DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY

GEOLOGIC ATLAS

 OF TE
UNITED STATES

PATOKA FOLIO

INDIANA - ILLINOIS

UNV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) th works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form or all slopes, and to line the hrol in elion evel, the altitudinal interral represented by the ex, betwen lines being the sug each map. These lines are called contours, and the uniform altitudinal space between each two con tours is called the contour interval. Contours and elevations are printed in brown
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour matp (fig. 1).

. The sketch represents a river valley between two iills. In the foreground is the sea, with a ba which is partly closed by a hooked sand bar. terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours, The following explanation may make clearer the manner in which contours delineate elevation form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet sur ounds it. In this fre 250 the contours are numbered, and those for 250 and 500 feet and accented the contours, and then the accentuating and numbering of certain of them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothly about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismar wamp. In mapping greal mown For iste tief contour intervals of 10,20, 55,50 and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scals The scale. may be expressed also by a fraetio. The scale may be expressed a for thaction and the the nuncr the cosponding length in and the denominar the correspo ing leng in ate 63.360 inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,530}$,
a inch" is expressed by $\frac{1}{6,5350}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{1 \text { 15,000 }}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on the scale of sam contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { taskub }}$ contains one-sixteenth of a square degree. he are of the corresponding quadrangls. Tha 20 square
an and parts of one map line United States, disregard political boundar hips To sabe and to the quadrangle represents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.-On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the andscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the nailways, preliminary surveys in locating dite provide educational material for schools and home; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igneous, sedimentary, and netamorphic.
Igneous rocks.-These are rocks which have and consolidated from a state of fusion Through rocks of all, ages molten material has fissures or to to time been forced upward in to or nearly to the surface. Rocks formed by the consolidation of the molten mass within thes hannels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thiñ, and laccoiths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in he air, and acquire a glassy or, more often, a par tialy cysur fully aystin in burs the of tor tions. The pors por manies voleanio eruptions cansing eections of duash and lare fragments. These material, whe consolidated, constitute breccias, arglomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have bee ried to a different place and deposited.
The chief agent of transportation of rock débris water in motion, including rain, streams, and th 3 in larg lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sond, and clay, which are later consolismaller portion the materials are carried in solu smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, the different materias may be intermingled many ways, producing a great variety of rocks. And; and lid a The most characteristic of the wind-borne or eolim deposits is loess, a fine-orainel euth; the most char deposits is loes, a ne ite ill , he most charmixture of bowlders and pebbles with clay or san Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chat ged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper par, wher anally distinguish by a motable soins being organic matter.
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called netamorphic. In the process of metamorphism he substances of which a rock is composed may enter into new combinations, certain substances nay be lost, or new substances may be added. here is often a complete gradation from the priary to the metamorphic form within a single . Such changes transform san rocks in various ways.

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals. are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lep.trary line, and in some cases the distinction An almost entirely on the contained fossins. ane formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance; in regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which hey are found. Onher types passed on from period to period, and thus linked the systems together, foning a cham of life from the time of the oldest form for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be
arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till) and moraine (ridges of drift made the edges of placiers) Other forms are prode by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of àny colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres
traced out.
The legend is also a partial statement of the geologie history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown
on this map by fainter color patterns. The areal on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formaground upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure

wing a vertical sectio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes symbols admit of much variation, but the following commoner kinds of rock:

Schists.

Massive and bedded igneous rocks.

 sections toof rocks.
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sandof this bed form the surface. The uptured diate valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is omposed of schists which are trayersed by masses and their
 ons of strata, showing
and (b) a t thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
the upturned, eroded edges of the beat rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlving formations, and the bending than the underyyng formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an uncon formable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 ground along the section line, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE PATOKA QUADRANGLE.

By Myron L. Fuller and Frederick G. Clapp.

general relations

The Patoka quadrangle is located in southwest ern Indiana and southeastern Illinois. Its southern boundary is only about 2 miles from the Ohi River at Evansville, and its northwest corner i about 17 miles west of the Wabash River, which marks the boundary between the States of Indian and Illinois. It embraces the area between latitude 38° on the south and $38^{\circ} 30^{\prime}$ on the north, and between longitude $87^{\circ} 30^{\prime}$ on the east and 88 degree of the earth's surface. Its north-south length is 34.5 miles, its breadth 27.2 miles, and its area about 938 square miles. It comprises four 15 -minute quadrangles-the Mount Carmel, Prince ton, New Harmony, and Haubstadt-and includes by far the larger portions of Vanderburg, Posey and Gibson counties and part of Knox Countr, in Indiana, and nearly the whole of Wabash and parts of Edwards and White counties in Illinois. The principal cities and towns included in the area are Princeton, Mount Carmel, Grayville, New Harmony, Owensville, Hazleton, Patoka, For Branch, Haubstadt, Cynthiana, and Poseyville. The name of the quadrangle is taken from Patoka one of the larger of the towns whose names have not already been used for the smaller quadrangles

TOPOGRAPHY

drainage.

All of the drainage from the surface of the Patoka quadrangle finds its way to the Ohio River A small area in the southeastern part of the quad rangle is drained directly into the Ohio by Pigeon Creek, but the remaining portions of the area are in the wy strem portion of the in the western portion of the quadrangle, and a broad stream, in some places over a third of a mile wide, and next to the Qhio River is by far mile wide, and next to the Qhio River is by far It enters the quadrangle from the north at a point about 4 miles east of the center and flows in a general southwesterly direction to Grayville, near the middle of the western border, whence it runs in very irregular course southward and southwestward, finally passing out of the quadrangle a little over 3 miles from its southwest corner. The next most important stream is the White River. This river enters the quadrangle near its extreme north east corner, and flows with a course about S. $60^{\circ} \mathrm{W}$ until it joins the Wabash near Mount Carmel. It receives no tributaries of importance within this area. The Patoka River, which in size comes nex to the White River, enters the quadrangle about 5 miles south of the northeast corner, and flows in a general westerly direction, joining the Wabash about a mile south of the mouth of the White River, near Mount Carmel. Like the White River the Patoka receives few tributaries of importance in the quadrangle. Of the minor streams Black River, entering the Wabash from the east about 3 miles north of New Harmony, Bonpas Creek, entering the Wabash from the north at Grayville, Fox River, joining the Wabash from the west near New Harmony, and Big Creek, Which drains the south-central p
Before a the therr.
Before the advent of the great ice sheet which in relatively late geologic time, covered the north ern portion of the quadrangle and the region to tions a noticeable conformity with the geologi structure. The Wabash River flowed, in a general way, near the center of the broad, low, synclinal trough constituting the coal basin of Illinois and Indiana, while the Ohio and the tributaries of the Wabash in Indiana followed courses roughly parallel with the dips. The pronounced drainage features have survived to the present time, but
many of the smaller streams underwent importan modifications in consequence of the obstruction of their valleys by the ice sheet or of the deposition of glacial materials by the ice or by streams associ White rivers and Bonpas, Flat, the Wabash an White rivers and Bonpas, Flat, and Big creeks
are the only large streams in the quadrangle that are the only large streams in the quadrangle that
follow their pre-Glacial valleys, and the positions of all these except the latter have been more or les modified by glacial or other Quaternary deposits.

reluef.

The Patoka quadrangle exhibits four rather disinct types of topography: (1) Ruroed uplands, 2) rolling uplands, (3) upland plains, and (4) viver flats. The last two resulted from the accumulation of unconsolidated material in relatively recent geologic times, while the first two, which mbrace by far the greater part of the area, have resulted from the aiction of stream erosion upo the hard rocks. The resistance of these rocks to erosion has been very nearly the same throughou the quadrangle, the consequent relief depending herefore, upon the relations of the surface to the drainage lines.
The general rule that the larger the stream the more will the surface of the adjoining areas suffer reduction to low and rounded forms holds good within the quadrangle, except where alteration were effected in the drainage system through the influence of the Pleistocene ice invasion. Among exceptions of this nature is the narrow valley, with croug which ther ndough which he Paka row
 ther hand the are boud ther hand there are broad and deep rock valley re insignificant or wanting Such valleys oceur mong the rock hills lying south of Hazleton and north of Patoka, southwest of Princeton theton and east of Owensville, and north and south of Cynthiana. Both phases of discrepancy are due to the losing of old valleys by drift during the ice invasio nd the consequent deflection of the streams int new courses, where they have not yet materiall widened their valleys.
Rugyed uplands.-In the group designated rugged uplands are included the highest hills and ridges the quadrangle. The type is developed on both he drift and the rock hills, the former being most hater in the the region north of Patoka and rinceton and in the area between Big Creek and the eastern edge of the quadrangle. In the ltter area ridges several miles long, with moderately uniform crests, are numerous. As a rule hey are sharp and narrow and are characterized by teep slopes, which are cultivable only with difficulty. The minor channels, which are exceedingly umerous, are usually more or less \mathbf{V}-shaped and are separated from one another by equally sharp divides. In their upper courses they exhibit steep In the Ditney quadrangle, which is immediately east of the Patoka, the higher points of the plands rise to nearly uniform elevations of from of 640 seet, and are believer of an old surface, almost a plain in character, In the Pataka quadrangle howe owing to reater maturity of the drainage the ring to the
 he 600-foot F . en standpis is built rise to 610 feet the PrincePetersburg road, 2 miles north of the same city, to 645 feet, those north of Maxams station, southeast of Princeton, to 625 feet, and that northeast of St oseph to 605 feet. The development of the plai of which these hills are supposed to be remnants is history," p. 6.

In addition to the high upland level just described there appear to be traces of old land sur ces at lower levels, for there are a number ather extensive crests or flats shown by hills evations of 480 to 520 feet, especially at 500 feet. posed of stratified marl-loess overlying a rugged topography, as in the regions south of New Harmony, while others have proved to consist of till or other drift deposits. There are apparently however, many more or less flat rock surfaces at or near the same elevation, which may indicate a second and later plain that was formed at an elevation of from 100 to 150 feet below the first. If fectly developed, and it seems likely that in thi region it was generally confined to the areas bordering the main drainage lines.

Rolling uplands.-In this class are included the lower and less rugged upland surfaces. The hills re generally much smaller than in the previou group. Their altitude seldom exceeds 550 feet, | orms. The valleys are broad and relatively shal |
| :--- | low, showing gentle curves in cross section, and are characterized by the low pitch of their streams, and by broad, flat divides. The rolling uplands are est developed in the vicinity of the older drainage nes, especialy in the region west of the Wabash River. The Claypole, Gordon, Mumford, Foots ond, and other hills projecting above the Wabash he flatter prions of their pep bat, th e faut prions the tops belo the roup nert be descrin Whe hals the ills southent of Hazleton, around Owe rille, and along Big Craek, and the morainal ridges Owensville and anar Port Brill elong in the main to the rolling uplande, though the steeper portions approach the previous class in ruggedness.

Upland
flat plains.-The upland plains consist of an elevation of 500 feet or less and composed at deposits that accumulated during the period of the ice invasion or of loess or marl-loess deposited at ater period. The drift deposits are limited to the loping drift plains east of the Princeton-Fort Branch moraine, the similar drift plains southwest fort Branch, and a few flat hilltops of the Mount Carmel quadrangle, where the rock is at no place far from the surface.
The most conspicuous of the upland plains are he broad level or gently sloping marl-loess flat long the east side of the Wabash Valley south of the Black River and the smaller flats of the same material southwest of Mount Carmel, on Mumford, oots Pond, and Claypole hills, and at points nea Owensville and Hazleton. These marl-loess flats he at a maximum elevation of 500 feet above sea level or about 120 feet above the Wabash bottoms. They frequently exhibit floor-like flats at this alti Hills and along sloping terraces, as in the Mumfor Hills and along the north side of Big Creek, are more common.
River fats.
River flats.-All of the rivers and large streams, and also many of the minor streams, flow through broad, flat plains of silt or of sand and gravel Well overn wed, at least in part, hickness of these silts ands what the feet in the minor valleys to 150 feenges from a fex alleys of the 1 ells are known in the portion of the Wabach White River flats lying within the quadrangle, but he thickness of the deposits is probably 200 feet or more. In the process of the upbuilding of this considerable thickness of sediments the mino hills and valleys have been entirely obliterated, only the higher prominences rising as "islands" above the flats. The general level of these flats is
very uniform, being a little over 400 feet above the ea in the higher portions of the Wabash flats at the orthern edge of the quadrangle, and about the ame in the White and Patoka river bottoms. There is, however, a gentle slope southward to 0 -ooot level at the southwest corner of the uadrangle. The low rate of fall has led to the evelopment of meanders, which, because of their iving rise to annual flow, cooperate with at that cover all but the higher portions of the adjacent flats to depths of several feet. This frequent overflow leads to many changes in the courses of streams, and bayous and abandoned channels are common.

GEOLOGY.

stratigraphy
Derivation of the rocks.-The rocks exposed at he surface of the Patoka quadrangle are of tw types. They include not only those firm, har so the lose eny one at once recognizes as rock, bu lacial till, etc. likewise considered by geologists ock, which eccur as fillings in the valleys or as mantle of occur as filings in the valleys oreral urface of the quadrangle.
The materials of which the harder rocks ar composed were in the main originally derived, in he form of gravel, sand, mud, etc., from the wea ing away of some old land mass under the actio ied to the margin of the seas then visting er the ung tid l exing here apos sta ha sease or frag een gradually solidifed by the omical dene cen gradually sont the wrins of which they , be mis deposited cment to bind the grains together into a soli mass. Besides the materials derived from older land masses, beds of shells and marls, sometime many feet in thickness, were formed beneath the ea, and beds of peat accumulated in the swamp and basins along its borders. The former, like the ragmental rocks, were cemented largely by the chemical deposition of matter between the component grains, while the latter gradually became hardened to their present form through the loss of their volatile and unstable portions by oxidation, only the arbon and its more stable compounds remaining. The materials of the unconsolidated or surficia rocks were derived from the underlying consolidated rocks or from other rocks lying north of this are, me sources even as far distant as Canada In part these materials were laid down by stream ners, and in part by the directaction of an se sheet which was similar to that now coverin part of the of Greenland, and which in the early par of the present geologic period started in the rerth and spread out over nearly the wh The northeastern portion of North America. The Patoka quadrangle is located at the outer limit reached by the ice sheet in this region, the boundary entering it from the east near Pigeon reek, and passing southwestward to a point abou ernmost point rached is thois some distaic west of the quadrangle. The materials depositel bo ess of 1 th bil down ince the diapearne of the re follo deposits along the eastern borders of the Wabash alley and the plains and dunes of the Wabuh White river valleys. Even these are uppoed to have been connected with later invasions which, hough furnishing material to the waters of the region, did not actually reach the Patoka quadrangle.
The older consolidated rocks reach a thickne
though probably not more than 400 feet are
exposed in this quadrangle. These strata exhibit exposed in this quadrangle. These strata exhibit many alternations of sandstones, shales, limestones, and coals, but they may be grouped by their lithologic characters into five formations, which, in
ascending order, are the Millersburg, Somerville, Ditney, Inglefield, and Wabash. Certain beds of Ditney, Inglefiela, and Wabash. Cerain bers the last named, though not warranting designation cially in the southern portion of the quadrangle, and in the case of the coals are maped all of the formations belong to the Pennsylvanian or "Coal-Measure" series of the Carboniferous system. Their general characters and relative thickness are described in some detail in the following paragraphs, and are shown praphically in the geologic column at the end of the folio.
General geologic relations.-While in a broad way it is possible to consider the geologic basin of the Mississippi region as coextensive with the physiographic basin, the former has less unity than the latter. During very early geologic time, however, and throughout many subsequent geologic periods, the larger part of the sorth by a sea which extended from the region of the Gulf of Mexico on the south to that of the Great Lakes on the north and from near the eastern limits of the Appalachian Mountain system on the east to the Rocky Mountain region on the west. Over the botton of this broad basin there were deposited beds of sedimentary rocks, including limestones, shales, sandstones, and conglomerates, the limestones predominating among the lower beds and the sandstones among the upper, and the whole probably reaching a total thickness of from 4000 to 5000
feet. These rocks were originally deposited in feet. These rocks were originally deposited in a horizontal position, but were afterward subjected in places to broad, gentle warpings, giving rise to broad, low rock domes, from which the beds dip gently away into basins that are equally extensive and equally shallow. The Patoka quadrangle is
situated a little to the east of the center of such broad, shallow bin, which lies betwer anch a broad, shall bun , winnati auticline on the and a similar low, flat dome in Misouri, This and a simiar (fig. 1) and into it the recks dip gently from all

directions. In the Patoka quadrangle the rocks belong to the upper (sandy) portion of the great series of sediments occupying the Mississippi Basin, and present a dip to the west averaging about 17
feet per mile.

Carboniferous System.

