UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

GEOLOGIC ATLAS or ftr

UNITED STATES

SILVER CITY FOLIO

IDAHO

UMV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, called folics. Each folio includes a topograph ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outine or for or all slopes, and to line the hrol in lation evel, the altitudinal intercal represented by the ewl, betwen lines being the each map. These lines are called contours, and the uiform altitudinal space between each two con ours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

. The sketch represents a river valley between two iills. In the foreground is the sea, with a ba which is partly closed by a hooked sand bar. each side of the valley is a terrace. From the from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , evel. Along 200 feet, and so on, above mean se of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet fallis just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet sur ounds it. In this fir numbered, and those for 250 and 500 feet a accented the contours, and then the accentuating and numbering of certain fon them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The mallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping greal For int liste rlif contour intervals of 10,20, 55,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, draw to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. would be represented by a hinear inch on the
This relation between distance in nature and corresponding distance on the map is called the scale The scale. In this case it is mo mile to and. The scale may be expressa a a thaction of which the numar the rength on the map nature expressed in the same unit Thus, as the nawe exp inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{63,360}$
an inch" is expressed by $\frac{1.350}{6,36}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{1230}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree-i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { isw,w }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { tasivile }}$ contains one-sixteenth of a square degree. he are of the corresponding quadrangls. Tha 20 square
a chats on one map lines Unted States, disregard political boundar hips To eab shet, to the quadrangle it represents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.-On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the nailways, preliminary surveys in locating ditch provide educational material for schools and home; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igne netamorphic
Igneous rocks.-These are rocks which have oldated from a state of fusio rom time to time been molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these hannels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thiñ, and laccoliths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in tially crystalline condition in more often, a par tialy cysur fully olline in but are the tor ions. The bers por Explow are usu, pries voleanio eruptions cancing ejections of dut ash, and larger fragents. These material whe consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have bee ried to a different place and deposited.
The chief agent of transportation of rock débris i ater in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gra are then said to be mechanical. Such dated into sond, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. wind; and liol The mot chareterstic of the wind-borne or deposits is loess, a fine-orainel euth; the most char deposits is loes, a ine-g.ite ill, he most charmixture of bowlders and pebbles with clay or sad. Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and ocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Their upper pars, whor anally disting sol by sums, the solls being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism he substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single puart iss. Such changes transform sudify other rocks in various ways.

From time to time in geologic history and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately paralle, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formahons. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by dependrary line, and in some cases the distinction An ins almost entirely on the contained fossils. in ormation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having common haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

hges of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by observing their positions. This relationship holds except in regions of intense disturbance; in such except in regions of intense disturbance; in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which hey are found. Onher types passed on from period to period, and thus linked the systems together, forsio a chan from the time of the old other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be
arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color color assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. T'opographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava streall, and (soranes (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of àny colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal
geology, thus printed, affords a subdued backgeology, thus printed, affords a subdued backtions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features.

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

ing a vertical seetio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes are generally used in sections to represent th commoner kinds of rock:

Schists.

Massive and bedded igneous rocks.

Fig. 3.-Symbol sections to
of rocks.
The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the secsion to correspond to the outcrops of a bed of sand of this bed form the surface. The uptuned valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past each other. Such breaks are termed faults. Two each other. Such oreaks are terme
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is omposed of schists which are trayersed by masses and their much contorted
 ons of strata, showing
and (b) a $t h r u s t ~ f a u l t . ~$
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underying formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an uncon formable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 ground along the section line, and the depth from he surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents
summary of the facts relating to the characte of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE SILVER CITY QUADRANGLE

By Waldemar Lindgren and N. F. Drake.

gEOGRAPHY.

