important feture of district fauts and folds are important features of
the structure, but cleavage and metamorphism are equally conspicuous.
Folds.
region are about parallel toults of the Valley region are about parallel to one another and to
the northwestern shore of the ancient continent. They extend from northeast to southwest, and single structures may be very long. Faults 300 miles long are known, and folds of even greater length occur. The crests of most folds continue at the same height for great distances, so that they present the same formations. Often adjacent folds are nearly equal in height, and the same beds appear and reappear at the surface. Most of the beds dip at angles greater than 10°; frequently the sides of Generally the folds are smallest, most nuralle. and most closely squeezed in thin-bed numerous, such as shale and shaly limestone. Perhaps the most striking feature of the folding is the prevalence of southeastward dips. In some sections across
the southern portion of the Appalachian Valley the southern portion of the Appalachian Valley
scarcely a bed can be found which dips toward the scarcely a bed can be found which dips toward the
northwest.
Faults.-Faults appear on the northwestern sides of anticlines, varying in extent and frequency with the changes in the strata. Almost every fault plane dips toward the southeast and is approxiThe fractures extend beross of the upthrust mass feet thick, d dines the many housan pushed over the lower as far as 10 or 15 mile There is a presive There is a progressive change from northeast
southwest in the results of deformation, and different ones prevail in different places. In southern New York folds and faults are rare and small Through Pennsylvania toward Virginia folds become more numerous and steeper. In Virginia they are more and more closely compressed and they are more and more closely compressed and
often closed, while occasional faults appear Through Virginia into Tennessee the folds are more broken by faults. In the central part of the Valley of Tennessee folds are generally so obscured by faults that the strata form a series of
narrow overlapping blocks of beds dipping southeastward. The structure remains nearly the same southward into Alabama; the faults become fewer in number, however, and their horizontal displacement is much greater, while the remaining folds are somewhat more open. Metamorphism.-In the Appalachian Mountains the southeastward dips, close folds, and faults that characterize the Great Valley are repeated. The strata are also traversed by the minute breaks cleavage and are metamorphosed by the growth of new minerals. The cleavage planes dip eastward 60°. This phase from 20° to 90°, usually about 60°. This phase of alteration is somewhat devel-
oped in the Valley as slaty cleavage, but in the Mountain region it becomes important and frequently obscures all other structures. All rocks quently obscures an other stractures. All ducts of the metamorphism of very different rocks are often indistinguishable from one another Throughout the southern part of the Appalachian province there is a great increase of metamorphism toward the southeast, until the resultant schistosity becomes the most prominent of the Mountain structures. Formations there whose original condition the alteration has obliterated all the original char acters of the rock. Many beds that are scarcely altered at the border of the Valley can be traced southeastward through greater and greater changes until every original feature is lost.
In most of the sedimentary rocks the bedding planes have been destroyed by metamorphic action, and even where they are distinct they are usually less prominent than the schistosity. In the igneous rocks planes of fracture and motion were developed, which, in a measure, made easier the deformation of the rocks. Along these planes or zones of localized motion the original texture of the rock was largely destroyed by the fractures and by the growth of the new minerals, and in many cases this alteration
extends through the entire mass of the rock. The extreme development of this process is seen in the
of which have been entirely replaced by the schistose structure and parallel flakes of new minerals. The planes of fracture and schistosity are inclined tains, although in certain belts, chiefly along the southeastern and southern portions, northwesterly dips prevail. The range of the southeasterly dips is from 10° to 90°; that of the north westerly dips, from 30° to 90°.
Earth movements.-Thestructures above described are chiefly the result of compression which acted at right angles to the general trend of the folds and of the planes of schistosity. Compression was also exerted, but to a much less extent, in a direction about at right angles to that of the main force To this are due the cross folds and faults that appear here and there throughout the Appalachians. The earliest-known period of compression and deformation occurred during Archean time, and resulted in much of the metamorphism of the present Carolina gneiss. It is possible that later movements took place in Archean time, producing a portion of the metamorphism that appears in the other Archean rocks. In the course of time, early in the Pale ozoic era, compression became effective again, and a series of movements took place that culminated soon after the close of the Carboniferous period The latest of this series was probably the greatest and to it is chiefly due the well-known Appalachian folding and metamorphism. This force mation producing great overthrust faults and some metamorphism, the second extending farther north westward and deforming previous structures as well as the unfolded rocks. The various deformation combined have greatly changed the aspects of the ocks-so much so, in fact, that the original nature of some of the oldest formations can be at present only surmised.
In addition to the force that acted in a horizontal direction, this region has been affected by forces that acted vertically and repeatedly raised or depressed the surface. The compressive force were tremendous, but were limited in effect to but broader in their results, the vertical my point extended throughout this and other provinces. It is likely that these two kinds of movement were combined during the same epochs of deformation. In most cases the movements have resulted in a warping of the surface as well as in uplift. One result of this appears in overlaps and unconformities of the sedimentary formations.
As was stated under the heading "General geologic record" (p. 1), depression of this kind took place at the beginning of Paleozoic time, with several repetitions later in the same era. They alter-
nated with uplifts of varying importance, the last of which closed Paleozoic deposition. Since Pale ozoic time there have been at least four, and probably more, periods of decided uplift. How many mot be ascertained from this region. ot be ascertained from this regio
local structures.
General features.-The rocks of this area have undergone many alterations in texture and position and metamorphosed in a high degree The strue tures which resulted from these changes extend in a general northeast direction, except a narrow belt running southeastward between Burnsville and Turkey Cove. In this belt the structure planes swing into a northwest course, nearly at right angles to their prevailing direction. Many minor changes of this kind are to be found at various localities in the quadrangle.
Structures in the sedimentary rocks are readily deciphered. In the igneous and metamorphic formations, however, while it is easy to see that the rocks have been greatly disturbed and the details of the smaller structures are apparent, it is difficult to discover the larger features of their deformation. One reason for this is that the original shape of most of the formations is unknown, because they are intrusive and consequently irregular. Another reason is that the masses of one kind of rock are so great and distinctive beds are so rare that struc While for size can seldom be detected.
While folds and fauls are numerous throughout by quadrangle, especially where they are defined
less than that of metamorphism, the multitude of whose slips combined has equaled the larger struc-
tures. It is possible, also, tures. It is possible, also, that other faults occur
in addition to the few faults that are shown, but, in addition to the few faults that are shown, but, for lack of distinctive or regular beds they can not be determined. By far the greater part of the
deformation of the rocks in the region has taken deformation of the rocks in the region has taken place through metamorphism. It is very probable
that the folds are complicated with faults along that the folds are complicated with faults along
their borders; for instance, in the synclines of Bre vard schist. No sharp line can be drawn, however between the dislocation shown in faults and in metamorphism without displacement.
In the structure sections it is not possible, on account of the small scale, to show the minor folds and wrinkles, so that the structure is generalized and represented as comparatively simple It is not possible to represent the granite and gneiss occurring beneath the surface, since they have no known methods of disposition or occurrence, such as characterize the sediments. In many places the granite bodies can be seen protruding through the gneisses from below. In other places, the same relation can be deduced from a study of the topography. There are also instances in which the bodies of Roan and Carolina gneiss and soapstone rest at various discordant angles within and upon the bodies of the granite. As a general principle, moreover, it is evident that the granites were intruded into the gneisses from larger bodies of granite lying deeper in the earth. For these reasons the granite masses have been represented as growing larger down-
ward. From a similar course of reasoning, the bodi. Fromar cons the bodies of Roan gneiss, being probably eruptive in the Carolina gneiss,
beneath the surface.
beneath the surface
Folds.-In a
acks of way, the strueture of the two synclinal basins, with three inangle is that of two synclinal basins, with three intervening areas of uplift. In the southeastern basin, which i folds, are found the only sedimentary rocks of the quadrangle. In qeneral, a group of these smaller folds can be traced along the Blue Ridge through the contorted gneisses at the head of North Toe River, and into the southwest corner of the Cranberry quadrangle. The northwestern basin enters this quadrangle east of Asheville and passes across the head of Ivy River just west of Burnsville, where it becomes more obscure and disappears northeastward. It is defined in part by the dips of the foliation planes and in part by the disappearance, toward the southwest, of the Roan gneiss, which in general comes up into the Carolina gneiss from below.
Of the three areas of uplift, the northwestern and southeastern are marked both by the foliation planes and by the masses of granite which have orced the gneisses upward from below. The dom ing of the gneisses by the Henderson granite on Fort The noth uplift is well shown east of Old Fort. The northwestern uplift is associated immediately north of this quadrangle with an enormous den the sedimentary strata The central ontidina bulift per the What Mlift passes through Mount Mitchell and the Black Mountains, across the head of Swannanoa River both southwest and northeast of Mount Mitchell The folds, both anticlines and synclines, rang in size from mere wrinkles up to arches and basins with breadths of miles. Folds of all intermediate dimensions are to be observed. Many of them are open, as in Section B-B, but the majority are nearly, or quite, closed. Thus, for long distance across the strike of the rocks, the dips of the rock masses and foliation planes are nearly parallel The various schists, slates, and gneisses were bent nore than broken under compression, on accoun of their frequent parting planes and changes of material. Beds like the Erwin quartzite, possess ing few such planes and being very rigid, broke as well as bent under the strain and caused faults to extend out into other formations. Breccias are found at many points on the fault planes. Thin ner beds, like those of the Brevard schist, bent and crumpled in an extreme degree without breaking appears in Sections D-D and E-E.
Faults.-The most exceptional structural featur of the region is in the area of Cambrian strata nea Turkey Cove. Over these sediments the Archea
northeast. In that direction, the sediments continue through the Morganton and into the Cran berry quadrangle, forming a group of remarkab structures, which are described in the Cranberry folio. The schistose planes of the granites in this quadrangle dip away from the Cambrian quartzites and marbles at angles varying from 20° to 50°. Since the principal overthrust took place second ary folds and faults have been developed in the same rock masses and have bent and broken the earlier faut plane and the inclosing rocks. These nor are in alved but an more far ene It is probable how he adjoining granites. It is probable, howeve The striation and elongation of the granites neir foult show no apprent relation to its per
 direction Section B-B shows the seneral rel tion of the rocks in this structure.
Metamorph ism.-The third ane.
sult of deformation in this regios conspicuous phism. Its processes were in general along the fol owing lines: The mineral particles were changed in position and broken during the folding of the rock; as the folding went on they were fractured more and more; new minerals, especially quartz and mica, grew out of the fragments of the old minerals and were arranged at right angles to the greatest force of compression at any particular point. Inasmuch as the compression was about uniform in direction over large areas, there resulted a general parallelism of the longer dimensions of he minerals. To this is due the schistosity of the rock. In folding, the differential motion in the sedimentary strata was to a large extent along bedding planes. As deformation became extreme, however, other planes of motion were formed through the indiidual layers, as in the case of the massive igneou ocks. In rocks which had already become gneissid or schistose as the result of previous metamor phism the existent schistose planes served to acinte. In the bro pres the sediments. In the massive igneous rocks there eveloped by fracture and mashing and the developed by fracture and mashing, and the the low The reting a coneral way parallel to one another for 1 distances and over large areas. They sometimg diverge considerably for short distances around harder portions of the rock, which have yielded less under compression, but the influence of these portions is only local. Near the boundaries of formations, also, they are usually about parallel to the general contact of the formations, the yielding to pressure having been directed by differences in trength between the formations. Thus, while the trike of the different formations may vary considerably in adjoining areas, the schistose planes swing gradually from one direction to another, and there is seldom an abrupt change.
As was stated in the description of the Cranberry and Roan gneisses, the foliation evident in them was produced at an exceedingly early date. In the later, or post-Carboniferous, compression these foliation planes were deformed by folding. Thu were produced the larger folds, such as appear
around Mount Mitchell, the minor folds, and the round Mount Mitchell, the minor folds, and the wrinkles which are seen in scores in every large outcrop. The conditions of deformation were such as to fold and mash rather than break the layers, and the bands of the gneisses are twisted and grow thicker and thinner in the greatest variety. Bending of the beds was largely
long the foliation planes.
In the granites, during the same period of folding, there were no existing foliation planes. Under great stresses, however, planes and zones form took place on them. These planes dip almost altogether toward the southeast and are hearly uniform over large areas. They vary in mount from 5° to 10° up to vertical, averaging bout 50°. Along the contacts of the formations he planes of schistosity are roughly parallel to the planes of schistosity are roughty parallel the body of each formation, however, there are consid rable divergences from the direction of the contact Around more massive and resistant portions of the ocks, also, the schistose planes swing gradually In places where the motion was especially localized, s in the vicinity of fault planes, the minerals of the Mount Mitchell.
granites were elongated into thin sheets and strings ody sther forms. In many other places in the nd may granite, similar results are to be seen In the porphyritic cod due to the same conditions. the large feldspar crystals were cracked, rotated flattened, and elongated into eyes. Around these harder portions the secondary micas of the granite are closely bent.
There is a great variety in the direction of the structure planes in the mountains. Their average trend is between N. 20° to $45^{\circ} \mathrm{E}$. Locally there are groups running north and south, and
also northwest and southeast. These constitute portion of an axis of cross folding and extrem portion of an axis of cross folding and extrem ion through Turkey Cove and Burnsrille On his cross axis there is a general pitch of the strue ures toward the southwest. in the same direction, resulting in similar north west strikes, is seen in the extreme northeast corner of the quadrangle. A group of structures which pitch in an opposite direction is seen in the granites and gneisses southeast of Old Fort. These have no connection with any general structural features and are probably caused by the superior rigidity of the masses of Henderson granite in that locality. Local twists and turns in the individual beds can be found in almost any large outcrop. These are accommodated to one another, however, so that the average course of the formations is very regular for long istance
In the dips of the structure planes of this quad angle there is very great variation. Throughou nost of the area the dip of the schistose planes and sedimentary beds is toward the southeast at angles ranging from 10° to 90°. In certain belts there are usually distinct groups of dips. The exceptional feature in this respect is the serie of northwestward-dipping beds and axial plane seen in the Black and Great Craggy mountains. This is best defined north and west of Moun Mitchell, in which locality the folds are overturned the west at angles of 60° to 80°. These toward westwal the zone between the Black Mountain uplift and he Asheville synclinal depression alredy alluded to. Southwest of Mount Mitchell the fold allude . Soure more upright and nearly vertical. Northeast of turned toward the northwest in the manner prevailing elsewhere in the quadrangle. Northwest of this exceptional belt the dips are steep toward he southeast, ranging from 50° to vertical. South east of the same belt the dips are almost entirely oward the southeast and at considerably lowe angles. Many of the rocks are nearly flat and few have a dip greater than 60°. Along the southern
edge of the quadrangle, in the Henderson granite, the foliation planes dip 5° or 10° southeastwar or large areas. The average dip for the region outheast of the Blue Ridge is 40° or less.
Repeated deformation.-Metamorphism is plainly he most important result of deformation in this quadrangle. Just how much of it proceeds fron he period of deformation commonly termed the "Appalachian" is doubtful, but it is certain that many schists and gneisses had attained great meta norphism during previous epochs. The Appaachian deformation was not, however, completel wring one process. From the facts observed in his and in adjoining areas, it is clear that som of the great irregular faults were the first result of this deformation. At a somewhat later time diese were themselves folded, as deformation took dirferents are of in the faults wouth of Tuke Cove (Section C-C) Sch dauts south of Turkey ove (Section coug the sedimentary formatio during the first part of this epoch. In many places even the secondary minerals and shistos planes are folded as well as the original layers the rock. The metamorphic minerals were pros duced under certain conditions of pressure and load, and they could have been deformed only when these conditions were altered materiallythat is to say, after a considerable lapse of time The length of this interval is not known, but in comparison with the preceding epochs it was probably small. From present knowledge it seems clear that both these episodes and the interval are but parts of the Appalachian epoch of deformation.