Millersburg formation.-The Millersburg formation includes the sandstones and shales between the bottom of the Millersburg coal and the base of the lower limestone of the Somerville formation. The coal outcrops in the Ditney quadrangle, lying immediately east, and is encountered in shafts and wells about Princeton and elsewhere, but is nolying the Somerville limestone in hills in the southeastern corner of the quadrangle, however,
nearly 120 feet of the formation is exposed. The coal is here reported in wells at 50 feet below the flood plain, making the total thickness of the formation about 170 feet, or 20 feet greater than at
Lynville, Warrick County, where one of the best Lynville, Warrick County, where one of the bes exposures is
Ditney folio.

This appears to be one of the most variable of the formations of this region, the wells or borings, even where close together, often showing marked variations in character of materials penetrated Complete sections of the formation are afforded by the borings and shaft at Princeton (see section sheet), but in the southern portion of the quadrangle, where the formation is at the surface, no detailed sections could be obtained. The following section, taken at the Ingleside mine, Evansville about 2 miles south of the southern border of the quadrangle, gives all but the upper few feet of the character of the upper 86 feet

Section in Ingleside saf

61	0	90	0
3	0	93	0
4	6	97	6
12	9	110	3
5	8	115	11
	10	116	9
7	9	124	6
12	8	136	9
12	1	148	10
1	0	149	10
7	5	157	3
2	11	160	2

Light clay shale
Fine brownish sa
Sandstone (reported in wel
Sandstone (
Clay shale.
Greenish cla
Greenish clay shale
clay shate (reported in well)
Soft, sandy freenish to bluish shale with nod
ules of iron or
ules of iron ore
Blue clay shale.
Blue elay shat
Clay shale.
Hard gray

comer	Pepth
10	10
.... 7	17
...	22
.... 5	27
.... ${ }^{5}$	${ }^{32}$
\cdots	40
-.. 10	50
-... ${ }^{8}$	${ }_{63}^{58}$
… ${ }^{5}$	${ }_{66}^{63}$
.... 20	86
.... 10	${ }^{96}$

Somerville formation.-The Somerville formation in general is essentially a double bed of hard limestone with a parting of shale. The name is tha along the eastern border of the oucrop its southern limit to the vicinity of Piseon Creek east of Haubstadt. From here there is a break in the rock hills to a point east of Princeton, and again from the Patoka River to near Hazleton The limestones outcropping in the creek bottom 2 miles northeast of Princeton and at the foot of the bluff about the same distance east of Hazleton probably belong to the Somerville formation, although the beds can not be actually connected with the undoubted outcrops of the formation found farther south.
from a compact to a fossiliferous fragmental texture The bedding planes are frequently 3 or more fee It has giving rise to large blocks on weathering the widening being sufficient in ang joint planes settling of the forming "dile" of sing shales into the cavie forming "dikes" of shale fragments (fig. 7)
Ditney forman. Diney formatio brmation the fomervill It appers to be ion of sandtons shales, and coals, so chares stic of all Carbonifere formations although i reneral the shale predominates A typical section
is shown by the following well record at St. James
Shale
Rotten co
Rotten coal.
Good ooal (
Clay shale.
In the norther
In the northern portion of the quadrangle, east interval of the limestone the Ditney form shor present, being limited to a thickness of a few feet At Townsend's quarry, north of Princeton, and the wells in and near the town, a considerable thickness of the Ditney shales is found, togethe with an included coal, as at St. James and elsewhere. East of Haubstadt the formation is about 50 feet thick, but its thickness decreases rapidly southward, being 45 feet near St. James, 40 near Staser, and 20 at Inglefield. A mile and a hal south of Inglefield the Inglefield sandstone rest directly on the limestone, and from here southward to the southern limit of the quadrangle it continue to hold this relation, except at a few points where 4 or 5 feet of the Ditney shales intervene. Wes of the Illinois Central Railroad, however, the shale is more persistent, though it is usually not over 5 to 10 feet in thickness.
The sudden replacement by the massive Ingle field sandstone of the thick shale bed that persist from north of the Patoka River to Inglefield-a replacement that takes place within a horizontal distance of not more than 75 to 100 feet in the
railroad cut south of Inglefield (fig. 2) and the

 FIG. 2.-Sketch section showing probable erosion uncon formity between the Ditiney rairroad cut at Inglefield. In

patchy character of the shales throughout the south eastern portion of the quadrangle (fig. 3) lead to the belief that there was probably an erosion interval between the deposition of the Ditney and the val has been correlated by the Indiana geological survey with the marked unconformity at the base of the Merom sandstone in Parke, Fountain, and Vermilion counties, Ill., but the correctness of the
section, measured along the railroad south of th deep cut northeast of this town, shows the chara ter of the formation at this point very perfectly:

Section of Inglefela formation near N.. Joseph.	
Unexposed interval below Parker coa	
Sandstone, soff and sometimes shaly.	
Clay shale, bluish	
Sandstone, sort,	
Sandstone, highly ferruginous and honeycoubed with cavities left by solution of caleareous fossils.	
Shale, light argillaceous to sandy...................	
Shale, sandy	
Shale, bluish gray................	
Sandstone, white.	
hale, light, argillaceou	
dstones, light, and friable	

Owing to the massive character of the sandston beds in its lower portion, outcrops of the Inglefiel formation are more common than those of ther formations. In the valley east of St. Josep outcrops as a series of cliffs showing an aggre liffs are frequently vertical and are often marked y cavities and other sculptural effects resulting rom disintegration due to the action of the weather The sandstones are, in large part, of a buff color, hough gray or even nearly white varieties wer oted. Some of the beds are brownish, but the arker red, brown, or purplish tints are usually of local occurrence and are evidently the result of eathering. The name of the formation is taken rom Inglefield, a station on the Evansville and erre Haute Railroad about 7 miles north and 3 iles west of the southeastern corner of the quad angle, just south of which the sandstone, with probable basal unconformity, is well exposed in the ailroad cut (see figs. 2 and 6). It has been corre ated by the State survey with the Merom sandone, formerly quarried near the village of Merom, Sullivan County, Ind., and this name has bee sed in the reports of the Indiana survey since 870. Recent field work, however, has served to hrow grave doubts upon the exactness of the correlation, and the name Inglefield has therefore bee iven to the formation. In the southwestern por biof 110 to 150 fet Wabsh formion tec.
Wabash formation. - In this formation are cluded ar the shates and sandstones, with a top of the Inglefield formation within the limi of Patok quang. The renalizd tion given below, measured from the top down ward, indicates the character of the formation The Parker coal, with overlying blat shate limestone, though each is occasionally absent, constitutes a persistent horizon which has been chosen as that of demarcation between the Inglefield and Wabash formations. Its outcrop outside the drift rea is shown on the geologic map, but inside th drift limits it is difficult to trace. The thin coal about 70 feet above the river at Patoka, the coal a

G6. 3.-Sketch section showing relations of Somerville, Ditney, and Ingleffifld formations in exposure 1 mile northwest of Zipp, Ind

The following sections show the character of the rmation at different points:

Section in Kurtz well, northeast of Princeton
(sec. s, T. \& S., R. 10 W.).
Limestone in bands.
Clay shale
Cimestone in ban
Clay shale..........
Gray limestone.
Section in Hofman well, Fort Branch.
Limestone
Clay shale and fire elay
Section along ereeks miles east of Staser:
imestone.
Covered, sandstone fragments
Section in quarry, I mile northwest of Zipp.
Limestone.
Gray, purpli
Limestone.
In character the limestone is uniformly ${ }^{9+}$
but varies from light to dark gray in color, and
${ }^{1}$ Collett, Seventh Ann. Rept. Geol. Surv. of Indiana, p. ${ }^{265}$
correlation can not be determined until the intermediate area has been mapped in detail. Inglefield formation.-The Inglefield formation includes the prevailingly sandy beds lying between the top of the Somerville formation and the Parker coal, at the base of the Wabash formation. At the base there is always a massive sandstone, in some places having a thickness of at least 60 feet, as in the series of bluffs in the valley east of St, lophty by quently replaced by a number of thinner bed exposures the upper portion of the formation is of exposures the upper portion of the formation is of near St. Joseph, the formation is sandy throughout, though doubtless separated into several beds by shale partings of a few feet in thickness, and exhibiting rapid variations in thickness and character, frequently terminating abruptly. The total thickness of the formation varies from about 110 feet at the southern border of the quadrangle to about 150 feet near St. Joseph. The following

or near the same level in the bluffs 2 miles north
level on the southwest side of Gordon Hills, and the coal in the hills northeast of Owensville, are believed to be the Parker coal. The coal is generally very impure, approaching in places a sheety like layers. The limestone runs from 2 to 4 feet in thickness in the southern half of the quadrangle and is frequently fossiliferous. In places it merges into a honeycombed sandstone, the cavities of which are due to the solution of fossils and other calcareous materials of the original sandy limestone. At Patoka and elsewhere in the northern half of the area the limestone is absent, the coal and the over lying sandstone bed marking the horizon. It derives its name from Parkers Settlement, just eas of which it is well developed in the uplands.
The heavy sandstone just above the Parker coal and its associated limestone, next to the Inglefield formation, is the cliff-making sandstone of the quadrangle. It outcrops at the base of the bluffs Roids Having Rock Skelto Grand Rapids, Hanging Rocks, and Skelton Cliff. In the last two places it forms vertical or even over hanging chifs of bare rock from 20 to 40 feet in crops of this portion of the Wabash Valley. In the southern half of the quadrangle what is prob-
 on both sides of the Posey-Vanderburg county line south of St. Wendells, but to the south and west it appears to be generally replaced by more shaly beds.
Overlying the sandstone just described is the Friendsville coal and fire clay, so called from their is best developed in the region between the Wabash River and Bonpas Creek, where it has an average thickness of about 3 feet. It is in many places overlain by a limestone, which, however, in the region just mentioned, is by no means of genera occurrence. In the southern half of the quadrangle the limestone and not the coal is most commonly present, the limestone there having a thickness of from 2 to 6 feet, while the coal rarely measures over a foot in thickness. West of the Wabash the depth of the coal below the surface is shown on the geologic map, but in the remaining The horizon of the Friendsville coal is about half way between the Aldrich and Parker coals.
Above the Friendsville coal is a thick sandstone of variable character, which is typically exposed at the base of the Mumford Hills and which also occurs at a number of points northeast of New
Harmony. It is gray to buff in Harmony. It is gray to buff in color, and in the last-mentioned region is marked locally by the occurrence of poikilitic crystals of calcite-that is, by areas of rectilinear outline in which a calcite cement has been deposited, inclosing instead of
replacing sand grains and giving the rock a porphyritic sand grains and giving the rock a porphyritic aspect on fresh fractures. In the northern many of the wells, shafts, and borings that reach the Friendsville coal, but its occurrence is not so persistent as in the southern half of the area and it is more frequently replaced by shale.
The Aldrich coal or the overlying limestone forms a rather persistent horizon, the outcrop of which in the region south of the drift border is shown on the geologic map. It may be recognized also along the Wabash bluff at New Harmony and Central Railroad bridge south of Grayville, in the river bluffs at that town, in a bluff facing Bonpas Creek 3 miles to the northeast, at McClearys Bluff, in the bluff at Rochester, and probably at a number of other points. The limestone appears to be absent in the region north of Grayville.
The portion above the Aldrich coal and limesone is nowhere shown in its entirety, this portion of the generalized section being made up from exposures in the bluffs at Grayville and in the high hills northeast and north of that town.

Tertiary System.

The only beds intermediate in age between Carboniferous and Quaternary are the bright-colored sands and gravels capping the two high knobs about 2 miles north of the court-house at Princeton. The section here is given in the next column. entirely of chert and quartz pebbles from 1 to 3 Patoka.
enamel of iron oxide. The matrix is of finer gravel and sand, which in places is cemented into a firm
 Carboniterous:
Gray sandy shale.
bed by the iron oxide. Masses of this conglome ate are found in the overlying till. The stratifi
Thion of the Tertiary beds is horizontal.
The altitude of the base of the deposits is abou 10 feet above sea, a level which is but slightly ower than that postulated for the early Tertiary peneplain in this region. Taken in connection with eposits of similar character and altitude in th be south buff of the Ees White Dives-as in解 Biver back of Tell City and Cannelton, Ind var Bran or Med Gosebud Pope County, Ill y, Ky.; and near osebua, Pope County, In.-the Tertiary bed along the rivers either of the peneplain or of the slightly uplifted surface. They are believed in a general way to be contemporaneous with the Irvine formation which caps the hills along the Kentucky River in the Richmond qu
and elsewhere in Kentucky.

Quaternary System

The deposits which in North America character ize the Quaternary period as a whole are of three classes, and embrace (1) those whose deposition
was associated, either directly or indirectly, with the presence of the great ice sheets which at several stages during the period covered large portions of the northern half of the continent; (2) those which were deposited through the ordinary influences of wind and water in the intervals between the stage of glacial invasion; and (3) those which have been deposited by similar agencies since the disappearance of the ice of the latest advance. The first are known as glacial, the second as interglacial, the third as postylacial or recent deposits. The materials of these deposits can not always be referred to a single definite class, however, for in many instances the deposition has continued through more than a single stage.
glacial and interglactal deposits.
Definitions.-The glacial deposits consist of mate rials that have been picked up by the ice shee or dragged along its bottom during its southward ovement, or transported by its associated streams The material has all been moved from its original cation, and is therefore known under the name of rift. This drift was frequently deposited directly y the ice, being either set free by the melting of left behind as a sheet beneath the ice, as the friction between it and the overridden surfaces became so great as to cause lagging and lodgment. The drift liberated by either of these methods usually consists of a heterogeneous mixture of all grades of material, ranging from clay to large bowlders, and is known as till. Drift which was not deposited directly from the ice, but which was taken up and transported by glacial streams and finally deposited in more or less stratified
fied or modified drift.
Glacial stages.-While subdivisions of the drift are not usually apparent from superficial study, a detailed examination of its structure and its general distribution and associations shows that, instead of there being a single sheet formed by one ice advance, there are in reality several distinct drift sheets, each of which represents a separate ice advance. The intervals' of deglaciation or disappearance of ice between the advances are made
apparent by the presence of soils, by beds of peat apparent by the presence of soils, by beds of peat and marl, and by the weathering of certain zones now buried in the midst of the drift deposits. The sheets themselves differ markedly in extent, and properties, and these differences, together with th morainal ridges marking the various positions
he ice margins, form the basis for the subvision of tages, as follows
> 1. Pre-Kansan or sub-Ar
> 2. Aftonian deglaciatio
> 4. Yarmouth deglaciat
> 5. 1llinoian glaciation.
> 7. Iowan glaciation.
> 8. Peorian deglhciation.
9. Wisconsin ghaciation (latest stage).

Of the drift sheets of the various stages described, only one, the Illinoian, is known to occur within the Patoka quadrangle. Certain features of the deposits in the Ditney quadrangle, on the east,
suggest the possibility of the occurrence of an arlier drift sheet, but further studies seem to show hat no such sheet exists in this area. A pre-Illioian soil zone, the soil and weathered zone of the Sangamon stage, the silt deposits (loess) of the Iowan and the early part of the Peorian and Wis onsin stages, and the ter. and later, and owever, well represented in the area
deposits earlifr thay the later manoolan drift.
Lignites, soils, and other organic deposits.-Logs, more or less carbonized on the exterior, "coal rganic deposits, have been reported in wells at considerable distances below the surface of both morainal and valley deposits at many points. Among such wells may be mentioned: (1) one T. 2 S., R. 11 W., 4 miles southwest of Princeton, (2) a well in the outwash gravels in NW. 4 sec. 17 . 3 S., R. 10 W ., about a mile northeast of Fort ranch, and (3) a well starting near the level he high stream flats $1 \frac{1}{2}$ miles west of Keensburg. The records are given below.

Unrecorded Conal (lignite)

Gravel at top. remainder unrecorded
Limestone (first consolidated rock)
In almost every instance the lignite, muck and leaves are found just below the variable "blue mud" of the drillers and beneath the lignite there generally a water-bearing gravel. Most of the mation as to the depth and character of the bed ock, but in a few records, as in that of the Keensurg well, a considerable thickness of unconsolidated material intervenes between the vegetable natter and the solid rock. No samples of this nderlying material have been seen, but from descriptions it appears to be similar in character to the deposits near the surface. This suggests hat the time of origin of the lower beds was not very much more remote than that of the upper beds, and would seem to indicate that the lower beds belong simply to an earlier portion of the Illinoian stage. This is borne out by the apparen absence of the lignitic zone separating the surficial eposits in the region south of the recognized limit of the ice invasion
Absence of pre-Illinoian drift.-In the survey of the Ditney quadrangle, adjoining the Patoka quadrangle on the east, considerable quantities of adish stratified and sometimes partially cemented quartz gravels, with slightly stained chert and quartz pebbles, and an occasional crystalline frag ent, were found outside the limits of the till sheet proper. These were mapped as outwash gravels, nd somewhat weathered characters, that they might possibly belong to an invasion preceding th onnection with the surey of the Pa
rangle have shown that the stained condition is a characteristic possessed by many undoubted Illinoian deposits of the same composition. This feature is, in fact, well shown in nearly every exposure in the morainal hills. It is now believed that in this area there is no evidence of deposits earlier than those of the last Illinoian invasion other than hat presented by the wells in which gravels and ther loose materials occur below the lignitic layers, t considerable depths from the surface. It seems practically certain that in the upland exposures evidences of the existence of more than one drift heet (exclusive of the loess) are wanting. The pre-Illinoian age of the loess in the canal bank 1 mile southwest of Francisco (2 miles "east of Maxams), which was suggested in the Ditney folio, is likewise now believed to be improbable, as later work has shown that the materials are probably mainly Sangamon or Iowan.

ilindoian nrift.