Location and area.-The Silver City quadrangle situated in the southwestern part of Idaho, south of the Snake River Plains, close to the Oregon boundary line. It lies between meridians $116^{\circ} 30$ 30 north latitude. It is $34 \frac{1}{2}$ miles (55.75 kil meters) in length and $25 \pm$ miles (41 kilometers) in average width, and covers an area of 870.90 square miles. Most of it is in the northwestern part of Owyhee County, but the triangle northeast of Snake River embraces a part of Canyon County and a small portion of Ada County.
Relief.-This quadrangle includes the norther end of the Owyhee Range and a part of the slopng and dissected high plains bordering it on the east and west. It also includes, in its northeastern part, a small fraction of the Snake River Plains, The Owyhee Range extends across the quadrangle from its hirst foothls on the north down to the ouncrind boury he. Beyond his it widen, ens eastward, and becomes less clearly defined Along the southern border the mountains exten hort and northwest they give towa the lower ridge, so that in the northwest corner they re only from 6 to 7 miles wide and baver reon of about 4000 feet Thave an el points of the rance are Florida, War Firle, Cinnabar mountains, which have an elevation of about 8000 feet. All of these are near the south about 8000 feet. All of these are near the southlimits of the map. The lowest point, 2200 feet in limits of the map. The lowest point, 2200 feet in
elevation, is found where Snake River leaves the northern boundary line.
The topographic forms are complex, for the ange is built up of igneous rocks of varying character and different ages. In general; the large idges and depressions extend from north to south, while the minor topographic features are likely to be very irregular. The oldest rock, the granite, distinguished by deeply eroded gulches and high idges, the rhyolite presents rough plateaus, and he basalt is characterized by shorter north-south ridges and broken table-lands.
About the center of this mountain group, at a levation of 4000 feet, is a little valley-the valle of Reynolds Creek-about 4 miles wide at it widest part and 5 miles long, drained through arrow, deep canyon on the north side of the asin. This valley probably had its origin in the damming of an old watercourse by rhyolite and basalt flows. Narrow terraces and bottom lands excavated below the general level of the Snake River Plains lie along Snake River, and the northeastern bank of the stream is marked by a luff 500 feet high, from the edge of which the f 2700 feet far beyond the limits of this位 angle. Above these desolate plains a few basaltic e for the Sinat Pi. he cast in broad ridge trated by hallow extend in broad ridges separated by shallow and 3300 feet near the river these plains oradually rise 4100 feet at the base of the mountains near the outheastern corner of the quadrangle A strip of higher plateau, deeply dissected by Succor Creek buts acainst the mountains along the middle half of the western boundary of the quadrangle. Thes igh plains continue far westward into Orego toward the Mahogany and Cedar mountains, with gradually decreasing elevation
Drainage.-Snake River, which pursues an most straight course across the northeastern part of the quadrangle, receives the drainage of nearl the entire area. It is a large stream, carrying an mount of water probably varying between 8000 and 40,000 second-feet, the highest stage bein sually attained in June and the lowest some time
mile. It flows in a well-defined channel between banks ranging in height from 10 to 30 feet and is apparently still eroding its channel. Near Guffey emerges from a sharply cut canyon in basalt and lake beds. Its course through this quadrangle is the open and becomes still more so north ward, flood time the water is turbid, but ordinarily it ha bright-green color, due to fine, suspended sediments.
The drainage from the central part of the Owy hee Mountains finds its way northward through Reynolds Creek to Snake River. Near its head this creek flows through a deep valley that has harply incised laterals, then through the open basin mentioned above, and finally through a narow canyon opening a few miles from Snake River into the level terrace deposits of that stream. The eastern slope of the range is drained by Rabbit nd Sinker creeks, tributaries to Snake River. These run first in deep canyons cut into the granite core of the range, then, in a northeasterly The norm holite plan. scine by he Snale Piver near the north wo enpties in f the u drangle. The wide of the of quadrang which have cut deeply into the heart of the high asaltic areas This creek empties into Suak River in the Nampa quadrangle.
The mining districts near Silver City, in the suthern part of the quadrangle are drained by Jordan Creek, a stream that extends south and west of the quadrangle and empties into Owyhee River, which, after a long westward detour in Oregon, finally joins Snake River opposite the mouth of the Boise.