Vertical movements.-The latest form in which yielding to pressure is displayed in this region is vertical uplift or depression. Evidence of such ing the deposition of the sediments, as at the beoinning of the deposition of the Brevard schist and the Shady marble. In post-Carboniferous time, after the great period of Appalachian folding just described, such uplifts took place again and are recorded in surface forms. While the land stood one alcitude for a long time, most of the rocks large part of this nearly level surface. Over developed, but only a few of its worn remne re now to benk the had treams whe asondary itting reached On the upper port or is an excellent example of this plateau, at 3600 feet above sea, while many smaller remnants may be found here and there in the high mountains. Over much of this region another such surface was developed, which is still visible in the plateaus etween and around the main mountain mass, mall parts of these plateaus are shown in Section D-D and E-E. East of the Blue Ridge another plain was extensively developed after further uplift, and erosion had taken place. This now stands at heights of 1200 to 1400 feet above sea. The beginning of a third series of plains is recorded in the flood plains of Yadkin River, where it has cut down into the Piedmont Plateau
After the formation of each of these plains, uplifts of the land give the streams greater slope ad greater power to wear; they have accordingly cut down into the old surfaces to varying depths their power and the nature of the waste they carry The amounts of the uplift can be estimated, from he vertical intervals between the plateaus, at 1000 eet after the first period of reduction, nearly 1400 eet atter the second, and perhaps 1000 feet after edly occurred in this region, but their traces are dly occurred in this region, but their traces and which were not puffient length to allow pid och form the longh to all