Till sheet.-The only deposits known to have been laid down by the direct action of the ice within the Patoka quadrangle during the Illinoian nvasion are those belonging to the till sheet deposed beneath ice of that invasion by the melting of he basal débris-laden layer or by the lodgment of débris, as previously explained.
In the region underconsideration the matrix or ody of the till thus deposited consists of a more ress sandy clay, which was derived partly from d soils or earlier drift sheets and partly from the ones, shaterizing of fragments of sula from the parent ledges by the action of the overriding ice. In this clayey matrix are embedded ngular or moderately well-rounded fragments of ock varying from mere chips to large pebbles and even to bowlders several feet in diameter. Rock ragments showing surfaces that are smoothly polished or striated by friction with overridden rock are much less common than in many glaclated areas, especially those of harder rocks, but a considerable number have been observed within the quadrangle. The fragments were generally less than an inch in diameter, and were mainly of hard rocks, such as outcrop at points far to the east ortheast, or north, many having been derive even from beyond the Great Lakes. Many varie ties of rock are represented, the more common being granite, diorite, quartzite, quartz, $l i m t$, and osper, the first three, and possibly the fourth eing derd he rinder probly minly e Silui ad Carbonifor lum the Silur

northeas

ill soft sandstones and shales that underlie the Ill in this region and that probably furnished the arger part of the material of the finer portions of he till are not commonly represented by pebbles massive sandstone and of limestone have been noted. The pebbles known to have been derived from the Great Lakes region or beyond are almost niversally well rounded, but the flinty pebbles from the limestone areas, though they have lost heir sharp edges, still present a rather angular appearance. The local bowlders, being of relatively soft and friable materials, generally exhibit onsiderable rounding. The weathering of the ranite and diorite pebbles and bowlders varie reatly, some being hardly stained even on the exterior, while others are almost completely disin tegrated. Most of hem show a weathered zone hat reaches an eighth or a quarter of an inch inward from the surface. It seems probable that he variation in the extent of weathering is du rgely to differences in composition or to the stag 0 which incipient weathering had advanced at the ime of the removal of the fragments from their parent ledges.
The texture of the finer portions of the till varies greatly, probably depending upon the nature of the rock from which it was principally derived. Where shale appears to have furnished the large portion of the material the till is generally very ayey, and is of a gray or blush-gay color in

 more strougly weathered parts The limestones in
the Patoka quadrangle appear to have been of too limited development to have had a marked influence upon either the color or the composition of the till The till within the quadrangle is usually oxidized to a depth of to 10 feet, or even more, the unoxi dized portions being rely seen, exceptin unaaly deep cuts. In the oxidized portions the color is ordinarily deep buff to brown, but reddish tint type of till frequently gives evidence of incipient cementation by iron oxide, but usually less marked than in the stratified sandy streams or from the reworking by water, of the red till.
Sections giving accurate measurements of the thickness of the till are uncommon, and are generally so located as to give only minimum thick to depth to the rock, but usually little information can be obtained as to the exact nature of the material penetrated. In general the thickness of the till, though showing great variation, may be said to be slight, and usually ranges from 2 to 15 feet, though occasional exposures show much greater amounts. A typical exposure is shown in fig. 8. The broad plateau-like plains that stand at considerable elevations above the valleys and that are so conspicuous in the Ditney quadrangle, to the east, are not represented in the area under discussion. In the moraines and other thick drift deposits, stratified sands and gravels predominat.
Drift plains.-At many points within the quadrangle, especially at the lower levels, there are more or less extensive drift flats that usually stand a few feet above the older and highest stream silts. Because of their low relief exposures are rare and usually indecisive, but the flats generally occur in positions unfavorable for lake deposition and appear to merge into the sloping till plains of the upland hillsides. They are, therefore, thought to belong to the unstracined rather than to the stratified type of drift. They are best developed near Wabash River.

Drift ridges (probably morainal).-These deposits broaden into wider hilly belts in so drift that the region north of the Patoka River The asino details of their topography exhibit in eneral almost none of the normal morainic features, the uneroded portions usually presenting smooth gently undulating surfaces, free from kettles and conspicuous knobs, though a few rounded knobs and remnants of shallow depressions, now drained by the cutting back of the streams, appear to exist. The ridges, however, exhibit an alignment parallel with the ice margin, and in some places, as, for example, in the ridge from Princeton to Fort Branch, are associated with outwash plains. The ridge east of Owensville is almost esker-like in outline, a resemblance which is heightened by the sandy and stratified character of the deposits and the steepness of the slopes. The width, however, is probably too great to permit such assumption as to origin. Its parallelism with the ice margin is also against this supposition.
Practically no till has been identified with certainty in any of the ridges. Wherever the exposures are good the material is found to consist of deposits of oxidized sands and gravels containing rounded pebbles of quartz and fragments of flint and jasper, supposedly derived from the older limestones to the east and north. Crystalline rock fragments, of Canadian origin, though rare, are occasionally found. The materal is clearly stratified and is prevailingly sandy, the pebbles forming a relatively small proportion of the mass. The color of the upper beds is usually a deep red, but lower down in the se
to browns and buffs.
to browns and buffs.
Notwithstanding the absence of till and the lack of a distinctly morainal topography, the ridges, of a distinctly morainal topography, the ridges,
because of their location at or near the ice limits and their alignment with the margin, are believed to be essentially morainal in their nature. The normal morainal topography, if it ever existed, was long ago obliterated by the marl-loess or loess mantles, or destroyed by erosion, which, because of ness of the slopes, has gone on rapidly until the
ridges are very generally deeply trenched by ravines in which the semi-con
quently stands as yertical walls.

duently stands as vertical walls.

Deposits of this class occur in greatest development between Patoka and Hazleton and near frinceton, where they reach an elevation of 170 feet above the adjacent plains. In many place They lie from 100 to 130 feet above the lowlands They are evidenty the same as the kame morain enthen in whe Dheeling and are occurring 2 mile eral equivalent of the patches of outwash gravel of that quadrangle
Outwash quade
rested along the plains. - While the ice fron Fort Branch more or less water was continually set free by the melting of the ice, and on flowing away carried with it a considerable portion of the detritus previously held by the ice. In this manner the broad, sloping drift plains bordering this the broad, sloping drift plains bordering this the similar plains at Haubstadt and vicinity.
There appear to have been two stages in th development of the plains bordering the moraine In the earlier stage the ice front probably lay about $1 \frac{1}{2}$ miles east of and parallel to the present line of the Evansville and Terre Haute Railroad, its position being marked by isolated drift knobs of buried moraine that project above the outwash plain. In the second stage the ice rested along the main ridge between Fort Branch and Princeton, the area
between the two ridges being then filled up by the between the two ridges being then filled up by the
later outwash materials and the two plains pracically united into one.
The Henry Whitman well, 3 miles east of Fort Branch (NE. $\frac{1}{2}$ sec. 16, T. 3 S., R. 10 W.), gives ypical section of the deposits:

Section 3 miles east of Fort Branch.

Exposures in this region are very rare and show very little of the character of the material. Sevand buff sands were exposed, and in some a few pebbles wands were exposed, and in some a fev 9 , T. 3 S., R. 10 W., a sort of stiff, stratified sandy clay, probably mainly quartz-flour, characterized by marked contortions and numberless miniature faults, was thrown out. Some of the coarsef sands parts of the lower "outwash" deposits described in the Ditney folio.

The general drainage of the northern two-third of the quadrangle was originally to the west or northwest. When the ice advanced and lay across in their portion of the valleys lakes were created of silts and smaller amounts of coarser quantiments derived from the melting of the ice were laid down, generally accumulating nearly to the level of the standing water. Four stages of lake deposits are recognized in this region: (1) the deposits laid
down at the maximum extension of the ice; (2) the deposits of the first halt in the ice retreat; (3) the deposits of the second halt; and (4) the deposits of the third halt. The materials are usually silts
or very fine sands, but fine gravels are frequently or very fine sands, but fine gravels are frequently encountered in wells, while geodes and other bowl ders are reported at several points in the glacial ke deposits of the second halt.
Lake deposits of the maximum advance.-Previnow occupied by the West Fork Pigeon the valley now occupied by the West Fork Pigeon Creek was Valley betwd northwest, passing into the Wabash Valley between O wensisi a a ceton. During the most southerly extension of the ice this outle was obstructed and waters were ponded until they feld, about 3 miles east of the limit of the Patok quadrangle. In this body of water, which in the quadrangle. In this body of water, which in the
Ditney folio was designated Lake Pigeon, silts accumulated, but these deposits lie mainly east of the limit of the Patoka quadrangle. Similar silts also accumulated in the valley at the headwaters of Flat Creek.

Lake deposits of the first halt.-At its maximum extension the ice margin probably lay several miles ast of the limit of the quadrangle at the latitude of Patoka River. At this time deposits that ake, which has been called Lake Patoka, occupylake, which has been called Lake Patoka, occupywas not until the ice margin had fallen back to a point about 2 miles east of Patoka that the lake was extended downstream into the Patoka quadtended lake were laid down during the first recorded halt in the ice retreat, and consist mainly f silts and fine sands. The accumulations do ise much above the 420 -foot level, indicating that he deposition failed to reach what must have been the water level if the overflow was over the 460 -foot divide near Francisco, as it a ppears to have been. Lake deposits of the second halt.-After the dep sition of the above silts the ice fell back a few miles and halted along a second line, now marked by the ridge of morainal and similar deposits extending with a few breaks from near Hazleton outhwest to a point beyond Cynthiana. In front of the new ice margin four small glacial lakes accumulated. The northernmost of these was a lakelet lying just south of Hazleton, now marked by allu vial flats composed of materials then deposited.
A second and much larger lakelet accumulated Aceen the ice along the morainal ridge that uthwest of Princeton and the to the highlands ormed during the first halt the moraine that wa from the vicinity of Princeton southward to beyond Fort Branch, probably damming the valley south of the latter village. In this lakelet was deposited
a considerable thickness of silts, sands, and fine gravels, with an occasional bowlder or erratic geode. They reach an altitude of about 450 feet, the probable level of the ponded waters. The outlet was over the morainal barrier south of Fort
Branch-which was thereby greatly reduced-and Branch-which was thereby greatly
through the valley east of Elberfeld.
Ced the valleys of Flat and Barr this stage occu
 west along the valley of the Black River to the Wabash, but the second halt of the ice on it retreat the old valleys were permanently clogged by the morainal ridge extending from Mounts southward past Cynthiana toward Poseyville. In front of the combined barrier of ice and drift the wo lakelets mentioned accumulated. In them were laid down deposits similar to those of the lakelets previously described. In the upper por tions of the valleys and beyond the ice limits, these overlie the silts of the earlier lake stages. The waters escaped along the ice margin and over a col probably located about $2 \frac{1}{2}$ miles north of Blairsville so reducing the latter that the drainage persisted in the channel then established after the retreat of the
ice.
Lake deposits of the third halt.-This halt was郎er than the earlier ones. The lake in which portion of the valley of the Black River and the owlands south of Poseyville, now drained in part by Caney Creek. The ice margin probably lay across the Black River just north of Poseyville. The
deposits are represented by the thick beds of silts, deposits are represented by the thick beds of silts,
sands, and fine gravels constituting the broad flats sands, and fine gravels constituting the broad flat
in the vicinity of Poseyville. the vicinity of Poseyville.
sangamon defostrs and weathered zone.
Erosion and local deposition.-Studies of the rosion features of the Sangamon stage in other gions have shown that the streams were broa dind slugish, with only shallow and rather poorly defined channels, and that the deposition was very
 rebly was lor 80 to 100 ance fom the valley of the White River mian till ven greater amounts of material along the Ohi River Deposition during the Sangamon stag was probably limited to a few unimportant secod ry deposits produced by the reworking of the Illinoian drift by the agency of the streams.
At many localities in Iowa and Illinois, and to less extent in Indiana, peaty beds of black muck which were deposited in this interglacial stage hav
been noted and described. Beds apparently of thi
character have been reported beneath the thick marl-loess deposits of the Patoka quadrangle at number of places. The following well section (SW. $\frac{1}{a}$ sec. 10 , T. 5 S., R. 13 W.) is typical of the ccurrence:

Weathered zone-T the Sangamon stage are lacking teposits of etween ice advances is nevertheless well repreented by the Sangamon weathered zone. This one marks the top of the Illinoian drift, and is coognized by the leached and weathered character of that portion of the deposits. Where the overying loess and especially the marl-loess is of conderable thickness its lower part is usually but litle oxidized and its appearance is in somewhat upon which it rests.

owan peposirs

Following the formation of the weathered-zone soils, and possibly silts, of the Sangamon stage, a was derable thickness of fine silt known as loe rfacesited as a mantle over neary the entre ace of lowa, Illinois, and Indiana, and in por ions of many other States to the east, south, and est. This loess has been traced as far back as the or the drift sheet of the Iowan ice invasion in pparently indicating that the deposition took place during the stage of glacial occupancy.
Previous to the present survey of the region no tempt had been made to differentiate the silts, but evidence is now at hand for separating them into two types: (1) thick, yellowish, calcareous, and fre quently stratified sitts along the imeedate border of the Wabash Valley, which are designated mar less, and (2) the more clayey, oxidized, and strue reless sits designated as common loess, forming fom the river. The first is believed to be from the river. The frst is believed to be of queous a the or and in full in Bulletin of the Geological Society of America, volume 14, pages 153-176.
Marl-loess.-The marl-loess is a white, gray, or ore commonly a yellowish silt occurring in rather efinite belts bordering the Wabash Valley on both ides. It occurs at all altitudes from the floo plain to the 500 -foot level (120 feet above th ver), at which altitude it frequently forms broad arraces and flats (figs 10 and 11), burying a rugge rock or till topography. The thickness of the feet or more, bese terraces and flats is so 20 feet are more common. True marl-loess appears never to occur above the 500 -foot level in this region. The marl-loess is characterized by a high calca ous content and frequently by a sandy texture Calcareous concretions are exceedingly abundan n many instances it is delicately stratified (fig. 9) and in some cases is interbedded with sands or fine gravels, or even carries scattering pebbles itsel Fossils were found in a large number of expo res, but with the exception of those from one ocality, were all land forms. About thirty land pecies and six aquatic species were identified by W. H. Dall. The silts are conspicuous only alon he immediate border of the Wabash Valley, and re rarely found at a distance of more than 10 iiles from the river
The perfection of their stratification, their interbedding with sand and gravel, the presence of pebbles in them, their terraced form, and their lim ations to the borders of the Wabash point tion of the marl-loess on - in ar arsion probably bu a dac occupy was brought from the Iowan ice sheet by the Wabash River.
Common loess,-This is usually a fine, clayey buff or brown, but sometimes gray, reddish, or ottled silt, which mantles the hills as a relativel niform sheet having but little relation to the charareous in composition, differing markedly in this
respect from the marl-loess, as the following analyses will attest. The first sample (No. 1) was from near Princeton and was analyzed by Prof.
Robert Lyons for the Indiana geological survey Robert Lyons for the Indiana geological survey and published in its twentieth and twenty-first annual reports. The second (No. 2) was from
the land of B. C. Macy (said to be near New the land of B. C. Macy (said to be near New Harmony) and was given in D. D. Owens's report on "A Geological Reconnaissance of the State of Indiana," 1838, part 2, p. 66. The two are f the content of carbonate of lime (CaCO) Th of the content of carbonate of lime $\left(\mathrm{CaCO}_{3}\right)$. The berage samper the 1 prob hile the average sample of the marl-loess would probably show more than 5 per cent.

