DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR

GEOLOGIC ATLAS

$O \mathrm{~F}^{2} \mathrm{IE}$
UNITED STATES

ASHEVILLE FOLIO
NORTH CAROLINA-TENNESSEE

UMV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographi together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form or all slopes, and to line the hrol in lation evel, the altitudinal 'interval represented by the el, between lines being the 1 blogho each map. These lines are called contours, and the uniform altitudinal space between each two con tours is called the contour interval. Contours an elevations are printed in brown
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

. The sketch represents a river valley between two iils. In thereground is the sea, with a bay which is partly closed by a hooked sand bar. On ach side of he valley is a hill rises gradually, while from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , level. Along 200 feet, and so on, above mean sea ove. Along the contour at 250 feet lie all point he contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet sur ounds it. In this for 250 contours are numbered, and those for 250 and 500 feet and ccentuated by being made heaver Cors, then the accentuating and numbering of certain of them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping g.al 1050 Tor i late rlif contour intervals of 10,20 , 5, 50, and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. would be represented by a linear inch on
This relation between distance in nature and corresponding distance on the map is called the scale The scale. In this case it is 1 mile to ances." The scale may be expressa also thaction of which the nura the rength on the map and the denominator the correspong leng is there nature exp 63.36 inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,3,50}$,
a inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{1 \text { 15,000 }}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{1230}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Atlas sheets and quadrangles.-The map is being published in atlas sheets of con venient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree-i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { as,juld }}$ contains one-sixteenth of a square degree. he are of the corresponding quadrangls.

Thand 250 square

a surts of one ma line United States, disregard political boundary hips. To each shet, to the quadrangle represents, is siven the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.-On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating ditch provide educational material for schools and home and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igneous, sedimentary, and netamorphic.
Igneous rocks.-These are rocks which have and consolidated from a state of fusion. Through rocks of all, ages molten material has from time to time been forced upward in to or nearly to the surface. Rocks formed by the consolidation of the molten mass within thes channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; he rock masses filling such fissures are called sills or sheets when comparatively thin, and laceoiths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pax
 but the out ho low tions. The pors por panies voleanio eruptions cancing eections of duash, and larger fragents. These materials, consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have bee ried to a different place and deposited.
The chief agent of transportation of rock débris is water in motion, including rain, streams, and th 3 water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sond, and clay, which are later consolismaller portion the materials are carried in sol tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and liol The mot chareterstic of the wind-borne or eolis deposits is loess, a fine-prainel euth; the most char deposits is loes, a ine-graich che most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and ocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Their upper pars, aror plants, constine soins and subsols, he solls being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism he substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single puart iss. Such changes transform sad other rocks in various ways.

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessury to separate twq contiguous formations by lepuitrary line, and in some cases the distinction An almost entirely on the contained fossis. aneous formation is constituted of one or more bodies either containing the same kind of igneous metamorphic formation may consist of rock of uniform character or of seeveral rocks having commion haracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

hges of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance; in such except in regions of intense disturbance; in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked the systems together, forso a chan of from the time of the old other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thery or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. T'opographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till), and moraine (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown
on this map by fainter color patterns. The areal on this map by fainter color patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive A min
tions may emphasized by strong colors. A min symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features.

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Trangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectio
landseape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These are generall of much variation, but the following commoner kinds of rock

Schists

Fig. 3.-Sym
tions to represent diferent
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sand of this bed form the surface. The uptred valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is mposed of schists which are traversed by masses and their
 ons of strata, showing
and (b) a t thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlving formations, and the bending than the underyyng formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The seetions on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 ground ang the section line, and the depth from he surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.

The intervals of time which correspond to events oplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE ASHEVILLE QUADRANGLE.

gEOGRAPHY.

general relations.

Location.-The Asheville quadrangle lies chiefly in North Carolina, but includes also a portion of Tennessee. It is situated between parallels $35^{\circ} 30$ and 36° and meridians $82^{\circ} 30^{\circ}$ and 83°, and conson, Buncombe, and Haywood counties in North Carolina and Greene, Cocke, and Unicoi counties in Tennessee.
In its geographic and geologic relations this quadrangle forms part of the Appalachian province, which extends from the Atlantic coastal plain on the east to the Mississippi lowlands on the west and from central Alabama to southern New York. All parts of the region thus defined have a common
history, recorded in its rocks, its geologic structure, history, recorded in its rocks, its geologic structure, and its topographic features. Only a part of this history can be read from an and so small as tha to consider the individual area in its relations to to consider the ind
the entire province.
Subdivisions of the Appalachian province.-The Appalachian province is composed of three wellwhich certain forces have tended to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the entire length of the province, from northeast to south west. The central division is the Appalachian Valley. It is the best defined and most uniform of the three. In its southern part it coincides with the belt of folded rocks which forms the Coosa Valley of Georgia and Alabama and the Great Valley of East Tennessee and Virginia. Throughout its central and northern portions the eastern side only is marked by great valleys-such as the
Shenandoah Valley of Virginia, the Cumberland Shenandoah Valley of Virginia, the Cumberland
Valley of Maryland and Pennsylvania, and the Valley of Maryland and Pennsylvania, and the
Lebanon Valley of eastern Pennsylvania-the Lebanon Valley of eastern Pennsylvania-the
western side being a succession of ridges alternating with narrow valleys. This division varie in width from 40 to 125 miles. It is sharply out lined on the southeast by the Appalachian MounPlateau and the Allegheny Mountains. Its rocks Plateau and the Allegheny Mountains. Its rocks
are almost wholly sedimentary and are in large are almost wholly sedimentary and are in large
measure calcareous. The strata must originally measure calcareous. The strata must originally the surface at various angles and in narrow belts. The surface differs with the outcrops of different The surface differs with the outcrops of diferent
kinds of rock, so that sharp ridges and narrow valleys of great length follow the narrow belts of hard and soft rock. Owing to the large amount of cal district its surface is more readily worn down by streams and is lower and less broken than the divisions on either side.
The eastern division of the province embrace the Appalachian Mountains, a system, which is made up of many minor ranges and which, under various local names, extends from southern New
York to central Alabama. Some of its prominent York to central Alabama. Some of its prominent parts are the South Mountain of Pennsylvania, the Blue Ridge and Catoctin Mountain of Maryland and Virginia, the Great Smoky Mountains of Tennessee and North Carolina, and the Cohutta Mountains of Georgia. Also embraced in the eastern which as its impe lies at the foot of the which, as its name implies, lies at the foot of the and southward from their foot from New York to and southward from their foot from New York to borders the Atlantic Ocean. The Mountains and the Plateau are separated by no sharp boundary but merge into each other. The same rocks and the same structures appear in each, and the form of the surface varies largely in accordance with the ability of the different streams to wear down the rocks. Most of the rocks of this division are more or less crystalline, being either sediments which have been changed to slates, schists, or similar rocks by varying degrees of metamorphism, or
igneous rocks, such as granite and diab
have solidified from a molten condition.
have solidified from a molten condition.
ince embraces the Cumberland Plateau, the Allegheny Mountains, and the lowlands of Tennessee Kentucky, and Ohio. Its northwestern boundary is indefinite, but may be regarded as an arbitrary line coinciding with the eastern boundary of the Mississippi embayment as far up as Cairo, and then crossing the States of Illinois and Indiana Its eastern boundary is sharply defined along the Appalachian Valley by the Allegheny front and the Cumberland escarpment. * The rocks of this division are almost entirely of sedimentary origin and remain very nearly horizontal. The character of the surface, which is dependent on the character and attitude of the rocks, is that of a plateau more or less completely worn down. In the southern half of the province the Plateau is sometimes
extensive and perfectly flat, but it is oftener much extensive and perfectly flat, but it is oftener much
divided by streams into large or small areas with divided by streams into large or small areas with
flat tops. In West Virginia and portions of Pennsylvania the Plateau is sharply cut by streams, leaving in relief irregularly rounded knobs and ridges which bear but little resemblance to the original surface. The western portion of the Plateaunal been completely removed by erosion, and the surface is now comparatively low and level, or rolling. Altitude of the Appalachian province. - The Appalachian province as a whole is broadly dome shaped, its surface rising from an altitude of about 500 feet along the eastern margin to the crest of the Appalachian Mountains and thence descending westward to about the same altitude on Ohio and Mississippi rivers.
Each division of the province shows one or more culminating points. Thus the Appalachian Mountains rise gradually from less than 1000 feet in Alabama to more than 6700 feet in western
North Carolina. From this culminating point North Carolina. From this culminating point
they decrease to 4000 or 3000 feet in southern they decrease to 4000 or 3000 feet in southern
Virginia, rise to 4000 feet in central Virginia, and Virginia, rise to 4000 feet in central Virginia, and
descend to 2000 or 1500 feet on the Marylanddescend to 2000 or
Pennsylvania line.

The Appalachian Valley shows a uniform ncrease in altitude from 500 feet or less in Alabama 000 feet 1 nooga, 2000 feet at the Tennessee-Virginia line and 2600 or. 2700 feet at its culminating point,
on the divide between New and Tennessee rivers. From this point northward it descends to 2200 feet in the valley of New River, 1500 to 1000 feet in the James River basin and 1000 to 500 feet in the Potomac River basin, remaining about the same through Pennsylvania.' These figures represent the average elevation of the valley surface, below which the stream channels are sunk from 50 to 250 feet, and above which the valley ridges rise from 500 to 2000 feet.
The Plateau or western division increases in altitude from 500 feet at the southern edge of the province to 1500 feet in northern Alabama, 2000 feet in central Tennessee, and 3500 feet in south-
eastern Kentucky. It is between 3000 and 4000 feet in West Virginia, is decreases to about 2000 feet in Pest Virginia, and decreases to about 2000
Pensylvania. From its greatest altitude, along the eastern edge, the Plateau slopes gradually westward, although it is generally separated from the interior lowlands by an abrupt escarpment.
Drainage of the Appalachian province.-The
drainage of the province is in part eastward into the Atlantic, in part southward into the Gulf, and in part westward into the Mississipppi. All of the western or Platean division of the province, except a small portion in Pennsylvania and another in Alabama, is drained by streams flowing westward to the Ohio. The northern portion of the eastern or Appalachian Mountain division is drained eastward to the Atlantic, while south of New River all except the eastern slope is drained westward by tributaries of the Tennessee or southward by tribuaries of the Coosa.
The positions of the streams in the Appalachia alley are dependent on the geologie structure. In
general they flow in courses which for long disfollowing the lesser valleys along the outcrops of the softer rocks. These longitudinal streams empty into a number of larger, transverse rivers, which cross one or the other of the barriers limiting the valley. In the northern portion of the province they form Delaware, Susquehanna, Potomac, James, and Roanoke rivers, each of which passes through the Appalachian Mountains in a narrow gap and flows eastward to the sea. In the central portion of the province, in Kentucky and Virginia, these longitudinal streams form New (or Kanawha) River, which flows westward in a deep, narrow gorge
through the Cumberland Plateau into Ohio through the Cumberland Plateau into Ohio
River. From New River southward to northern River. From New River southward to northern Georgia the Great Valley is drained by tributaries of Tennessee River, which at Chattanooga leaves the broad valley and, entering a gorge through of Chattanooga the streams tlow directly to the of Chattanooga
Gulf of Mexico.
geography of the asheville quadrangle.
Geographic divisions.-The area of the Asheville quadrangle is nearly all included in the Mountain division of the Appalachian province. A few square miles in the extreme northwest corraphy of this corner is of the kind which prevails in the Great Valley, and consists of low, rounded hills and shallow valleys. Practically all of the area of the quadrangle is occupied by a number of mountain chains with broad plateaus and deep, narrow intervening valleys. The most prominent of these chains is the Newfound Mountains, which extend in a general northerly direction between
the valleys of Pigeon and French Broad rivers. In the northeast portion of the quadrangle rise the Bald Mountains, a group of disconnected ridges and peaks. The highest point in these, Big Bald (0530 feet), lies about half a mile east of this quadrangle. The foothills of the Craggy Mountains rangle nearly to French Broad River, just north of Asheville. The sides of these mountains are steep and made up of smooth, flowing slopes. The interand made up of smooth, fowing slopes. The interand descend rapidly to the altitudes of the different plateaus. At about these levels they quickly widen out into rounded valleys and plateaus.
The most striking single feature in the region is the plateau of French Broad River, which stands at elevations between 2100 and 2200 feet. 500 feet higher, is the plotea of Pigeon River. These plateaus extend from the main streams up the larger tributaries with gradually greater elevations. The plateaus consist of a series of gently rolling and smoothly rounded summits, but slightly varied by shallow valleys near the stream heads. The summits rise to heights which are remarkably uniform over large areas. The plain which they form may be readily seen from any of the summits.
Into the plateaus the rivers and larger creeks have sunk canyons during different periods of erosion. sunk canyons during different periods of erosion. narrow as to be easily overlooked except when close at hand.
Drainage.-The drainage of the quadrangle is mainly into French Broad River, but a consider able area is tributary to Pigeon River, and several small creeks along the northern edge of the quadever, unite in the Valley of Tennessee, about 20 miles northwest of this quadrangle From their heads high up in the mountains the streams fall with heavy grades down to the levels.of the two plateaus. For considerable distances after those levels are reached the grades are very light, until the heads of the secondary canyons are reached. Thence downward the streams descend swiftly, with Broad River descends from an elevation of 1975
feet at Asheville to less than 1200 feet at the point where it passes out of the quadrangle.

GEOLOGY.

general geologic record.
Nature of the formations.-The formations which ppear at the surface of the Asheville quadrangle and adjoining portions of the Appalachian province comprise igneous, ancient metamorphic, and sedimentary bodies, all more or less altered since of them are very ancient, going back to the earliest known period. They consist mainly of two groups, known period. They consist mainly of two groups,
of widely different age and character. These are (1) igneous and metamorphic rocks, including gneiss, schist, granite, diorite and similar formations; and (2) sedimentary strata, of lower Cambrian age, including conglomerate, sandstone, shale, limestone, rocks are metamorphosed equivalents. Ordovician rocks are also found in a small and unimportant area. The oldest these groups occupies the greatest area, and the youngest the least. The materiosed were originally gravel, sand and mud composed were originally gravel, sand, and mud,
derived from the waste of older rocks, and the remains of plants and animals. All have been greatly changed since their deposition, the alteration being so profound in some of the older gneisses and schists as to destroy their original nature.
From the relations of the formations to one another and from their internal structures many events in their history can be deduced. Whether the crystalline rocks were formed at great depth or
at the surface is shown by their structures and texat the surface is shown by their structures and textures. The amount and the nature of the pressure sustained by the rocks are indicated in a measure by their folding and metamorphism. The composition and coarseness of the sediments show the depth of water and the distance from shore at which they were produced. Cross bedding and ripple
marks in sandstones indicate strong and variable marks in sandstones indicate strong and variable
currents. Mud cracks in shales show that their currents. Mud cracks in shales show that their
areas were at times above and at times below areas were at times above and at times below wate. Red sandstine those of sion was revived on a land surface that when erolong subject to decay and had become covered with a deep residual soil. Limestones show that the a deep residual soil. Limestones show that the the land was low and furnished only fine cay and the land was low and furnished only fine clay and
substances in solution. Coarse strata like those of the Cochran conglomerate indicate strong currents and wave action during their formation.
Principal geologic events.-The rocks themselves thus yield records of widely separated epochs ranging from the earliest age of geologic history through the Paleozoic. The entire record may be summarized as follows, from the oldest formation to thie latest:
Earliest of all are the great bodies of Carolina gneiss. Its mode of origin, whether igneous or sedimentary, is buried in obscurity. It represents a complex development and many processes of change, in the course of which the original characters have been largely obliterated. The gneiss is, however, distinct from and much older than any other formation yet identified in the province, and
the time of its production is the carliest of which the time of its p
we have record.
During succeeding epochs masses of igneous rock were forced into the gneiss. The lapse of time was great; igneous rocks of many different kinds were intruded, and later intrusive masses of some of the formations and the lamination and schistosity of others were produced at great depths below the surface.

Upon these on

upon these once deep-seated rocks now rest
lavas which poured forth upon the surface in pre-Cambrian time. Thus there are in contact two extremes of igneous rocks-those which consolidated at a considerable depth, and those which cooled at the surface. The more ancient crystal-
line complex had therefore undergone uplift and long-continued erosion before the period of volcanic activity began. The complex may safely be referred to the Archean period, being unmeasura these Archean or are of Algonkian age is not certain The latter is more probable, for they are closely associated with the Cambrian rocks. Yet they are separated from the Cambrian strata by an uncon-
formity, and fragments of the lavas form basal Conglomerates in the Cambrian.
Next, after a period
Next, after a period of erosion, the land was submerged, and sandstones, shales, and limestones were laid down upon the older rocks. In these the igneous and metamorphic rocks. The differ the igneous and metamorphic rocks. The differ ent sedimentary formations are classified as being of Cambrian or later age, according to the fossils now infolded in the igneous rocks, and the por now infolded in the igneous rocks, and the porof the mountains. The submergence which caused their deposition began at least as early as the begin ning of Cambrian and extended at least into Silurian time. It is possible that the beginning was earlier and the end not until the close of Carboniferous time; the precise limits are not yet known.
These strata comprise conglomerate, sandstone, slate, shale, limestone, and allied rocks in great variety. They were far from being a continuous series, for the land was at times uplifted and areas of fresh deposits were exposed to erosion. The sea gradually advanced eastward, however, and land areas which furnished sediment during the early Cambrian were covered by later Paleozoic deposits. The sea occupied most of the Appalachian province and the Mississippi basin. The area of the Asheville quadrangle at first formed part of the eastern margin of the sea, and the materials of which the rocks are composed were derived largely from the land to the southeast. The exact position of the eastern shore line of this ancient sea is not known except here and there, and it probably In the earliest Cambrian time it lay just northwest In the earliest Cambrian time it lay just northwest quarter of the quadrangle.
Cycles of sedimentation.-Four great cycles of sedimentation are recorded in the rocks of this region. The first definite record now remaining
was made by coarse conglomerates, sandstones, and was made by coarse conglomerates, sandstones, and
shales, which were deposited in early Cambrian time along the eastern border of the interior sea as it encroached upon the land. As the land was worn down and still further depressed the sediment became finer, until in the Cambro-Ordovician Knox dolomite very little trace of shore material is seen. A slight elevation followed this long period of quiet, producing coarser rocks; this elevation became more and more pronounced, until, between the Ordovician and Silurian, the land was much expanded and large areas of recently deposited sandstones were lifted above the sea, thus completing the first great cycle. After this elevation came a second depression, during which the land was again worn down nearly to base-level, affording conditions for ater this the Devenian black shale. After Devonian black shale. After this the Devonian shales and sandstones were deposited, recording a
minor uplift of the land, which in northern areas was of great importance. The third cycle began was of great importance. The third cycle began
with a depression, during which the Carboniferous limestone accumulated, contagining scarcely any shore waste. A third uplift brought the limestone shore waste. A third upift brought the limestone
into shallow water-portions of it perhaps above the sea-and upon it were deposited, in shallow water and swamps, the sandstones, shales, and coal beds of the Carboniferous. Finally, at the close of the Carboniferous, a further uplift ended the deposition of sediment in the Appalachian prov ince, except along its borders in recent time
The columnar section shows the composition, name, age, and, wh
of each formation

description of the foryations.