ECONOMIC GEOLOGY.

mineral resources.

The rocks of this region are of use in the natural tate, as soapstone, talc, mica, precious stones, corundum, marble, serpentine, and building stone, and in materials derived from them, such as graphite, magclay. Through their soils they are of value for timber and crops, and in the grades which they occasion on the streams they cause abundant water power.

oapstone.

Soapstone is found here and there through the Archean formations. It and allied rocks occur at requent intervals throughout the entire length of the Appalachians. Although soapstone is thus length. Some of the bodies are to be measured by few feet, and most of them cover only a few acre Soapstone is derived from the metamorphism of very basic igneous rocks and is associated with dunite, serpentine, chlorite-schist, and other prod ucts of that metamorphism. It is customary to find several of the metamorphic varieties together in each area. In the district south of Marion three idge there are known. North of the Blue f the formation show a considerable amount of oapstone.
In places the soapstone is sufficiently pure for ydrous silicate of magnesia forming the talc, the ydrous silicate of magnesia forming the soapstone, of the hornblende family, to be valuable. The special uses of soapstone demand a rock which is readily cut and sawed and which contains no matefial that is affected by fire. Some of the hornblendic minerals fuse readily, and others which fuse less easily are hard and injure the texture and the working of the stone. The igneous rocks from which the soapstones were formed vary much in composition, so that the beds of soapstone are equally variable in quality. Metamorphism of
the original rock was not always complete and did not always produce a soapstone, even when complete. Accordingly, in this quadrangle large bodies of soapstone are rare, although several of the largest known bodies of the allied dunite and serpentine are found here. The soapstone usually few inches or a few feet thick, and in larger bodies at few inches or a few feet thick, and in larger bodies at
the ends and borders of their masses. On the economic geology map are indicated eleven areas of the formation where soapstone is found in sufficient purity and body to be valuable. The most promising localities are 1 to 2 miles northeast of Democrat, and on Toe River and Crabtree Creek 5 miles south of Boonford. Near Democrat the soapstone covers many acres, while at the latter localities its bands are from 100 to 1000 feet long. Thus far, however, ouly loose blocks and bowlders have been sawed and used for building fire places, and in no place has the rock been quarried to any extent.

tale

Deposits of pure talc are found in connection with the rocks of the dunite-soapstone group. The talc has the same origin as the soapstone bodies, both being derived from the metamorphism of peridotite, and is, in fact, only the purest mof those deposits. Talc is also found in veins veins are so small that they have no value.
On the economic geology map four localities for talc are shown. The principle bodies are 1 mile northeast of Democrat and 2 miles northeast of Burnsville. In all these localities the tale forms the entire outcrop of the formation. No tests have been made of the depth of the talc bodies. Since, however, they replace the dunite the depth of the talc is probably equal to that of the dunite. The shape of the dunite bodies is lenticular and their depth is doubtless as great as their length on the surface. Near Democrat the talc outcrops in an val area about 500 feet long. Near Burnsville he talc forms 2 small Sor 100 feet long
Some uses of tale demand that the product shall be absolutely free from grit; others, that it shall
contain no fusible minerals; still others, that the minerals shall be massive and capable of being sawed into small sections. All of the talc shown here is sufficiently free from grit and fusible sub stances. A few small orains of iron oxides are found in practically all of the talc; these can readily be separated, however, when the rock is pulverized. Except for these oxides there are no fusible'impurities. All of the talc, however, is schistose to some degree. This structure renders it unfit for sawing into pencils on account of the easy splitting which it produces. It does not, however, affect the use of the talc in larger forms, such as linings for fire places and furnaces. In this way considerable use has been made of the material from these localities. None of the talc is translucent or massive. The portions available are the surface materials, however, and the deeper rock would doubtless be better. In no case would the schistose character be absent.

mica.