Mechanical analyses of the loess are given in the discussion of the soils on page 10.
Calcareous concretions are relatively rare, and when they occur are generally of small size. On
the other hand, small iron concretions, both of the other hand, small iron concretions, both of
the tubular and the rounded or irregular type, are the tubular and the rounded or irregular type, are
abundant in places. The common loess has not abundant in places. The common loess has not
been found to carry fossils at any point in the region examined, nor does it contain pebble except where the sheet is so attenuated that roots penetrate the till beneath and on the falling of the tree, drag the pebbles upward into the loess.: The common loess of the region presents no definite evidences of stratification, though an indistinct banding in planes parallel with the surface, made tion of the materials, has been here and there noted.
Along the borders of the east side of the Wabash alley loess of the common type is often absent, mar-loess of typical composition, structure, and of the bluffs. Though differentiated only with ome difficulty from the marl-loess where the latte is weathered, a thin coating of the common type of oess usually appears to begin within a quarter or half a mile of the edge of the marl-loess and or half a mile of the edge of the marl-loess and
ncreases gradually in thickness for several miles, probably reaching a maximum of 15 feet or more a distance of 6 or 7 miles, beyond which it slowly decreases until, at a distance of 35 or 40 miles, it has a thickness of only 2 or 3 feet, or possibly even less. On the west side of the river he conditions of distribution are similar, though he strip of marl-loess is narrower and the max mum thickness of the common type occurs much nearer the borders of the valley. The same thinning of the deposit away from the river is noted, the common loess being generally absent, at least in recognizable amounts, at a distance of 15 miles from the Wabash
The common loess is not confined to any one horizon, but occurs at all elevations, from the level of the river bottoms to the crests of the highest nills. Above a certain altitude, which detailed observation has shown to be approximately 500 eet (120 feet above the river), it constitutes the only silt noted. Below this level, especially near he river, the common loess, though generally ccurring, is not, as has been seen, necessarily it, forming the bulk of the silts. Eastward from , forming the bulk of the silts. Eastward from the river there is a persistent though gradual
decrease in the thickness of the marl-loess, the decrease ty the becong at the same time of greater relative, if not real, importance.
The apparent presence of pebbles in some local
The apparent presence of pebbles in some localiflats and silted divides of loess of the same type
verlying more or less irregular surfaces, points oward a modified aqueous origin of this class of silts in a few cases in the Ditney quadrangle, to the east, but no examples were recognized in the rea now under discussion. The great mass of the common loess appears to be undoubtedly of eolian derivation, the source of the material being foun the marl-loess of the Wabash Valley.
Older stream silts.-In the class of older stream
its are included the silts occupying most of the sits are included the silts occupying most of the maller valleys. They consist largely of reworke ture a few thand har may ture. A few sandy layers and more rarely gravelly verloaded streams, the work of which is to build rather than reduce their beds. While many the bottoms mapped as older silts are no doubt receiving additions even at the present time, the presence of the earlier Wisconsin dunes upon their surface in the northwestern part of the quadrangle shows that they had in places practically reache heir present development in early Wisconsin time The bulk of the filling is probably Illinoian though the surficial clays doubtless accumulated largely during the Iowan stage. For the reason that their principal period of development terminated in the Iowan stage they are grouped with the deposits of that age rather than with the recent deposits, classification with which might appear to be warranted by their recent surface silts. This classification was, in fact, made in the Ditney folio, in which is described the area lying immediately to the east. In the vicinity of the main drainage lines the older stream silts are invariably trenched, and are in some places superficially re
terraces.

wisconsin deposit

The ice sheet of the Wisconsin stage did not reach the Patoka quadrangle, and there are therfore no deposits of this stage covering the general surface of the region. Every stream, however, which led either directly outward from the ice margin or was fed by triburies heading at the erront carried considerable amounts of glacialy flat plains ar in the vicinty of the Patoka. (ar Wabash and White rivers head in the region wied by the whe the regh praina of re, uber f or near the ice front and bringing down quantities of lacial sediments, which were deposited as broad flats on either side of the river. The Wabash River was also the outlet of a large olacial lake in the region of the Great Lakes.
Wisconsin terrace-Although.
the larger part of the sand and is certain that he Wabash and White river valleys filling of ported indirectly through the agency of the Wisonsin ice sheet, and was probably brought nearly o its present place during Wisconsin times, there is only one unaltered deposit in the quadrangle which has been referred to this stage. This is the deposit between Cowling and Keensburg, in the hin laser portion of the area. It consists of a northern material , fine sand over the upper strea silts. Toward the higher of the late Wisconsin or recent terraces on the east it presents a low bluff, perhaps 10 feet in height, but the bluff overlook ing the abandoned channel near Cowling is about 40 feet high. The surface generally consists fine sand, which is frequently drifted into low dunes. The flatter and poorly drained portions Wise characterized by black muck accumulations. Wisconsin dunes.-Besides the low sand dunes of the Wisconsin terrace, the larger of which are idge of dunes extending from east of Keensburg nearly to Bonpas Creek. The sand of the dunes oth of the flat and ridge, is notably finer and hiter than that of the more recent dunes border ing the Wisconsin terrace on the south.

Upper flood-plain deposits.-These deposits conoccasional areas of muck in broad, shallowe dresions in their surface that occur along the Wabash and other prominent streams. They constitute in
fact a perfected flood plain, the topography of which is in marked contrast with that of the rolling to broken surface of the lower flood plain. They are overflowed in part at periods of exceptionally high water, but the higher portions along the edges of the valley always remain above water. There is no break between the lower and higher portions, the plain exhibiting a gentle, even slope from the edge of the valley to the banks of the streams or to the bluffs facing the lower flood plains. The upper flood plains are bordered by coadond of 1 . 0 thens, apparenty comp.
flats.
The muck and a part of the surface silts are undoubtedly of recent origin, but as important dunes are nowhere forming under the condition now existing in this region it is thought that the depositional activity, when broad, bare flats, possibly extending over the greater part of the presen width of the valley, were exposed to the sweep the winds, and when the rate of dune accumulation probably precluded the existence of a vecetable mantle. These conditions are believed to have characterized the latter part of the Wisconsin stage and possibly extended into Recent time. It is hought, however, that the covering of the flood plain and dunes with vegetation probably took place immediately upon the subsidence of the floods that are supposed to have attended the Wisconsin ice retreat, but it is considered safer to class both the flood plain and dune deposits as transitional rather than with either the Wisconsin or Recent stages.
Later dune sands.-These sands, the origin of which has just been considered, occur principally as a broad but interrupted belt along the east side of the Wabash Valley, though a few small areas are found bordering the river flats on the Illinois side of the river. The material is usually a coarse quartz sand which in the better exposures shows stratification either of the steep advancing-face type or of the irregular type characteristic of accuFig 12 from vegation has begun to take hold Fig. 12, from a photograph taken just west of right hand portion of the view, while the latter rype is shown portion of
The coarse sand is in some places interbedded with fine or marly sand not much different in composition from the marl-loess, though it neve arries fine fragments of shells, but no perfet forms, such as universally characterize the marlloess, were found.
The sand has in places a maximum thickness
about 100 feet. It is characterized by a typical dune topography, though somewhat subdued in some of the outlines through the reworking of the surficial portion by creep or through the influence of the original forest growth. Large undrained kettle-like depressions are common.
Late loess.-The sand of the dune belts in some places becomes finer away from the valley and merges into a sandy loess. This coating is usually so thin that the material has become commingled with the underlying Iowan loess through the action of penetrating roots, and can not be differenfiated. In the railroad cut at Mount Carmel and in a few other localities, however, there appears to be a surficial loess mantle, a foot or two in thickness, resting upon the loess of the ordinary type, from which it is separated by a weathered zone. It is believed to be contemporaneous with the later dune sands.

recent (post-glactal) derosits.

Lower flood-plain deposits.-These deposits conist of silts, sands, and fine gravels, with occasional reas of muck occupying the shallow depressions as in upper flood plains. The chief particulars are: (1) the lower differs from the upper plain erally subject to annual overflow and is frequently arated from the uper flool phin in the rivers (or from the older stream silts of the smaller streams) by an escarpment 5 to 15 feet in height and (2) its undulating, rolling, or broken surface, characterized by numerous bayous and abandoned channels. Two distinctly different proesses are involved in the production of the lower flood
plains, namely, unequal degradation due to localization of the erosion of the flood plain on the one hand, and unequal upbuilding of previously
reduced areas on the other. The two processes, reduced areas on the other. The two processes,
however, have so cooperated that the resulting however, have so cooperated that
forms can seldom be differentiated.
orms can seldom be differentiated.
Suamp deposits.-Under swamp deposits are included those deposits of muck, peat, and vegetable mold which occupy the broad, shallow depressions in both the upper and lower flood plains. They are characterized throughout by a heavy growth of timber. The thickness of the 7 to 10 feet thanly 3 or 4 feet, but may reach to 10 fee. junction of White Wabs rive the of these ponds it is aid, contain water throughout the year and seral retain it in all but the dryer seasons. Most of the cypress has been cut out, but enough remains to give a decidedly southern but enough remains
aspect to the swamps.
Abandoned channel deposits.-The abandoned channels are of all stages, from freshly-cut bayous to channels nearly filled and effaced as topographic features. The filling of the channels is at first very rapid because of their connection with, or proximity to the rivers. Fillings of silt amounting to 6 inches in a season have been recorded. In addition to this, large quantitities of driftwood are frequently washed in, and trees on falling not uncommonly add their remains to the deposit. As the filling approaches completion the deposition is less rapid and consists mainly of a mixture of silt and vegetable matter, differing but little from the swamp deposits except in the shape of the areas.
Nat
Natural levees.-The natural levees consist of overwash sands or fine gravels deposited when the current of the overflowing river waters is first nly along the are conspicuous in the quadrangle only along the Wabash and Fox rivers, and are confined to the banks or near vicinity of the streams. In age they are the most recent of the deposits of the quadrangle, umless it be some of the swamp and abandoned channel deporits. They are fo
plain.

structure

Local dips, often of several degrees and of various directions, may be seen in some of the exposures of the Patoka quadrangle, and from a superficial examination might appear to indicate not only that there is a considerable dip to the rocks of this area, but that there is also considerable irregularity in its direction and amount. A closer study, however, reveals the fact that these irregularities usually extend but a few feet or rods, nd, that they have almost no effect on the broader
structural features. By the tracing of coals or other persistent beds it is clearly shown that, although the dips are extremely variable and even easterly in places, the general dip is to the west, the amount varying from 5 to 40 feet to the mile, with an average of about 11 feet. This dip, slight as it is, is sufficient to make a difference of about 300 feet between the altitude of a given bed at the border of the quadrangle.
The Somerville formation, the Parker coal or associated limestone, the Friendsville coal, and the Aldrich coal and associated limestone are the best defined beds in the quadrangle and where they outcrop or are reached by ordinary water wells dips may be determined with some accuracy. By combining the observations based on each separate bed the structure can be worked out, especially in the southern half of the quadrangle. The general dip is northwestward and is greatest along the eastern border and least along a line extending from the vicinity or Litle Rock to the southwest corner of the quadrangle. A low anticline runs from near
 Bellmont Be K Bellmont, and Keensirg of Bon is low, but From the southeast corner of the quadrangle to the vicinity of Kasson the dip is quabut 15 feet the vicinity of Kasson the dip is about 15 feet
to the mile, but farther north it is somewhat steeper, reaching about 30 feet to the mile between Inglefield and Little Pigeon Creek. Northeast of St. Joseph the dips are as high as 4° NW.
for some distance along the railroad, making a very materin diferee the elevation of the out n steper here than elsewhere in this region so far observed. From the ridge between St. Joseph and Kasson westward to the vicinity of Parkers Settle ment the dips are about 15 feet to the mile. From Lippe to Springfield the dips average only about 6 feet, while westward from Springfield to the Wabash River they are as low as 3 feet to the mile.
North of the drift area the outcross are
North of the drift area the outcrops are less frequent and poorer and the dips are more difficult to
determine. The Aldrich coal, however, can be traced from near Stewartsville to the Wabash River near Grayville, and shows in this interval an average dip of about 6 feet to the mile. At Princeton the deep wells and the coal shafts show that the dip is as high as 50 feet, but along the Patoka it is only about 20 feet to the mile. From Patoka to the Gordon Hills the dip is about 12 feet to the mile. From the latter hills to Crawfish Creek the dip is nearly flat, but from the creek westward it rises rapidly to a height of 450 feet in about 2 miles (see geologic map and fig. 4). From the crest of this low anticline the beds dip gently westward at a rate of from 18 feet to the mile between Friendsville and Gards Point to about half this rate west of Mount Carmel. In the region about Maud and Bellmont the beds, though showing several minor undulations, are, on the whole, nearly flat. To the south and southwest the dips are more pronounced, averaging 20 feet to the mile the mile from Bellmont to Cowling. Between the mile from Bellmont to Cowling. Between
Rochester and McClearys Bluff the rocks are nearly Rochester an
horizontal.

GEOLOGIC HISTOR

paleozorc events

Deposition.-The deposition of the great series of sediments laid down in the interior sea occupying the broad Mississippi Basin began in Cambrian time with a thick bed of sand which was spread along the changing shores in waters that were genwater or shore features being common in the
or of shells, corals, etc., which on subsequent solidAt times the region was occupied by wide swamps or shallow lagoons, in which accumulated quantities of peaty matter, now changed to coal. Together hese beds make up a series of coalof which those of the Patoka quadrangle are a part. They are the highest and youngest of the solidified rocks of Indiana.
The thickness of the
The thickness of the entire series, from the Cam4000 or 5000 feet, of which, in the Indiana region, considerable more than half is limestone, the conditions being in marked contrast to those existing near the borders of the sea to the east, where the deposits were composed largely of sandy and shaly materials.
The deposition of the sedimentary rocks did not take place uniformly over the whole of the basin. Even at the beginning of the Cambrian period islands existed, it is believed, in the southern portion of Missouri, and possibly elsewhere in the great continental sea, and local uplifts, possibly in some cases accompanied by slight folding, brought imilar islands into existence from time to time at other points as deposition progressed. Of these
the one most intimately related to the region of the the one most intimately related to the region of the
Patoka folio was the Cincinnati island, produced Patoka folio was the Cincinnati island, produced by the broad, dome-like fold known as the Cincinnati anticline, the maximum development of which is in the vicinity of Lexington, Ky. From here Tenn., and northward and northwestward Cincinnati norn ind and northwesward through Indiana. This broad dome (the uplift of whith began lo the the of which of the beds of the Patoka quadrangle) and the original island in southern Missouri, which had in original island in southern Missouri, which had in formed the opposite shores of a broad embayment or strait that extended from western Kentucky or strait that extended from western Kentucky across southwestern Indiana, Illinois, northern
Missouri, and southern Iowa, and connected with the northwestern extension of the interior sea in the northwestern extension of the interior sea in
western Missouri and Iowa. It was in this embayment that the Carboniferous rocks of the Patoka region were laid down.
had the Carboniferous beds appeared above the surface of the sea by the further uplifting of the its work of reducing the surface thus formed It is probable that erosion did not at first keep pace is probable that erosion did not at first keep pace
with uplift, and an elevation of some prominence with uplift, and an elevation of some prominence
may have resulted. On the cessation of the may have resulted. On the cessation of the
upward movement, however, erosion continued with undiminished energy its work of reducing the land undiminished energy its work of reducing the land
and carrying the materials to the sea, which now lay at some distance from the Indiana region. The surface of the land was thus gradually lowered and its prominences were reduced to broad, low, wellrounded hills separated by wide, flat, and shallow valleys. Such a featureless surface is called a peneplain, and there is but little doubt that a number of successive general or local peneplains were developed one after the other in the region under discussion, as appears to have been the case with
the series beginning in pre-Triassic time and ending beginning in pre-Triassic time and coast. The Thertiary plain along the Atlantic coast. The remnants of the latest of the pro-
nounced plains in the region of the Patoka quad rangle are preserved even to the Patoka quadthe flat-topped crests and isolated hills rising, described in the discussion of topography, to ele vations of from 600 to 650 feet.
No remnants of a topography older than the peneplain under discussion are known in the Patoka region. The age of the peneplain can not be regarded as positively established, though it appears to form a part of a surface which stretched end southward bir wester bama- surface which is probably cquival to the Lexington Plain of Kentucky and fough to have been formed in early Tertiary time.
to have been formed in early Tertiary time.
Drainage of the peneplain.-On two of the Drainage of the peneplain.-On two of the points in the hills bordering the Wabash, White and the lower Ohio valleys, deeply stained, bronze colored gravels, composed mainly of quartz and flint and supposed to be of Tertiary age, are found resting upon the peneplain remnants. Near Princeton the gravels have an elevation of 610 feet at their base (determined by level), and at the other localities of from 550 to 700 feet (barometric deter-
cutting, and there is some evidence, in the shape of divides and flat crests at an altitude not far from 500 feet, that a local peneplain was developed at that elevation, and it is possible that there are still other levels at which local plains developed. If so, these later peneplains, like the first, suffered uplift and erosion, until broad valleys were carved out to the level represented by the rock floors underlying the deep silts and glacial fillings of the present valleys.
Late Tertiary or early Pleistocene depositional stage.-Following the period of Tertiary erosion, during which the land was carved by the streams until it had essentially the form it would now show if the overlying silts and glacial deposits were removed, there appears to have been a subsidence or an overloading of the streams, which caused the deposition of bronze-colored gravels at Enterprise, on the Ohio, southeast of the Patoka quadrangle. Whether these gravels, which certainly look much older than the oldest glacial deposits, are to be regarded as the result of a reworking, in late Tertiary or early Pleistocene time, of older Tertiary sediments, as Mr. Leverett has suggested, or as undisturbed late Tertiary deposits, as Mr. A. C. Veatch has urged, is a question that has not been fully answered. It is certain, however, that they were deposited much later than the gravels on the peneplain remnants, and before ice-transported crystalline or other Canadian materials were brought within the reach of the old Ohio drainage system.
glaclal history.
Illinoian deposits and stream changes.-It has usually been believed that neither the pre-Kansan nor the Kansan ice sheet reached as far south as this quadrangle. Although some features in the Ditney quadrangle, immediately east, suggested the possibility of an early invasion, later studies fail to substantiate this view. In the Illinoian stage, however, the ice reached well into the quadrangle and remained there for a long time, during which marked outwash plains, and the glacial lake depos its were accumulated.
In consequence of the obstruction of the estab-
resulting sandstone. At the close of the Cambrian period, there was, in Indiana, a change from conditions favorable to the deposition of sandstone to hose faring the accurne, and a 50 -foot bed of the latter was deposited at the beginning of the Ordovician period. Although there was a partial return to the former conditions the St Peter sandstone (portions of which are cat the St. Pets) the deposition of limestone continued with a few relatively unimportant breaks, throughout the whole of the Ordovician, Silurian, and part of the Devonian periods. Beginning with Middle Devonian times, however, limestone gave place to black shale, which in the early part of the Carboniferous period was followed by sandstone, and later by limestone, the deposition of which continued until the close of the early Carboniferous (Mississippian). The series of deposits closed with an interval during which the recently deposited beds were lifted bodily, and without tilting, above the level of the sea, and were extensively eroded by the action of streams.
After the early Carboniferous interval of erosion the beds once more sank beneath the waters of the great interior sea, and deposition continued as before. The conditions, however, were no longer constant through long periods of time, but were continually changing, the waters of the sea being now shallow, now deeper, and at times, as following the deposition of the Mansfield sandstone and just before the deposition of the Inglefield formation, completely withdrawing and permitting the erosion by surface streams of the beds previously deposited. Each change was recorded by differrocks, beds of sand alternating with beds of mud,