Cow Creek, draining westward from near De Lamar, is the only stream in the area which does eries of small lakes a few miles west of the Orego boundary line.
Nearly all of these drainage lines, including nake River, are of recent origin and were formed ver the sloping lava flows and the old lake bot oms. In some places they have cut through these and excavated canyons in the underlying granite. It is possible, however, that the upper parts of ordan and Sinker creeks may belong to an older pre-Miocene drainage system which has been
largely obliterated by the overwhelming lava flows. argely obliterated by the overwhelming lava flows. Climate.-That part of the quadrangle over which the Snake River Plains extend has the hot nd arid climate characteristic of this region. The emperature rarely falls below zero in winter but now falls during the winter. The $100^{\circ} \mathrm{F}$. But little now fals during the 14 ine the and meteoroly abl stations in this rer as re aral figures e long periods during the winter on the higher long periods during
At Silver City, which lies at an altitude of ove 6000 feet, the winters are very severe; the snowfall heavy and strong winds drift the snow into deep very difficult to keep the roads open. The summers are comparatively warm and dry, though even then occasional showers occur Large snow banks frequently remain throuchout the summer on the eastern side of Florida and War Eagle mountains.
Vegetation.-The Snake River Plains and the higher plateaus on the western and eastern sides of the quadrangle are exceedingly arid and are coyered with a scanty growth of sagebrush and other desert plants. Along Snake River the country is especially barren, and long ridges of bare white or gray lake beds rise with almost blinding glare above the sagebrush-covered lower plain. The
narrow bands of black basalt exposed in the bluffs on the north side of the river contrast vividly with the light-colored sediments and produce a weird and desolate picture. The banks immediately adjoining the river and the islands in the streamway are covered with grass, but no trees grow along $O_{\text {wyhee }}$ Range are covered with and summit of the tious grass, which is often lith a growth or vegetation is very scarce; a few cottonwood tree grow along the creeks, and on the higher ridges here are scattered patches of gnarled juniper, pine, and mountain mahogany. It is said that the summits of the ridges were formerly fairly well covered with timber, but this has been cut so
extensively for fuel in the mining districts that extensively for fuel in the mining districts that
practically none remains.
Culture.-Silver City, the county seat of Owyhee County, is located in the southern part of the quadrangle and has a population of about 600 . A few miles west of Silver City is the town of De Lamar, nd a small place, Dewey, is located about halfway between Chem. The man rood frn Nampa to Silver City traverses the quadrangle and crosses Caldwell to Silva City Tame tor lion he eastern bound line the quark a railroad connects Nampa with a 1 mall on Snake River called Guffey. It is the intention to eventually extend this road to Silyer City good road leads from Silver City across the range down to Sinker and other settlements on the Snake River Plains.
The principal industry is gold and silver mining, hich has been carried on successfully since 1863 xtendicinity of Silver City and De Lamar. More extended notes regarding this district are fou, Though the region is well adapted for a sto range, yet there are but few cattle in the mountains For many years the Owyhee Mountains have been atilized principally as a sheep pasture, and the headquarters of this industry are in the central valley of Reynolds Creek.
Agriculture, chiefly confined to the raising of lfalfa, is carried on at various places but is limted by the lack of water. The warm climate and fertile soil of Sinker Creek Valley and certain parts of Snake River Valley are well adapted to the raising of fruits and vegetables. That part of the nake River Plains that lies northeast of the river is not under cultivation; and it would be very difficult to bring water to it. Small areas near Walters Butte are irrigated by large springs. At the point where squaw Creek and Reynolds Creek emerge from their canyons their waters are diverted and uilized on many small ranches. There are conould be wate to sood of the river which cold to wom Suke Piver it in its course a don from Snake River higher up mold Valley in the f chand Rich and fertile lands center of the quadrangl trip along the bottom lands of Sinker Crede, and trip along the bore lands of creek, and of Cow Creek. The main part of the mountaing is too rugged and has too severe a climate to be dapted to agriculture. No exact data are available as to the amount of irrigated land in this quadrangle, but it is probable that it does not exceed a few square miles.