Rocks of the Asheville quadrangle.-The rocks exposed at the surface in the Asheville quadrangle comprise three great classes-metamorphic, igne-
ous, and sedimentary. The latter are found in the ous, and sedimentary. The latter are found in the
northwest portion of the quadrangle over a large northwest portion of the quadrangle over a large
area, from which a number of narrow belts pass area, from which a number of narrow belts pass
into the adjoining areas of igneous rocks. Along

Pigeon River also, in the southwestern part of the quadrangle, are found two considerable areas of sedimentary rocks separated from the main bodies, In all, these sediments cover about one-fifth of the rea of the quadrangle. They consist of conglomiderable variety, shales, and limestones of con een metamorphosed including quartzites, gray wacke, slates, and schists. They are almost entirely of Cambrian age, ranging from the Snowbird for aation, the oldest sedimentary deposit known in this region, to the Knox dolomite, of Cambrian and Ordovician age. At the border of the Valley, on the north slope of Meadow Creek Mountains, is fond a narrow area of the Athens shale, of Ordovician ase, the youst rock exposed in this quad trata is very full and complete
The
The remainder of the quadrangle is divided ormations. The igneous rocks cover the larphic armations. The igneous rocks cover a belt passing through Marshall in reas along a belt passing through Marshall in a fartheasterly course. Around Asheville the surembraced in the Carolina gneiss. This formation ccupies a larger area than any other in the quadrangle. In the area of the Asheville Plateau, below Asheville, the Carolina gneiss alternates in a great many narrow bands with the Roan gneiss, of gneous origin.
Practically all of the igneous and metamorphi ocks are of Archean age. There are, however, few exceptions. In the northern part of the quadrangle, in the drainage of Big Laurel River and Shelton Laurel Creek, are a few areas of metadiabase, which corresponds in all respects to the Lin The latter rock is with little doubt of Algonkian ge, and the metadiabase of this region is probably the same age. This is also true of the smal bodies of metarhyolite which traverse the same
district. At many places in the Carolina and Roan neisses are found dikes and small bodies of a
fine-grained granite. These seldom exceed a few fine-grained granite. These seldom exceed a few
feet in thickness and are not of sufficient size to permit their representation on the map. That they are much younger than the other granites of the the schistosity which characterizes all of the other formations in the mountainous part of the quadrangle. The latest time at which this schistosity was produced was post-Carboniferous, so that these ranite dikes are clearly later than Carboniferous, although they may have been produced during the latter part of the period of deformation.
Still a third class of younger igneous rocks is represented by a series of thin sheets and dikes of quartz-diorite. These are to be found at many places in the southwestern portion of the quadrangle. They cut both the ancient metamorphic rocks and the lower Cambrian sedimentary strata, and, accordingly, they are at least as young as the Cambrian. In some places they are seen to have been metamorphosed, though to a less extent than he sedimentary strata, so that it must be inferred hat they are older than the Carboniferous defor ation. As to heir age betwen chese limits, he difference in chate. It is probable that and difference in age between the quartz-diorit the Cranberry granite and the Max Patch granite. Both of these belong to the later portion of the Archean as represented in this region, and both were extensively metamorphosed during the postCarboniferous deformation. The Max Pateh granite is younger than the Cranberry granite and cuts
hrough it at various places. Whether the interval between them is great or not can only be surmised. The columnar sections show the character and probable age of the different formations, and each will now be described in order of age, as nearly a that can be determined.

archean rocks

Area of the formation.-A wide area in the outhern part of this quadrangle is covered entirely by the Carolina gneiss, which is so named because ina. Many outliers of the formation are also ound alternating with the Cranberry granite and Carolin as is thus the pincipl foration
this quadrangle. It is also the oldest formation in and is overlain by the sediments. Included in it are numerous representatives of the igneous formations, of too small size to be shown on the map. In the gneiss are also found narrow dikes of granite and of quartz-diorite which in no place form areas sufficiently large to be mapped.
Gneiss and schist.-The formation consists of an
immense series of interbedded mica-schists, garnetimmense series of interbedded mica-schists, garnetchists, mica-gneiss, garnet-gneiss, and fine-grained granitoid layers. Most of them are light gray or
dark gray in color, weathering to a dull pray and dark gray in color, weathering to a dull gray and greenish gray. A few thin layers in the mica chist are buish gray or black. Toward the more numerous and their banding becomes sioghtly coreser and better defined Othe tion is unuwally uniform in wpearance throug out its areas in this quadrangle. That part of the out its areas in this quadrangle. That part of the formation which lies adjacent to the Roan gneiss
contains thin interbedded layers of hornblendeschist and gneiss precisely like the Roan gneiss, constituting a transition between the formations. For this reason the boundary between the formations is somewhat indefinite, notably so in the vicinity of Marshall.
The mica-schists are usually fine grained and are composed of quartz, muscovite, a little biotite, and very little feldspar. In many localities these component minerals are segregated into separate appearance. This result is usually attended by an increase in the amount of feldspar. In a belt 5 or 6 miles wide that passes just northwest of Asheville the schists contain many crystals and flakes of muscovite, which are of coarser grain than the est of the rock, and thus give it a porphyritic ppearance. Associated with the coarse muscovite in a few places are crystals of gray cyanite ranging This form of schist is rare in this region, but in the Mount Mitchell quadrangle, adjoining on the east, it occupies large areas and is very prominent. Where these are frequent the schist layers acquire noticeable silvery appearance
Southeast of this band of muscovite-schist in the outheast corner of the quadrangle, the schist and hets are also developed, but less prominently, in the muscovite-schists, mica-schists, and micagneisses that occur near the contacts of the Roan neiss, where they appear to be due to the contact with that gneiss. There seems to be no reason of that kind for the occurrence of garnets in the
chist around Asheville, although it is possible that heir development is connected with the very numerous granite dikes that cut the gneiss in that vinity. The garnets are small, seldom exceeding quarter of an inch in dimensions. In the vicinity of Marshall, however, numerous deposits are found with crystals from 1 to 6 inches in diameter. In hose portions of the formation that lie near areas Roan gneiss, biotite is much more conspicuous than elsewhere. Its distribution in this way sug-
gests that it is partly a contact feature of the Roan neiss intrusion.
The granitoid layers of the gneiss contain quart mounts, In the lightelor loyer mounts. In the light-colored layers biotite and less distinctly parallel than in the schists, although sually they are roughly so arranged. The prom nence of this foliation depends largely upon the mount of mica in the rock. These granitoid layrs and the schists alternate in beds that range from few inches to a few feet in thickness. Layers imilar in composition and from one-tenth of an inch to an inch in thickness compose the banded gneiss.
Pegm
Pegmatite.-Inclosed within the formation are numerous beds or veins of pegmatite. These occur in the shape of lenses that range in thickness from 1 to 5 feet. They lie for the most part parallel to the foliation of the gneiss, but sometimes cut it abruptly. These pegmatites are most conspicuous but are by no means limited to those localities. They are also more prominent in the southern and hiefly of very coarsely crystalline felsey consist iotite, and muscovite. In regions closely adjoining toward the southwest and northeast much merchantable mica is procured from the pegmatites
and many rare minerals are found in them. In the Asheville quadrangle, however, the rare minerals are practically absent and the mica does not attain notable size.
Marble.-Associated with the gneiss, but forming an unusual exception to it in character, is a group of marble beds. Two of these are found in Marshall and five are 2 miles west and northwest of Marshall, four of these lying in a nearly straight line southward from French Broad River. Out crops of the marble are found only in or near the streams, on account of the soluble nature of the rock. At first they seem to be different outcrops of a continuous bed, but it is doubtful if this is the
case, because at a few intervening points the marble is plainly absent. It is probable, therefore that the is plainly absent. It is probable, therefore, that the able differences in thickness can se observed ever in the small mar the streass but even may be due to the extreme folding that all of the rocks of the region have undergone. The maxirocks of the region have undergone. The maxi-
mum thickness observed was on Walnut Creek northwest of Marshall, where the outcropping beds are 60 feet thick, with a possibility of as much more concealed. About 200 feet farther north the entire section was occupied by gneisses. South of French Broad River the thicknesses observed range from 10 to 35 feet. The thicknesses shown in Marshall have about the same variations.
The marble is fine grained and is usually white. It contains 84 per cent of carbonate of calcium, 2 per cent of carbonate of magnesium, and 13 per
cent of silica. Many portions have a somewhat reenish silica. Many portions have a somewhat mall prisms and stubby crystals. Other variations f color are due to small knots of epidote, tremo lite, and calcite, and to lenses of fine quartz and hornblende. These seem to be in the nature of secondary segregations and are of frequent occurence throughout all the marble beds. The most mortant variation in the marble is seen in the ins Th lon an an ess . These com of extremely fin thick quartz They appear to represe h. quartz. They appear to represent orignal sediextremely contorted and folded, like the adjoining gneisses. The value of the marble for building stone is much injured by these various impurities A few seams of mica-schist found in the marble contain the same minerals and are metamorphosed to the same degree as the adjoining Carolina gneiss. There is, therefore, little doubt that the marbles are of substantially the same age as the gneiss. The gneiss is cut by Cranberry granite at many points within a few feet of the marble, but the granite does not touch the marble at any point. The presence of these marble beds makes it probable that at least part of the Carolina gneiss is of sedimentary origin Granite.-Commonly associated with the gneiss and schist are many beds and masses of intrusive ranite. These vary in thickness from a few inches p to 100 feet and can be traced sometimes for 200 yards. They cut through the gneisses at every onceivable angle and in masses of extremely varible thickness. On account of these features and their small size it is not practicable to map them a and very uniform in texture and has a lightgray r whit or whitish appearance. The dikes are somewhat
lighter colored where they are smaller, on account of the colored where they are smaller, on account The component minerals are quartz orthoclase and he component minerals are quartz, orthoclase and
plagioclase feldspar, biotite, and muscovite, the lagioclase feldspar, biotite, and museovite, the
ltter being subordinate in amount. As a rule, hese beds are massive and very seldom show any of the schistosity which marks all of the adjoining formations. For this reason it is concluded that they were intruded into the gneisses after the principal part of the deformation of the rocks had been accomplished. The very small amount of chistosity which appears, however, must be attributed to that general epoch, so that the age of the ranite is closely limited to the close of the period of deformation, which was soon after the Carbonferous.
Quartz-diorite--Of similar eruptive nature are the beds of quartz-diorite which cut the Carolina neiss at a number of localities in this quadrangle These beds are very small, usually only a few nches in thickness. They cut the gneiss and chist at various angles and can not be traced en. These dikes are found only in the souther
part of the quadrangle and are more common toward the west. Diorite dikes of this same serie cut the Cambrian strata in this quadrangle and in regions farther southwest, and are therefore among the latest of the eruptive rocks. They are sometimes metamorphosed, though very slightly, so that they were formed nearly at the close of the period of Carboniferous deformation. Thus they are of the same general age as the eruptive granite dikes, though probably somewhat older. The diofeldspar, and hornblende. The quartz and feld spar are very fine grained, sometimes so fine prained that it is difficult to distinguish them with the unaided eye. Through these are seattered crystals of green hornblende, ranging from onefourth to three-fourths of an inch in length. An additional constituent is garnet, which oceurs in large and small crystals. These are very irregularly distributed and may represent contact reactions of the adjacent formations. The variations in the grain of the diorite are considerable and rapid, being mainly in the size of the hornblende, which, however, is almost invariably porphyritic in appearance, while the other minerals in the rock are never
Extent and origin of the gneiss.-The Carolina gneiss is much larger than any other formation in this region. On account of the great uniformity of its beds no true measure of their thickness can be obtained; even an estimate would be idle. Their original thickness has been repeated and increased many fold by the enormous defornation to which equally uncertain. It is possible that most of the mass was once a granite and that it has been metamorphosed into its present condition. Some ord to schist can readily be seen. Other and simila material might easily have been altered into the great body of mica-schist Such an oricin can less easily be attributed to the beds of banded gneiss, however, since it fails to account for the parallel layers and banding. The marble beds and the adjoining gneisses are probably of sedimentary origin. One deformation produced a foliation of the rock, whatever its original nature. A subsequent deformation folded and crushed the earlier planes and structures. Before the latter deformation the beds of pegmatite were formed. These were thoroughly mashed by the second deformation and retain in many places only a fraction of their original coarseness. In most of the formation metamorphism has been excessive and has destroyed the original attitudes and most of the original appearance of the rocks
Decay of the gneiss.-The schistose planes of the various layers afford easy passage for water, and they are deeply decayed. After decomposition has
reduced the feldspar, the remaining clay is filled reduced the feldspar, the remaining clay is filled with bits and layers of schist, quarta, mica, and garnet. Solid ledges are seldom found far from clay on the decayed rocks is thin, and the soil is light on the decayed rocks is thin, and the soil is and mica that it contains; accordingly its naturat growths are poorly sustained. The soils natura ceptible of great improvement by careful tillage The greater amount of soluble matter and clay in the gneiss renders its areas slightly more productive than those of the schist. The biotite-gneiss areas are also rather more productive than the others.

roan gnkiss.

Extent.-Many areas of Roan gueiss occur in a one that crosses French Broad River between Marshall and Asheville and that is about 10 miles wide at its widest part. Northeast of the French Broad the Roan gneiss diminishes rapidly in extent, being replaced at the surface by the Cranberry granite. An equal diminution takes place toward the southwest, where the bodies of gneiss become narrower and disappear in the Carolina gneiss. Mountain, on the boundary name from and North Carolina, northeast of this quadrangle Character.-The Roan gneiss consists of a great series of beds of hornblende-gneiss, hornblendeschist, and diorite, with some interbedded micuschist and mica-gneiss. The hornblendic beds are dark greenish or black in color, and the micaceous beds are dark gray. The mica-schist and mica-gneiss beds range in thickness from a few inches to 70 or 80
feet and are most frequent near the Carolina gneise, into which they form a transition. In many areas of Roan gneiss, especially in Cane River basin, This interbedding is undoubtedly due in part to the close folding which the formations have undergone, a fact which is visible in many of the smaller beds. It is also probable that part of it was due the general lin of aro the general line of contact. Later compression of parallel with one another.
In composition the mica-schist and mica-gneis are exactly like the micaceous parts of the Carona gneiss and contain quartz, muscovite, biotite
and more or less feldspar. The hornblende-schist nake up most of the formation and are interbedded with hornblende-gneisses throughout. The schist beds consist almost entirely of hornblende in crystals ranging in length from one-tenth to one-half inch, with a very small amount of biotite feldspar, and quartz; the gneisses contain layers or seams consisting of quartz or feldspar interbedded with layers of hornblende-schist. In places these are very regularly disposed and give a marked banding to the rock. An accessory mineral frequently seen is garnet. As already stated, this occurs in the Carolina gneiss near the contact of the Roan gneiss, and to a large extent it also occurs in the Roan gneiss in similar positions. In several localities, most of them in the vicinity of Marshall, the garnets are well developed and coarse, attainmany beds of Cranberry granite cut the reg many beds of Cranberry granite cut the Roa neiss, and the garnets may possibly be due tet action by the granite.
Here and there the hornblende, feldspar, and quartz have Some the structure of diorite on massive, as is to be seen at Alexander. Many of the beds of the formation are composed almost entirely of hornblende and are so basic that they appear to have been derived from gabbro. Of this kind are the hornblende-schists and many layers only feebly schistose. So thorough is the alteration, however, that such an origin is not certain. Some masses of this nature have been separately mapped under the name metagabbro.
It is also certain that many small areas of simila nature are included within the Roan gneiss.
At many points in the Roan gneiss there are veins and lenses of pegmatite of secondary growt precisely similar to those in the Carolina gneiss.
Like those also they are of small size and of slight Like those also they are of
importance in this region.
The Roan gneiss appears to cut the Carolina gneiss, but the contacts are so much metamor phosed that the fact can not be well proved. Narrow, dike-like beds of the Roan in the Carolina the diorites included in the Roan are less altered the ores Cor 1 younger. In fact, the shape and continuity many of the narrower sheets of Roan gneiss can be explained only on the theory that they represent original dikes cutting the Carolina gneiss. Frequent development of garnets in the Carolina dence of contact metamorphism by the latter.
Metamorphism.-Deformation and recrystallizafion have extensively changed the rocks of this formation into schists and gneisses. The exact measure of the alteration is usually unknown, because of the uncertainty as to the original character of the rock. It is probable that most of the mass was at first diorite and gabbro, of much the same mineral composition as now. In a few of the coarse masses the original structures can still be seen. The minerals in most of the formation are secondary, however, and are arranged as a whole in parallel layers, causing the schistosity. These minerals and schistose planes are bent and closely folded, to an extent equal in many places to all the folding of the later formations. Thus the one folding producing the foliation and a second folding the foliation planes. During or before the fecond deformation the bands of quartz and feld spar appear to have been formed. The total alteration is extreme.
In reducing the surface of the formation the first steps of weathering were taken by decomposition ceous layers and many of the harder hornblende
schists and mica-schists are extremely slow of disintegration. Their outcrops form cliffs and
heavy ledges near the streams, and greatly retard heavy ledges near the streams, and greatly retard mation is somewhat less resistant than the Carolin gneiss and far weaker than the Cranberry granite Consequently, its areas are reduced to plateaus in he large stream valleys and form gaps and depres The in the higher ground away from the river. The rise of the mountains beyond its areas is in formation in this area differs much from its habit in areas farther northeast. The clays accumulat ing on the Roan gneiss are always deep and have a strong dark-red color; the soils are rich and fer tile and well repay the labor of clearing. The hilly surfaces keep the soil well drained, and yet the clayey nature of the soil prevents serious wash; hence they are extensively cultivated, even in situ ations that are remote from settlements.