Uplift and tilting.-The sedimentary beds were originally in an essentially horizontal position throughout the extent of the embayment in which ifey were deposited. At the close of the Carbonthe Cincinnati and Missouri der of The intermatis and Missouri domes or anticlines. The intermediate area, consituting what is now of the uplift, and its deposits were lifted above the ovel of thit, an but the amount of the eleva was much less than in the bordering region, the was much bess the devel in the bordering region, the but persistent dip toward the center of the basin in eastern Illinois. The coal-bearing rocks forming the surface were doubtless originally connected with similar rocks to the south and also to the northwest, but subsequent erosion destroyed these connections and left the coal rocks in the present isolated basin. The limits of this coal basin, together with the position of the Patoka quadrangle, are shown in fig. 1, p. 2.
mesozoic and early cenozoic events.
Subsequent to the uplift that followed the deposition of the Carboniferous rocks, and that raised them above the level of the waters in which they had been deposited, there appears to have been no further incursions of the sea into this region and there is, therefore, no recorded history in the form of rocks. It is only in the land forms, or the topography resulting from erosion, and in a few patches of old river gravels that evidence of the succeeding events is found. As each new set of the topographic features was developed at the expense of older ones, only later forn
tell of events that have taken place.
Formation of Tertiary peneplain.-No sooner
minations). A list of localities furnished by Mr . Frank Leverett includes the following: (1) South bluff of the East White River 2 miles southwest of
Shoals, Ind.; (2) bluffs of the Ohio River back of Tell City and Cannelton, Ind.; (3) near StephensTell City and Cannelton, Ind.; (3) near Stephens-
port, Breckinridge County, Ky.; (4) near Brandenport, Breckinridge County, Ky.; (4) near Branden-
burg, Meade County, Ky.; and (5) near Rosebud, burg, Meade Count
Pope County, Ill.
It will be noted that these deposits are in the vicinity of the present drainage lines, though from 100 to 200 feet or more above the stream levels, while on crests of equal heights in the intermediate areas gravel deposits are lacking. This is taken to indicate that the gravels were probably deposited in the broad, shallow valleys of the Tertiary peneplain, and that the main drainage lines of that period coincided
the present time.
Late Tertiary
this portion of the Mississippi plain described, an elevation took place that lifted the region to an altitude considerably above that which it possesses at the present time. With the beginning of this elevation the streams, which during the later stages of development of the peneplain surface had been very sluggish, entered upon a period of active erosion that resulted in the carving out of broad valleys to a depth of 100 to 150 feet, or more, below the level of the surfaces of their present fillings and the reduction of the general surface to a lower level. Here and there, where the surface was more remote from the active streams or where the rocks were of a more resistant charac-
ter, remnants of the ter, remnants of the peneplain were left in the form of the crests and outlying hills previously uniformly active throughout the period of down-
lished drainage lines by the Illinoian ice, or by the till or various other deposits laid down during its occupancy of the region, many important changes (see fig. 5).
The Patoka River, now a prominent stream reaching back eastward 80 miles or more from the Wabash, was not in existence as a single stream previous to this ice invasion, though parts of the valley through which it now flows were occupied by pre-Glacial streams that eventually flowed northwestward into the White or the East White River. The original lower Patoka River entered the quadrangle at the same point as the presen
stream, but instead of flowing westward past the strean, but instead of flowing westward past the
site of Patoka turned northwestward and passed out into the Wabash Valley at a point about midway between Patoka and Hazleton. During the ice invasion this old valley was choked and obstructed and a glacial lake formed along the valley, the outlet of which was probably near Fran cisco, a few miles east of Maxams. Before the ice receded from the region the old valley was choked and practically obliterated by accumulations of thick morainal deposits that were laid down across its lower portion, with the result that the river wa forced to seek a new outlet, which it found at Iorced
Patoka.
It

It is believed that the Wabash River at this time flowed in the broader valley lying east of the Claypole and Gordon hills, and that it swerved southwestward near Lyles, passing north of Foots Pond Hills, west of Mumford Hills, and probably several miles west of its present position at New

Harmony

dins to the ice invasion Pigeon Creek flowed in a direction opposite to its present course. It
entered the quadrangle from the east, where it now leaves it, and flowed northwestward past the site of Fort Branch and into the Wabash Valley at a point a little east of Indian Camp Creek. The lake which overflowed a divide east of Elberfeld, several miles east of this quadrangle, having an elevation of about 410 feet. By the outflow from this lake the divide was reduced to a little less than 400 feet and so afforded an easy eastward outlet for the water that was ponded by the ice and the morainal deposits that accumulated across the old valley near Fort Branch.
As the ice retreated from the Fort Branch moraine two more glacial lakes came into existence The first was situated between Owensville and Fort Branch. Its waters cut an outlet across the moraine at the latter point and passed off to the east and south through the Elberfeld pass. The upbuilding of the morainal barrier east of Owensville served to make the southward drainage a permanent feature. The second lake was situated in the valley of Flat Creek and was due to the obstruction caused by the ice near Cynthiana. This creek originally emptied into the Wabash River at a its ohstruction by the ice and the formation of the lake the waters ponded up the valley of an old lake the waters ponded up the raley of an old Bir Creek. This divide was probably about Big Creek. This divide was probably about $2 \sqrt{2}$ the ice the moraine at Cynthiana had been formed and the old valley so blocked that even aftermed the retreat of the ice the druinage persisted in its newfound channel.
Barr Creek, like Flat Creek, which originally found outlet into the Wabash along the line of Black River, was deflected southward into Big Creek.
A still further retreat of the ice brought into which depositse in the vicinity of Poseyvile, in the original northern drainage lines were obliterated and a new drainage into Big Creek was inaugurated.
 Sangamon events.-After the disappearance of n not known to have been characterized by any not-
the Illinoian ice sheet there seems to have been a able events in the Patoka quadrangle. The land
and period of somewhat active erosion. In some other regions the Sangamon streams were broad and sluggish and eroded but little, but in the Ditney quadrangle, immediately east of the Patoka quadrangle, from 80 to 100 feet of the drift filling of the White River Valley over a breadth of 2 miles appears to have removed, while in the Patoka quadrangle the reduction of the drift deposits and the widening, deepening, and cutting back of valleys are conspicuous features. Large quantities of drift were also probably removed from the Lake Patoka deposits, 25 or more miles east of the area under discussion, and along the valley of the Ohio River. Whether there was a slight uplift of the land or whether the acceleration of erosion was due simply to the relatively steep constructional slopes the latter is now thought to be the most probable. Patoka.

Much of the material derived from erosion was doubtless deposited in the valleys, where it is now covered by more recent deposits. A considerable was doubtless ertions of the older stream silt deposits of this age now remaining are the muck and lignitic deposits which were described (p. 4) as occurring under the marl-loess at various points. That the stage was of considerable length is tested by the extent of the erosion, by the semirounded character of the resulting topography, and by the leaching and weathering of the drift as represented in many exposures.
Iowan deposition.-The next event of importance was the deposition of the mantle of silt, previously regarded as a unit and designated as loess. Reason have been given (p .4) for subdividing this silt into two groups, the marl-loess and the common loess A study of the characters and relations of the two types leads to the belief that during the presence of the Iowan ice margin in northern Indiana, a fluviolacustrine body existed along the lower portions at least of the Wabash and White river valleys
This water body is thought to have been due to This water body is thought to have been due to a general depression (amounting perhaps to 80 or 100 feet) of this region as compared with the land to pass. Into this lake the two lare rivers broug large quantities of fine silt which was dep their valleys in the form of what is here known marl-loess. While this material was accumulating and during the period immediately following the and during the period immediately following the covered the surface, broad flats were doubtless many times exposed to the sweep of winds, and by the action of these winds it is presumed the great sheet of common loess was accumulated. These winds were apparently prevailingly from the west for the deposit is both thicker and more extensive on the east side of the Wabash Valley than on the west side.

It was probably in late Iowan times that the last important additions to the older stream silts were made.

Peorian interglacial stage.-The Peorian stage i able events in the Patoka quadrangle. The land appears to have remained at practically the same elevation as during the deposition of the loess, though doubtless there was a creeping and sliding of the material down the hillsides into the valleys. Wisconsin deposition.-In the Wisconsin stage he ice, though failing by more than 75 miles to reach the Patoka quadrangle, by its melting furnished large quantities of water charged with sediments which flowed from the ice margin down the Wabash and White rivers and formed broad flat plains of sand and fine gravel along their valleys. The only deposits of Wisconsin age that still remain in this area are the stratified beds of fine sand and gravel, with their associated dunes, that burg. The upper flood-plain deposits a kens great dune belts along the eastern edge of the

Wabash Valley were probably formed in late Wisconsin time or in the early part of the post-Glacia epoch and are in a measure transitional. The olde
and higher Wisconsin deposits doubtless represen an upbuilding during a period when the waters were heavily loaded with sediment as compared with their condition during the formation of the later flood-plain deposits. As the upbuilding of the fluviatile beds of the valleys continued many of the low divides of the earlier topography wer buried beneath the resulting accumulations, leaving a number of the higher points as "islands" pro-

Analyses of Petersburg coal at

Source of material.				Ash.	Moist-	Suls.	$\xrightarrow{\text { Total }}$ waste.
Boring at Princeton	59.70	23.90	83.60	7.80	8.00		16.40
Oswald mine, Princeton	51.18	22.71	83.90	11.02	5.09	1.38*	16.11
Sunnyside mine, Evansville.	48.14	38.59	86.73	6.83	6.44	1.85	14.12

jecting above the river flats. In the course of the meanderings and swings of the rivers these have been attacked first from one side and then from nother until nearly all of them now present stee fices or even bluffis to the flats. Among thes islands" Claypole, Gordon, and Mumford hill re the most prominent, though a few smaller one ere noted. The depth of the rock valleys separating these hills from the general uplands is not few feet below the flood plains (see fig. 13), or a about the limit of erosion of the present streams This would indicate that the broadening of the divides and the isolation of the "islands" was brought about after the stream had reached practically its present level. The steepness of the bluffs indicates that the completion of the broadening took place in very recent time
During the final retreat of the ice the Wabash River was the outlet for Lake Maumee, a large gla cial lake extending over the areas now covered in whole or in part by Lakes Michigan, Huron, and Erie, together with considerable areas about thei borders. This lake formed between the retreating ice and the northward-sloping land in the region mentioned and emptied into the Wabash a little west of Fort Wayne, Ind.

recent events.

Subsequent to the deposition of the Wisconsi and transitional sediments, just noted, the region appears to have stood approximately at the same level as at present. The streams, with diminished volume and less sediment, cut into the deposits of the Wisconsin and transitional stages and excavated the lower flood plains, which were below the upper
mile plains. This work is still going on, new channels plains. This work is still going on, new channels
constantly being formed by local concentration of the overflowing waters in times of flood. At the same time, however, old channels are being closed up and the old level is being restored in places, the up and the old level is being restored in praces, shifting than toward either a general broadening or narrowing of the lower flood plains.

MINERAL RESOURCES

coal.

-

Petersburg coal.-With a few minor exceptions none of the coals outcropping in that portion of the Patoka quadrangle included in Indiana are now worked, even for local supply, the beds rarely being much over a foot in thickness, and often too impure to be of any value. In the Indiana portion of the quadrangle there are but two mines, the the quadrangle near Evansville. These mine reach what is known as the Petersburg coal (Coal 5 of the Indiana geological survey), which out crops 12 to 15 miles to the eastward, in the Ditney quadrangle.
At the Diamond mine, Evansville, the coal i 250 feet below the surface, or about 135 feet bove sea level. The bed in this mine is 4 feet 6 hales which forms a firly by 2 feet of black Below is 2 feet of firm fire clay, underlain by lime
one. A band of sulphur occurs in the middle of the coal.
In the Oswald mine the coal is reached at about 400 feet, or 30 feet above sea level, and averages 6 ithenes in thickness. It is a good, firm coal, thout regular sulphur or clay bands, but thin ands of sulphur are abundant in places. The oof is a shale, which is sometimes overlain by ere. The following analyses are taken from eological Sure Annual Report of the Innan mine is just south of the limits of the quadrangle l at Prine

The general dip of this coal in the southern portion of the quadrangle is northwestward at an vation of 135 feet above the mile. From an eledesel to 50 feet Forn 30 feet at Princton, westwand to bout sen an in the extreme southwest corner of the quadrange ad notherd to probably a little below se evel at Now Millersburg coal - T
, ney quadrangle, on the east, lies 70 to 90 feet bove the Petersburg and is several feet thick, is fourths of a mile northwest of Stringtown a coal supposed to be the Millersburg is reached by a well at 150 feet below the bottom of the valley, or about 235 feet above sea level. In Evansville two wells situated near Pigeon Creek penetrated the Millers burg bed, here about 18 inches thick, at depths of 152 and 180 feet below the surface, or at 98 and 100 feet, respectively, above the Petersburg. A Fort Branch this coal is 3 feet 6 inches thick and is reached 254 feet from the surface; at Princeton the deep borings penetrated it at depths varying from 201 to 260 feet, the interval above the Peters burg bed varying from 120 to 145 feet.
Parker coal.--This is an unimportant coal, varying in thickness from 6 inches in its purer form to 18 inches when shaly, which occurs about 90 or 100 feet above the Somerville limestone. It has been stripped in a few places for use in threshing machine boilers, but is generally too thin and impure to be of value. The thickness reported
in wells is somewhat outcrops, which are greater than that observed in outcrops, which are nowhere such as would warran he dift and wist on it or The thin coal about 70 feet the cologic at Patoka, above evel in the bluffs 2 miles northwest near the sam hin coal near the flood-plain level on the south west side of Gordon Hills, and the coal in the hill northeast of Owencille are believed to be the equivalents of the same bed.
Friendsuille the same bed
mportance west of the Wabash, occurs about mid way between the Parker and Aldrich beds. It is usually associated with a limestone that is from 2 to 6 feet thick. The coal in Indiana rarely meas ures over a foot in thickness and is frequently ven for local supplie
Aldrich coal.-The Aldrich coal is another thin oal and lies from 50 to 70 or more feet above the Parker. Like the latter it is generally associated ith an overlying limestone, though in some place the limestone occurs beneath it and at other time s wanting. At its outcrop it shows a thickness of 7 to 20 inches. It is of a somewhat better quality han the Parker, and has been worked at a consid erable number of points in the past. The old drift in the bluff 1 mile southwest of New Harmony and the outcrops 6 miles southwest of the same
town are probably on this coal, as are also the outtown are probably on this coal, as are also the out crops near Kilroy and along the base of the Mumrins. Its greatest development, however, is where it has been stripped at a number of points.