In the pegmatites of the Archean rocks, mica occurs in crystals large enough to be of comercial value. Pegmatites are found in the Roan and Carolina gneisses throughout a large portion of their areas, but they contain mica of workable size chiefly north and northeast of Mount Mitchell. the largest mica has been produced from a mine nother 41 il another $4 \frac{1}{2}$ miles northeast of Mount Mitchell, All of these mines are in the Carolina oneiss, as are most of the good mica mines of this region. The principal devedopments in mica mining have been in an area of 150 square miles notherst of the Black Mountains and north of the Blue Ridge; the mica industry centers chiefly in Sprucepine The group of mica-bearing pegmatites passes northward into the Roan Mountain quadrangle. A few mines that produce good mica have been developed in other localities. In general, however, outside of the mica district above described the crystals of mica in the pegmatites either were not originally of workable size or they have been crushed or distorted during the deformation of the rock. In this
quadrangle the pegmatites are of lenticular shape and lie in general parallel to the inclosing gneisses. Some can be traced for miles, while others exten nly a few rods or a few feet
The mica mined is the variety muscovite, and is crystallized with quartz and feldspar, form ing the pegmatite. In many localities biotite also ars, and one of the notable constituents of the pegmatite in this region is beryl. Many other are minerals, notably the compounds of uraniu and columbium, are found in the pegmatites From a texture like that of granite the coarsenes of the pegmatite varies until the mica crystals tain a diameter as great as 30 inches. Crys als of this size are very rare, having been found only in the mine just northeast of Mount Mitchell nd in that northeast of Sprucepine. The averag
In ples the min appently follows In places the mica apparently follows rathe The distribution in the vein of the "vein." blocks" of rood mica is very irregular The
 position in the permatite. Consequently the sur possition in the pegmatite. Consequently, the suc Large mica may be found at once or barren rock nay continue throughout. Coarse mica at one point may become smaller in a few feet, or the rystals may be deformed and crushed. Even hen the mica is large, most of it may be "A" mica, with poor cleavage. Generally, however, one dass of mica prevails for considerable distances The deep incline of the Gibbs mine on South Toe River, 450 feet, shows an unusual persistence of the ood mica in depth. A similar or greater exten of mica is seen in a horizontal direction in man ines of shallow pits and tunnels.
Many of the crystals do not furnish sheets heir entire diameter, for seams and cuts divide them into strips and angular pieces. These, however, re suitable for ground mica. Impurities in the form of dendrite figures, stains, and spots rende nuch of the mica worthless for any purpose, an day penetrates between the sheets where the rock decayed near the surface. The latter impuritie an be, for the most part, taken out by careful washing, but the spots of dendrite can not be wholly removed, existing as they do between the thinnest sheets. These spots are unimportant in nica used for electric insulation or where trans parency is not required.
Pits and shallow openings have been made a cores of places in this region during many years but they have usually been sunk in the decayed rock is difficult, on account of the hardness of the quartz and feldspar. The most extencess of the ld mines is the Ray mine at the north end he Black Mountains At this point a and wa sunk about 250 feet, and much mica and many are minerals were taken out; the locality i ne of the most noted in the State for unusual minerals. In the vicinity of Sprucepine several hafts have been sunk to considerable depths in recent years In addition to mica, minents procured of considerable value for the radium, ranium, tantalum, columbium, and other rare elements which they contain. These minerals are present especially in a group of mines within miles of Sprucepine-the Buchanan, Wiseman, lat Rock, Dake, and Adams mines.
At present the ouly work carried on is at the Gibbs mine, on south Toe River, east of Celo Mountain. At that point an incline goes dow or 450 feet at a dip of 45° to the west, following the dip of the pegmatite and the inclosing nica-gneiss. The mine lies just west of a sharp anticlinal fold in the mica-gneiss which pitche southwest. The pegmatite is composed of feldspar, quartz, muscovite, biotite, with a little garnet, apatite, and secondary epidote veins. Th feldspar is mainly oligoclase, some of which is clear and glassy. Its crystals are large, occasionally exceeding 2 feet in length. The larges mica "block" found was nearly 2 feet across the much less. The product is used chiefly for insulating work in electrical construction.

rectors stones.

Mention has been made of various rare minerals Three places have been discovered with a f
cial value. These minerals consist of the silicate of alumina and glucina, all being included under the seneral name of beryl. The transparent, bluishreen variety is called aquamarine and the clear emerald-green crystals are called emerald. The brilliant green color of the latter is due to the pres nce of small amounts of chromium.
The beryl occurs as hexagonal crystals in the quartz, mica, and feldspar of the pegmatites. It varies in size from minute prisms up to rudely rystalline masses, which sometimes exceed a foot in diameter. As a rule, the hexagonal and terminal planes are well developed. The prisms are sually two or three times as long as they are hick. They lie at all angles in the pegmatite, and hey may occur singly or in groups of two or three. unfit for sems The largst nfit or gems. The largest and most perfe the north end of the Black Mountains The the nor 1 . The less than one-ighth of an inch in slim prisms, finest have diameters of half an inch. The beryl are intergrown with the other minerals of the per matite, so that it is clear that all were formed at the same time.

Two miles

ining is nearly south of Sprucepine active ian Gem Company for aquamarine by the Amerlips southeastward. at an angle of 45° and many mall tumnels and inclines have been opened upon it. The pegmatite is inclosed by mica-gneiss, but s very near the contact of the latter with a body of hornblende-gneiss. The beryl-bearing rocks have been traced by pits and small shafts for a distance of nearly a mile. The productive poring form a series of lenses somewhat overlap ping one another and less than a foot in thickness rals the beryls are most common. The minuartz biote pegmatite are orthoclase feldspar, nd betorte, beyrl, garnet, and a little columbite another, as well as in separate crystals, and are all apparently of the same age. The beryls are comparatively small, few exceeding 6 inches i diameter. Some of the crystals may be entirely clear and fit for gens, but usually only small parts are so available. The color of the beryls varie from colorless to light green, bluish green, and pink. The best stones have a deep bluish-green
color.
Four miles southwest of Sprucepine re found in pegmatite. An incline has been following the pegmatite and inclosing micaman, fonlong peg ard at angles rica-gnei 55° to 50°. The emerald-bearing rock is o have been traced for about half a mile to the north. A few feet east of the mouth of the incline small body of hornblende-gneiss is in cont with the mica-sneiss, but the extension of the vein toward the north does not follow this contact closely. The pegmatite consists mainly of feldspar, quartz, tourmaline, and beryl, with horses of biotite-tourmaline-schist. The beryl re found sparingly throughout the pegmatite ut are commonest along the upper contact of the pegmatite and mica-gneiss and in small bunches and horses of schist. The upper conact is followed for the "vein," which is seldom ver 8 inches thick. As it increases in thickne he percentage of emerald grows less. Most of the beryls are opaque and valueless; many, however are clear and of the brilliant green which mark the emerald. The latter vary in size from minut grains or slim prisms up to crystals with diamete of half an inch. Owing to haws, cleavage crack nd opaque spots, only small portions of some the crystals are suited for gems. The slightly colored beryls have lengths as great as 6 inche The tourmaline crystals are very perfectly formed nd range from mere needles up to prisms 4 or anches in length. They usually have no specia decided radiating arrangement.

corundem.

Corundum is known to occur in two places within his quadrangle: one, 4 miles east of Pig Bald, in miles east of Celo Mountain, ner South Toe River. In each of these localities the corundum
is found associated with the soapstone. In this respect it differs from the corundum localities connected with the dunite variety of the formation. In each case here the corundum inclosed in scaly chlorite. In the Big Bald local ity the corundum is found along the borders the soapstone mass in knots, patches, and irregula veins. It is also reported to occur sparingly in the soapstone rock itself. The soapstone at this point contains much chlorite, actinolite, and other hornblendic minerals. At the locality east of the Black Mountains the chlorite and corundum form a vein dipping southward and crossing the trend of the soapstones. The corundum forms separate crystal or small groups of crystals in the chlorite, and the individual crystals vary from small grains up to farm an ane lly rey formed and and has reen tubled The corn. cuts and it is doubtful if the amount of it is great.

graphite.