ввro.

Three areas of metagabbro appear in the quad angle, one in the upper part of Ivy River and tw near Alexander. This is a very basic rock of the ame general appearance as the massive portion of the Roan gneiss, but is much less schistose and
gneissoid. In fact, considerable masses on Ivy gneissoid. In fact, considerable masses on Ivy tically no schistosity. The minerals of this rock re essentially the same as those of the basic parts of the Roan gneiss, being mainly plagioclase feldspar, dark green or black hornblende, and a very specked with of quarnets Much places the rock in pecked with garnets. Much the greater part of nass being dark and glistening even on wethed surfaces.
Judging from the preponderance of the ironearing minerals and the basic nature of the rock, There is no locality now known at which this origi an be seen. The relative age of the metagabbr and the Roan gneiss can not be determined. The metagabbro is included in the areas of the Roan neiss and bears a strong resemblance to the massive indeed, that many small areas of metagabbro are mapped within the Roan gneiss for want of means to distinguish them. Judged by its general crystalline character and associations, the metagabbro was probably formed at about the same age as, pernaps slightly later than, the Roan gneiss.
The metagabbro is very slow to decompose and
leaves many more or less rounded bowlders lying leaves many more or less rounded bowlders lying
upon the surface. This is especially noticeable in upon the surface. This is especially noticeable in
the area west of Alexander, where the formation produces a rocky hill that projects somewhat above the plateau surface. Final decay produces a dark
red clay of no great depth.
soapstonk, dontie, and skrematine.
Many small bodies of these more or less altered igneous rocks are found within this quadrangle, few mile in lenoth. The formation comprises many different rocks, such as soapstone dunite, and se pentine, and many combinations of minerals derive by metamorphism from the original rocks. The most common variety in this area is an impure oapstone containing many hornblendic minerals. There are, also, many bodies of the dunite composed almost entirely of olivine. These are most common in a belt of soapstone, dunite, and serpentine that runs from Canton northeastward pat Weaverville. The soapstones are white and light gray, while the other varieties of the formatio have a greenish color, either bright or dull. In ew localities the soapstone consists of little but talc and is pure enough for industrial uses, but as re it contains and orte and crystals of tremlite, actinolite, or other hornblendic minerals. In the dunites are frequently to be seen veins of pure fibrous tale that range from an inch to a foot in Alexander and in the vicinity of Marshall. Here and there small veins of chrysotile, called "asbestos," hape both of sull . 1 . custs between portions of the dunite. Just east Jupiter the asbestos fibers have a length across the vein of 3 or 4 inches; usually they are much shorter The dunite itself is usually more or less altered to serpentine. This is especially the case in the area
miles northeast of Stocksville and 2 to 4 mile southwest of Alexander. All of the varieties of he formation may be present in a single ledge, or The variety may occupy the whole of an area. The latter occurrenc
stone alone is seen.
In their original form these rocks were peridotite and pyroxenite, composed of olivine with more or less feldspar and pyroxene. The change from thes for creater the soapsone sroup is enory
 however, are very similar in chemical compositio oo those of the priginal rock. Compositio stages of alteration are obscure or absent in thi region, and even the dunite, which is close to the rivinal rock, may itself have been wholly recrys tallized. The metamorphism which caused thes changes seems to have most easily affected rocks of this mineral composition. Unlike the other meta morphosed rocks, these show only moderate schis tosity. Near their borders the soapstones may be schistose by the parallel arrangement of the talc and chlorite scales
Although these rocks break through and across the beds of Roan gneiss and are thus seen to be distinct from it and of later origin, yet their asse cation with the gneiss is close and marked, especially in regions adjoining the Asheville quadrangle nd they are probably of about the same age. In his quadrangle, however, there are a number of exceptions to this rule. Northeast of Canton, for
 mall gre, mall amount of the Roan gneiss is usually pre masses are found in the Cranberry manite. The are large frogment that were caughtup in the gran ite at the time of its intrusion Sometimes masses of Roun gneiss are included with them in the gran ite and sometimes soapstone alone appears. Thus he soapstone antedates the Cranberry granite. Its alteration is as great as or greater than that of the Roan gneiss and exceeds that of the Cranberry granite, so that it appears to have shared in the earlier metamorphism which involved the Roan and Carolina gneisses. It is therefore classed with the earliest part of the Archean.
Few rocks are slower to decompose than the oapstone, and its areas invariably show many ledges. In extreme cases the entire area is bare rock. Though it is not much affected by solution, it is too soft to stand the direct action of fros and rain, so that it breaks down and occupies low ground. Final decay leaves a cover of stiff yello lay of little deph and much interrupted wit rock. Soils derived from this are of almost no value.

The most important member of the Archean rocks in this quadrangle, next to the Carolina gneiss, is the Cranberry granite. This lies in broad belt that passes diagonally through the quadrangle, from which many tongues run off into the adjoining formations. This general granite mass extends southwestward through the Moun North Carolina and far into Virginia. The for mation receives its name from Cranberry, N. C near which place it is typically developed
Character.-The formation consists of granite of varying texture and color and of schists and grantoid gneisses derived from granite. The granit is an igneous rock composed of quartz and ortho clase and plagioclase feldspar, with biotite, mu covite, and, in places, hornblende as additional minerals. Mino accessory minerals are magnetite pyrite, ilmenite, garnet, and epidote. The most notable variation is in the size of the feldspar crys als. As these change the granite changes from rock of fine, even grain to a rock of porphyritic appearance. The latter variety is more common in the smaller areas of the formation, soutwest iver Braw , whe of the varieties are to be found in gny prear. Bo ares to be mo definte system in their didre In the coarse varieties the feldspar is by far nost prominent mineral and sives previlin light-gray or white color to the rock. The same is true of many of the narrow dikes penetrating is gne of many of the narrow dikes penetrating Max Patch granite the feldspars of the Cranberry
granite are filled with iron oxide, which gives to the rock a marked red appearance. This variety is often characterized by the presence of epidote in small veins and segregated masses. Near the west-
ern border of the quadrangle some of the beds of ern border of the quadrangle some of the beds of
granite are marked by a great development of blue granite are marked by a great development of blue
quartz, which appears to be an original constituent. quartz, which appears to be an original cory veins of
This is also accompanied by secondary blue quartz. A similar development of blue quartz is seen northeast of Sodom Mountain, bue color is of Big Laurel Creek. A noticeable blue color is
thus given to the entire rock. In this variety the thus given to the entire rock. In this variety the
amount of quartz is considerably in excess of that amount of quartz is considerably in excess of that
contained in other forms of the granite. At a contained in localities in the Newfound Mountain an equally quartzose granite appears, in which the quartz is colorless. Except for this color, which ment of the quartz, the two varieties are alike and are probably of the same origin.
Included rocks.-Included with these are small or local beds of metabasalt, metadiabase, metarhyolite, pegmatite, dikes of fine granite and quartz-dio-
rite and small bodies of the Roan gneiss, Carolina rite, and small bodies of the Roan gneiss, Carolina
gneiss, and soapstone, as already stated. The gneiss, and soapstone, as already stated. The
metadiabase and metarhyolite are eruptive in the metadiabase and metarhyolite are eruptive in the granite and are undoubtedly of the same age as similar rocks in adjoining quadrangles toward the northeast, which are Algonkian. The metarhyolite occurs in the shape of sheets and dikes ranging in thickness from a few inches to a few feet These are to be found here and there on the head waters of Laurel and Ivy rivers and a few have there been mapped. From their very small size it is doubtful whether the beds are continuous for
great distances. In this region, moreover, the prevgreat distances. In this region, moreover, the prev-
alent metamorphism of the rocks, the heavy forest cover, and the small size of the outcrops usually cover, and the small size of the outcrops usually
make it impracticable to trace them and represent make it impracticable to trace them and represent
them upon the map. The same is true of the dikes of quartz-diorite and of recent granite, such as were described with the Carolina gneiss. In many places it is difficult to decide whether or not to represent the included bodies of Roan and Caro-
lina gneisses. The gneisses are cut repeatedly by lina gneisses. The gneisses are cut repeatedly by the granite dikes, and the beds of each vary from a few inches to many feet in thickness, alternating
with great frequency. In only a few cases do the boundaries shown on the map represent a single contact between two large masses; they usually
indicate a narrow zone beyond which one rock or indicate a narrow zone beyond which one rock or the other predominates. Sometimes an area shown
as gneiss may contain many small beds of granite, as gneiss may contain many small beds of granite,
or it may be substantially all gneiss. On the other hand, many of the areas represented as granite include also small bodies of gneiss. These may be continuos with ene ar whe whe the beonected inclusions. Except where these bodies were the prevalent rock over conside
were disregarded in the mapping.
were disregarded in the mapping.
Metamorphism. - The granite
Metamorphism. - The granite suffered great changes during the deformation of the rocks,
both by folding and by metamorphism, the latter both by folding and by metamorphism, the latter
being much the more conspicuous. As the rock was folded, planes of fracture and motion were formed in the rock mass, along which metamorphism took place. As the process went on the quartz was broken and recemented, the feldspar
developed into mica, quartz, and new feldspar, and chlorite replaced part of the biotite and hornblende. These minerals crystallized in general parallel to planes of motion in the rock and produced schists and gneisses that show a fairly uni-
form dip over large areas. The results varied in form dip over large areas. The results varied in extent from rocks with no change or with mere cleavage to those completely altered into siliceous
schists and gneisses, as along the main faults and the southeastern areas. Thin, parallel layers and striations composed of different minerals are of frequent occurrence, and the most extreme schists bear no resemblance to the original rock. The
thin sheets of metarhyolite which cut through thin sheets of metarhyolite which cut through
the granite have been greatly metamorphosed. the granite have been greatly metamorphosed.
The original flow banding is now very seldom to be seen. Here and there porphyritic feldspar to be seen. Here and much the greater part of the rock is now fine, black schist, composed chiefly of quartz and m
ron oxide.
Under the action of the weather the varieties of granite behave very differently. The coarse gran-
ites are very durable and stand out in ledges and bold cliffs; the finer grades, by reason of the decomposition of their feldspars, weaken to
crumbling mass which does not outcrop much included fragments of the Cranberry granite in except on steep slopes. The schistose portions of the Max Patch granite.
the formation break up most readily, the planes of the formation break up most readily, the planes of chistosity seeming to afford a ready passage for
dissolving waters. In spite of its weathering the dissolving waters. In spite of its weathering the frmation occupies high ground, on account of the great mass of its insoluble materials. Its heights
are frequently rendered less prominent, however, by the superior hardness and greater eminences of he neighboring Max Patch granite or the Cam and mountains without definite system, whose crests and slopes are usually smooth and rounded. Many parts of its area are cultivated and the soils are light loams of fair depth and strength.

max patch granite.

The Max Patch granite is displayed in ten or more areas whose longer axes have the same These areas are not so closely connected, however s are the bodies of Cranberry granite. The largst area is that which surrounds Max Patch Mounain, for which the formation is named. The others are, for the most part, of irregular shape, a mile or Character.
Character. - The formation consists almost
entirely of coarse granite, in places porphyritic, entirely of coarse granite, in places porphyritic,
and in places of uniform grain. The minerals which compose the rock are orthoclase and plagiohase feldspar, quartz, biotite, and a very little kuscovite. Accessory minerals are magnetite,
pyrite, and epidote, the latter being, for the most pyrite, and epidote, the latter being, for the most part, in secondary veins and patches. Porphy exceed one inch are not infrequently to be seen These are most common north of Big Laurel These are most common north of Big Laurel
Creek, where the formations cross the State Creek, where the formations cross the state
boundary into Tennessee. The other masses, particularly that around Bluff Mountain, are omposed of the uniform, massive variety, which
is more characteristic of the formation as a whole In the porphyritic varieties the feldspars make by far the greatest part of the rock, giving it a lightgray or dull-whitish color. In the massive parts of the formation biotite is prominent and causes
a decidedly spotted appearance by the large size of a decidedly spotted appearance by the large size of is crystals.
Another
anite. This variety of great extent is a coarse red usual massive rock, from which it differs only in having many red or pink feldspars. These give a very marked red color to the whole rock, In the
same regions where this red color characterizes the ame regions where this red color characterizes the feldspar this mineral is often partially altered into epidote and saussurite. The waxy green tints pro-
duced by these minerals may frequently be seen in duced by these minerals may frequently be seen in
the same specimen that contains the red feldspar, the same specimen that contains the red feldspar,
to which they present a striking contrast in color. Where this process of alteration has been carried 0 an extreme, the feldspar has been so far replaced ne-half the bulk of the rock. This condition is noticeable on Max Patch Mountain and extends northward for a few miles, but it is by no means restricted to that locality. In other places practically all of the feldspars are so altered. The same causes that produced these changes have altered the original biotite more or less completely into chloite and fibrous hornblende. Besides these proesses there was a considerable growth of epidote in small veins and segregated patches. The biotite is to make them more than usually prominent. On the waters of Spring and Hurricane creek south of Max Patch Mountain, there is a considerable development of blue quartz in this granite, as is the case in the Cranberry granite. The cause of this variation is not known. This quartz occu-
pies the spaces between the other minerals in a nanner that is characteristic of granite, and also This variety of the granite contains in thickness. This variety of the granite contains much more The Max Patch granite is intrusive in the Cranberry granite and the older gneisses. It rarely is usually surrounded by the Cranberry granite Contacts between the Max Patch and the Cranberry granites are difficult to find on account of the forest cover and the decay of the formation; but a sufficient number have been discovered
to make it clear that the Max Patch cuts the Cranberry. The evidence comprises dikes and

Metamorphism. - The formation has suffered great changes by metamorphism. These are espeally well shown by the porphyritic portions, here the change in the form of the mineral pargranite, the rock has been As in the Cranberry granite, the rock has been squeezed and mashed developed at many places. The change is most manifest in the growth of new micas and in the elongation of the porphyritic feldspars. These elongation of the porphyritic feldspars. These
feldspars have in places increased in length as feldspars have in places increased in length as
much as three or four times, assuming pencil-like forms. In other places during the squeezing and slipping under pressure the large crystals were cracked and their fragments rotated until they were nearly parallel with the planes of cleavage The mica flakes were turned into similar planes and the small grains of quartz and feldspar were nica. This produced a very gneissoid rock, or augen-gneiss, in which porphyritic crystals were
cracked and drawn out into separate eyes or cracked and drawn out into separate eyes or
strings. In this rock the amount of the distortion strings. In this rock the amount of the distortion
can be plainly measured in the less extreme cases can be plainly measured in the less extreme cases
by the intervals between the fragments of one crysby the intervals between the fragments of one crys-
tal. The large feldspars retained their shape better flan the finer groundmass, however, and the mica
fla the groundmass are bent and wrapped flakes in the groundmass are bent and wro
around the large feldspars almost as if fluid.

$$
\begin{aligned}
& \text { round the large feldspars almost as if fluid. } \\
& \text { Another result of the deformation is the se }
\end{aligned}
$$

striated and striped surfaces which are common in this formation, as well as in the Cranberry granite. which were arraced parallel to lines of motion in the deformed rock. The dark stripes are composed in the main of fine crystals of biotite and fibrous hornblende, and the light stripes of quartz and eldspar, the new minerals having segregated in common in the vicinity of the fault planes. Th entire mass of the granite shows the effect of pressure so extreme as to overcome all the original strength of the rock.
As the formation is attacked by weathering agencies its surface is but slowly reduced. Its siliceous composition, its massive nature, and its great body unite in maintaining the altitude of
its areas. In the Asheville quadrangle, where it is th areas. In the Asheville quadrangle, where it is
best developed, the formation causes such elevations Bluff Mountain, one of the most conspicuou points of the region. Frequent cliffs mark the ourse of the more massive beds, and ledges protrude at short intervals. The bowlders and waste
from the formation are strewn for considerable disfrom the formation are strewn for considerable dis-
tances over the adjoining formations. Upon comtances over the adjoining formations. Upon com-
plete decay the formation produces a reddish or brownish clay of no great depth, mixed with much sand and fragments of rock. Where the soils accumulate on gentle slopes they are strong and fertile, but in this region the formation usually occupie high and steep ground.

```
algonkian (?) rock
```


metadiabase.