The outcrop is shown on the geologic map. West \mid southwest of Cowling. A deep drilling at Grayof the outcrop it is encountered in many of the ville, made expressly for information regarding Miscellaneous coals.-Because of the thickness of ness, indicating that the Friendsville vein has loess and of alacial till and sravel it is impossible to trace the coals continuously in the region north of the drift boundary, and correlation is, therefore, uncertain. A coal which underlies a limefore, uncertain. A coal which underlies a lime-
stone, probably the Somerville, outerops with a stone, probably the Somerville, outcrops with a
thickness of 18 to 24 inches along the bottom of the tributary joining the Patoka from the southeast at a point about 3 miles northeast of Princeton. It has been worked occasionally. A coal about 6 inches thick, belonging to the same general horizon, occurs beneath a thin limestone at the level of the flood plain at Townsend's quarry The black shale exposed near low-water level beneath the bridge one-half mile southwest of the quarry is probably to be correlated with that overlying the coal at the quarry section. About 50 feet above this horizon there is another coal, generally 6 or 8 inches thick, which has been seen in the ravine in the center of sec. 5, T. 1 S., R. 10 W ., and in the bluff southwest of Patoka, about 13 feet above the river. The coal occurring in the bluff section at Patoka 50 feet above the coal just described, and again in the ravines $1 \frac{1}{2}$ miles northwest of that town is correlated, as has been indicated, with the Parker bed.
There is a general coal horizon along the bluffs on the south side of the White River near Hazle-
ton. Three miles east of that town and just ton. Three miles east of that town and just outside the quadrangle a coal several feet in thickness is stripped in one of the ravines, and an abandoned mine, in which thick, found forther to have been 30 inches thick, is found farther north, on the face of and underlain by sandstone a mile and a east and a little north of Hazleton a coal, appareast and a little north of Hazzeton a coal, appar-
ently at or near the same horizon as the preceding, shows just beneath a 10 -foot bed of massive limestone. At the town itself neither the coal nor the limestone have been reported, but a mile west of the town a thin coal is found resting on top of the the town a thin coal is found resting on top of the
limestone instead of beneath it, and 2 miles west limestone instead of beneath it, and 2 miles west
of the town the coal outcrops in the bluff on the north side of the White River with a reported thickness of $3 \frac{1}{2}$ feet. The outcrop is on a level with a thickness of 14 inches. It is extensively worked by stripping at the Wharf mine.
coals in iluinots.
Friendsville coal.-The only coal of importance in the Illinois portion of the quadrangle is the Friendsville bed. This coal outcrops near the town of the same name and possibly at a few other points, but it has seldom been opened on its outcrop. It underlies the surface of Wabash County at a moderate depth from a point north of Friendsville southward to Bellmont and Keensburg and westward to the bottom lands of Bonpas Creek, but no coal that could be correlated with the Friendsville bed has been reached by the wells west of this creek in Edwards County, although it is reported in a well just east of the creek, $1 \frac{1}{2}$ miles
sumamar.
Thickness of coals in Patoka quadrange and vicinity

Nearest town.	Location.	Souree of intormation.	Depth.		Coal.
Hazleton	Thorn place, Donation .	Boring		$\left\{\begin{array}{c} \text { Feet } \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \frac{1}{1} \end{array}\right.$	Millersburg Petersburg?
	Top of bluff 2 miles east of town..				
		Boring			Millersburg?
Hazleton.	Bank of river, 2 miles west of town. Bluff south of river.	Wharf mine Outcrop		4 1 2 2	
Patoka.					Parker.
Princeton	Indian Creek, northeast of town....	Outerop			
Princeton	NE. \ddagger हec. $\overline{5}$, T. 2 S., R. 10 W .	Kurtz deep bore.............		1	
Princeton	Sec. 5, T. 2 S., R. 10 W	Kurtz shallow bore............ Shannon well.	258 90		Miliersburg.
Princeton	See. 33,(\%) T. 1 S., R. 10 W		76430		Petersburg. Petersburg.
Princeton		Oswald shaft			
Princeton .	North edge of town.	Interstate Gas \& Oil Co.'s well	380	7	
			460	4	
Prineeton		Evans well.	6228128	${ }_{5}^{5}$	
				\%	Millersburg. Petersburg.
			402	6	
			514	-	

lignites.
Coals up to 18 inches in thickness have been reported in connection with unconsolidated deposrift of the number of wells sunk in the glacial drift of the Patoka quadrangle, and especially i
that portion of the quadrangle lying in the south
ern part of Gibson County, Ind. A number of instances occur in the vicinity of Fort Branch. some of the material would seem to be a fair grade of lignite. The lignites appear to occur in a darkof lignite. The lignites appear to occur in a dark-
grayish clay, usually reported as "blue mud," but grayish clay, usually reported as "blue mud," but
they are also in some places associated with water-
bearing sands and gravels, often resting upon con-
siderable thicknesses of these materials. Though apparently sometimes overlain by till, the beds associated with the lignites are probably water deposited. They are of no economic importance. oil, gas, and asphalt
Five or more wells reaching a depth of 500 feet or more, one of them more than 1200 and one more than 1400 feet deep, have been drilled at Princeton in search of oil and gas, but have met with little success. Small quantities of gas were obtained in nearly all of the wells, and in one or two of them very slight indications of oil are said to have been obtained. Neither gas nor oil, however, was found in sufficient During the dri
During the drilling of a well by the Interstate Gas and Oil Company at Princeton, in 1902, a 5 -foot bed of asple was reported at a depth of Petershurg coal Small samples of the material Petersburg coal. Small samples of the material jet black, nearly pure variety closely resembling Trinidad asphalt in its reactions to physical and chemical tests. A small bed of similar material is reported to have been encountered in the old Hall well, on the southwest outskirts of Princeton, about a mile south of the new well, while in the Oswald mine, three-fourths of a mile to the west, black substance, known as liquid asphalt, seeps into the bottom of the mine at 430 feet to such an extent that some of the rooms have been abandoned and closed. It is said to enter through a nearly vertical "break" filled with clay.
The fact that wells reaching depths of over 1000 feet have been drilled at only one point shows that the territory has been by no means carefully tested. None of the wells have reached the Trenton limestone. While there is nothing to indicate the presence of oil or gas in the region, there is nothing to indicate its absence, and it is not impossible that drilling may develop pools of commercial value.
In general it may be said that the positions that are geologically most favorable for drilling are the low anticlinal swells and the flat areas of the rocks just east of the points where their westward dip changes from low to steep. The most pronounced anticlinal swell is between Friendsville and Mount Carmel in the northern portion of the quadrangle, fe Claypole Hills southwestward to the west corner of the quangle Flat dipe sore west corner of the quadrangle. Flat dips are also mentioned. Both of these areas of flat reck marked by many minor undulations of the rocks some of which are brought out on the ceologic map by figures, which show the depths to the Friendsville coal in the northwestern portion of the quadrangle. These minor irregularities are, perhaps more likely to be important as regards the occur moree of oil or pas than some of the broader features, but they do not usually extend farther than a few hundred yards, and in most cases their location can not be predicted. In the eastern half of the quadrangle the dips are more pronounced, and are less favorable to the occurrence of the oil or gas in definite pools.

lays

The clays of the Patoka quadrangle fall into general classes: (1) Fire clays or the refractory clays occurring beneath the coals and elsewhere in the Carboniferous formations of the area, and (2) brick clays, including the less refractory clays, argillaceous shales, till, loess, and alluvial lays. The clays of the coal-bearing rocks of
Indiana have been investigated by W. S. Blatchley State geologist, and the red by W.S. Blat the Twentieth Annual Report of the Department of Geology and Natural Resources. The portion of the following discussions relating to this class of clays is based largely on that report, but the discussion of the other types of clays is based on the present field work.
Fire clays.-These clays occur in beds of rather widespread occurrence beneath most of the coal seams. East of the Wabash the thickest beds known are at Princeton, where they have been penetrated by several borings and by one shaft
sunk through the coals. Below the higher thin Pato
coals is a bed 1 to 7 feet in thickness, the upper half of which is said to be of excellent quality for terra cotta and similar products. A second bed, a tough, plastic fire clay 1 to 3 feet in thickness, and appearing to possess high refractory properties, is sometimes found below the Millersburg coal. .Thre miles east of Princeton, along Indian Creek, an under clay, 4 feet in thickness, outcrops beneath a vein of coal, and $1 \frac{1}{2}$ miles north of town is an outcrop 4 feet in thickness. Both these clays are said to be of high refractory quality, and have been used locally in making fire brick for furnaces and kilns near Princeton.
At the southeastern edge of the quadrangle the Evansville mines show fire clays beneath both coal beds. That below the worked or Petersburg seam
is said to be of quality similar to the clay associated is said to be of quality similar to the clay associated with the same bed at Princeton. It contains some yrites, which can be easily removed, but is not of so good quality as that below the Millersburg coal reported in a number of deep wells 1 have been Coported in a number of deep wells. At Mount howing a thickness of 9 feet being foud, 49 feet below the surface, one of 3 feet 10 inches 62 feet, one of 4 feet 2 inches at 154 feet and above 7 inches of coal, and one of 3 feet directly below the same coal. The coal outcropping along benpas Creek, between Grayville and Cowling, is
Bond underlain by a light-gray fire clay, and in Crawfish Creek, sec. 5, T. 1 S., R. 12 W., a bed 4 feet thick and of good quality is reported.
Chays other than fire clays.-Clays useful in the manufacture of common building brick and drain tile are of wide distribution and are worked at a number of points. The most valuable
consist of loess and of argillaceous shale.
The shales, known locally as "soapstone," are abundant throughout the quadrangle. The colors vary from blue to buff. They are often almost free from grit and where weathered are soft and soapy, although in fresh exposures they may be firm and hard. The largest pit is operated by the Evansville Pressed Brick Company, and is situated just north of Pigeon Creek on the State road, where the following beds are exposed: Loess, 15 feet; soft, drab argillaceous shale, 10 feet; blue
arenaceous shale, 10 feet; and sandstone (only top exposed). With the exception of three bands of kidney iron ore, each 2 inches in thickness, the entire argillaceous bed is excellent material. For making brick it is mixed with the overlying loess and enough argillaceous shate to form one-ifth of he whole, making a mixture with the composition analyses. It forms a valuable vitrified brick, which strong, tough, and non-absorbent.
An exposure along the roadbed of the Southern Railway southeast of Princeton gives the following section: Soil and loess, $12 \frac{1}{\frac{1}{2}}$ feet; sandstone 6 feet; gray argillaceous shale, 8 feet. The analysis accompaning given in the seo suality for paving brick. Aside from the two instances mentiened, shale is not known to have been used in the quadrangle.
A number of pits in the loess now furnish brick clay of good quality. Two of these are located at Princeton, two at Mount Carmel, and one each at Owensville, Haubstadt, Cynthiana, and Poseyville. At Evansville, just outside the limits of the quadrangle, a score or more pits are worked. All the companies make soft mud brick, and occasionally small outputs of tile are reported. The plants generally run only five or six months of the year, and the entire production is usually retailed within a few miles of the kilns. The red type of loess throughout the quadrangle is thought to be of fair quality for making ordinary brick.
At Princeton, in the south western part of town,
there is a large yard where the following section there is a large yard where the following section has been opened: Loess, 10 to 15 feet; red pebbly till, 10 feet; buff stratified sand, 10 feet. The loess in this pit is a good brick clay, and the underlying bed furmishes sand for the molds. The annual output of bricks is said to average 700,000 , of which about one-third is shipped out of town. No analysis of the clay from this locality has been position of the loess at an opening in southeastern
${ }^{1}$ Worthen, Report on the Economical Geology of Illinois

Princeton, indicating a very pure clay, with a \mid buff in color, though gray, or even nearly white remarkably low percentage of lime. The only types are noted. Brownish, reddish, and purplish ther yard at Princeton is located near the junction tints are frequently present as the result of weath the railroads, 1 mile northwest of the center of e town.
an owensville use解 Till grade. At Fort Branch are the works of 5r Pope, were tile has been manuactured for buas, but only since 1902 has the production as entirely in the leted. The pit when visited Wehler, one-balf loess. The works of George Wehter, one-half mile west of Haubstadt, have
produced common brick for several years, the Ttput being reported to average 500,000 a year The clay bank is about 7 feet in depth, and as th mix material from the upper and lower portions of he bed to produce a brick that will per portions Cynthiana brick a brick that will not crack. A yany yars but making has been carried on for that years, but the only plant now running is about 700,000 bricks and 3000 to 4000 rods of tile in a year The maximim depth of this pit 8 feet. To obtain the best consistency the materials from. all parts of the bed from top to material mixed. Fairchild's tile and brick works, $1 \frac{1}{2}$ miles southeast of Poseyville have been operated for over 30 years. The loess is here less than 5 feet thick and rather sandy. Three miles northeast of Inglefield is a loess pit which formerly produced good clay but which has not been worked for many years. At New Harmony there has been a small brick industry for many years, the clay coming from alluvium on the upper portion of the flood plain north of the town, at the works of George B. Beale. The pit is 8 feet deep; the top is a tender clay, which is mixed with one-fifth part of the underlying terrace sand to make it suitable for
The only one of the numerous plants at Evans ville which comes within the limits of the Patoka quadrangle is that of Henry Alexander, on First avenue, north of Pigeon Creek. The pit is 4 feet in depth and the loess is toughest near the bottom About 600,000 bricks are made annually.
Till is not known to have been used in the quadrangle for the manufacture of brick, and although the more clayey forms are often suitable for making a fair grade of brick, the superior quality of
material. ints are frequently present as the result of weath ering. Outcrops are especially numerous east of St. Joseph and Armstrong. Fine exposures occu in the railroad cut near Inglefield, at a place 1 mile ortheast of St. Joseph, and in many of the avines between Inglefield and St. Joseph. Th andstone has been quarried on a small seale eas of Inglefield and east of Wadesville. The rock is usually very soft on quarrying, but hardens somewhat on exposure. Long continued exposure to the weather, however, frequently causes it to scale or even completely disintegrate, making it undesir le for important structures.
The sandstone over the Parker coal is a clifflayng sandsone, and outcrops in the Gordon and laypole hills, and at Grand Rapids, Hanging ock, and Skelton Clif. It is an even-graine are, but like the Inglefeld, seal or appear exposure. I the Inglefiel, scales or crumbles on rorthern end of Godon Hills for the pien he Southern Piluay bridge at Mount Capel, but he stone was found to seale badly and it beam ecessary to cover it with a protecting coating of ement. The same sandstone was also used in the onstruction of a dam at Grand Rapid
The sandstone oyer the Friendsville
The sandstone over the Friendsville coal is a the lower end of the "cut off" near New Harmony, at points northeast of this town, and along McAdoo Creek. In the northern half of the quadrangle the sandstone is found just over the riendsville coal. It is gray to buff in color, and in the southern half of the area frequently shows ementation by crystalline calcite. It has been puarried at several points, and has been used by the Illinois Central Railroad in some of its bridges and in the levee along the bayou.
Thick sandstones outcrop in the hills southeast Hazleton, but in general are too soft to be of use, though certain layers are sometimes worked for local supplies. At Townsend's quarry, 3 mile northeast of Princeton, a gray stone of fair quality is taken out in some amounts. Both probably belong to the Inglefield formation. Sandstone was formerly taken from the river bed at Rochester and between Rochester and Mount Carmel. A higher adste, of the Walash formation, is quarrie 2 miles north of Gards Point, in the northern por tion of the quadrangle.

Analyses of brick elays.

Constituent.	$\underset{\text { (shanansilies }}{\substack{\text { End } \\ \text { (hases) }}}$		$\begin{gathered} \text { rinineton } \\ \text { (anate) } \end{gathered}$		$\underset{\substack{\text { Priniocton } \\ \text { ciness). }}}{\text { IIt }}$
Clay base and sand:			62.04		71.2
Silica ($\mathrm{SiO}_{\mathrm{z}}$) $\ldots \ldots$	65.87	46.10		43.58	
Insoluble silica					
Titanium oxide (TiO_{3}).	$\begin{array}{r} 1.10 \\ 14.66 \end{array}$		1.30		18.56
Alumina $\left(\mathrm{Al}_{5} \mathrm{O}_{3}\right) \ldots$		2.63	18.49	3.70	
Insoluble alumina					
Water (combined).	4.59		6.50		6.30
Fluxes:					
Ferric oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$).	6.23		7.54		$\begin{array}{r}1.34 \\ \text { 1. } \\ \hline 15\end{array}$
Ferrous oxide ($\left.\mathrm{Fe}_{2} \mathrm{O}\right)$.	$\begin{array}{r}1.37 \\ .39 \\ \hline\end{array}$ 06	\ldots	
Lime (CaO)......	 14
Magnesia (MgO) .	${ }^{1.54}$. 91		: 52
Potash ($\mathrm{K}_{\mathrm{r}} \mathrm{O}$) \ldots	2.66	1.21	. 93		
Insoluble potash					
Soda ($\mathrm{Na}_{2} \mathrm{O}$).	1.30	2.04		1.26
Total.	$\begin{aligned} & 99.72 \\ & 866.22 \\ & . \\ & .13 .50 \end{aligned}$	49.94	99.97 87.33 12.64	47.28	$\begin{gathered} 100.59 \\ 96.86 \\ 3.73 \end{gathered}$
Total clay base, sand, ete					
Total fluxes.					

buiding stone.