Graphite is found here and there in many of the ayers of the Brevard schist. It appears in two forms, being disseminated through the body of the schist in extremely fine particles, and also associted with quartz in small veinlets and stringers only in the vicinity this mineral have been Blue Ridge, the black schists are graphitic at many ther places. In fact, graphite might be said to be a regular constituent of the schist in some areas. As to the cause of the presence of graphite in some places and its absence in others there is no sufficient evidence, nor is it known whether the graphitic material was introduced into the schists as an original or a secondary constituent. Its presence in veins, the quartz of which is secondary, indiates a secondary origin for the graphite. Othe minerals frequently found in the graphitic schists are garnet and cyanite. The schist itself is comlack iron oxides in extremely minute grain black iron oxides in extremely minute grains.
These various minerals are distributed uniformly These various mine
through the schist.
Several short tunnels and small open cuts have been made in the graphitic schists just north of Graphiteville. From this point northeastward the to and across the Blue Ridge. Within this to and across the Blae Ridge. Winn this area of graphite, which, in fact, is present more or les through the entire mass of the schist The an of graphite is therefore very large, ine the sym clines containing the schists have sreat depth thickness in this region. In Section D (eee strun wre section) is shown the averace bulk and pois tion of these synclines of the schists The schist the only lare and reliable source of the graphite Although the small quartz stringers contain pue graphite they are of small body and could not be mined economically.
A mill was erected at Graphiteville for crushing the schist and separating the graphite. Before the mill was completed operations were suspended and practically none of the ore was reduced. Tests of the graphitic schist on the extension of the same belt north of the Blue Ridge were made on a smaller scale. In this case the presence of large In the use of grnet caused suspension of the work pencils use or graphite for lubricating purposes and free from important that the mate a small amou of garnet in the finished product would be ver injurious. If the schist should be ground in the nsual manner, difficulty would be encountered in cheaply separating the garnet from the graphite, although there is considerable difference in specific gravity. The elimination of the quartz and muscovite by water would be even harder, since their weights are more nearly that of the graphite. nother diffinty in crushing the rock would Chese minerals are very hard and would for hese minerals are very hard and wond for binery In hauling dosit on a large sale hese difficulties would have to be solved.

agnetite.

Magnetic oxides of iron are known at seven places within this quadrangle. Most of the mag-
titaniferous iron oxide, which renders the ore at present of little value. At two places, 2 miles Turkeast of Democrat and 2 miles southwest of Turkey Cove, the magnetite is relatively free from he titaniferous oxide. In neither place, however, it te body of ore great. Near Turkey Cove netite pits and dip needle tests show that the magnetite inds for nearly a mile in a northeasterly direcon. The magnetite forms thin seams and lenses in the Carolina gneiss. The deposit dips northing gneiss. The downward extent of the ore deposit ing gneiss.
is unknown.
Deposits of titaniferous magnetite are found 3 miles north of Burnsville on Jack Creek, 5 miles northwest of Burnsville, one-half mile east of Moores Gap, and in two localities 3 and 5 miles northeast of sprucepine. The deposit north of Burnsvine in only important one. The ore here is found in the Carolina gneiss, near the contact with the Roan gneiss, and dips southeast . 0 . 75 ferm and appears in two separate openings 75 feet apart. 39.42 per con of men 11.9 per itanic acid The deth of the been tested.

rown hematit

Workable deposits of brown hematite are found at several points in the Cambrian strata south of Turkey Cove. The ore has been exposed by small open cuts and drifts at three points on Graveyard Mountain, as shown on the economic geology map. Numerous smaller deposits of hematite are found scattered over the surface of the quartzite in the same region. The ore is found associated with the Erwin quartzite in all cases and lies close to fault planes intersecting them. One of the deposits also borders the mass of Shady marble at the south side of Turkey Cove. The ore bodies dip to the southeast at angles ing to the dip of the strata. Most of the ore is inclosed in residual sandy clay near the surface. The beds of ore range from a few inches in thickhess up to 4 feet or more. In one drift $2 \frac{1}{2}$ feet of ore was inclosed between quartzite walls. In one ut the brown hematite was found in close assocation with quartzite containing pyrite. Still another body of ore of good size at the surNorth Fork of Catawna there by pyite. At the North Fork of Catawba bodies of ferruginous breccia along the same fault ysis of the a bun side of Graveyard Mountain onk of silica 60 per metalic iron, and 097 per cent of phor 10 per cenc of prous the litan $\$ 2$ a ton in the over fifty years ago to supply local forges. Tests have been made of the ores at various times since then, but no considerable work has been done. The ores have the association and app
ossans, and their depth is problematical

chromite.

Chromite is a common constituent in the dunite bodies of this entire region. In five places it is The quantities sufficient to constitute an ore. These localities are 4 miles north of Burnsville, 6 miles east of Burnsville, 6 miles southwest of Burssile, and $1 \frac{1}{2}$ miles north of and half a mile ville enocrat. The deposits north of Burns exploited.
The chromite occurs in grains scattered through the mass of the dunite, in which form it is seldom of value. It also forms balls and nodules of various sizes which constitute an ore. Most of these larger bodies north of Burnsville was 3 feet in its greatest length. At the locality southwest of Burnsville a large pocket was found containing several ons of ore. There is probably no difference in origin between these two forms of the chromite. orth of Democrat a considerable amount of the dunite was explored and much chromite was found in grains and small bunches. Analyses of the chromite give 60 per cent of chromic oxide. A deposit giving promise of value is the one north of Burnsville. At this point various pits and open
have been made to develop the ore. Owing to the usual irregular and pockety nature of the chromite, calculations as to its amount are far from certain. West of Democrat several test pits and small hafts have been put in within a few months and of streaks and narrow bands of cherite corys rrouped in the dunite as to form a kind of vein This is from 4 to 8 feet wide in one shant shows a steep dip to the northwest. The "vein" runs through the open cut and, judged by the heavy wash of chromite sand, is more or less continuous for half a mile northeastward. It is there opened by an open cut showing a smaller "vein" or concentration of the chromite in a group of narrow bands. It is probable that further work would develop a considerable body of ore. The arge amount of chromite in the soil would probably repay hydraulic work.
The dunite throughout the chromite areas contains nickel in small amounts, and the combination may be of value at some time in the manufacture of the harder kinds of steel.
building and ornamental stone.
Most of the formations of this quadrangle yield stone suited for building. The best is found in the Henderson granite, Cranberry granite, and Erwin quartzite. The latter furnishes an extremely hard, white rock in beds ranging from a few inches up to 2, 3, and 4 feet in thickness. Along the North
Fork of Catawba River its ledges descend to the Fork of Catawba River its ledges descend to the
water level, and stone can be readily obtained. In water level, and stone can be readily obtained. In
its areas west of the North Fork it is very schistose its areas west of the North Fork it in sery soisting.
and much of the stone is unsuitable for build In fact, the alteration is so considerable in places hat the stone becomes a quartz-schist or itacolumite. frar the best and most abundant building material. The Cranberry granite is more variable in texture The Cranberry granite is more variable in texture
than the Henderson granite, but large quantities of massive, uniform stone can be procured. The rock is gray for the most part, but a few beds are nearly white. On Cane River and its tributaries extensive outcrops of the formation are every where found, and sites for quarrying are easily obtained. The Henderson granite yields the most uniform and the most desirable stone of this region. Two kinds of rock are found therein. The formation consists mainly of the porphyritic granite, which is usually schistose or gneissoid. In some localities, especially north and northwest of Marion, and also in Stone Mountain southwest of Old Fort, there are large masses of less schistose and less porphyritic rock. These bodies are usually nearly white and of much lighter color than most of the formation, which is light gray. The porphyritic feldspar crystals give a striking aspect to the rock and render it suitable for ornamental work. The stone can readily be opened along the schistose planes, and split into beds of any desired thickness. It dresses well, and is exceed-
ingly hard and durable. The best localities for ingly hard and durable. The best localities for
quarrying are in the Hickorynut Mountains, 5 or 6 miles south or southeast of Old Fort. In these 6 miles south or southeast of Old Fort. In these
situations many large outcrops and cliffs of granite situations many large outcrops and cliffs of
reach the surface and the slopes are steep.
Serpentine.-Ornamental stone of great beauty Serpentine.-Ornamental stone of great beauty
is found in the dunite bodies, where considerable masses have been altered to serpentine. This alteration has taken place on a large scale west of Swannanoa, where the serpentine now constitutes most of the formation. Serpentine is also found in many
other areas of the dunite, notably 1 mile north and 3 miles northeast of Democrat, on Ivy River. The color of the serpentine is green, of somewhat darker shade than the green of the dunite. The rock is itself exceedingly tough and strong, and resists weathering admirably. It takes a fine polish, but is difficult to dress. The serpentine mass west of Swannanoa causes low, rounded hills on which the rock outcrops extensively, so that the material is easily available. At that point the formation is cut Marble.-Beds of workable marble are furnished by the Shady formation in the two larger of its areas. While the areas underlain by the marble are large in each of these cases, outcrops of the rock itself are very scarce. The marble is much more rapidly dissolved by circulating waters than
the adjoining rocks, so that its surface is low and the adjoining rocks, so that its surface is low and overspread with wash from the harder formations.
The only considerable outcrops are next to the Mount Mitchell.