Outcrops of metadiabase are to be seen on the upper waters of Laurel Creek. A few of these are are too small to be shown and can not be traced beyond the single outcrops. The formation occur in a series of dikes cutting the Cranberry granite. xhibited in the nature of these dikes are well The bodies the stream cuts near Big Laurel. ew inches to diabase range in thickness iom a dimensions. In places these dikes are so numer ous that they are greater in bulk than the granite and form rock masses worthy of note. On the weathered sections the waste from the diabase is nore conspicuous than the granite, so that the metadiabase is unduly prominent. The area
shown on Shelton Laurel Creek seems to be a conhown on Shelton Laurel Creek seems to be a con derabe mass. The meta hornblende The feld par is much altered to chlorite e pidote, and quartz; the hornblende to chlorite and fibrous hornblende Subordinate minerals are magnetite and epidote, which occur in grains and small knots. The rock is generally of a dull yellowish-green color, due chiefly to the hornblende and chlorite, but varies considerably in its appearance from place to place.
The mass on Shelton Laurel Creek shows coarse feldspar crystals, an inch or two in length, arranged
in the network that is characteristic of diabase. Most of the other beds are considerably finer, and in the smaller dikes the individual mi
only with difficulty be seen by the eye.
only with difficulty be seen by the eye.
Metamorphism of the diabase is
Metamorphism of the diabase is extensive, and
original minerals, such as olivine and augite are original minerals, such as olivine and augite, are now almost entirely replaced by hornblende,
chlorite, and epidote. In the coarser varieties the chlorite, and epidote. In the coarser varieties the
metamorphism has been much less and has not metamorphism has been much less and has not
destroyed the interlocking arrangement of the feldspar crystals. In addition to these alterations of spar crystals. In addition to these alterations of
the minerals, which can be readily seen with the eye, a few unaltered portions of the original mineye, a few unaltered portions of the original min-
erals can be found with the microscope, particularly the augite, surrounded by rims of secondary hornblende and chlorite. As these new minerals formed in a more or less parallel growth considerable schistosity was produced. This is most conspicuous in the small bodies and fine-grained rocks, which were most metamorphosed.
The metadiabase seldom outcrops; weathering quickly reduces it by disintegration of the feldpar and parts of the hornblende, leaving a deep red and brown clay in which are scattered the harder fragments. Consequently the formation occupies depressions, usually lines of drainage if
the areas are of large size. The soils are clayey the areas are of large size. The soils are clayey and deep and retain their hold on any slope.

metarhyolite.

In the basins of Big Laurel Creek and Ivy River here are many scattered outcrops of this formation ented on the map. The formation consists of thin beds of metarhyolite, seldom over 5 feet in thick ness. It forms sheets and dikes cutting the mass of Cranberry granite. In several places these are of Cranberry granite. In several places these are
so numerous as to compose most of the rock mass, and in those cases are separately mapped. As a rule, however, the areas covered by these beds are not sufficiently large to justify their mapping. In his region, moreover, the heavy forest cover and the small size of the outcrops make it impossible to trace them far.
As the formation is usually seen, it consists of beds of black schist, composed mainly of very fine muscovite, quartz, and black iron oxides. Here nd there it has been less metamorphosed and some of the original characteristics of the rock can be seen. These are usually porphyritic crystals of feldspar, more or less flattened. More rarely are o be seen lines of wavy flow banding. The erupive nature of the metarhyolite in the granite may he easily seen in the larger outcrops. Except that he metarhyolite is later than the Cranberry gran-
ite, there is in this region no indication of its age. ie, there is in this region no indication of its age In the Roan Mountain and Cranberry quadrangles, lying northeast of this, rocks of the same is likely that these rocks are of the same age. The metarhyolite weathers into small flakes and slabs of black schist. The formation is not of sufficient bulk to affect the topography or to produce any considerable, amount of soil.

cambrian rocks.

With the deposition of the Cambrian rocks there ame a great change in the physical aspect of this region. The sea encroached upon areas which for long time had been dry land. Erosion of the surface and eruptions of lava ceased and deposition of sediments beneath a sea began. Extensive beds ere laid down in some areas before other area vere submerged, and the sediments lapped over avas and plutonic granites alike. In this quad rangle there are no large bodies of lavas, but they occur a short distance to the northeast, in the Roan Mountain quadrangle. The waste from hem all was combined in one sheet of gravel and carse sand, which now appears as shale, sand The thickness of the first formation varies greatly he thickness of the first formation varies greatly face on which it was laid down was irregular. Sub sequent formations of Cambrian age came in a great equent formations of Cambrian age came in a great by an immense thickness of limestone and shale. Fossils of Cambrian age, mainly Olenellus, are found as far down as the middle of the sandstone group. The strata lying beneath the fossiliferous beds differ in no material respect from those overying. All are plainly due to the same causes and form part of one and the same group, and all are closely associated in area and structure.

The principal exposures of the Snowbird formation are found in a belt that passes through the quadrangle just south of Hot Springs. Many
smaller areas of the formation, surrounded by smaller areas of the formation, surrounded by
Archean rocks, are not far separated from this main Archean rocks, are not far separated from this main
body. In Snowbird Mountain, just west of this body. In Snowbird Mountain, just west of this quadrangle, the formation is conspicuously developed. Throughout this region it rests in its normal position on the Archean rocks and is the first from the waste of the granite make up the forfrom the waste of the granite make up the for-
mation to a large extent. They consist of pebbles and grains of quartz and feldspar, usually more or less rounded. In many places, however, these fragments are angular and show that they have parent body of granite

parent body of granite

quadrangle is composed forman as displayed in this quadrangle is composed mainly of fine and coarse quartzite. With this are interstratified beds of ordinate layers of gray and black slate. Some of ordinate layers of gray and felack slate. Soltaine of while others contain little but quartz grains. Most of the beds are light colored, white or gray, but there are considerable variations in this respect. Southwest of Max Patch Mountain, for instance the lower layers are dark bluish gray, a color due to the presence of oxides of iron between the quartz grains. When these beds are considerably weathered oxidation of the iron gives the rock a rusty brown or red color. In the vicinity of Stackhouse they are dark gray, and on the waters of Shelton Laurel Creek the bluish-gray and black layers are of frequent occurrence:
The arkose beds which lie at the base of the formation are either light gray or reddish in color,
varying with the color of the feldspar fragments varying with the color of the feldspar fragments which they contain. Just east of Hot Springs the at the head of Wolf Creek, where it is also much coarser, some of the fragments being an inch in diameter and plainly showing their derivation from the adjacent masses of red Max Patch granite the adjacent masses of red Max Patch granite.
The arkose layers just west of Allegheny, on ShelThe arkose layers just west of Allegheny, on Shel-
ton Laurel Creek, are light gray, to which color tock weathering has also changed the red arkose. rock weathering has also changed the red arkose.
In the vicinity of Hot Springs many of the quartzite beds show cross bedding, due to changeable currents during their deposition. Another variety, rather common on the lower part of Spring Creek, is a fine, greenish-gray sandstone or quartzite. In this rock there is considerable fine mica in addition to the usual feldspar and quartz. To this mica, in part chlorite, is due the greenish color.
Northwest of Round Mountain, on the western border of the quadrangle, the top of the formation consists of a massive bed of white sandstone, which is composed of well-rounded grains of quartz sand in a matrix in places siliceous and elsewhere calcabluish slate which in turn is underlain by alter bluish slate, which in turn is underlain by alternating beds of gray sandstone and slate. In tha vicinity the amount of slate in the formation considerably greater than usual. The top of the of coarse conglomerate underlain by sor a bed of coarse conglomerate underlain by slates and
quartzitic sandstones in alternation. The conquartzitic sandstones in alternation. The con-
glomerate is coarse, many of the pebbles being glomerate is coarse, many of the pebbles being
an inch or more in length. Feldspar, blue and an inch or more in length. Feldspar, blue and
white quartz, and metarhyolite are most prominent in the pebbles.
In the upper portion of the formation the slate beds are most numerous, but they are distributed more or less throughout it. They are best shown in the exposures near Spring Creek and on the north side of Rich Mountain. Their greatest development is in a zone that lies about one-third of the thickness of the formation from the top. The slates are fine grained and argillaceous, sometimes micaceous, and seldom sandy. They are often marked by sedimentary bands of light and dark gray or blue. The slate and quartzite beds are sharply defined from one another in most cases. The abrupt changes in the character of the sedi-
ments and the frequent alternations shown thereby ments and the frequent alternations shown thereby
indicate extremely variable and unsettled condiindicate extremely variable and unsettled condi-
tions when formation was deposited. These tions when the formation was deposited. These
conditions are such as should be expected, since this was the first sedimentary deposit of the region. Thickness.-The range in the thickness of the formation is as notable as the variations in its com-

Asheville.
position, being far greater than that of any other formation in the region. From a minimum of 350 feet on Shelton Laurel Creek it increases rapidly toward the southwest until around Rich Mountain it is nearly 5000 feet thick. As nearly as can be determined this measure is maintained from this rangle. Owing to the great disturbances which the rocks have passed through, to their poor exposures, and to their heavy cover of timber, it is difficalt to arrive at any precise measure of their thickness. An enormous increase in thickness is the great inequalities of the sea bottom, inequal the great inequalities of the sea bottom, inequalities approximately equal
thickness of the deposit.
The chief change th
The chief change that has been produced in this tion of the sandstone into quartzite. In those por tions that were feldspathic some of the smaller grains of feldspar have been recrystallized into quartz and mica, giving a somewhat schistose structure. Examples of this structure may be seen in the regions lying southwest of French Broad River. This alteration was effected in the same way as were the similar changes, already described, late beds also in the granite. The interstratified time. Shelton Laurel Creet thoroughly metamorphosed to black mica-schists. The coarse sandstone and conglomerate were less Tffected than the fine-grained beds
The siliceous
The siliceous nature of the formation enables it to resist the attack of weather extremely well. The soils over its areas are thin and much interrupted by rock outcrops. These soils are poor and sandy in all places except in the hollows and coves, where they have accumulated to considerable
depths. High, irreoular ridges depths. High, irregular ridges and mountain the ridges are round and the slopes steep, and support but a scanty growth of timber.

hwasees slate.

The rocks of this formation occupy three large and very irregular areas lying north and west of is the most important. The name of the formation is derived from Hiwassee River, in Polk County, Tenn., which cuts a fine section through these strata.
Character:-As displayed in this region, the formation consists almost entirely of slate of a bluishgray or bluish-black color. When the slate is weathered the color becomes greenish, yellowish
gray, and yellow. North and northeast of Hot gray, and yellow. North and northeast of Hot sandy. In the same region they are also a little coarser grained and marked with light-gray, siliceous bands of sedimentary origin. On the other side of French Broad River these rocks are finer In many of the uniform.
In many of the northwestern outcrops the slaty character is less pronounced and some of the constituent in some of the beds is mica in fine scales. This was an original deposit in the strata sand not a secondary growth, and it is seen in some of the least altered shales. The bulk of the material composing the slates is argillaceous. To this is added here and there the micaceous and sandy material. West of Allen Stand the deposits of
and were considerable enough to make distinct layers 8 to 10 feet in thickness, which locally developed into fine conglomerates.
In the vicinity of Pigeon River and Crabtree Bald the rocks of this formation have a very different aspect, due to metamorphism. They consist
almost entirely of schists, of several varieties, with interbedded layers of graywacke. Most of the schists are of dark-gray or black color, varied here and there with lighter gray bands. Sprinkled through these layers are many crystals of ottrelite and garnet. These are frequently arranged in
bands along the bedding planes, indicating that bands along the bedding planes, indicating that certain layers were more favorable than others for the growth of the garnets. The beds of graywacke were probably metamorphosed from rocks
similar in character to the feldspathic sand similar in character to the feldspathic sand-
stones seen in the northwestern outcrops of the stones seen in the northwestern outcrops of the fine grained. The schistose planes in that vicinity are usually steep, and as a rule diverge from the
bedding. The secondary mica flakes, therefore, do not follow stratification lines unless they have schists lying nearest the base of the formation th metamorphism is greatest and bedding planes are most difficult to distinguish. The banded layers afford no such difficulty.
Limestones.-The most noticeable variation from the slates, and one which most strictly distinguishes this formation from the other slates of the region, is a series of calcareous beds that are interstratifed at intervals with the slates. They occur in the shape of more or less interrupted lenticular
layers. These are absent from the formation south of Hot Spring but characterize of its areas In the are lying southwes of this quad rangle they are found in the formation for many miles, but they do not appear to extend northeastward beyond the border of the quadrangle. The limestone varies considerably within short distances. That most commonly found is a blue or
then dove-colored limestone containing many rounded grains of quartz sand. Beds of this kind are very prominent immediately east of Allen Stand. Associated with these, near the border of the quadrangle, are considerable thicknesses of blue or gray oolitic limestone. The greatest thickness of the calcareous beds in this vicinity is about 300 feet. In places the siliceous material is so prominent that the rock becomes a calcareous conglomerate containing pebbles of quartz and feldspar. This phase is seen around Allen Stand, but is very local and passes within short distances into the more
usual kind. The same variety appears 3 miles west of Deep Gap and again on Paint Creek about 3 miles above its mouth. Occasionally beds of limestone conglomerate are found, especially north of Round Mountain. The pebbles in the conglomerate comprise the varieties of limestone which are derived from the breaking up of the layers nearly in position. This indicates that the derosit formed in shallow water, where erosion could affect the newly formed beds.
As nearly as can be determi
As an average thickness of from the formation has an average thickness of from 1200 to 1500
feet. In the area passing south of Hot Springs its hickness is approximately 1300 feet; in Meadow Creek and Paint mountains, from 700 to 900 feet, thus becoming thinner in a northwest direction. The strata of this formation have not been excessively modified by deformation. Its principal result has been the production of slaty cleav-
age. This has not entirely obliterated the bedding in most cases where that was originally wel marked. In the finer portions, where the grain was at first uniform throughout, it is now very
difficult to detect the bedding planes. Only in a few rare cases on the upper parts of Shelton Laurel Creek and along Pigeon River, as above stated, has the deformation been sufficiently extreme to proand are dark bluish, gray, or black in color. The are dark bluish, gray, or black in color The rocks of this formation do not withstand Cambrian of weather as well as those of the other way down the partings of bedding and cleava and the rock is broken up in small fragments and flakes. On the steep sopes, where the ares the formation are upheld by the adjoining harder quartzites, there are frequent ledges and outcrops, and the soil is thin and scanty. In most areas the slates spread out considerably and cause low ground. This is more commonly the case where the calcareous beds come in toward the southwest. In these situations considerable soil accumulates and affords fair farming ground.

cochran conglomeratr.

North and west of Hot Springs several areas of the Cochran conglomerate are found in the same general localities as the Hiwassee slate, just described. This formation is so named from its oceurrence around Cochran Creek, on Chilhowee Mountain, in the Knoxville quadrangle.
Character and extent.-In the Asheville quadangle the formation consists chiefly of coarse ites. White or light-gray colors characterize the as. White or light-gray colors characterize the are frequently dark gray and bluish oray. Th are frequently dark gray and bluish gray. The The conglomerate beds are distributed reneally throughout all the areas of the formation. They
re coarsest 2 miles northwest of Deep Gap, where many of the pebbles exceed 2 inches in length. Conglomerates with pebbles an inch in length are found on the north slope of Paint Mountain; also 2 miles south of Deep Gap, 3 miles southeast of Paint Rock, and in the area lying southwest of Hot Springs. Elsewhere the formation consists mainly of fine conglomerates, coarse sandstones,
and quartzites. The individual beds of conglomand quartzites. The individual beds of conglomerate can not be traced for great distances and are more properly coarse sandstones containing variable quantities of large pebbles. In nearly all cases This is noticeably of the conglomerate are well worn. This is noticeably true of the coarse pebbles, some of which are most perfectly rounded. Far the With these of feldspar, which are les pund then pebbles. Characteristic of the formation are pebbles of black slate, apparently derived from the underlying Hiwassee slate. These appear in practically all parts of the formation, but are least common in the coarse, well-rounded are cast cons Of frequent occurrence, also, are pebbles of black metarhyolite, apparently the same rock that appears in the Algonkian formations. These pebbles are most conspicuous in the coarsest conglomerates, and their well-rounded shapes plainly show that they have traveled great distances.
The matrix of the conglomerate is substantially the same as the body of the coarse sandstones and consists of coarse and fine grains of quartz and feldspar. The feldspar grains are frequently angular on account of the cleavage of the mineral. The quartzites consist almost entirely of fine quartz grains, more or less cemented by secondary quartz. Quartz of this character is also present, though to crates. In some of the sandstones and conglomsecondary sica bas been developed as well as the secondary the has been developed, as well as the This is more common south of French Broad River than elsewhere.
Interstratified with the siliceous beds in practically all parts of the formation are unimportant dis of slate. These are most numerous in the vicinity of Paint Rock and Allen Stand. The slates are dark bluish and gray and resemble the Hiwassee slate in all particulars.
From the coarseness of the fragments in this formation it is inferred that the formation was deposited by strong currents. Some of the well-rounded material was evidently derived from far distant sources, while much was as plainly of local origin, especially the feldspar and slate pebbles. The variations in the conglomerates and the alternation of conglomerate and fine shale indicate that the conditions under which they were deposited varied rapidly. In these respects the Cochran conglomArate closely resembles the Snowbird formation. Areas of metarhyolite are found only in regions ortheast and east of this, so that some of the material, at least, came from those directions. Great variations are seen in the thickness of the
formation. Southwest of formation. Southwest of Hot Springs it attains Hot Springs it is less than half while southeast of Mountain it is 1100 to 1200 fet thin, hickness appears to be considerably less in the vicinity of Paint Rock and Dep Gep vicinity of Paint Rock and Deep Gap. In the
latter localities, however, it is highly contorted and measurements of its thickness are unsatisfactory. Alterations.-There are no striking changes in the formation due to metamorphism. Secondary quartz, as already stated, has converted many of the sandstones and fine conglomerates into quartzites, especially in the southern and eastern exposures. In the coarse conglomerates, however, such results are very rare; the feldspathic matrix has been affected most of all. Alterations in this matrix proceeded in the same manner as in the similar minerals of the granites; secondary quartz,
feldspar, and mica were developed and a limited feldspar, and mica were developed and a limited amount of schistosity was produced. The fine secondary mica plates lap around the coarse pebbles where the latter are of considerable size. Some of the pebbles are cracked and dented by other pebbles, and the fragments are somewhat dis-
located. These are usually recemented by located. These are usually recemented by secondary quartz. The general appearance of the rock, The siliceous nature of the for
with enables it
cially the case in the region . This is espe-