Sandstone.-There are three general horizons of sandstone in the Patoka quadrangle. The first, which includes the sandstones of the Inglefield formation, is the most important, though the secon and third, the sandstones over the Parker and Friendsville coals in the Wabash formation, are trongly developed in many places.
The sandstones of the Inglefield horizon occur mainly in the lower half of the formation, the beds, which include a few thin partings of shale, sometimes reaching, as in the bluffs in the valley east of St. Joseph, an aggregate thickness of more van due to weare marked by he presence of

Limestone.-There are three rather persistent limestones within the limits of the quadrangle: (1) in the Somerville formation, (2) over the Parker coal, and (3) over the Aldrich coal. Neither of these is everywhere uniform in lithologic character, each varying from light-gray shaly forms through darker gray fossiliferous varieties into compact and almos black types. The portions of the outcrops of the three beds that lie outside the boundary of the gla cial drift are shown on the geologic map. Inside This boundary they are difficult to trace.
The limestone in the Somerville formation is the only one that has been quarried to any extent Near the eastern edge of the quadrangle the limelass 10 feet thick, and equared by geraly f 10 fle A il
imestone appears to occur as a single bed, with a hickness of 10 or 12 feet, and still farther west and also farther north it is 5 or 6 feet thick. The limestone has been used mainly as road metal, quarried for use in rough masonry. A large number of puarries were formerly worked about Evansville, and small quarries have been worke franser north, especially near Kasson, Stase, Kratzville, and Inglefield.
The limestone over the Parker coal is from 2 to feet thick and was formerly worked for road metal 2 miles southeast of St. Wendells. It has also been quarried 2 miles south of Armstrong. The Aldrich bed runs from 2 to 6 feet in thickness, and has been quarried in the past at several points
south of Big Creek. Neither of the limestones are worked at present.
A limestone, possibly that of the Somerville fornation, occurs near the level of the valley floor of the tributaries of the Patoka River northeas of Princeton, and is reported beneath the sandstone at Townsend's quarry. A limestone is frequently found with the Friendsville coal, but it outcrop only for short distances near Friendsville. There are also numerous thin limestones of local occurrence, but they are generally too thin to be of value though beds have been opened near Rochester north of Mount Carmel, and at a number of other points.

gravel and sand.

Gravel is found at slight depths at many points on the Wabash and White river flood plains, and occasionally forms the surface layer. In a few instances it has been hauled for short distances an of it. of it.
Sands are found at many points on the Wabash and White river bottoms, and in the sand hills (old dunes) along the east side of the Wabash burg, McClearys Bluff, and Cowling on the west side. As a rule no use is made of this sand, though there are two large pits west of Princeton where considerable quantities have been taken out for use in mortar and for other purposes in that city. Small quantities are also occasionally used in sanding the molds, or mixed with the clay at the various brick yards.

sous.

The region in which the Patoka quadrangle is situated is primarily an agricultural one, and contains some of the best agricultural land of the two States. The staple products are corn, wheat, hay, and watermelons. Sorghum, broom corn, and tobaceo are raised in limited amounts. Artificial fertilizers are seldom used. Fruit is grown to only a limited extent, though many varieties do well. Apples, peaches, pears, plums, and grapes are
raised. The
The soils of the Patoka quadrangle may be divided into nine very distinct classes, shown in
the first column of the accompanying table, which gives the types recognized by the United States physical and chemi may be still further subdivided. These subdivisions, which are the results of detailed studies by Mr. H. W. Marean of the Bureau of Soils of the United States Department of Agriculture, are given in the second column. The third column states briefly their occurrence in relation to the geologic formations and surface deposits shown on the accompanying geologic map. The mechanical analyses and many of the details in the following analyses and many of the details in the following
description as to the productiveness are the results of the careful examination by the Bureau of Soils. Residual soils.-Although the rock underlies the loess and drift at very moderate depths over the larger part of the uplands, it has been removed only on the steep bluffs and the sides of the sharper ravines. The soils of this type are usually stony sandstone fragments predominating, though oceasional shale soils were noted. The slopes on which they occur are generally too steep for cultivation and are covered with moderate growths of timber. Drift soils.-As in the case of the residuary soils, it is only where the slope of the land is so steep that the coating of loess has been removed that the drift soils are found at the surface. The soils are generally sandy or even gravelly, but clayey types are not uncommon. Because of their limitation to steep bluffs and the sides of ravines they are never cultivated, but are generally imbered.
Common loess soils.-The common loess forms the immediate surface over the entire quadrangle, except on the river and stream flats and over the borders of the Wabash Valley. It is generally of a light-buff to reddish-brown color, though becom-
Mechanical analyses of loess soils from a point 1 mile north
of Mount Vernon, Posey County, Ind.

ing pale at times. The upper 9 inches is usually fairly open, but below the limit it is more plastic, enacious, and clayey. Under cultivation it becomes ashy gray in color. The materials of the loess were originally derived from diverse materials that were scattered over wide areas and it thus contains all the essential ingredients of an unusually fertile soil. It gives good yields of corn, whea, clover, timothy, and would probably make good Soils of Patoka quadrangle.

Descriptive Trkus Uskd is Turs Folio.		', Agooogic Eequvansasts.
Residual soils.		Steep slopes of Carboniferous deposits.
Drift soils.		Steep slopes of morainal deposits.
Common loess soils.		Common loess.
Marlloess soils.	.	Marl-loess.
Sand-hill soils.	Miami sand.	Earlier and later dune sands and Wisconsin terrace deposits (in part).
River sands and gravels.	Miami sandy loam. Yazoo sandy loam (in part).	Wisconsin terrace deposits (in part) and upper and lower flood-plain deposits (in part) Natural levees.
River silts.	Yazoo sandy loam (in part) Yazoo loam. Yazoo clay. Yazoo clay.	Upper and lower flood plain deposits (in part).
Lake and subordinate stream silts.	Memphis silt loam (stream)	Older stream silts.
	Waverly silt loam (lake or swamp).	Glacial lake deposits (in part).
Swamp deposits.	Griffn clay.	Abandoned channel deposits. Swamp deposits.

garden vegetables are raised. The average yield of wheat is said to be about 20 bushels and of corn
from 35 to 40 bushels per acre. The accompanying mechanical analyses by the Bureau of Soils indicate the physical character of the soil.

parle the soil.

elts, one on lions soils lie in two They do not occur over the entire areash Valley mari-loess, but only along the edges of the belts next the river the remaining portions being covered with common loess. In color the marl-loess is a pale yellow or straw color. It is also in somewhat marked contrast with the loess of the common type in composition, frequently carrying 5 per cent or more of CaCO_{3}, while the latter generally contains less than 1 per cent. It weathers to a deep reddish brown and frequently shows abundant lime, even at the immediate surface, while in the common type the lime is rarely present at the surface. Its soil is superior to that of the common loess, with which it is sometimes mixed as a fertilizer, with some success. The following analysis, taken from the Thirteenth Annual Report of the Indiana Geological Survey (p. 46), gives a fair idea of its character:

Conssituent.	\triangle mount.
Combined moisture	1.35
Soluble organic matter.	30
Insoluble silicates.	73.30
Carbonic acid.	10.00
Lime	6.80
Magnesia	3.7
Alumina and peroxide of iron	2.80
Chlorine	12
Loess and alkalies.	1.55
Tot	100.00

Sand-hill soils.--The sand hills of the quadrangle are of two types, the first including the relatively fine white sands extending from Keensburg westward to Bonpas Creek, and the second embracing the wider interrupted belt of coarse sands extending along the eastern border of the Wabash
flats from of the quadrangle. In to the southwestern these sand hils are so porous and are so well drained that they are poorly adapted to general farm crops, but large quantities of watermelons are grown, 500 to 1000 car loads being shipped annually from Posey County. Stock peas are raised in small amounts and wheat does well if it follows melons in rotation, Mr. H. W. Marean, of the Bureau of Soils, believes that alfalfa might profitably be introduced.
River sands and gravels.-In this class are included the areas of coarser materials of both the lower and upper levels of the Wabash and White
River flats. These areas, being limited to original River flats. These areas, being limited to original depositional elevations, are of slight extent as compared with the areas of fine silts filling the intermediate depressions. In general the soils consist of buff sandy or gravelly loams which nearly always contain considerable quantities of fine silts. and in places are mixed with considerable quantities of vegetable matter, giving almost black colors. In general the sandy soils are most common near the immediate banks of the rivers, where addition are constantly being made by overflow or through the action of wind.
will yield an portions of the sand and gravel flats will yield an average of 25 bushels of wheat per acre, and will afford good crops of clover or timothy The sandier upper portions in places yield good crops of melons.
crops of melons.
River sitts.-By the term river silts is meant those finer deposits which have been mentioned as occupying the original depressions of the Wabash and White river flats. The material is largely what may be termed a coarse silt. While much finer than the sand of the preceding class of soils, it is coarser than the clayey silts of the smaller particles which, as compared with those of the clay soils, are only moderately weathered. They constitute, next to the loess, the most important soils of the quadrangle, comprising the larger portion of the Wabash and White river flood plains. Owing to the very recent drainage of much of the area of
the flats, large tracts are still timbered. The cleared areas produce large crops of corn, averag-
ing 45 bushels per acre. The lower portions, next the river, are subject to annual overflow and are never troubled with drought. They include some of the best corn lands in Indiana and Illinois.
An analysis of the river silts near Mount Vernon shows 2.42 per cent of organic matter, 66.70 per cent of silt from .05 to .005 millimeters, and 28.42 per cent from .005 to .0001 millimeters in diameter This soil is frequently underlain by a gravel layer which is of great assistance in draining.
Lake and subordinate stream silts.-This class embraces the silt deposits of all streams except the Wabash and White rivers and the broad drift flats marking the old lake beds. Most of the material is derived from the erosion and redeposition of the Toess and is therefore exceedingly fine and clayey. The material is generally strongly weathered and leached of its lime. The stream silts are generally overflowed annually and are frequently wet droughout the year in places. Where artificial
drot been established the old lake flat are also very not been established the old lake flat 50 bushels per acre in places. Good crops of grass can also be grown.
In the class of subordinate stream silts may also be included the clayey soils of some of the low terraces bordering many of the streams of the quadrangle, especially in the southern half.
Swamp deposits.-In this class are included the black silts, mucks, and peaty deposits that occur in the various depressions of the flood plains and on the broad drift flats. The depressions of the flood plains are of two types, the broad, shallow depres sions, representing incomplete upbuilding of the plains, and the rona ways and abandoned stream channels. The broader depres
 ordinary river sils, which are washed in at time of leaf mold te, siving a black color to the whole Occasional cypress ponds and swamps, in which the accumulations are almost entirely of vegetable matter, are found on the Wabash flats especiall northeast of Mount Carmel, on the Indiana side of the Wabash. The bayous are generally filled with the Wabash. The bayous are generally filled with
silts mixed with large quantities of leaves, logs, ete Many depressions in the surface of the drift flats marking the beds of the old glacial lakes have been occupied by shallow water bodies even up to within the memory of many of the present inhabitants The soil of these portions consists of a black muck containing more or less silt washed in from the surrounding areas. The soil is very fertile and after drainage yields as high as 50 bushels of corn, 25 bushels of wheat, $1 \frac{1}{2}$ to 2 tons of clover, or $1 \frac{1}{2}$ ton of timothy to the acre. The higher portions of the flats are characterized by the redeposited loess soil. of the previous class.
reclamation of bottom lands.
Ditches.-One of the notable features of the surface of the quadrangle is the existence of numerous wide flats bordering the present rivers and large creeks and also occupying areas that are supposed to have once 'contained the larger lakes, such as those north of the Patoka River, southwest of Princeton, east of Cynthiana, and about Poseyville. The flats of both types originally included extensive undrained areas, shallow lakes of considerable size remaining in the depressions throughout the year, even within the memory of many of the present and especially during the last dy years, however, ditchecialy dung the numerou dries have beon dog and the lake areas lave bee drained, are raised wer, though lene stood. Eve Wabash flats, have drained by the MeCar Blair, Stumkle, and other la ge buitty, county aid within the duadrange are yet to be rectom land agricultural purposes. These undrained areas support a heavy growth of timber, which is now being rapidly cut off both by lumbermen and farmers Dikes.-The lowlands along the Wabash an White rivers are protected in some places from the scour of the overflowing waters in times of flood by systems of dikes or levees. The most important of these are located near Grayville, one on each side of the river. The one on the south extends along the neck inclosed by the sharp loop of the river on which Grayville is located and has doubtless been
of importance in delaying the formation of a cut-
off at this point. The second dike extends along $\begin{aligned} & \text { As many as forty or fifty species of trees may be } \\ & \text { found in a single } 50 \text {-acre lot, and very seldom does }\end{aligned}$ off at this point. The second dike extends along the west bank of the river from a point about
mile south of Cowling to the southern portion of the area in the southward loop east of Grayville.
forest resources.
Originally the forest lands of the Patoka quadrangle consisted of two well-defined types: (1) The heavily timbered bottoms of the rivers and larger streams, and (2) the more thinly forested areas interspersed with open prairies of the uplands. Since the settlement of the country, early in the century, great inroads have been made into the
forested areas of the bottoms, especially since

This featur species predominate over all the others. of the fore has done much toward the preservation of corests, the lumbermen in many instances greatest value at the time. Rankness of growth is especially marked in the abandoned channels and in partially filled bayous. Grape vines up to 32 inches, trumpet vines up to 38 inches in circumference, and immense cross vines are found pendant from or clinging to sycamore and other trees from 5 to 10 feet in diameter, while the smaller vines frequently form impenetrable networks. Although

The accompanying table gives a list of the principal trees of the quadrangle. Nearly all are of more less value for lumber. Originally the cottonmore were the principal trees, but there were a number of pecan, walnut, water oak, white oak, bur oak, white ash, poplar, cypress, and a lesser number of the other species. With the exception of the water oak, sweet gum, black or yellow gum, and the various hickories, a large proportion of the umber of value has been cut. The trees just mentioned, however, are still being cut for timber along the Wabash, important mills being located Mount Carmel and Grayville.

water supply.