Erwin quartzite at the southerly side of Turkey
Cove. In this quadrangle the strata of the forma Cove. In this quadrangle the strata of the formation consist mainly of marble. Most of it is white or beds colored, but associated with this variety are beds of white marble with blue bands and marble give 52 to 62 er cent analyses of the cium, 33 to 41 per cent of carbonate of caland 1 to to 5 per cent of silica. The marble is finely and 1 to 5 per cent of silica. The marble is finely from which it is derived.
The lower beds of mar
The lower beds of marble near the Erwin quartzfor marble. Similar impurities are not suitable ying still higher. Silica is also present in the marble in the form of small grains and nodules of chert, which impair the quality of the stone. Considerable thicknesses of marble remain, however, which are suitable for ornamental stone. The total thickness of the formation shown in this region is over 500 feet. Probably the lower half of this is of little value as marble. The greatest thicknesses are shown at the south side of Turkey Cove.
Higher up, on the North Fork of the Catawba Higher up, on the North Fork of the Catawba, poor exposures render
thickness of the marble.
No attempts have been made to quarry the marble. At the south side of Turkey Cove the diamond drill has been used, and a considerable Thickness of marble has been proved thereby. That locality seems to afford the most available places for quarrying. The marble there rises
considerably above the bottom lands of the cove, considerably above the bottom lands of the cove,
and both good drainage and hard rock would be and both good drainage and hard rock would be afforded. The dip of the strata at that point At this angle the quarrying of definte beds At this angle the quarrying of definite beds rock. Farther north in the cove it is probable that the dips are conciderably less but the quality of the marble under the bottom lands is unknown. Such outcrops as are found indicate that the marble resists weathering well. Its beds are usually massive and free from joints, so that large blocks could be quarried. Near the Erwin quartzite, where the marble is overturned, some layers have developed a small schistosity. Such beds, however, are comparatively scarce.
The beds of white marble in the Carolina gneiss on Toe River furnish excellent material. An analysis gave 55 per cent of carbonate of calcium and 45 per cent of carbonate of magnesium. Where the marble is exposed by the river and railroad
cuts there is a workable bed 70 feet thick, practicuts there is a workable bed 70 feet thick, practically all being of pure white color. A pegmatite vein cuts out part of the marble, but is not likely to extend far. The deposit probably extends for a
mile northeast of the river and would furnish abunmile northeast of the river and would furnish abundant material. Its dip is nearly south, at angles ranging from 50° to 60°, so that much waste mate-
rial need not be handled. The rock appears to be rial need not be handled. The rock appears to be
free from joints, and its durability and hardness are free from joints, and its durability and hardness are shown by its massive outcrops.
lime.
Lime for building and agricultural purposes can well be obtained in this quadrangle only from the beds of the Shady marble. Owing to the distance of these deposits from the railroads, their use for Considerpose in the past has been merely local. quality of the product has been found excellent. With the advent of a proposed new railroad the lime from this source will become available. On the hillslopes at the south end of Turkey Cove, adjoining the Erwin quartzite areas, are beds from which the rock can be quarried. Here there are considerable outcrops of the marble, and the disposal of waste material and water would be easy. In that locality the waste from marble quarrying could well be utilized for lime. This deposit o marble is the only possible source of lime east of the Blue Ridge and north of Kings Mountain, at
the southern border of the State, and lime burned the southern border of the State, and lime burned
from it should be valuable for agricultural purposes.

brick clays.

All of the formations in this region form clays on decomposition. These are of various kindsargillaceous, sandy, or micaceous-and they extend quadrangle In theys ior porions of the on the slopes is very small. In the smaller val-
leys; throughout the area, however, more or less clay is always found. In the more level portions clay the region east of the Blue Ridge the cover of clay and decomposed rock is very thick. The best and terraces of the larger rivers and in the small valleys and hollows on the various plates on valleys and hollows on the various plateaus. On some distance southeast of the Blue Ridge the grades are too heavy to permit the accumulation of clay. On the flood plains of the latter, however, there are extensive deposits. Into the small hollows of the old plateau surfaces, also, the finest portions of the decomposed rock were washed and excellent clay beds were formed. The total amount of this kind of material in the quadrangle is enormous. These clays are from 1 to 6 feet deep, being on the hillslopes. In Marion, these have been burned into bricks for local use.