Broad River, where bold bluffs and ridges follow the course of the formation. Along the main ions, which are in some measure due to the weak ened power of the streams. Sharp-topped ridges and steep slopes are found in all places. The soils are thin, sandy, and full of bowlders, and are of practically no value for agriculture or timber Many ledges and cliffs jut through the cover of soil, especially where the finer quartzites predominate. The waste from these spreads far over the adjoining slates.
great bmoky conglomerati
In Crabtree Bald and the surrounding regions two areas of the Great Smoky conglomerate are to be seen. This formation is so named from its ains, southwest of Pigeon River. In this quad angle it corresponds in position In this quad haracter to the Cochran conglomerate. As the character to the Cochran conglomerate. As the
formations are traced southwestward, however, though each remains a conglomerate, substantial differences appear in bulk and in associated sedimons, It is possible that ine to wo. It is possible that in regions lying farther lapse of time than the Cochran conglomerate.
Character.-The formation contains a conside ble variety of strata, comprising conglomerate quartzite sraywacke, micu-schist, and slate. Th original character of the heds is plainest in the The olomerate, whose layers rance in thickness from 1 to 50 feet. The pebbles are finer in this than i the Cochran conglomerate and seldom exceed onehalf inch in length. From this they grade into coarse and fine quartzites and graywackes. All of these rocks are of a decided gray color, becoming whitish on exposure, by the weathering of the feldspar that they contain. This change is most noticeable in the conglomerates whose feldspars are the coarsest and least metamorphosed. Most of the pebbles are of white quartz. Near Pigeon River there are many pebbles of blue quartz,
derived from the blue-quartz granites of that derived from the blue-quartz granites of that
region. Feldspar pebbles characterize the conregion. Feldspar pebbles characterize the conglomerates throughout their areas, and in places
there are found pebbles of schist like the underthere are found pebbles of schist like the under-
lying Hiwassee schist. Interbedded with these lying Hiwassee schist. Interbedded with these
coarse rocks are numerous seams and beds of micacoarse rocks are
schist and slate.
schist and slate.
Alterations.-The beds of graywacke are most altered and in many places can be distinguished from the gneisses of the Archean only with great morphosed. On the lower part of Pigeon River morphosed. On the lower part of Pigeon River from coarse feldspathic sandstones. Some of the pebbles retain their original rounded form, while many have been crushed and squeezed. In Crabmany have been crushed and squeezed. In Crab-
tree Bald and Oak Mountain many pebbles are flattened to one-fifth of their original thickness. Much secondary mica was developed at the same time, in coarse and fine flakes. The feldspar grains recrystallized into quartz and mica during
metamorphism. As was the case in the Hiwassee late, the planes of these secondary minerals dip at high angles. They may be parallel to the stratification planes or may diverge from them, accordin to the folding of the strata.
In most of the areas the original shales have been metamorphosed to schists. On the lower part of Pigeon River they are somewhat less altered, and seams of slate are found. The schists are of a light- or dark-gray color, while the slates re considerably darker and are indistinguishable from the strata of the Hiwassee. Most of the beds of slate and schist are less than a foot in thickness. 30 feet thick. The best measure of the as 25 to f the formation place it at 750 foet. The metanorphism is so great however, that this measue morphism is so gre
is not very certain.
The rocks of this formation are very resistant to erosion. The quartz and mica are very slowly soluble, and the feldspathic material is not sufficient in the more altered varieties to cause ready disintegration. Decay begins along the planes of schisfragments. These are left in the soils, which are thin and sandy and in the most altered varieties are very micaceous. High mountains and peaks mark
the Great Smoky conglomerate throughout, and on their slopes and crests are many ledges and cliffs.

On the broader summits west of Pigeon Ri
formation bears thick and fairly fertile soil.

nichols slatr.

Character.-This formation is named from Nich ols Branch of Walden Creek in Chilhowee Mounain, Knoxville quadrangle, Tennessee, where it quadrangle consists largely of fine-grained rocks that vary from slates to shales, according to the degree of their metamorphism. The slates are dark gray and bluish gray, and are sometime marked with light-gray bands like the layers of the Hiwassee slate. The shales are usually micaceous, fine scales of mica having been deposited
when the rock was formed. A very small amoun of secondary mica was also developed as the strata were folded. Many of the layers of the formation are sandy as well as argillaceous, the clayey character being, however, the predominant one. There are no notable variations in the formation excep or the included quartzite mass.
Thickness.-There are considerable variations in the thickness of the formation. The slates vary from 300 to 1300 feet, the greatest developmen vicinity of Hot Springs. ystem in the variations. It is possible that the changes in thickness are only apparent and are due, in part at least, to the close folding of th beds. Except for the quartzites, the layers of the formation are very similar to one another and is impossible to tell whether or not any part hat been repeated.
Alterations.-Few obvious, changes have been made in these strata by metamorphism. The chief result has been a slaty cleavage, and in
The action of weather on the beds of this formaion is similar to that on the Hiwassee slate. The beds are not especially soluble, but their argillaceous materials decompose. The disintegrated mass is comparatively soft and crumbling and is worn down with relative ease. The areas of the formation are usually upheld by the adjoining quartzites and conglomerates, but form depressions between the ridges and knobs of the latter. The soils are thin and dry and of small value except here and here in the coves, where timber flourishes.
Quartzite lentil.-Included in the formation are several layers of quartzite, one of which develop. into a considerable mass. In this quadrangle it recognized in to me mapper, but has bee beds strongly formations They are fine or medium grained and consist almost entirely of rolled guartz and recemented by secoudary quartz. The quartzite lentil ranges in thickness from 350 to 750 feet, the thickest measures being in Paint and Meadow Creek mountains, where the slates also are thickand The effects of these strata on the topograph other quartzites.

Several areas of Nantahala slate are found in the ame region as the Great Smoky conglomerat The strata of this formation correspond in general position to those of the Nichols slate. The differ ent layers are also of the character which would be produced in the Nichols slate by sufficient metamorphism. In this region no formation is seen verlying the Nantahala slate, and only 700 fee are left in the synclines. The thicknesses see where the formation is entire, in quadrangles lying outhwest of this, are much greater and consider ly exceed those of the Nichols slate.
The greater part of the formation is composed These strongly resemble the schists of the Hiwas formation The mica-schists are as a rule some what darker the color being due to very minute grains of iron oxides. Many of the layers are composed of light-gray, dark-gray, and bluish-gray hands, and these layers in particular can not be dis inguished from the Hiwassee schists. These are derived from banded
Many of the layers are sprinkled with crystal of garnet, and ottrelite is a universal constituent of the formation. The crystals of the ottrelite are arranged with their cleavage at right angles to the
planes of schistosity, a relation characteristic of this
mineral throughout the region. The garnet crys als are frequently grouped in bands that follow he stratification, as in the Hiwassee slate. Thi are common at the base of the formation. A band of the schist a few inches wide may be full of stauolite and the adjoining band may contain none The garnet and ottrelite crystals are seldom more han one-tenth of an inch in diameter, while the taurolite crystals are from 2 to 4 inches in length. There appears to be no special arrangement of the xes of the staurolite crystals. At the base of the formation there is considerable interbedding with the Great Smoky conglomerate, and many unimportant layers of graywacke are found here and here in the Nantahala slate.
The formation weathers very slowly, because it has few soluble constituents. The rocks gradually crumble, however, and the disintegrated portion are not hard enough to withstand great wear.
Solid rock is seldom far from the surface, and Solid rock is seldom far from the surface, and
many broad, rounded ledges characterize the formany broad, rounded ledges characterize the for-
mation. Its soils are thin and sandy and full of mica and of slabs of schist. The formation occu lomore and form low hetween the mountains of the latter.

febo quartzite.

The strata of this formation that occur in this quadrangle are found chiefly north and west of Springs, on Chilhowee Mountain, Tennessee, where it is conspicuously exposed. Most of the areas are rregular on account of the complicated folding of the strata. The formation is composed almost entirely of quartzites and sandstones. Inter bedded with these are minor layers of shale and slate, which are visible only near streams on which the sections are clean cut. It is possible hat the amount of these layers is greater than it would seem, the weaker beds being covered by oil and heavy vegetation.
The quartzites and sandstones are practically all light gray or white and all become white on expos ure. Most of the beds are fine grained, although a few are coarse enough to be considered conglomcrates. This is the case in the upper part of he formation on Meadow Creek Mountain. Th late and shale beds are gray and bluish gray, argillaceous, and sandy. Usually they are much practieally on in Where practicaly no Oreptally this was all in the form xcept quar. owing to the depotion of secondary silica during netamorphis the riginal grain are cosely emented. Frequently they break with a clean, onchoidal fracture entirely irrespective of the bed ding planes and the granular structure. Except for this silicification little change was produced in he formation by metamorphism.
The thickness of the formation varies greatly anging from 350 feet in Meadow Creek Mountain o about 1600 feet around Hot Springs. In Pain Mountain the formation is about twice as thick a in Meadow Creek Mountain. Thus, in this forhow a general increase to the southeast
The Nebo quartzite resists the weather betto than any other of the Cambrian strata, for its purely siliceous composition makes it nearly free from the effects of solution. This is most appar ent near French Broad River, in Paint Rock and many other cliffs. The slaty beds gradually decompose and crumble and the siliceous bed chiefly by the action of frost. Slowly planes, hiefly by the action of frost. Slowly the frag me streams being carried to great distances before the streams, being carried to great distances before mormat are very thin and sundy and un only the scantiest growth of timber

murrat slatr.

Outcrops of Murray slate are limited to narrow belts at Hot Springs and in Paint and Meadow Creek mountains. The name of the formation is taken from Murray Branch of Walden Creek, new Chilhowee Mountain, Tennessee. The formation consists of shales and slates, and is pracThe strata are argillaceous or micaceous, and in places sandy. The micaceous character is most
pparent in those shales that are least altered These strata, like those of the Nichols slate, ar ray ally marked with light-gay and dark laty portions of the formation south of Hot prings the prominence of these bands has beet greatly reduced by the cleavage.
Measurements of the thickness of the formation are very hard to obtain. The beds are often conorted, and their areas are covered with wash from the adjoining quartzite formations. As nearly a t can be estimated, the thickness of the formation varies from 300 to 450 feet.
The Murray slate withstands erosion to about he same extent as the Nichols slate. It break lown slowly into fags and small fakes, chiefly through the action of frost. Outcrops are very rare except along stream courses and divides. The
softness of the formation as compared with the oftness of the formation as compared with the djoining quartzites causes it to occupy depression and slopes between the quartzite ridges and spurs. oils are thin and light upon the ridges and ccumulate to considerable depths in the hollow where a good growth of timber is found.
hesse quartzite.
The Hesse quartzite occupies three areas of conderable size adjoining those of the Murray slate The formation has been so named because ccurs in typical form on Hesse Creek near Chil howee Mountain, Tennessee. Its strata can no quartzites. They are composed almost entirely of white quartzite, in which are included a few mino layers of argillaceous and sandy shale of the same haracter as the preceding shale formations. The uartzites are fine or medium grained in this quadrangle and the variations in its appearanc are very slight. In the vicinity of Hot Spring he grains of the original sandstone are most thotughly recemented by secondary silica. The rock here is a fine-grained, glassy quartzite of exceeting hardness. At the end of Meadow Creek Mountain t passes upward into the Shady limestone throug 25 to 30 feet of yellow, sandy shale and calcareou andstone. In a few localities scolithus borings are found in the quartzite layers, such as characteriz he uppermost Cambrian quartzites throughout this region.
The formation is about 700 feet thick in Meadow Creek Mountain and somewhat thicker in Pain Mountain. In the vicinity of Hot Springs th Owing to the deat that region, however, these measurements are of very doubtful value.
The strata of this
the same manner formation resist the weather in Ledges are frequent, but there are few cliffs oils are poor and sandy and, except those forme by the topmost sandy shales, are of little use for any purpose.

> shady limestonf

Three areas of this formation are found within the limits of this quadrangle. The formation i amed for its occurrence in Shady Valley, Johnon County, Tenn. It consists almost entirely of imestone and dolomite of various kinds, more or less crystalline. With the advent of this formaion there was a change in the distribution of land and sea-one of the most marked changes in Appalachian history. Sediments deposited pre vious to this time had been coarse and siliceou and plainly derived from neighboring land massen where erosion was active. In this formation the mount of shore material is inconspicuous and far alcium. The rack is fine crained composition the rock is fine grained and uniform in rosion was, therefore abruptly we amo ime, probably by time, probably by submergence of the land and The general conditions which then prevailed continued far into Ordovician time with no great modification.
Varieties-Several kinds of limestone are seen the formation. In color they are in general ray or black. Some of the layers are mottled gray, blue, or white, and often seamed with calcite. he iormation is nearly 1000 feet thick in thi
icinity. In the area southeast of Meadow Creek Mountain beds of white limestone or marble occur
in considerable thickness near the bottom of the formation. These are less prominent around Hot Springs. On these layers the black surface of weathered outcrops is most noticeable. A concontained in these layers. Thin seams of blue and gray shale occur in a few parts of the forme tion, and a few beds of red shale in its upper layers make a transition into the overlying Wataug shale. Siliceous impurities in the form of sand srains are found in a few beds in the limestone and chert is somewhat more common. This mineral usually forms small, round nodules with gray surfaces and concentric gray and black bands inside Another variety has the structure of chalcedony and occurs in lumps a foot or more in diameter.
Weathering proceeds faster in this formation than in most others of the region. The rock dissolves, leaving a dark-red clay which contain many lumps of chert. As these lumps are seldom abundant enough to protect the surface entirely low hills. Its clays and soils are deep and strong low hills. Its clays and soils are deep and strong
and afford excellent farming land wherever they and afford excellent farming land wherever they
are not too much encumbered with wash from the siliceous formations. As a rule, however, the natural soils are very much altered and impoverished by this waste. In the red clays of this formation occur extensive
manganese oxide.

wataga shal

Character-Two narrow areas of Watauga shale appear next above the Shady limestone. The name of the shale is derived from Watauga River, in Carter County, Tenn., along which it is finely exposed. The formation consists of a series of gated shales, shaly sandstones, and impure lime stones. Much the greater part of the formation is made up of highly colored shales, in places calcareous, in places sandy, and usually argillaceous. When perfectly fresh many layers appear as blue or drab limestone. Slight exposure produces in them reddish colors and shaly partings. The limestone beds are blue and blue-gray in color and how all grades of transition from limestone to red shale. The thickness of the limestone layers in this vicinity seldom exceeds 3 feet and usually is considerably less. The beds of red sandstone are ocal and argillaceous and differ from the sandy shale chiefly in being more massive. They reach in places a thickness of 6 feet and are closely interTded with the shale
Keadow Creek Moun form is in 1000 and 1100 feet. Both there and near Hot Springs the 110 the shale has been removed by erosion and the full thickness is not shown
A great many of the layers, of both shale and sandstone, are covered with trails left by crawling mimals. Both shales and sandstones are also andstones are cross-bedded. These features and the alternation of the sediments show that the conditions which controlled their deposition had not quite attained the balance and quiet which characcolored muds from which these strata were formed were probably derived from a land mass which had ong been subject to disintegration and decay.
Chert-A widespread part of the calcareou strata is chert, which is more prominent in the lower beds of the formation. In the vicinity of Hot Springs, however, the amount of chert in the formaion is very small. It occurs in nodules and masses hat sometimes reach a diameter of 1 foot and are of very tough and durable nature. The iron oxide bined with the chert to such an extent that the mass becomes an ore In this region, proportion of chert is far too great and the term is not applicable. Small deposits of brown hematite free from siliceous impurity also occur in the None of the are of no economic importan weathering successfully. The calcareous beds a speedily dissolved, leaving the shales and sand stones to crumble and break down. The chert is very durable, but is not sufficient in amount to protect the other beds. The sandy material is able only to form low ridges and rounded knobs, which are brought into small relief by the Shady limestone valleys. Soils are deep only over the calcareous strata sheville
and are kept loose by the sand and bits of shale While seldom very fertile, they are fairly produ
tive, and are all accessible and easily cultivated. tive, and are all accessible and easil
honaker mamstone.
This is the next younger formation after the Watauga shale, but in this region the two do not come into contact. One very small area of the Honaker is seen in the northwest corner of the quadrangle, where the formation is brought up of the quadrangle are the ends of somewhat large nasses in the Greeneville quadrangle. The forma tion in this quadrangle is less than 100 feet thick The strata are composed of massive limestone of bluish or gray color and are of the same character throughout these limited exposures. That part of the limestone which normally rests on the Watauga shale is not visible, nor is the upper portion of the Watauga shale. The character of their contact can not be stated, therefore. The limestone passes up into the Nolichucky shal with but a few feet of interbedded limestone The upper part of the Honaker consists of dark gray limestones, which weather into small lump with black surfaces. The soils and topograph of the formation in this quadrangle are unimpo ant on account of the limited size of the area
rohichucky shale.
The Nolichucky shale is seen in the same regio s the formation just described, but in slightly long whose course in the Greeneville quadran glo the shale is well exhibited. The formation is composed of calcareous shales and shaly lime stones, with beds of massive blue limestone in it apper portion. The included limestones are unimportant in this region, but are developed towar the northeast. When fresh the shales and shaly limestones are bluish gray and gray in color, but hey weather readily to various shades of yellow, brown, red, and green. Most of the shale here consists of yellow and greenish-yellow beds. Ove this region the formation shows no variations. I thickness is between 450 and 500 feet. These are the most fossiliferous of the Cambrian rocks, and remains of animals, especially trilobites and linguas, are very common.
Solution of the calcareous parts is so rapid tha the rock is seldom seen in a fresh condition After removal of the soluble constituents decompo sition is slow. Complete weathering produces stiff yellow clay. Weanered rock lies near the surface and the covering of soil is accordingly thin except where the formation presents very gentl oils are well drained by the frequent partings he shale, but at their best they are light and and liable to wash. The shale forms valleys and lopes along the Knox dolomite ridges.

knox dolomitr.