Common name.	Specific name.	abitat.	$\begin{array}{\|c} \text { Maxi- } \\ \text { height. } \end{array}$			
Bald eyp	Taxodium distichum	Ponds of bottoms			Feet.	
Red juniper	Juniperus virginiana	Uplands.	75		5	R. R.
Butternut..	Juglans cinerea.	Upland hills	117			R. R.
Black walnut.	Juglans nigra	Upland hills.	155	74	22	J. s.
Peean	Hicoria pecan	Rich bottoms	175	${ }^{90}$	16	J. s.
Butternut	Hicoria minima	Bottoms	113			R. R.
Shagbark.	Hicoria ovata	Uplands	129			R. R.
Shellbark.	Hicoria laciniosa	Rich bottoms	119		8	J. S.
Mocker nut	Hicoria alba	Uplands.	112	55	10	J. s.
Pignut	Hicoria glabra.	Bottoms and w	120		$8 \frac{1}{8}$	J. s.
Small pignut	Hicoria odorata	Uplands.	134			R. R.
Black willow	Salix nigra	Streams and wet places.				J. S.
Longleaf willow	Salix fluviatilis	Lowlands.	70		$1{ }^{18}$	R. R .
Large-tooth aspen..	Populus grandidentata	Uplands	97		4	R. R.
Swamp cottonwood.	Populus heterophylla	About ponds				J. S.
Common cottonwood	Populus deltoides.	Along streams	170	75		J. S.
River bireh.	Betula nigra.	Uplands.	105			J. S.
Beech	Fagus atropunicea	Bottoms and along streams	122	10	11	J. s.
Chestrut	Castanea dentata.	Uplands.	100+			R. B .
White oak	Quercus alba	Uplands.	150	60		J. s .
Post oak.	Quercus minor	Uplands and prairies	103		10	J. S.
Bur oak	Quercus macroarpa	Bottoms.	165	72	22	J.s.
Overcup oak	Quercus lyrata	Bottoms along swamps.				R. B .
Chinquapin oak.	Quercus aeuminata	Bottoms and stream banks				J. S.
Swamp white oak.	Querens platanoides	Bottoms and about ponds	$100+$			R. R .
Cow oak.	Quercus michauxii	Bottoms and wet places	119		13	R. R .
Red oak.	Quercus rubra.	Along streams				R. R .
Scarlet oak.	Quercus coccinea	Drier bottoms and hills	181	94	20	J. s.
Yellow oak	Quercus velutina	Uplands and prairies	160		20	J. S.
Spanish oak	Quercus digitata	Uplands and barrens				R. R.
Pin oak.	Quercus palustris.	About swamps.		23	12	J.s.
Black jack	Quercus marilandica	Sand barrens				J. S.
Water oak.	Quercus nigra		${ }^{65}$		${ }^{3!}$	R. R.
Shingle oak.	Quercus imbriearia.	Wet swamps	100			R. R.
Slippery elm.	Ulmus pubescens.	Drier bottoms and uplands				J. s.
White elm.	Ulmus americana.	Uplands and drier bottoms.	119			R. R.
Wing elm.	Ulmus alata	Low rich lands.				J. S.
Hackberry	Celtis occidentalis	Bottoms and along stream				J. S.
Sugarberry	Celtis mississippiensis	Bottoms and about ponds	$100+$			R. R.
Mulberry ...	Morus rubra	Drier bottoms and uplands		20	10	J.S.
Cueumber tree	Magnolia aeuminata.	Along Sugar Creek..				R. R.
Tulip tree.	Liriodendron talipifera	Uplands	190	91		J. S.
Papaw.	Asimina triloba.	Uplands and bottom lands				R. R.
Sassafras	Sassafras sassafras	Drier bottoms and uplands	95			J. S.
Sweet gam.	Liquidambar styracillua	Bottoms	164	80	17	J.
Syeamore.	Platanus oceidentalis.	Wet bottoms along stream	${ }^{176}$	68	${ }^{33}$	J. S.
Wild cherry	Prunus serotina.	Upland hills.	135			J. S.
Honey loenst.	Gleditsia triacanthos	Upland hills	156	61		J.
Water locust.	Gleditsia aquatica.					R.R.
Coffee-tree.	Gywnocladus dioicus.	About swamps.	129			J. S.
Locust.	Robinia psendacacia.	Uplands.	${ }^{95}$		${ }^{11} \frac{1}{3}$	R. R.
Sugar maple.	Acer saccharum .	Uplands	118	60	12	
Black maple.	Acer saceharum nigrum	Uplands.				J. S.
Silver maple.	Acer saccharinum	Bottoms.	118			R. R.
Red maple...	Acer rubrum	Bottoms	108			J. S.
Boxelder.	Acer negundo.	Uplands		60		R. R.
Ohio buckeye..	Aesenlus glabra	Uplands	${ }^{83}$			R. R.
Basswood..	Tilia americana.	Bottoms and along upland streams		50	94	J. S.
White basswood..	Tilia heterophylla.	Bottoms...				R. R.
Black gum	Nyssa biflora	Drier bottoms and uplands				J. S.
Persimmon	Diospyros virginiana	Drier bottoms and uplands	115	80	$5{ }_{5}$	J.s.
Blue ash.	Fraxinus quadrangulata	Drier bottoms.	124			R. R .
White a	Fraxinus americana	Uplands.	144	90	17	J. S
Red ash.	Fraxinus pennsylvanica	Low grounds.	${ }^{138}$		16	J. S.
Grreen ash .	Fraxinus laneeolata.	Bottoms and about ponds	$100+$			R. R .
Black ash..	Fraxinus nigra	Wet, mueky land......	${ }^{100+}$			R. R.
Hardy catalpa.......	Catalpa speciosa.	Uplands..............	101	48	6	J. S.

the opening of the drainage ditches of the last \mid cypress is probably the most noticeable of them all. decade. On the uplands, however, there has in It is limited in occurrence, so far as was seen, to the places been a rapid encroachment of young forests on uncultivated portions of the original prairie lands.
The most marked features of the forests are the absence of coniferous trees, the many species growing together, the great number of southern species,
and the rank growths of portions of the bottoms. Patoka.
cypress swamp just northeast of the junction of the White and Wabash rivers. Large trees formerly grew here, some of them measuring 22 feet or more in diameter above the basal swelling and 90 feet
high clear of branches, but most of the perfect trees high clear of branches, but most of the perfect tree have now been culled out. They are associat
with sweet gums and ashes of even greater size.
and Wabash deposits, contain relatively little water. usually good, but sometimes tastes strongly of sulThere is rarely a point, however, where wells do not oban a fair supply near the center of the val eys, although nearer the sides and in the smaller wells is less probable. The water level is not so near the surface as on the river flats. The quality of the water is generally good, though in some wells the supply is hard or even marked by the presence of iron sulphate. Logs of wood and coal beds (lignite) are frequently reported in the deeper wells. Some of the wells enter the rock.
Wells of the sand hills.-Nearly all of the water falling on the sand hills bordering the Wabash Valley sinks into the ground at once to the basal portion of the sand, where it meets the underlying impervious loess, which it follows until it reappears as springs along the base of the hills. Wells sometimes for the higher pertionsels on the underlying surface flwelb are man f the oudhill wells obtin their fupply from ond sing rocke from the derlying rocks
the old lake fats. - What is here termed old lake flats are those broad, flat areas such as occur southwest of Princeton, east of Cynthiana, south of Poseyville, and at other places, where deposits are supposed to have accumulated in
broad shallow lakes ponded in front of the ice broad shallow lakes ponded in front of the ice
margin when it occupied this region. As these margin when it occupied this region. As these materials were derived from a glacier that was near
at hand they are frequently rather coarse, but at other points may consist mainly of clay. In the lake flats southwest of Princeton wells obtain water from sand or gravels at 15 or 20 feet, on top of which rests an impervious clay bed. When this is penetrated the water sometimes rises rapidly in the wells to within 10 feet of the surface. The wells of the lake flats west of Cynthiana and about Poseyville are not uniformly successful, the materials penetrated consisting largely of clay. Many of the wells enter and derve their supplies from the underlying rock. The water of the flats is
usualy good, but sometimes tastes strongly of sul-
phate or phosphate of iron. Samples of the latter mineral (vivianite) were found in the gravel from one well.
Wells in the loess.-By loess is meant the more or less clayey silts which everywhere cover the uplands, whether the latter are of rock or of gravelly drift. As the loess is rarely over 20 feet and usually 10 feet or less in thickness, only the shallower wells derive their supplies from it. Although it undoubtedly holds large quantities of moisture, its clayey texture and the absence of sandy layers prevent the easy passage of water through it, and only in relatively rare instances does it furrish a considerable supply, the majority of the wells failing in years of drought. The marlloess, or the coarser and more calcareous type occurring along the east border of the Wabash Valley, is more porous, but does not usually hold water, except near its base. From this portion, however, loess is renerally hard, and sometimes contain sufficient magnesia to have a deleterious effect on health.
Wells in the drift.-Under this term is included those more or less sandy or gravelly materials supposed to have been deposited either directly by the ice or indirectly by streams leading away from its margin. The principal deposits of this type are those forming the moraines shown on the geologic map. The sloping plains leading eastward from to the vicinity of Port Gibson, near the eastern boundary of the quadrangle, are believed to have been deposited by streams flowing from the ice margin and are classed with the drift deposits. The composition of the deposits is far from uniform, and from this it follows that the water supply i very variable. While one well may yield an abundant supply another near-by well may be an utter failure. In general the higher and more rugged the drift hills the less will be the supply of water. Thus in the high drift hills between Patoka
and Hazelton water is rarely present, while in the
wash plains between Princeton and Fort Branch water is commonly obtained at a moderate depth except near the moraine, in the vicinity of whic matter (lignite) are reported in. Wood and coaly mater (lignte) are reported in many of the wells. tasting of water from the drift is hard, and wate uncommon.
Shallow rock wells.-Most of the upland wells, even when dug, enter the rock for short distances water generally being obtained in some one of th numerous sandstone beds. In many instances, however, the water does not occur throughout the neighboring wut only in rather definite channels, of supply. wells often varying greatly in amount in quality, The rock water is extremely variable of it is hard or is charg being excellent, while some impregnates chang where coal beds have the rock on narrow ridges or on the edge of steep bluffs are usually dry throughout several month in the year, and many of the shallow wells in other tuations are dry at times.
 frequent alternation, the sandstones sandstones in water bearing. Wells drilled to a depth of 200 feet usually obtain a satisfactory supply of water either from the sandstones or from beds associated with the coals or limestones. The water associated with the coal is likely to be charged with iron sulphate resulting from the decomposition of pyrite, while the water from the limestone and even some of that from the sandstone is hard. In many areas little but shale is encountered and no water is found even at considerable depths. This is especially true in the portion of the quadrangle lying within State of Illinois.
Notwithstanding the regular westerly dip of the rocks, which affords the structural conditions for
an artesian supply, very few of the wells flow. In
fact, no definite water horizons have been recognized. This is probably due to the well known
enticular and disconnected character of the beds of the Carboniferous series, few if any of the beds ble distances.
Among the few flowing wells the following ma be mentioned: (1) The Bixler well, about 5 mile southwest of Haubstad, which delivers good wate a height of 3 feet above surface, (2) the Sila Redmond well, east of Cynthiana, 80 feet deep, ostly through "blue mud," which obtains from quicksand water that rises $3^{\frac{1}{2}}$ feet above the surace; (3) a well 1 㝵 miles northeast of Poseyville, 126 feet deep, sunk through sand or gravel all the way, which finds water in gravel at 85 and 126 feet that flows out at the surface; (4) a well at the fot of the bluff south of the Wabash River, 2 niles north of Savah, drilled for coal, in which ater charge he surface.
Cisterns.-Because of the insufficiency of the apply derived from the shallow wells of the loess, drift, or rock, a supplementary supply consisting
of rainwater is frequently collected in cisterns. Many of the inhab years to rely on cisterns as the only souree of omestic water supply, numerous wells, becaus f improper location, have become bady contami ated from outhouses, barns, drains, etc Th mply furnished by the cisterns is rarely suffient however, for other than domestic uses, and wate for stock is often hauled from neighboring streams Artificial ponds. - Except the cypress pond occupying depressions at one or two points on the Wabash flats and the occasional bayous, neither of which are of importance as sources of water, no natural ponds occur in the area. The loess soil with which the larger part of the uplands is covered rather impervious, a fact that is taken advantag of many points by the construction of smal arial ponds, which furnish watering places for . The water in these ponds is, however, ver and is generally of inferior quality.

$\operatorname{COLUM} \mathbb{M} A \operatorname{ARCTIN}$

Svstra.	Names axd Symbos used im ruls Fono.			
Teptapr	River deposits (Eocene ?).	Tr		
	Wabash formation.	$\mathrm{cw}^{\text {c }}$		Coal Measures, Division IX, including Merom sandstone.
	Inglefield formation.	Ci_{i}	Inglefield sandstone.	
	Ditney formation.	$\mathrm{Cd}^{\text {d }}$	Ditney formation.	Coal Measures, Division VIII.
	Somerville fornation.	cs_{5}.	Somerville formation.	
	Millersburg formation.	cm	Millersburg formation.	Coal Measures, Division VII.

ILLUSTRATIDNS

indianaillinois

Fio. 8.-CHARACTERISTIC RECENT EROSION TOPOGRAPHY IN TILL. The illustration also shows nocent Enosio the light-col of in TILL. horizontal contact of til
underlying darker till

FIa. 9.-StRATIFICATION IN FOSSILIFEROUS MARL-LOESS, NEAR NEW
HARMONY, IND.

Fig. 10.-MARL-LOESS TERRACE OF MumFord hills, ind., from the
sOUTH.

Fig. 12.-stratification in the cater sand dunes near mount

FIG. 11.-SURFACE OF A MARL-LOEESS PLAIN SOUTH OF NEW

FIa. 13.-VIEW OF THE WABASH RIVER BED AT THE NEW HARMONY,
\qquad

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price.t\|	No.*	Name of folio.	State.	Price.t
			Cents.				Cents.
1	Livingston	Montana	25	53	Standingstone	Tennessee	25
2	Ringgold	Georgia-Tennessee	25	54	Tacoma	Washington	25
3	Placerville	California .	25	55	Fort Benton	Montana	25
$\ddagger 4$	Kingston	Tennessee	25	56	Little Belt Mountains	Montana	25
5	Sacramento	California	25	57	Telluride	Colorado	25
$\ddagger 6$	Chattanooga	Tennessee.	25	58	Elmoro	Colorado	25
$\ddagger 7$	Pikes Peak.	Golorado	25	59	Bristol	Virginia-Tennessee	25
8	Sewanee	Tennessee	25	60	La Plata	Colorado	25
$\ddagger 9$	Anthracite-Grested Butte	Colorado	50	61	Monterey	Virginia-West Virginia	25
10	Harpers Ferry	Va.-w. Va.-Md.	25	62	Menominee Special	Michigan	25
11	Jackson	California	25	63	Mother Lode District	California	50
12	Estillville	Va.-Ky.-Tenn.	25	64	Uvalde	Texas	25
13	Fredericksburg	Maryland-Virginia	25	65	Tintic Special	Utah	25
14	Staunton	Virginia-West Virginia	25	66	Colfax	California	25
15	Lassen Peak	California	25	67	Danville	Illinois-Indiana	25
16	Knoxville.	Tennessee-North Carolina	25	68	Walsenburg	Colorado	25
17	Marysville	California	25	69	Huntington.	West Virginia-Ohio	25
18	Smartsville	California	25	70	Washington.	D. C.-Va.-Md.	50
19	Stevenson	Ala.-Ga.-Tenn.	25	${ }^{71}$	Spanish Peaks	Colorado	25
20	Cleveland.	Tennessee	25	72	Charleston	West Virginia	25
21	Pikeville	Tennessee	25	73	Coos Bay	Oregon	25
22	McMinnville	Tennessee	25	74	Coalgate	Indian Territory	25
23	Nomini .	Maryland-Virginia	25	75	Maynardville	Tennessee	25
24	Three Forks	Montana	50	76	Austin	Texas	25
25	Loudon.	Tennessee	25	${ }^{77}$	Raleigh	West Virginia	25
26	Pocahontas	Virginia-West Virginia	25	78	Rome	Georgia-Alabama	25
27	Morristown	Tennessee	25	79	Atoka	Indian Territory	25
28	Piedmont.	Maryland-West Virginia	25	80	Norfolk	Virginia-North Carolina	25
29	Nevada City Special	California	50	81	Chicago	Illinois-Indiana	50
30	Yellowstone National Park	Wyoming	75	82	Masontown-Uniontown	Pennsylvania.	25
31	Pyramid Peak	California.	25	83	New York City	New York-New Jersey	50
32	Franklin	Virginia-West Virginia	25	84	Ditney	Indiana	25
33	Briceville. .	Tennessee	25	85	Oelrichs	South Dakota-Nebraska	25
34	Buckhannon	West Virginia	25	86	Ellensburg	Washington.	25
35	Gadsden	Alabama	25	87	Camp Clarke	Nebraska	25
36	Pueblo	Colorado	50	88	Scotts Bluff	Nebraska	25
37	Downieville.	Califomia	25	89	Port Orford	Oregon	25
38	Butte Special	Montana	50	90	Cranberry	North Carolina-Tennessee	25
39	Truckee	California	25	91	Hartville	Wyoming	25
40	Wartburg	Tennessee	25	92	Gaines	Pennsylvania-New York	25
41	Sonora	California	25	93	Elkland-Tioga	Pennsylvania.	25
42	Nueces	Texas	25	94	Brownsville-Connellsville	Pennsylvania.	25
43	Bidwell Bar	California	25	95	Columbia	Tennessee	25
44	Tazewell	Virginia-West Virginia	25	96	Olivet	South Dakota	25
45	Boise	Idaho	25	97	Parker	South Dakota	25
46	Richmond	Kentucky	25	98	Tishomingo	Indian Territory.	25
47	London.	Kentucky	25	99	Mitchell	South Dakota.	25
48	Tenmile District Special	Colorado	25	100	Alexandria	South Dakota.	25
49	Roseburg	Oregon	25	102	Indiana	Pennsylvania	25
50	Holyoke	Mass.-Conn.	50	103	Nampa	Idaho-Oregon	25
51	Big Trees Absaroka	California: Wyoming .	25 25	104 105	Silver City Patoka.	Idaho Indiana-Ilinois	25 25
52	Absaroka	Wyoming	25	105	Patoka	Indiana--llinois	25

* Order by number
+ Payment must be
\ddagger Payment must be made by money order or in cash.
Circulars shat of stock.
别 on application to the Director, United States Geeological Survey, Washington, D. C.