GENERAL GEOLOGY.
Geologid history
The mapping of the Silver City quadrangle was ndertaken in connection with the study of the mineral deposits of that region, and the broader therefore have received less attention than they deserve.

Before a detailed description of the formations given it is desirable to present a brief review of the principal events that have taken place in the logic history of the Snake River Valley. The old Snake River Valley.-The present valley stretches across the whole width of southern and in a broad curve that opens toward the north d has a radius of about 160 miles. The length in Wyomey from the base of the Teton Mountains deep and narrow weiser, wer 400 miles, and its width ranges from 35 to 125 miles. The mountains of central Idaho clearly define the limits of this valley on the north, while its southern border in places merges into the lava plains and Quaternary silted valleys that separate the desert ranges of southern Idaho. For a long distance below Weiser Snake River has cut through older rocks a very deep and often very abrupt canyon which usually is referred to as the great Snake River Canyon. This continues to a point above Lewiston, whence the river pursues its way to its junction with the Columbia in a trench of lesser depth, early Tertiary age-the Columbia River lava
During early Tertiary time the valley must have年med a broad and deep depression, north of which searp very probebly due to fulting. Towapt scarp, very probow row. like the Owyhee Range, with abrupt, deeply , lued lines and the general trend and character of the desert ranges of the Great Basin, of which, in fact, they are the most northerly outliers. The whole indicates an early Tertiary or pre-Tertiary fault differentiating the central Idaho mass from the area of fractured and dislocated blocks lying farther south. Both the northern mass and the southern ranges were of granite, to which, according to observations made on Wood River and in the Blue Mountains ${ }^{1}$ a post-Carboniferous and most probably post-Triassic age should be ascribed. From analogy with other similar granite areas in Montana and California this intrusion may very likely be assigned to the Cretaceous period. No lava flows had yet covered the eroded flanks of the granite mountains. The main rivers of central Idaho, such as the Boise and the Payette, had already been developed and had eroded their canyons to a depth as great as or greater than their beds of to-day. That this deep valley had an outlet to the sea seems probable from the fact that in its great canyon below Lewiston the Snake runs for long distances over basaltic bed rock and that its walls consist largely of flows of the Columbia River lava. This being so, it most probably follows that a large part of this region has been depressed since the cruption of the lava, for the depth of the valley angle is as 1000 fect Wir (q ad 2100 f is over 1000 fect . Near Weiser (elevation, proved by boring is the lacus 1200 feet Farly Troved by borings, is more than 1200 feet. Early beds wa a perid of active enosion and but little sedimentation, and figure represents the deepest point of the valley (which is not probable) it would place the bottom only 1000 feet above sea level.
First lava flows.-At some time during the early part of the Tertiary great changes took place. The flanks of the Owyhee Range, the western part of the Boise Mountains, and the Blue Mountains became flooded by lavas, at first by diabasic basalts and rhyolite flows of limited extent, then by basaltic outbursts of immense volume. These
basalts are usually referred to as the Columbia River lava, and the bulk of them has been considered as of Miocene age. As most of the older basalts in this region antedate the lake beds, and as the older lake beds have been recently redeterT.wentieth Ann. Rept. U. S. Geol. Survey, pt. 3; and
Twenty seoond Ann. Rept., pt. 2 .
mined as Eocene, it would follow that a large part
of the Columbia River lava in this portion of Idaho is of early Eocene age
Earlier lake en eage
Earlier lake epoch.-The effect of the accumuthe upper drainage basin of Snake River. Our knowledge of this region is not yet extensive enough to enable us to decide without doubt just where this barrier was thrown across the older drainage lines, whether at Deschutes Gap or across an old and deep depression approximately following the present great canyon. At all events, great interior basin was formed and rapidly filled with sediments from the central granite area of Idaho. While the outpouring of the main mass of lava evidently must have preceded the deposi-
tion of the lake beds, the eruptions continued durtion of the lake beds, the eruptions continued during the earlier part of their accumulation, for tuffs
and basalt flows are intercalated with the lower part of the lake beds. In the lake beds, especially near the shore lines, in bays and basins, abundant plant remains are found, which were first determined by Dr. Knowlton as of late Miocene age. A revision of the material has lately led him to consider them as Eocene and as equivalent to the
Bridge Creek beds of the John Day Basin in Bridge Creek beds of the John Day Basin in Oregon. The flora gives evidence of a moist and
warm climate. warm climate
Until the whole region is studied in greater detail it is not possible to indicate with certainty the exact contour of the lake. Along Boise Ridge
the lake beds reach an elevation of 4600 feet; at the lake beds reach an elevation of 4600 feet; at
the mouth of Boise Canyon they rest against the the mouth of Boise Canyon they rest against the
granite at an elevation of 4100 feet; on the western side of the Owyhee Range they lie at 5400 or 5500 feet; and on the eastern slope of the same range at 4200 feet. In many places, of course, erosion has carried away the highest beds, but it seems prob able that slow crust movements have deformed the once horizontal line of highest lake deposits a small remnant of waterlaid (Eocene?) deposits containing leaves of Sequoia angustifolia has been found on the slope of Wood River Valley 100 miles east of Boise, at elevations up to 6900 feet. This deposit seems to belong to the Payette lake beds and if so confirms the theory of considerable crust movements, consisting of a gradual uplift of the eastern part of the valley. Within the central mountain mass and not far from the border of the lake north of the valley smaller depressions are often found-such as the Idaho Basin in Idaho, the Mormon Basin and Rye Valley in Oregonwhich clearly represent local depressions outlined
by fault lines and which are usually filled with by fault lines and which are usually filled with