Water resources

Within this quadrangle there are abundaut resources in the form of water power. The streams, both great and small, fall rapidly in four-fifths of the area. Since they are fed from multitudes of springs, and drain well-forested areas, their flow is very steady from season to season. The stream grades are divided into three general groups, according to their relations to the large topographic features. These are above, bexplained the old platean suraces. As was explained under the heading "Geography," the one-fouth of the purge one-fourth of the quadrangle. Above them stood
large mountain masses never reduced to the levels of the plateaus.
Since the formation of the plateaus as plains the streaus have acquired fresh power and recut their channels to greater depths. The new cuts are greatest in the lower portions of the main stream-and are progressively shallower toward their heads. Down the slopes of the mountains the small streams to 300 feet to the mile. As they pass through the margins of the plateaus they descend more slowly, usually less than 30 feet a mile. When they reach the heads of the newer cut channels they descend more rapidly again, at grades of 20 to 50 feet to rivers are found in this quadrangle. Thus, each stream passes through the three stages of develop ment in regard to water power. In no case does the cutting extend back far from the main streams up the tributaries.
The total descent of South Toe River in this quadrangle is about 900 feet in 25 miles, beginning just east of Mount Mitchell. Cane River falls about 1000 feet in 20 miles. Catawba River, which has the lightest grades in the quadrangle, where the 20 feet in 14 miles below Old Fort,
 Catawh River by numerous all papils but flon plains and very low small rapids, but flood plains and very low grades are its usual nanoa and Tyy rivers. On Cane River and both North and South Toe rivers, flood plains are scarce and small, while rapids and little falls are numerous There are two areas in which extremely high grades are typical of all streams. The principal one is the southeastern slope of the Blue Ridge, from which the streams descend from altitudes usually over 3000 feet down to plateaus of 1300 or 1400 feet elevation. This drop takes place in a distance of 2 to 6 miles and the resultant grades are the heaviest of the region. The streams which make this descent, however, are only small creeks
that head on the Blue Ridge. Of similar origin and character are the heavy falls on Crabtree Creek This stream descends from the highest plateau, at an elevation of more than 3500 feet, down to North Toe River, at 2450 feet, about 800 feet of this being concentrated into 4 miles.
The water power developed in this region is thus obtained primarily by the elevation and cutting of the old plateau. Since the large streams are nearly
all below the plateau levels, those water powers all below the plateau levels, those water powers small streams and of no great amount. In this quadrangle the rocks are mainly granite and gneiss,
which are not widely different in their influence upon the immediate stream grades. Thus there
is less than usual of the concentration into falls and rapids usual of the concentration into falls and rapids due to hard beds of rock. The Henderson granite resists erosion sufficiently to have any considerable stream in this quadrangle. The any considerable stream in this quadrangle. The chief exception to the rule of the region is the
Erwin quartzite, whose layers are among the most Erwin quartzite, whose layers are among the most
resistant rocks known. Where the formation is crossed by the North Fork of the Catawba a narrow gorge results, with steep grades and numerous little falls, in strong contrast to the country above and below along the stream.
The enormous water powers thus at hand in the quadrangle have received only the most limited development. Gristmills and a few sawmills have been turned by the small streams, but nothing more. With the advent of railroads and possibilities of electrical transmission the energy developed by the various streams should prove valuable in the future.
water supplies.
The various sources of water in the Mount Mitchell quadrangle furnish a very large supply. The region is almost altogether mountainous and is covered for the most part with a heavy
growth of timber. The fall of rain and snow is growth of timber. The fall of rain and snow is heavy and the natural advantages for storage are very great. The rocks of the mountain district, particularly northwest of the Blue Ridge, have large numbers of schistose planes and thus are
able to hold large quantities of water. The dip able to hold large quantities of water. The dip of these planes is usually steep and the rainfall
is readily conducted into the interior of the rocks. A mple conducted into the interior of the rocks, ration is checked by the fore growth and by the lower temperatures due to the height of the by the tains. The streams rise and fall rapidly in times tains. The stood, but the usual flow is full and steady Countless springs maintain this flow and steady Countless springs maintain this flow in spite of
occasional droughts. In the mountains, where rock comes close to the surface, most of the springs issue directly from the rock. In the valleys and lower areas the residual soils are from leys and lower areas the residual soils are from
6 to 50 feet thick. The flow of the springs is largely absorbed by this, and seeps out from the clay in the hollows. Actual springs are very clay in the hollows. Actual springs are very
much fewer on surfaces of this kind, which are practically limited to the remnants of the plateaus. As was stated under the heading "Geography," these plateaus are found chiefly along the upper waters of wannanoa, Cane, Toe, and Yadkin rivers.
Until within a few years the only use made of the enormous outflow of water from this region was for domestic purposes. The houses were built within easy reach of springs, which was usually possible. Here and there shallow wells were sunk in the loose materials, chiefly on the uplands of the plateau surfaces and on the flood plains of streams.
Up to this day no wells have been bored in solid Up to this day no wells have been bored in solid rock. A few years ago the headwaters of Beetree Creek, a tributary of Swamanoa River, were neighboring city of Asheville. This supply the neighboring city of Asheville. This supply soon proved inadequate an the North Fork of Sacted to noa. From this point jost of Crannanoa. From this point just east of Craggy Dome
the water is piped to Asheville, a distance of nearly 18 miles. This supply is of the very best
ne quality. The water is seldom turbid, even after the heaviest rain, and a good flow is maintained by the stream, however severe the drought. The situation of the catchment basin is most fortunate, since it drains a compact area of mountains, from 5000 to 6400 feet high, where the forest cover is very heavy and the precipitation unusually great. Except in this place no use has been made of the water supplies in a large way. Supplies similar to that of Swannanoa River are to be found on the heads of Ivy, Cane, and South Toe rivers, all rising on the Black Mountains, while the smaller creeks rising on the south side of the Blue Ridge and the various branches of Cane and. Toe rivers furnish almost equally good supplies. The water of Curtis Creek, for instance, could be transported to the town of Old Fort in about 5 miles, or that of Buck Creek could be taken to Marion within 9 miles. Likewise, water from the head of Cane River could be transported to Burnsville in 9 miles or less.
May, 1905.

NORTH CAROLTNA-TENNESSEF

$\mathbb{C} L U \mathbb{M} \mathbb{N}$ RECTINS

generalized section of the sedimentary rocks of the mount mitchell quadrangle. SCALE: 1 INCH=-1000 FEET.						
Systray.	Formaton Name.	or.	Columinar SECTION.		Charactrr of Rogks.	Character of Soils and Surface.
	Shady marble.	¢sh		600+	White and blue massive banded marble.	Open, flat valleys Deep, dark-red, clay soils.
	Erwin quartzite.	$\epsilon_{\text {e }}$		${ }^{600+}$	Massive white quartzite.	High, rocky mountains Thin, sandy, and rocky soils.
	Hampton shale.	$\epsilon_{\text {ht }}$			Blue and gray shale and slate.	Valleys and slopes. Light, sandy soils.
	Brevard schist.	¢bv		${ }^{1000+}$	Fine-grained black schist and slate, in places graphitic.	Valleys with low knobs and ridges Thin, micaceous, and sandy soils.
	Gneisses and granites.				Description given in table below.	Description given in table below.

table of igneous rocks of the mount mitchell quadrangle, arranged in order of age.					
Sxstre.	Formation Name.	Sxrroct.		Character of Rocks.	Character of Solus and Surface.
	Bakersville gabbro.	Fb		Massive black and brown gabbro and diabase dikes and sheets.	Small knobs and butts, with many rock exposures. Yellow and brown clay soils.
	Henderson granite.	Rh		Porphyritic granite, normal granite, gneissoid granite, and augen-gneiss, usually light colored. light colored.	Irregular mountains and plateaus with smooth, rolling surfaces. Thin, light-colored, sandy and clayey soils.
	Cranberry granite.	R cb		Biotite-granite and granite-gneiss, coarse and fine; colors, light gray, dark gray, and white. Includes dikes of schistose and unaltered diabase hornblende gneiss, and dikes of unaltered, fine biotite-granite.	High, irregular mountains, peaks, and spurs, with round summits. Red and brown clayey soils with many ledges.
	Soapstone, dunite, and ser- pentine.	Rs	为	Dunite in part serpentinized. Soapstone contains tale and tremolite.	Yellow clay soils, with many ledges and fragments of rocks.
	Roan gneiss.	Rr		Hornblende-gneiss and hornblende-schist, with some massive and schistose diorite. Includes many beds of mica-gneiss, mica-schist, and hornblende-mica-gneiss, and dikes of altered and unaltered biotite-granite.	Broad plateau surfaces or depressions in Carolina gneiss ridges. Dark-red and brown clay soils.
	Carolina gueiss.	Rc		Interbedded mica-gneiss and mica-schist, coarse and fine, bluish gray and gray. Contains many small beds of hornblende-gneiss, large bodies of garnet-sehist and kyanite-schist, and dikes of biotite-granite, both altered and unaltered. 	Ridges, peaks, spurs, and high mountains with irregular crests. Red and brown micaceous and clayey soils.