Age.-While the-Knox dolomite does not belong entirely in the Ordovician, a large part of it is of is all described with the Ordon can not be divided it ower portion in adjoinith rdovician rocks. The niddle Cambrian fossils, and in this and other quadrangles the upper portion carries many Ordovician fossils, largely gasteropods. It is impossible however, to draw any boundary between the parts of the formation. The Knox dolomite is the mos important and widespread of the Valley rocks. Its name is derived from Knoxville, Tenn., which is ocated on one of its areas.
Character.-The formation contains a great serie of blue-gray or whitish limestone and dolomite (magnesian limestone), usually very fine grainel
and massive. Many of the beds are banded with and massive. Many of the beds are banded with thin, brown, siliceous streaks. Interbedded with tone few feet the There poly sand in this region, but are well devop a little farther north and west They are made up fine, rounded sand grains lying in a calcareous ement, and are most noticeable a little above the Nolichucky shale. These grade from calcareo andstone into slightly siliceous marble, in place coarsely crystalline.
Included in the beds of limestone and dolomite called "flint." In this region the cherts are less
conspicuous than in areas of the dolomite farther north. They are commonest in the lower part of the formation, and in places, by the addition of formation is about 3500 feet thick in this. The amount of earthy matter in the dolomite ry small, ranging from 5 to 15 per ent, the very small, ranging from 5 to 15 per cent, the magnesium. It was deposited very slowly, and deposition must have continued for a very long time in order to accumulate so great a thickness of rock. The dolomite represents a longer time than ny other Appalachian sedimentary formation.
Weathering.-The dolomite weathers speedily coount of the solubility of its materials, and out rops are rare at a distance from the stream cuts. The formation is covered to a great depth by re clay; through this are scattered the cherts, whic are very slowly soluble. These are gradually concentrated by the solution of the overlying rock, and where they are most plentiful they constitut olarge a part of the soil that cultivation is almort mpossible. This condition is not attained in reas shown in this quadrangle. The cherts an Ill white when weathered and break into sharp ngular fragments. The formation causes broad, vounded ridges more or less protected from erosion by the covering of chert. Such soils are alway bject on the chert and and drain ground dringe arat and In many pase water is obtainable ouly for topped-up sink holes, from wells, or, rarely, from prings.

athens shal

One narrow belt of Athens shale is seen in this quadrangle, on the north side of Meadow Creek Mountain. It there lies against a fault plane, on The shale is named for its occurrence at Athens, McMinn County, Tenn. It is composed of black and bluish-black shales and is the latest formatio shown in this quadrangle. The shales are all cal careous and, especially at the bottom, are carbonceous and full of remains of graptolites. All of the strata here shown are very fine grained and hin bedded, and sedimentary banding is seldon visible. On account of the obscurity of the bed ding planes and the presence of the cleavage in The formation its thickness is difficult to measure.
The strata here exhibited are probably 300 feet The strata here exhibited are probably 300 feet
thick. The transition from the Athens shale to he underlying Knox dolomite is rather sharp and and sen magnitude and atent with that which immed ately preceded the deposition of the Shady limeately p
stone.
The rock weathers rapidly at first by solution of its calcium carbonate, so that ledges are found onl near stream cuts. The lumps and flakes of argi pose and crumble, and turn yellow only after long exposure. The soils on the formation are unimportant in this region and are overspread with wash from the Cambrian quartzites.

structure.

introduction
Those rocks of the Asheville quadrangle tha ere deposited upon the sea bottom must origially have extended in nearly horizontal layer At present, however, the beds of strata are seldo dges apput are ingles, their edges appearing at the surface. Folds and fault of great magnitade occur in the Appalachia vegion, their dimensions being measured by mile, but they also occur on a very small, even a microo be seen in the Asheville region. In these fold he rocks have cianged their form minly by djustment and motion on planes of bedding and schistosity. There are also countless planes of dis location independent of the original layers of the ocks. These are best developed in rocks of riginally massive structure and are usually much earer together and smaller than the planes on which the deformation of the stratified rocks proceeded. In these more minute dislocations the individual particles of the rocks were bent, broken, and slipped past one another or were recrystallized. Explanation of structure sections.-The section
as they would appear in the sides of a deep trench cut across the country. Their position with refer ence to the map is on the line at the upper edge cales are the same, so that the actual form and lope of the land and the actual dips of the lay re shown. These sections represent the structure is it is in from the position observed at the surface. The minute details of tructure can not be represented on the scale of the nap, and they are, therefore, somewhat generalized fom the dips observed in a belt a few miles in width along the line of the section. Faults are epresented on the map by a heavy solid or broken ine, and in the section by a line whose inclination hows the probable dip of the fault plane, the rrows indicating the direction in which the strat have been moved on its opposite sides.
general structure of the appalachian province.

Types of structure.-Three distinct types of struc ture occur in the Appalachian province, each pre ailing in a separate area corresponding to on the geographic divions. In the Plateau and in region lying farther west the rocks are gener lly flat and retain their original composition. In he Valley the rocks have been steeply tilted, ben io hs, bres la Mo and ful : In for hut cleavage and metar 1 . sicuous.
picuous.
has.-The folds and faults of the Valle region are about parallel to one another and to They extend from northeast to southwest, and sin le structures may be very long. Faults 300 mile long are known, and folds of even greater lengt occur. The crests of most folds continue at the same height for great distances, so that they present the same formations. Often adjacent folds are nearly equal in height, and the same beds appear and reappear at the surface. Most of the beds dip tangles greater than 10°; frequently the sides of he folds are compressed until they are parallel. Generally the folds are smallest, most numerous, and most closely squeezed in thin-bedded rocks, uch as shale and shaly limestone. Perhaps the most striking feature of the folding is the prevalence of southeastward dips. In some sections acros he southern portion of the Appalachian Valle carcely a bed can be found which dips towar Foult -F
. .--Faults appear on the northwestern side anticlines, varying in extent and frequency with plane dips toward the southeast and is approximately parallel to the beds of the upthrust mas. The fractures extend aeross beds many thousand feet thick, and sometimes the upper strata are pushed over the lower as far as 10 or 15 miles There is a progressive change in the results of deformation from northeast to southwest, and different kinds prevail in different places. In south rn New York folds and faults are rare and small. Through Pennsylvania toward Virginia folds become more numerous and steeper. In Virginia they are more and more closely compressed and ften closed, while occasional faults appear. I passing through Virginia into Tennessee the fold re more broken by faults. In the central part he valley of Tennessee folds are generally obscured by faults that the strata form a series of narrow overlapping blocks of beds dipping south eastward. Thence the structure remains nearl the same southward into Alabama; the fault ecome fewer in number, however, and their orizontal disherer while th Hetre 1 an son
Melamorphismad di the Appaluntain haracterize the Great Valley are mails the harata are olso traved by mie repeater. Th leavage lines and metamorphosed by the growth of new minerals. The cleavage planes dip eastwar at angles ranging from 20° to 90°, usually about 60°. This phase of oped in the Valley as slaty cleavage, but in the Mountains it becomes important and frequently obscures all other structures. All rocks were sub jected to this process, and the final products of the netamorphism of very different rocks are often indistinguishable from one another. Throughou
he southeastern part of the Appalachian province there is a great increase of metamorphism toward he southeast, until the resultant schistosity becomes the most prominent of the Mountain
structures. Formations in that region whose origi hal condition is unchanged are extremely rare, an requently the alteration has obliterated all the riginal characters of the rock. Many beds that are scarcely altered at the border of the Valley show greater and greater changes as they are trace southeastward, until every original feature is lost. In most of the sedimentary rocks the bedding planes have been destroyed by metamorphic action, and even where they are distinct they are usually less prominent than the schistosity. In the igneous rocks planes of fracture and motion wer developed, which, in a measure, made easier the deformation of the rocks. Along these planes or ones of extreme motion the original texture of the on was largely destroy by in his ghow on the many case he rock The extreme development of this po he rock. The extreme destopent of this prothe original textures of which have been entirely replaced by the schistose structure and parallel flakes of new minerals. The planes of fracture and schistosity are inclined toward the the south east through most of the Mountains, although in certain belts, chiefly along the southeastern an outhern portions, northwesterly dips prevail. The ange of the southeasterly dips is from 10° to 90° hat of the northwesterly dips, from 30° to 90° - Thestructures abovedescribet most effectively in a northwest-southeast direction at right angles to the general trend of the folds and of the planes of schistosity. Compression was also exerted, but to a much less extent, in a direction bout at right angles to that of the main force To this are due the cross folds and faults that appea here and there throughout the Appalachians. The earliest-known period of compression and deformaion occurred during Archean time, and resulted in wuch of the metamorphism of the present Carolin lace in Ars in the ehe the appers in the Archen ocks. In the course of time early in the Pal ocks. In the Pale series of movements took place that culminated soon after the close of the Carboniferous period The latest of this sevies was probably the greate and to it is chiefly due the well-known Appa achian folding and metamorphism. This fore was exerted at two distinct periods, the first defor mation producing great overthrust faults and some metamorphism, the second extending farther northwest and deforming previous structures as well is the unfolded rocks. The various deformation combined have greatly changed the aspects of he rocks-so much so, in fact, that the origina nature of some of the oldest formations can be t present only surmisea.
In addition to the force that acted in a hori zontal direction, this region has been affected b_{y} forces that acted vertically and repeatedly raised or depressed the surface. The compressive forces ere tremendous, but were limited in effect to a elatively narow zone. Less intense at any point burd her through he thi and ove ries It is likely that the two provinces. f deformation. In mast case the moven have resulted in a warping of the surface as well in uplift. One result of this appears in overlap and unconformities of the sedimentary formations. As was stated under the heading "General geo logic record" (p. 1), depression of this kind took place at the beginning of the Paleozoic, with several repetitions later in the same era. They alternated with uplifts of varying importance, the last of which closed Paleozoic deposition. Since Paleooic time there have been at least four, and probably more, periods of decided uplift. How many minor uplifts or depressions have taken place can not be ascertained from this region.
structure of the asheville quadrangle.
Larger features.-The rocks of this quadrangle have undergone many alterations since they wer formed, having been bent, broken, and metamor-
phosed to a high degree. The structures which
resulted from these changes trend in general north cast and southwest. In this quadrangle, however, there is much less regularity than is usual in the divided into two areas in which the geological structures differ widely from each other. They correspond closely with the areas covered by the Cambrian and Archean rocks, and the difference in structure are due in large measure to differences in the character of the rocks. The structures in
he sedimentary rocks are readily deciphered. I he sedimentary rocks are readily deciphered. In though it is easy to see that they have bee reatly disturbed and though the details of th maller structures are apparent, yet it is diffi cult to discover the larger features of their defor ation.
Folds and faults.-In the Cambrian area th rocks are involved in large folds and broken by
mmense thrust faults. Both the faults and the immense thrust faults. Both the faults and the Hot Springs, where they change within short di tances from nearly east-west to nearly north-south courses. The axes of the folds are neither straioh hor continuous for long distances but the pitch in many places is as great as the dip upon the flank any places is as great as the dip upon the flanks
of the folds. This is notably the case in the vicinity of Stackhouse; also on the headwaters of Paint reek, and at several points along Paint Mountain. Most of the faults dip toward the southeast, a do the majority of Appalachian structures. An nusual number of exceptions to this rule are found in this region, however. The fault that and a small one 2 miles south of Wolf Creek (se ion D-D) illustrate these exceptions.
Most of the faults of the region are not extreme
dip or amount of throw. Their courses exhibit in dip or amount of throw. Their courses exhibit many different directions, but are fairly constant or each individual fault. Thus the fault planes itersect one another, producing a series of branchng faults and cutting the crust of the earth into nost irregular series of blocks. The planes of the sually between 30° ind 40°, 20° to 60°, being sually between so hais is dificult the minimures thrust throw on these fault planes less theat Hot Suris, less than the great Hot springs faut. The. in that their planes do not follow the stratifica ion very closely. Their origin in and connection with anticlines is apparent in many places, as, for instance, at the east ends of Paint Mountain and Meadow Creek Mountain. In Paint Mountain he pitch of the associated fold persists throughout the entire length of the mountain and thus bring eight of the Cambrian formations against the fault plane in turn.
Curved faults. - The great fault which passe just north of Hot Springs is one of the most unusual in the Appalachians. Its outcrop form nearly complete oval and its planes, if extended upward, would almost unite in a dome. Starting in an overturned fold southeast of Stackhouse, its plane dips successively toward all points of the compass and dies away in another fold parallel to nd 2 miles northwest of its starting place. In its production areexhibited compression and shortening, not only in the usual northwest-southeast direction but in all others. The area inclosed by the faut which the rjoining rocks were piled high from all ides The plane cuts abruptly aeross the edgal he strat at many points particularly where of nass of Max Patch granite is thrust foward upe them, and the usual connection of anticlinal fold and fault is not obvious here. The features this fault are indicated in sections C-C and 1)-D The dip of the plane varies from nearly flat at the foot of Bluff Mountain up to 50° or 60° east of Hot Springs. The evidence needed for measuring its maximum throw is not sufficient. It has, however, a displacement of at least 3 miles
The north-south fault which passes 2 miles east of Stackhouse is similar to the foregoing fault in all its features except that its plane is not so curved. This, too, gives evidence of a considerable shortening of the earth's crust in an east-west direction. To account for the features which aults of this kind exhibit, they must be considered as planes of shearing that pass through he granites and sedimentary rocks and are little influenced by the attitudes of the stratification
planes. In this respect they differ widely from
he prevailing Appalachian faults, which
he most part parallel to the stratification.
Structures in Archean rocks.-The with distinctive structures appears in the Archean rocks, covering the greater part of the quadrangle In this the effects of deformation are chiefly see in the schistosity and foliation of the igneous and rystalline formations. Folds are also to be seen, but they are subordinate to other structures. The are best defined in the basin of Pigeon River here bodies of sedimentary rocks are folded i with the Archean granites and gneisses. Folds of onsiderable importance are also seen near Clyde, the contorted Roan and Carolina gneisses imilar results appear in the vicinity of Alexande and a few miles northeast of Marshall. If the original attitudes of the Archean formations were olds could undoubtedly be determined. The forare so much larger however, and distinc ive beds that can be followed are so few, that it i difficult to trace connections between one part of he gneisses and another. For the same reasons it xcept where they involve the sedimentary strata. In many cases they are highly probable, as fo instance along the west foot of Crabtree Bald.
Repeated folding.-As was stated in the descrip tion of the Carolina and Roan gneisses, the folia tion evident in them was produced at an exceedingly y date. In the later or post-Carboniferous com lding, these foliation planes were deformed by ch. Thus were produced the larger folds rinkles whid outcrop. The conditions of deformation were such to fold and mash rather than break the layers, nd the bands of gneiss are variously twisted and row thicker and thinner from place to place
Bending of the beds was largely accommodated by Bending of the beds was largely

otion along the foliation planes.

Mashing. - In the granites during the same period of folding there were no existent foliation planes. Under the great stress, however, planes
and zones of shear and mashing were produced and change of form took place wre prodace ips of these planes are almost altogether to he southese and are nearly unifom orer reas They vary in amount from 20° up to ver ical, averaging 50° or 60°. Along the contact of the formations the planes of shistosity are roughly parallel to the contact, in both dip and direction. Within the body of each formation, however, there are considerable divergences from the direction of the contact. Around the more massive and resistant portions of the rocks, also, the schistose planes swing gradually. In places where the motion was especially localized, as in he vicinity of fault planes, the minerals of the granite were elongated into thin sheets and string or striated forms. In many other places in the body of the granite similar results are to be see nd may be due to the same conditions.
The sedimentary rocks of the Pigeon Rive basin also show effects of mashing, such as wer een in the igneous rocks. The strata were com pressed and loaded far beyond their strength; and ecrystallization of the rock minerals took place, sometimes along minute breaks and slip planes rowth of these minerals was in places sufficient to ransform the strata entirely. Thus, a formation hich appears as slate and shale west wo near Pigeon River The feldspathic sandstone an conglomerate south of Hot Springs are metaino hosed into a coarse and fine graywacke on Crab ree Bald. Banded slates and shales have become black mica- and ottrelite-schists, and the entire are of rocks plainly shows the most intense pres which accompanies this is no greater than that see in the folded and faulted areas farther north. In the structure section it is not possible, ou ccount of the small scale, as has already been hat the show the minor folds and wrinkles, s presented as comparatively simple. In section $\mathrm{D}-\mathrm{D}$ and $\mathrm{F}-\mathrm{F}$ some of the larger folds in the neisses are represented. To control the repre sentation of the form of bodies of granite and gneiss beneath the surface there are no known
laws such as justify the,representations of underlaws such as justify the, representations of under-
ground strata. In many places the granite bodies
can be seen protruding through the gneisses from below. In other places the same relation can be educed from a study of the topography. Ther and Carolina pnesses which the bodies of t various discordant angles within and upon the bodies of the granite. As a general principle oreover, it is evident that the granites wer ntruded into the gneisses from larger bodies of ranite lying deeper in the earth. For thes rasons the granite masses have been represented s growing larger downward
mineral Resources.
The rocks of this region are of use in their nat ral state, as soapstone, talc, barite, marble, corun dum, garnet, building stone, and road material, and in the materials that may be developed from them, Besides the deposits whi
Besides the deposits which are generally known ve interesting and which may in future har er e nidel, ciated with the dunite masses.

soapstone

Soapstone and allied rocks are found here and there in the Archean formations at frequent intervals throughout the entire length of the Appalachians. Although the material is thus very idespread, few of the areas are over a mile in , Some of the bodies measure but a few fer, and not many of them cover more than an re. The soapstone and talc are derived by amorphism from very basic intrusive rock and are usually associated with dunite, serpentine, hism. These metamorphic products are ofte phism. These metamorphic products are often
found together in each area. In the French Broad Valley soapstone is by far the most ron, more than eighty separate areas being known elow Asheville
In places the soapstone is sufficiently pure for Conomic use. As a rule, however, talc, the hydrou licate of magnesia forming the soapstone, is to f the lomblende faily, to be valuable Th tect f soplo d eadily cut and sawed and which contains aterial that is affected by fire. Some of the hornblendie minerals fuse readily and other which fuse less easily are hard and injure th exture and interfere with the working of the tone. The igneous rocks from which the soaptones were formed vary much in composition, so hat the beds of soapstone are equally variable in quality. Metamorphism of the original rock wa ot always complete and did not always produce oapstone even when complete. Accordingly, i his quadrangle large bodies of soapstone are rare It usually occurs in seams or layers between on round serpentine and dunite. On the economi geology map are indicated those areas where soapThus far, however, only loose blocks and bowlder are been sawed and used in building fireplaces. n no place has the rock been quarried to any extent talc.
The tale deposits of this region are connected with the bodies of soapstone already described. The bodies of workable talc are concentrated in elt 4 or 5 miles wide, lying along French Broad River, on both sides of the stream, between Marhall and Alexander. The tale, or hydrous silicat magnesia, was formed by alteration of basic which contained originally an abundance of gesian silicates. In most cases, however, there ere formed in addition to the talc a number of ther silicates containing magnesia, such as chlo , tremolite, actinolite, and hornblende. As , the talc is equaled or exceeded in amount by he other silicates. Why the tale predominates in ne locality and the other silicates in another is a a doubt. In many places a portion of the ther mainly tale or very pure soapstone, while her portions may be filled with the silicate minsingle soapstone body the purer soapstone and alc are usually at the borders of the mass, having en influenced in some manner by the contact o the adjoining rocks.