lacustrine sediments. lacustrine sediments.
These sediments, of early Tertiary age, have
been called the Payette formation, and because been called the Payette formation, and because
of its plant remains this formation is one of the of its plant remains this formation is one of the
few in this region whose age can be determined few in this region
with fair certainty.
with fair certainty.
Erosion epoch.-Given a moist climate and no
further orographic change and further orographic change and the lake could not long remain a closed basin. An outlet was formed
along the line of the present great Snake River along the line of the present great Snake River
Canyon. The reasons determining this line of Canyon. The reasons determining this line of
drainage across elevations that in places now exceed those of the highest known shores of the lake in this vicinity can not, at this stage of our knowledge, this vicinity can not, at this stage of our knowledge,
be accurately stated. It is probable, however, that be accurately stated. It is probable, however, that
the area through which the great canyon runs has been subjected to gradual uplift or warping since the river's course was established, and that erosion has kept pace with the uplift. If so, Snake River has kept pace with the uplift. If so, Snake
below Huntington is of antecedent character.
The erosion of the great canyon was most energetic, and during Miocene time a depth of from drained, a large part of its deposits carried away and the tributary rivers, prominent among which is the Boise, had scoured their old canyons to about the same depth that they have to-day. As the lake receded fluviatile deposits spread over the lake beds in places. Of such character are, for instance, the great gravel beds that form the upper part of the
Payette formation near the mouth of the Boise River Canyon. There is no evidence of voleanic action in this region during this epoch of erosion. Later lake epoch.-The progress of erosion in the valley was checked at this time by some cause, as yet unknown. While degradation was still in active progress in the adjacent mountains, heavy masses of gravels began to spread out in front of
the tributary rivers, and the central part of the valley along Snake River again became a lake, probably shallow and marshy at times. A numpoured down from the lower flanks of the O wyhee Range, from the foothills of the granite area north of the valley, and from numerous points of eruption within the valley itself, southeast of Nampa These, one after another, became covered by sandy sediments, and thus originated the striking alternation of white lake beds and black basalt flows so well exposed in the deep trench which Snake River in Quaternary time has cut for a long distance above Walters Ferry.
In the vicinity of Nampa the later lake beds and basalt filled the valley up to elevations of 2700 or 2800 feet, and the sediments contain numerous bones of mammals and of fishes. Especially common are bones of Equus; also, those of Mastodon. Plant remains either are missing or, when present indicate a flora consisting principally of grasses.
The age of the scant fauna has been determined as Pliocene by Professor Lucas and the name Idaho formation has been given to these beds. Similar beds of alternating sands and basalt flows extend point where the Boise joins River Valley from the Glenns Ferry these deposits reach an elevation of 3700 feet along the brink of the Snake River Canyon. If they really are lacustrine, which seems tilting movement by which the bedo Glen Ferry have risen nearly 1000 feet relatively to those near Walters Ferry
For practical purposes the Tertiary lake bed form one continuous series, for it is not always form one continuous series, for it is not always
possible to separate with certainty the deposits of possible to separate with certainty the deposits
the Payette formation from those of the Idaho.
Recent lava flows. - The highest basalt flow cover ing lake beds in the central part of the valley, in the Nampa and Silver City quadrangles, and the highest basalt flow at the mouth of the Boise Canyon are taken as the datum plane separating the Pliocene epoch from the Quaternary period. It marks the beginning of the present period of erosion and degradation of the whole valley. In the upper part of the valley, from American Falls to Walters Ferry, the Quaternary was a period of erosion, for during that time the deep trench of Snake River was cut through lake beds and basalt flows. This canyon is still being deepened. From the vicinity of Nampa down to the great canyon Quaternary erosion was very slow, because of the large masses of débris brought down by tributary rivers. The gradually deepening chan-
nels are lined by a terrace, or a series of terraces, nels are lined by a terrace, or a series of terraces,
remnants of old flood plains over which the rivers remnants of old flood plains over which the rivers swung in changing curves and for a lo
their banks in a lateral direction only. their banks in a lateral direction only.
Résumé.-Summing up the Tertiary
Résumé-Summing up the Tertiary history of deposition and erosion in this basin, we have first an early Tertiary epoch of erosion followed by outbursts of rhyolite and basalt and the deposition of
the Payette lake beds, which, near the the Payette lake beds, which, near the margins of feet. The basin a thickness of probably about 2000 feet. The fassin heaves of this formation are now found at erel low shats has been found at several levels throughout the series the to the Eocene epoch. The deposition of the Payette lake beds was followed by an apparently short and active epoch of erosion, during which the rivers cut down through the lake beds to the same depth that they have to-day. Causes as yet undetermined checked this erosion and produced a lake of smaller dimensions and shallower depth than the Payette sheet of water. In this shallow lake the beds of the Idaho formation were deposited in alternation
with basaltic flows. The, fauna of the Idaho for mation is assigned to the Pliocene epoch.
The draining of this lake is considered to close the Tertiary period. Since then this region has
been dry land, and a slow, frequently checked erobeen dry land, and a slow, frequen deposited extensive areas of Quaternary sand and gravel.
It should be noted that on the former assumption of a Niocene age of the Payette formation this history fitted in well with the paleontologic sequence. Accepting, however, the latest determination of the Payette formation as Eocene, ther remains a long time-interval-the whole of the Miocene epoch-to be accounted for between the