Svstren.		Nawrs axd Sxymols usge in This Fono.		
Triassic ?	Bakersville gabbro.	Bakersville gabbro.	Kb	
	Shady limestone.	Shady marble.	esh $^{\text {shen }}$	Shady limestone.
	Erwin quartzite.	Erwin quartzite.	$\epsilon_{\text {e }}$	Hesse quartzite.
	Hampton shale.	Hampton shale.	tht	Murray slate.
		sequence broken		sequence broken
		Brevard sehist.	tbv	? Hiwassee slate.
$?$		Conglomerate and graywacke.	${ }^{\text {cg }}$	
	Blowing Rock gneiss.	Henderson granite.	Rh	
	Cranberry granite.	Cranberry granite.	Acb	Cranberry granite.
	Soapstone.	Soapstone, dunite, and serpentine.	Rs	Soapstone, dunite, and serpentine.
	Roan gneiss.	Roan gneiss.	Ar	Roan gneiss.
	Carolina gneiss.	Carolina gneiss.	Ac	Carolina gneiss.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price.t ${ }^{\text {t }}$	No.*	Name of folio.	State.	Price.t
			Cents.				Cents.
1	Livingston	Montana	25	63	Mother Lode District.	California	50
2	Ringgold	Georgia-Tennessee	25	64	Uvalde	Texas	25
3	Placerville	California	25	65	Tintic Special	Utah.	25
$\ddagger 4$	Kingston	Tennessee	25	66	Colfax.	California	25
5	Sacramento	California	25	67	Danville	Illinois-Indiana	25
$\ddagger 6$	Chattanooga	Tennessee	25	68	Walsenburg	Colorado	25
\ddagger	Pikes Peak	Colorado	25	69	Huntington.	West Virginia-Ohio	25
8	Sewanee	Tennessee	25	70	Washington.	D. C.-Va.-Md.	50
$\ddagger 9$	Anthracite-Grested Butte	Colorado	50	71	Spanish Peaks	Colorado	25
$\ddagger 10$	Harpers Ferry .	Va.-Md.-W.Va.	25	72	Charleston	West Virginia	25
11	Jackson.	California	25	73	Goos Bay	Oregon	25
12	Estillville	Ky.-Va.-Tenn.	25	74	Coalgate	Indian Territory	25
13	Fredericksburg	Virginia-Maryland	25	75	Maynardville	Tennessee	25
14.	Staunton	Virginia-West Virginia	25	76	Austin	Texas	25
15	Lassen Peak	Califormia	25	77	Raleigh	West Virginia	25
16	Knoxville.	Tennessee-North Carolina	25	78	Rome	Georgia-Alabama	25
17	Marysville	California	25	79	Atoka	Indian Territory	25
18	Smartsville	California	25	80	Norfoik	Virginia-North Carolina	25
19	Stevenson	Ala.-Ga.-Tenn.	25	81	Chicago.	Hllinois-Indiana	50
20	Cleveland	Tennessee	25	82	Masontown-Uniontown	Pennsylvania.	25
21	Pikeville	Tennessee	25	83	New York City	New York-New Jersey	50
22	McMinnville	Tennessee	25	84	Ditney	Indiana	25
23	Nomini	Maryland-Virginia	25	85	Oelrichs	South Dakota-Nebraska	25
24	Three Forks	Montana	50	86	Ellensburg	Washington.	25
25	Loudon	Tennessee	25	87	Camp Clark	Nebraska	25
26	Pocahontas	Virginia-West Virginia	25	88	Scotts Bluff	Nebraska	25
27	Morristown.	Tennessee	25	89	Port Orford	Oregon	25
28	Piedmont.	West Virginia-Maryland	25	90	Cranberry	North Carolina-Tennessee	25
29	Nevada City Special.	California	50	91	Hartville	Wyoming	25
30	Yellowstone National Park	Wyoming	75	92	Gaines	Pennsylvania-New York	25
31	Pyramid Peak	California	25	93	Elkland-Tioga	Pennsylvania.	25
32	Franklin	West Virginia-Virginia	25	94	Brownsville-Gonnellsville	Pennsylvania.	25
33	Briceville.	Tennessee	25	95	Columbia	Tennessee	25
34	Buckhannon	West Virginia	25	96	Olivet	South Dakota	25
35	Gadsden	Alabama	25	97	Parker	South Dakota	25
36	Pueblo...	Colorado	50	98	Tishomingo.	Indian Territory	25
37	Downieville	California	25	99	Mitchell	South Dakota	25
38	Butte Special	Montana	50	100	Alexandria	South Dakota	25
39	Truckee.	California	25	101	San Luis	California	25
40	Wartburg	Tennessee	25	102	Indiana	Pennsylvania	25
41	Sonora	California	25	103	Nampa	Idaho-Oregon	25
42	Nueces . . .	Texas ..	25	104	Silver City	Idaho	25
43	Bidwell Bar	California	25	105	Patoka	Indiana-Illinois	25
44	Tazewell	Virginia-West Virginia	25	106	Mount Stuart	Washington	25
45	Boise	Idaho	25	107	Newcastle	Wyoming-South-Dakota	25
46	Richmond	Kentucky	25	108	Edgemont	South Dakota-Nebraska	25
47	London	Kentucky	25	109	Cottonwood Falls	Kansas	25
48	Tenmile District Special	Colorado	25	110	Latrobe	Pennsylvania.	25.
49	Roseburg	Oregon	25	111	Globe	Arizona	25
50	Holyoke	Massachusetts-Connecticut	50	112	Bisbee	Arizona	25
51	Big Trees	California	25	113	Huron.	South Dakota	25
52	Absaroka	Wyoming	25	114	De Smet	South Dakota	25
53	Standingstone	Tennessee	25	115	Kittanning	Pennsylvania.	25
54	Tacoma.	Washington.	25	116	Asheville	North Carolina-Tennessee	25
55	Fort Benton	Montana	25	117	Casselton-Fargo.	North Dakota-Minnesota .	25
56	Little Belt Mountains.	Montana	25	118	Greeneville.	Tennessee-North Carolina	25
57	Telluride	Colorado	25	119	Fayetteville	Arkansas-Missouri	25
58	Elmoro	Colorado	25	120	Silverton	Colorado	25
59	Bristol	Virginia-Tennessee	25	121	Waynesburg	Pennsylvania	25
60	La Plata	Colorado	25	122	Tahlequah	Indian Territory-Arkansas	25
61	Monterey	Virginia-West Virginia	25	123	Elders Ridge	Pennsylvania	25
62	Menominee Special	Michigan	25	124	Mount Mitchell	North Carolina-Tennessee	25

* Order by number.
+ Payment must be made by m
\ddagger These folios are out of stock.
Circulurs showing the location of the area covered by any of the above folios, as well as information concerning topographic maps and other publications of the Geological Survey, may be had
application to the Director, United Statas Geological Survey, Washington, D. C.