Besides the talc of this form, pure talc is found \mid is well separated from the inclosing rock. There also in veins a few inches in width that pass here form of the mineral is usually fibrous or foliated and free from the objectionable silicates. Talc veins of this character seem to be of later forveins of this character seem to be of later for-
mation than the large bodies of tale and the soapstones. These veins are found also in the serpentine and dunite masses, together with veins of chlorite. The talc so far mined has been taken from the veins and from the purer portions at the borders of the soapstone masses. Although the amount of talc disseminated through the soapstone is vastly greater, it is not practicable to separate it from the chlorite and other minerals which are intermingled with it. In following the vein talc there is a fair amount of certainty a to the product, both in quality and in quantity In the bordering bodies of tale the quantity i much greater and can be determined fairly well. The quality is quite uncertain, however, and the value of the talc is liable to be much lessened by
the presence of the other silicates. It is impossible the presence of the other silicates. It is impossible
to say in advance where the quality of the tale will to say in advance wh
be thus depreciated.
The talc is alm.
ranslucent, but usually entirely white, sometim translucent, but usually opaque. It is probable hat if work were pushed into the solid rock the Thus far mining has been confined to pits in clay and decomposed rock. In this material stains of earth and iron oxide are common. The tale thus far produced varies from massive to fibrous, the latter being the most common, and it is fitted only for grinding into powder. Although the available mount of talc of this class is considerable, practially none is produced now, and the industry is at a standstill.

asbestos.

At many points in the various dunite bodies asbestos is found. It occurs in veins that intersect the dunite at various angles and apparently fill he spaces between broken blocks of the dunite. The thickness of the veins varies greatly within hort distances, ranging from 8 inches down to frac tions of an inch. Most of the veins are less than inches thick. The principal exposures are in he dunite body 3 miles northeast of Stockville his pla the the is no development of Many of the other dunite masses contain small Many of the other dunite masses contain smal of no body or importance. The quality of th mineral is excellent. The fibers run from wall to wall across the vein, and their length is thus meas ured by the thickness of the vein. Most of the naterial now visible is weathered, but it is fairl tough, and that in the fresh rock promises to be of good quality.
This asbestos is a silicate of magnesia with a little alumina, and is properly called chrysotile As is indicated by its occurrence in veins that tersect the dunite, it is clearly a secondary min ral. It shows no traces of mechanical deforma ion or alteration, and is thus one of the latest merals in the dunite. It is therefore of later rigin than most of the silicates in the adjoining mations, for their positions were determined pressure during deformation. The unaltere . lumina and To form the asbestos the addition of ight readily nare shica was necessary. Thes djacent formations which contain ther in jacent formans, when conain them in abunhave furnished this material ready access to the interior of the dunite.
barite.
Barite is found in a narrow area about 5 miles Iong running a little north of east from Bluff, on Spring Creek, to and across French Broad nd to a less extent in the feldspathic quartzites of the Cambrian. It usually lies near the contacts of the two formations. The barite occupies irregular veins and gashes in the country any considerable distance. The veins are rarely over a foot in thickness and are usually only a few inches. Accordingly, much useless rock has to
be handled in getting out the ore. The barite be handled in getting out the ore. The barit Asheville.
is well separated from the inclosing rock. There
are practically no other minerals associated with are practicall
The country rock was much broken and shat ered before the formation of the barite, and the paces were filled with the ore. From the arrange-
ment and crystalline condition of the barite, it is evident that it was deposited from aqueous solutions. As to the derivation of the material in solution there is no evidence; probably it came from the great mass of granite within which it is now found. All of these barite areas occur in belt near and parallel to one of the principal thrust faults of the region. The rocks were greatly disturbed during the production of the original fault plane, and later, to a less extent, during its secondary deformation. It appears most likely
that the crushing of the quartzites seen in th that the crushing of the quartzites seen in the mation. In the old workings on Spring Creek, ear the level of the creek, the barite-bearing quartzites are very close to the thrust fault and the fault and the barite. The barite occurs in large rystals and crystalline masses which have no deformed as were the minerals of the incloing rocks. From this it is clear that the barit ing, and although the shattering of the rock may have been due to the folding, the barite must have been introduced later. The crevices in the shattered granite afforded comparatively easy access to the solutions that carried the barite, but no direct connection in origin can be traced between the faults and the barite deposits.
At present only the deposits on Spring Creek are being mined. A considerable amount of barite tackhouse from the veins a mile son tackhouse, but the deposits on Doe Branch
were never developed to any extent. Southeast of Stackhouse small open cuts were made and short hafts and tunnels were driven. These were nearly on the crest of a ridge, and penetrated for some distances the more or less weathered granites. On Spring Creek the mining has been done chiefly through open cuts. These are now of onsiderable size and much material has been emoved. The openings ie ridges which are bout 500 fet Sping lion teeply the quantity of barite appears to be large.

corundum.

Five areas are known within this quadrangle where corundum occurs. This mineral is an oxid of aluminum and is found in association with closely allied to them. In two of the areas at the head of Hominy Creek the accompanying rock is unite and serpentine. In the remaining areas it mainly amphibolite. The corundum is found formations, which in all Roan gneiss. Wherever the corundum can be found in place it occurs in vein-like masses asso ciated with chlorite, usually near the borders of the dunite masses. The chlorite and corundum he in more or less distinct layers, in which the rystals have no definite arrangement. The corun lum is crystalline in form and varies in size from nere grains up to poorly formed crystals an inch r two in diameter. It is usually of a dull-gray or
Thish-gray color.
The origin of
The origin of the corundum is a matter of coniderable doubt. From its close connection with here is little doubt that its dopmation there is little doubt that its deposition wa related to that it was formed by the eruptive contact of the dunite with the inclosing rocks, and was among the earliest minerals so produced. The associated chlorite and hornblendic minerals are all silicates of magnesia, much the same in composition as the minerals of the dunite and allied nasses at places where there is no. corundum the dunite except the corundum. In the adjoining formations, however, it is present in great quantifies in the form of silicates, and chemical reactions between the two masses may have led to its deposition near the places of contact. In the formation
of the hornblendic minerals, which was the chie of the hornblendic minerals, which was the chief ve

change from the olivine of the original rock, there was a large addition of silica. This necessarily It is therefore possible that the alumina was set free by the absorption of the silica into the dunite and crystallized as the oxide in the zone where the reactions took place. The vein-like form of the
deposits is in favor of this view and is strongly against an origin of the corundum earlier than th deformation of the rocks.
The rocks which inclose the corundum are extremely old, and during their metamorphism, as has already been stated, most of the mineral which now compose them were formed. The crys tals of these minerals lie with their major axes in definite positions, usually about parallel to on nother. The various magnesian silicates which ccompany the corundum, chlorite and tremolite in particular, most obviously lack this arrange ment, although the same minerals in other parts of he dunite and adjoining formations are strongly marked in that way. Hence it is clear that where hese minerals are grouped with the corundum hey are of secondary origin. Therefore, two those formed by metamorphism under pressure and those of vein-like form, including chlorite corundum, and feldspar. From the close associa ion of the corundum with the vein-like mineral Moreover, there is in the corundum itself no evi dence of metamorphism by pressure, although evi dence of pressure is distinctly seen in the inclosing rocks. It shows no rearrangement of the cleavage planes or major axes in one general direction, as is the case in most minerals acted upon in that way Yet the corundum could not have escaped the deforming influences if they were in operation in the rock. Nor is there any change of the crystal ine form of the corundum, although its prominent leavage would have made a change easy. Fo hese reasons, accordingly, it is highly probable hat the corundum was not an original part of the
While corundum has been noted at only five localities in this quadrangle, the same relations of he dunite to other formations are repeated in likely that corundum may be us it is more than ocalities. The work thus far done in developing the extent of the corundum consists of shallow hafts and pits. These have scarcely tested th mount in any place, so that definite statement in that connection can not be made.

garnet.

Garnet is found in large amounts west and northwest of Marshall in crystals thickly scattered hrough the mica-schist. The crystals range in ormed dodecahedrons. The inclosing mica-schist is part of the Carolina gneiss and is near small bodies of the intrusive Cranberry granite and the Roan gneiss. It is not, however, strictly a contact deposit. Four miles S. $60^{\circ} \mathrm{W}$. of Marshall nd 1 mile south of Little Pine Creek the garnet is now mined for use as an abrasive. The ore consists of the garnet crystals, which are
taken from the schist by hammer and pick. A unnel follows the "vein" a short distance into he hard rock, where it is from 8 to 10 feet hick, and numerous test pits have developed he garne over a length of one-fourt mile 50° tomer the 50 towar he soatheast. Its strike is 30 ward 2 miles, to Franch Broad River, f a mile abe Litle Pine Crets, Onth f a mile northeast of the Creek. One-eight ppear again, but the farther extent of the vein is not known.

nickel.

Ores of nickel are found 3 miles northeast of Canton, 2 miles southeast of Leicester, and 3 miles nearly in line with one another. The nickel occur in the form of a hydrous silicate, probably genthite, anling tiny veins and cracks and coating the surfices of the dunite. Occurring with the nicke licate, and in the same manner, is found much vins. Tion, or amorphous silica, in thin sheets and
and strew the surface of the ground with lumps of lica like honeycomb.
The dunite is reported to show a trace of nickel in all analyses; this may be combined with the hromite. The concentration of the nickel into ices and jointsate coatings is made possible by the crev
inat penetrate the dunite in al directions. So numerous are they that the dunite is in many places a breccia. Some of the fragments have separated half an inch and the crack filed with nickel ore. Such a condition is probble only near the surface of the earth. Accordngly, the nickel ore is inferred to be a secondary eposit-one of the most recent in the dunite. This conclusion is supported by the freedom of the nickel ore and accompanying quartz from deformation. All occurrences thus far seen are above rainage level and appear to be due to hydration processes near the surface of the ground. From this region the depth of the deposits can not be ascer ained, but it is not likely to be great. Northeast of Stocksville considerable material was exposed in the search for chromic iron and corundum, but ive table developmens have been made. Exten位e tests of similar deposits have recently been Canton. The best ore the i .high 7 pre asight is perge. In that ase it has quantity oult to find a suitable commerinl f reducing the ore.

нromite

Chromite is found in the dunite area 3 miles northeast of Stocksville and on the border of this quadrangle. It forms small grains disseminated through the mass of the dunite. Just east of this point many test pits were dug and considerable rock was blasted, but no chromite deposit of importance was found. In many other places hromic iron is seen in the dunite in the same form, and, in fact, it appears to be a constant accompaniment of that formation. In no part of his quadrangle has a noteworthy deposit been iscovered.

iron ores.

Magnetite.-Magnetic iron ore is found in five general localities in this quadrangle, viz: 5 mile miles west of Barnard 1 mile of Alexander, upiter, and in Bawas, 1 mole about of Jurricane Creek In the latter three the Fcalitie West of Alexander it is in mica in atter region, however, many dikes of granite he mica-gneiss so that the situation is not widely ifferent. Besides these principal localities there re many others in which magnetite float ore found. These lie in a belt which crosses the basin of French Broad River in a general northeast direction just a little below Marshall.
At the locality north of Alexander known as he Big Ivy mine, on the south bank of Big Ivy iver, magnetite was developed in two open cut and a number of pits. These exposed the ore for length of several hundred feet in a northeast duthwest course. It is many ycars since work as been done on this deposit. The magnetite has been traced both to the southwest and to the north ast by means of the float ore and the dip needle cross Big Ivy River it extends northeastward for early 3 miles. The ore occurs in a vein that dips teeply toward the northwest about parallel to the closing walls of hornblende-gneiss. The thickhas of the ver at depth ans 1 la loped. The magnetice is har hornbleide and a pangue of rrnblende, epidote, and quartz.
Five miles west of Alexander magnetite outcrop magnetite and is found in yeonsists of compact thick. It is inclosed in walls of hornblende-mica gneiss and dips southeastward with them at an ngle of about 70°. The actual exposure of the ore is insufficient to show the amount of the eposit. By means of the float the deposit can be raced for several miles toward the southwest.
At other points indicated on the economic ma magnetite is found in considerable quantities, but has not been exploited to any notable extent. rom many other localities small quantities of magnetite float ore are reported.

Specular hematite.-On Wolf Creek, 2 miles
northwest of Bluff Mountain, is found a deposit northwest of Bluff Mountain, is found a deposit of specular hematite. This occurs in irregular
veins cutting the red Max Patch granite. The veins are small and without definite trend or dip and they may be better described as a group of fissures in the more or less shattered granite. The ore incloses and is mixed with many fragments of the granite. Little work has been done to develop the extent of the ore, and its value is problematic.
Brown hematite.-Ores of this nature are abundant in the northwestern part of the district and include limonite and various combinations of the hydrate and oxide of iron. They occur as lumps and masses in the residual clays of the Shady limestone and are most plentiful on Shut-in Creek and along
the south slope of Meadow Creek Mountains. the south slope of Meadow Creek Mountains. in the old forges at Hayesville Furnace just north in the old forges at Hayesville Furnace, just north of the border of this quadrangle. In recent years considerable ore has been taken out
from the deposits on Shut-in Creek.
Small bodies of brown hematite
and there along the various fault plound here and there along the various fault planes in the
areas covered by the Cambrian quartzites. These areas covered by the Cambrian quartzites. These breccias of no value. Other small deposits are found at various situations in the Cambrian shales, but these are never of any great extent. Brown hematites are also found in very limited quantities throughout the areas underlain by Carolina gneiss and Roan gneiss, especially the latter. None of these seem to be extensive and they have not been at all developed.
Ores in the Shady limestone, like most of the ores of this class in the Appalachians, are very pure and have furnished most of the ore mined The amount of ore in the clay varies much. On Shut-in Creek it is most abundant at the west end of the belt of limestone, where that rock lies in a synelinal basin surrounded by ridges of harder quartzite. The same structure is seen south of Meadow Creek Mountains, most of the area of the limestone, however, appearing only on the north side of the fold. The hematite is most abundant near the contact of the limesene and the underlying quartzite, and is found here and there along of the limestone contain very little ore Its pres ence in the lower layers near the quartzite appears to be due to downward concentration into those layers. The limestone itself contains little or no ferruginous material, so that the hematite is probably derived from the quartzite series, in which are found small accumulations of pyrite. The depth of the ore has not been tested except in shallow pits and open cuts. It is probable that in this region, as in other places where there are similar ore much more than 30 feet deep.

lime.

There are three general situations in this quad rangle in which limestone is found suitable for making lime. These are all in the north west portion of the quadrangle and below Hot Springs. Most important is the Knox dolomite, lying north west of Meadow Creek Mountains. Many of its beds are very pure limestone, especially in the
upper part of the formation. This material was used in the old iron works at Hayesville Furnace used in the old iron works at Hayesville Furnace The second general group of lime rocks is found
in the Shady limestone. Near the east end of in the Shady limestone. Near the east end of
Meadow Creek Mountains these have been burned Meadow Creek Mountains these have been burned on a small scale. The same formation at Hot
Springs has furnished much lime. Prominent outcrops in an excellent situation on French Broad River, a mile below Hot Springs, yielded abundant material. In the Hiwassee slate limestone is found in lenticular deposits in an irregular belt running northeast-southwest through Paint Rock. Some of these are of considerable length, for instance, one lying on Little Laurel Creek just south of Allen Stand, where the limestone body has a thickness of over 100 feet and a length of over 4 miles. On the headwaters of Big Creek, also, near the west edge of the quadrangle, there are They are all more or less siliceous, but are sufficiently pure to furnish material for any local needs. Outcrops of these different limestones are common near the stream courses, but on the inter-
vening hill slopes are comparatively rare. This is especially true of the Shady limestone, which shows in body only on the lower portion of Cove Creek, on Shut-in Creek, and near Hot Springs, although its areas are large.
marble.
Among the strata of the Shady limestone are many beds which are suitable for use as marble. These occur in the lower layers of the formation near the Hesse quartzite. In the areas of this formation just west of Hot Springs and also at the east end of Meadow Creek Mountains these beds appear. In other areas they are concealed from view, although they probably underlie the surface. The marble occurs in massive beds from 1 to 5 feet thick showing very little stratification. The marble lods a 1 mo dark-ble crance limes the marbestones the Shady or than of the blue the Knox dolomite. On wether aur the the Knop of the marble wave a decidedly black outcrops of the marble have a decidedly black nor does it appear on surfaces which have been artificially broken and exposed for years. From the natural outcrops of the marble its durability can be inferred, and its strength is assured by the hardness of the rock. None of its other qualities have been tested, nor has the stone been used at all as marble. The best situations for developing it are west of Hot Springs, where it has been burned for lime. At that point the marble occupies bluffs and cliffs that rise directly from French Broad River, so that good rock could easily be procured and water and waste material disposed of. Transpasses by the deposit.

building stone.