Eocene and the Pliocene, and this would seem to
be somewhat inadequately represented by th epoch of erosion between the two series of lake epoch of erosion between the two series of lake
beds. The excavation of the great Snake River Canyon below Huntington would, according to these last data, be placed in the Miocene and would occupy the larger part of that epoch. Th Upper Canyon, above Amer
during the Quaternary period.
geologic formations.
pre-tertlary rocks. granite.
Main granite mass.-Along the center of the $O_{\text {wyhee }}$ Range occur several detached exposure of granitic rocks which, taken together, form elt 10 miles wide by 25 miles long, extending from a point near Silver City as far north as
Hardtrigger Creek, at which place it contracts to a Hardtrigger Creek, at which place it contracts to a
small width. These detached areas were evidently mall width. These detached areas were evidently sown by the sections, had a depression along the entral north-south line. This range has since eeen cut by dikes and largely covered by lava ows and lake beds. On neither side of the granite can any indication of faulting be observed, but is plain that at the beginning of the Tertiary this ridge, rising with steep slopes to a height thre in the landscape. If this block were y faulting as is. yery likely that any evidence of this would be be kely that any evidence of this would be prelie at the bases of the range which now are deply covered by later deposits and lava flows Granite is exposed in places for a long distance south of Silver City. Twenty miles south of this place, at South Mountain, a dioritic granite abuts against greatly contact-metamorphosed schists and limestones of doubtful age. Within the Silver City quadrangle no pre-Tertiary sedimentary rocks are associated with the granite except in one place 2 miles northwest of De Lamar. Here, below the lavas, is a small area of pegmatitic granite traversed by a belt, 150 feet wide, of quartz-biotite-schists and normal quartzites which, beyond doubt, are contact-metamorphosed sediments of unknown age. Tongues and stringers of granite penetrate the schist. The probable Cretaceous age of the granite
has been referred to under the heading "Geologic history."
The topographic forms which the granite assumes are frequently long, sharp ridges separated by deep and narrow gulches. Occasionally large dome-
shaped masses appear, like War Eagle Mountain. The rock is deeply weathered and shows fairly welldefined jointing. Masses that have resisted disin tegration usually rise above the general surface. A rough sheeting is common in many places, but its drection is not constant. About Silver City the $70^{\circ} \mathrm{W}$ On Wiseting varies from N. $70^{\circ} \mathrm{E}$. to N . $30^{\circ} \mathrm{W}$. On Whon $00^{\circ} \mathrm{W}$ and dipring-defined Most prevalent is a coarse-textured, gray biotite Most prevalent is a coarse-textured, gray biotitegranite, containing at most of its exposures large ystals of orthocse. The variations are mainly yuartz, and feldspar. It often contains much oligo uartz, and feldspar. It often contains much oligoclase and may
monzonites.