Stone of value for building purposes is found in many of the formations in this quadrangle, especially the Archean. Both the Max Patch and the Those portions of the Max Patch in this respect. Those portions of the Max Patch in particular very ornamental The feldspar and epidote are Max Patch granite also present a striking in the ance. The beds of these are heavy, and large ance. The beds of these are heavy, and large like all of the rocks in the region, is more or like all of the rocks in the region, is more or
less schistose. The Cranberry granite has no special features of color or marking, but its light color and fairly uniform texture make it adaptable to many purposes. Opportunities for quarrying this rock are abundant near the French Broad and its tributary streams, especially Spring Creek and Laurel Creek.
The best granite of the region is found in the small bodies and dikes which cut the Carolina gneiss and the other granites. These are very common in the southeastern half of the quadrangle, but are best shown between Alexander and Asheville. On the uplands they rarely outcrop, but near the streams they are fresh and easily reached. Small openings have been made on them in many places, but these have hardly more than tested the quality of the rock. The stone is fine grained and massive and has practically no schistosity. Its color is light gray to nearly white, and it may be worked
readily into any shape desired. Many of these readiy into any shape desired. Many of these granite bodies are of suffcient size for quarrying, few feet Thus far this wraite ba ben chiefly for motris the chiefly for road ath of A number of the macstructed of this rock and have been found very satisfactory.
The various Cambrian quartzites have also furnished building material to a very limited extent from loose bowlders, which have been utilized in chimneys, bridge abutments, and in the
old iron furnaces. The rock parts readily into beds from 6 inches to 2 feet in thickness, but is extremely tough and is hard to drill and dress. Along French Broad River below Paint Rock, and just above Hot Springs, are large outcrops of quartzite in suitable locations for quarrying. Many of the thin sandstone and quartzite layers in the Cambrian formations can be quarried readily into flagstones. They are from 2 inches upward Another class of building stone, one which
been much used, is the Knox dolomite. The area of
this rock in the quadrangle is small. Its beds are from 6 inches to 2 feet in thickness and part readily along the bedding planes. It is readily cut and dressed and will support great weights. It has been used in many of the railroad bridge abutments, having been brought from Tennessee by rail.
The dams that have been built across Hominy Creek and French Broad River for the purpose of developing power were constructed of rock obtained from the heavier beds of the Carolina gneiss. Only strength and durability are required for this work, and the material was found near at hand. The same material has been largely used in the
Asheville for foundations and similar work.
brick clays.
All of the formations in this region except the Cambrian quartzites form clays on decomposition. hese are of various kinds-argillaceous, sandy, or quadrangle. On the slopes of the mountains and ridges and the steep borders of the canyons and the main streams the amount of clay is very small. Over the remaining plateau areas, composing some what less than half of the quadrangle, the cover of clay and decayed material is often 50 feet deep. The best clays occur along the flood plains of the larger rivers and creeks and in the small valleys and hollows on the plateaus which have not been reached by the later cutting of the streams.
The flood-plain clays are limited in amount and are not found all along the river courses. Below Hot Springs and in the vicinity of Asheville on French Broad River clay is commonly found, but between those points the stream flows too rapidly The few clay deposits on Pigeon River are above Clyde, almost all of the flood plain being sandy and gravelly.
The chief sources of clay are the small hollows and stream heads on the old plateau surfaces. Into these the finest portions of the decomposed rock were washed and formed excellent clay deposits. There are thousands of these within the quadrangle, and great. These clays are from 1 to 6 feet deep being great. . These chays on the hill siopes. These have been burned into bricks at areat number of plees for local into and the material is so generally distributed that no special developments have been made

road matertal.

Material for constructing roads is abundant throughout the quadrangle. Along the uplands of the French Broad and Pigeon plateaus it is comparatively scarce, but rock is available near most of the watercourses, which cut the region Asheville many macadamized roads have been built the material used being obtained from the granite dikes above mentioned and the Carolina gneiss. These crush into sharply angular forms, pack well, and contain so much silica that they stand a great
deal of wear. Except on these roads practically deal of wear. Except on these roads practically
no use has been made of the abundant road materials, and rock along the course of a road has been regarded as a drawback or hindrance
The other granites of the region all furnish poundant road material, and usually enough can be picked up from the ground adjoining to macadamize
the roads wherever necessary. The same is true of the Cambrian quartzites in the regions is cupied by them. They crush into angular fragments are extremely durable, and give cood drainage Good extremely durable, and give good drainage. Good brian shales. They are well drained and smooth, but are not very durable. The best materials for road building in the quadrangle are the different calcareous beds, the Knox dolomite, and the Shady limestone. They are easily crushed; their fragments pack together firmly and become recemented by the lime which they contain. No practical use has yet been made of these materials in the quadrangle. Excellent material of a different kind is to be had from the metagabbro and many portions of the Roan gneiss. These rocks are hard and tough and consist largely of hornblende. By decomposition of the hornblende iron is set free, which recements the mass in a measure, as is the
case with the calcareous rocks. The two largest bodies of this material are found near Alexander,
on the French Broad, and Grantville, on Ivy River. In the Roan gneiss seattered over the Asheville Plate
ilar composition.

The resources of this quadrangle in the form of water power are very great. The streams, both great and small, fall rapidly in nine-tenths of the area. Their flow is very steady from season to season, since they are fed from multitudes of springs and drain well-forested areas. The stream grades are divided into three general groups according to their relations to the large topographic features. These are below, above, or on the old plateau surfaces. As explained under "Geography," the Pigeon and French Broad plateaus were once well developed and covered about half he area of the quadrangle. Above them were large areas of mountains th
level of the plateaus.
Since the formation of the plateaus the streams have acquired fresh power and have recut their channels to greater depths. The new cuts are greatest in the lower portions of the main streams and are progressively shallower toward their heads. descend withes of the mountains the small streams to 300 feet per mile. As they pass through the margins of the plateaus they descend slowly, usually much less than 30 feet per mile. When they reach the heads of the newer cut channels they descend rapidly again at grades from 20 to 100 feet per mile. The newer cutting of the French Broad extends entirely through this quadrangle, but the upper part of the Pigeon has not yet seriously cut into the old plateau. The cutting on the larger
tributaries extends back 5 to 10 miles from the French Broad and much less from the Pigeon.
The total descent of the French Broad in this quadrangle is a little over 800 feet in a distance of bout 45 miles. The descent is accomplished by farge number of rapids and abrupt descents of a few feet each. In the smaller streams the total fall tances. In 30 miles of the French Proad above Hot Springs there are not \quad then five Hot Springs there are not more than five or six Hot Springs there are a number of these. The smaller streams have practically nothing of the kind, except Pigeon River, which flows smoothly near its plateau surface for 7 or 8 miles in this quadrangle.
The water power developed in this region is thus attained primarily by the elevation and recutare of the old plateau. Since the large streams powers which below the plateau level, those water powers which are above it are in most cases on
small streams and are of no great amount. Practically the only exceptions to this are Crabtree and Fines creeks, which descend to Pigeon River with
many small falls. While the existence of heavy many small falls. While the existence of heavy grades is in general determined by these geographic
features, they are localized by the harder beds of features, they are localized by the harder beds of
rock. The differences of grade caused in this rock. The differences of grade caused in this manner are most conspicuous on the small streams. Where the French Broad cuts through the Carolina and Roan gneisses the rock is uniform and causes little variation in the grade. Where the contracted and the contracted and the grade is locally somewhat river pre the
 seen a mile above 1 fot Springs, where there is a
direp of about 6 feet. The water about 6 feet.
many years in only the most limited ways Gristmills and sawmills have been turned by the small streams, but nothing more. Within the last few years, and especially in the vicinity of Asheville, extensive dams have been built and power has been taken from Hominy Creek and Ivy River. This has been transformed into electrical energy and carried to Asheville. The French Broad at Marshall and Big Pine Creek opposite Barnard have been dammed for manufacturing purposes. An extensive plant is now being constructed immediately below Asheville to dam and utilize the French Broad. As a whole, however, development has barely begun, and scores of similar plants might be put on the rivers in their courses through this quadrangle.
October, 1903.

Generalized section for ashevile quadrange in vicinty of crabtree．						
妾	Formatiox Name．	妾			Charactir of Rocks．	
	Nantalala slate．	$\varepsilon_{n t}$		${ }^{700}+$	Black and gray slate and mica－ schist and blackskbanded 	Depressions and low spurs of graywacke and conglomerate mountains． Thin，micaceous and sandy soils．
¢	${ }_{\substack{\text { Great Sol } \\ \text { erate．}}}^{\text {Smoky conglom－}}$	$\mathrm{tgs}^{\text {g }}$		$250 \pm$	 	$\underset{\substack{\text { Thin，ropky，} \\ \text { sindy soils．}}}{\substack{\text { mieaceous and } \\ \hline}}$
	Hiwassee elate．	¢ni		$450-1000$	 erso of gray wacke	
				（a，50	White feldspathic quartzite． Deseriptions given in table below．	Low hills．

generalized table of igneous and metamorphic rocks，according to age．					
安	Formatoon Mame．	赏	$\begin{aligned} & \text { COLUMNAR } \\ & \text { SECTION. } \end{aligned}$	Charactier of Rocrs．	Charactrir or solis axd
$\begin{array}{\|l\|l} \hline \frac{z}{z} \\ \text { 咅 } \\ \hline \end{array}$	Metarhyolite．	Amt	H2M	k metarhyo	Emfeet on toporraphy and soil
	Metadiaba	Amd		Doll yellowishgreen alitered diabase，in	$\underset{\substack{\text { Minor depressions．Deep clay } \\ \text { soils }}}{\text { det }}$
	Max Patch granite．	Rmp		to aunengneiss．Colors usually light gray in the eastern areas and reddish in the western．	
	Cranberry granite．	Rcb			
	Soapptone dunite，and	As		Dunite in in part serpentinized．Soaptone contains tale and remolite．	Yeilow elay soils with many
	Metagabbro．	R．mg		Dark：green and black，massive metagabbro．	
	Roan gneis．	Rr			Broad platean surfaces or des Darkered and brown clay soils
	Carolina gneiss．	Rc		Interbedded mica－gneiss and mica－schist coarse and fine，bluish gray and gray goneiss，large bodies of garnet－schist and kyanite－schist，and dikes of biotite－gran－ ite，both altered and unaltered．	

Svssex				
$\underbrace{}_{\substack{\text { ORPO－} \\ \text { VITAX }}}$	Athens shale．	Athens shale．	Oa	
$\begin{aligned} & \text { 采 } \\ & \frac{4}{3} \\ & \frac{1}{0} \end{aligned}$	Knox dolomite．	Knox dolomite．	¢ok	
	Nolichucks shale．	Nolichucky shale．	ϵ_{n}	
	Narryville limestone．		ehk	
	Rogerssilile shale．			
	Rutedge linestone．			
	Rome，Beaver，Apison formations．	Watauga shale	$\epsilon_{\text {w }}$	Watauga shale．
		Shady limestone．	Esh	Shaty limestone．
	Hesse sandstone．	Hesse quartzite．	th	Erwin quartzite．
	Murray shale．	Murray slate．	$¢_{\text {mr }}$	Hampton shale．
	Nebo sandstone．	Nebo quartzite．	enb	
	Nichols shale．	Nichols slate		
	Coolran conglomerate．			Unicoi formation．
	Sandsuck stale．	Hiwasse siate．	ehi	
		Snowbird formation．	$\epsilon_{\text {sb }}$	
先		Max Patch granite．	$\mathrm{AR}_{\text {m }}$	Beeh granite．
		Cranbery granite．		Cranberry granite．
		Metagabro．	${ }_{\text {Rmg }}^{\text {Rr }}$	Roan gneiss．
		Carolina gneiss	Ac	Carolina gneiss．

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. \dagger
			Cents.				Cents.
1	Livingston	Montana	25	59	Bristol	Virginia-Tennessee	25
2	Ringgold	Gecrgia-Tennessee	25	60	La Plata	Colorado	25
3	Placerville	California	25	61	Monterey	Virginia-West Virginia	25
$\ddagger 4$	Kingston	Tennessee	25	62	Menominee Special	Michigan	25
5	Sacramento	California	25	63	Mother Lode District .	California	50
$\ddagger 6$	Chattanooga	Tennessee	25	64	Uvalde	Texas	25
$\ddagger \square$	Pikes Peak	Colorado	25	65	Tintic Special	Utah	25
	Sewanee	Tennessee	25	66	Colfax.	California	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	67	Danville	Hllinois-Indiana	25
10	Harpers Ferry	Va.-Md.-W.Va.	25	68	Walsenburg	Colorado	25
11	Jackson.	California	25	69	Huntington.	West Virginia-Ohio	25
12	Estillville	Ky.-Va.-Tenn.	25	70	Washington.	D. C.-Va.-Md	50
13	Fredericksburg	Virginia-Maryland	25	71	Spanish Peaks	Colorado	25
14	Staunton	Virginia-West Virginia	25	72	Charleston	West Virginia	25
15	Lassen Peak	California	25	73	Coos Bay	Oregon	25
16	Knoxville.	Tennessee-North Carolina	25	74	Coalgate	Indian Territory	25
17	Marysville	California	25	75	Maynardville	Tennessee	25
18	Smartsville	California	25	76	Austin	Texas	25
19	Stevenson	Ala.-Ga.-Tenn.	25	77	Raleigh	West Virginia	25
20	Cleveland	Tennessee	25	78	Rome	Georgia-Alabama	25
21	Pikeville	Tennessee	25	79	Atoka	Indian Territory	25
22	McMinnville	Tennessee	25	80	Norfolk	Virginia-North Carolina	25
23.	Nomini	Maryland-Virginia	25	81	Chicago	Illinois-Indiana	50
24	Three Forks	Montana	50	82	Masontown-Uniontown.	Pennsylvania.	25
25	Loudon	Tennessee	25	83	New York City	New York-New Jersey	50
26	Pocahontas	Virginia-West Virginia	25	84	Ditney	Indiana	25
27	Morristown	Tennessee	25	85	Oelrichs	South Dakota-Nebraska	25
28	Piedmont.	West Virginia-Maryland	25	86	Ellensburg	Washington	25
29	Nevada City Special.	California	50	87	Camp Clark	Nebraska	25
30	Yellowstone National Park.	Wyoming	75	88	Scotts Bluff	Nebraska	25
31	Pyramid Peak	California	25	89	Port Orford	Oregon	25
32	Franklin	West Virginia-Virginia	25	90	Cranberry	North Carolina-Tennessee	25
33	Briceville	Tennessee	25	91	Hartville	Wyoming.	25.
34	Buckhannon	West Virginia	25	92	Gaines	Pennsylvania-New York	25
35	Gadsden	Alabama	25	93	Elkland-Tioga	Pennsylvania	25
36	Pueblo	Colorado	50	94	Brownsville-Connellsville	Pennsylvania	25
37	Downieville	California	25	95	Columbia	Tennessee	25
38	Butte Special	Montana	50	96	Olivet	South Dakota	25
39	Truckee.	California	25	97	Parker	South Dakota	25
40	Wartburg	Tennessee	25	98	Tishomingo	Indian Territory	25
41	Sonora	California	25	99	Mitchell	South Dakota	25
42	Nueces	Texas	25	100	Alexandria	South Dakota	25
43	Bidwell Bar	California	25	101	San Luis	California	
44	Tazewell	Virginia-West Virginia	25	102	Indiana	Pennsylvania.	25
45	Boise	Idaho	25	103	Nampa	Idaho-Oregon	25
46	Richmond	Kentucky	25	104	Silver City	Idaho	25
47	London	Kentucky	25	105	Patoka	Indiana-Illinois	25
48	Tenmile District Special	Colorado	25	106	Mount Stuart	Washington	25
49	Roseburg	Oregon	25	107	Newcastle	Wyoming-South-Dakota	25
50	Holyoke	Massachusetts-Connecticut	50	108	Edgemont	South Dakota-Nebraska	25
51	Big Trees	California	25	109	Cottonwood Falls	Kansas	25
52	Absaroka	Wyoming	25	110	Latrobe	Pennsylvania	25
53	Standingstone	Tennessee	25	111	Globe	Arizona	25
54	Tacoma...	Washington.	25	112	Bisbee	Arizona	25
55	Fort Benton	Montana	25	113	Hüron.	South Dakota	25
56	Little Belt Mountains	Montana	25	114	De Smet	South Dakota	25
57	Telluride	Colorado	25	115	Kittanning	Pennsylvania	25
58	Elmoro	Colorado	25	116	Asheville	North Carolina-Tennessee,	25

* Order by number.
\dagger Payment must be made by
These folios are out of sto
\ddagger These folios are out of stock.
on application to the Director, United States Geological Survey. Washington, D. C .