In the vicinity of Silver City the rock appears to ntain more orthoclase and muscovite than elsehere, and is thoroughly normal. It is decidedly more acid than the ordinary granite from th similar to north of Snake River, but is very trict in Idaho. The average grain is 4 millimeters, though larger porphyritic feldspar crystals reach 3 centimeters in diameter. As seen under the microscope, it contains abundant, often slightly rushed interlocking quartz grains. Smaller quartz grains may be included in feldspar crystals. Muscolarge, straight foils and is not silver City valsewhere Biotite is an essential constituent, frequently decomposed to chlorite. Orthoclase is abundant and a few grains of microcline also occur. A plagioclase
with narrow striation and thick prismatic form, arely showing Carles and thick prismatic form, but appears in Carlsbad twins, is never absent, rimmed with a little micropegmatite. The optical determinations were not satisfactory, but it is in all
probability oligoclase. The feldspars show some econdary muscovite and in places a little calcite few crystals of zircon were noted. The granite weathe
sand.
Pegmatite dikes in the granite.-Though on the whole constant in type, the granite occasionally becomes coarse and almost pegmatitic, and may be acally by dikes of still coarser pegmatite, which coally may consist chiefly of quartz. Thes quarzose pegmatite dikes contain no valuable inerals and bear no relation to the metalliferou veins. On the Oso claim, War Eagle Mounain, cally a medium-grained diorite, but this may be later intrusion.
Diorite-porphyry and granite-porphyry dikes.hese rocks occur chiefly on War Eagle Mountain s dikes varying from a few feet to several hundred feet in thickness, trending from north to east, and ometimes parallel to the sheeting or jointing of the ranite. Prominent exposures are seen at the Oro ino vein on the east side and the Poorman vein on the west side of War Eagle Mountain. The ikes occasionally follow the veins for a short disnce, but more commonly cut across them. The ock is grayish green and porphyritic, with feld pars up to 2 centimeters in length, and quart ystals 5 ineters in dmeter. The feld ars agne the consit of and isting of quartz and unstriated feldspar. On the shole of qu a simer the Brie hoseribed from ear Qurtzhurs Boise County. To analysis has been made of this rock and it ery possible that it may be intermediate as to it composition, standing between a diorite-porphyry and a granite-porphyry. Such rocks are called nonzonite-porphyry or granodiorite-porphyry. The porphyries of War Eagle Mountain are usually filled with secondary chlorite, sericite, calcite, and sometimes pyrite.

tertiary rocks

aske beds

Extent and character:-On the north, east, and est sides of the Owyhee Range extend sloping lateaus of almost horizontally bedded sedimen which by their various features show that the were, for the most part, deposited in a large bod of fresh water. The evidence of their lacustral rigin is found in the persistently fine-grained haracter of the strata, the absence of cross-bedding, such as would indicate strong currents, and in the frequent occurrence of gypsiferous sands. Fluviafile deposits were naturally formed in many place ontemporaneously with the recession of the lakes, at they are of less extent and importance than the lake beds. These lake beds were laid down on he sloping sides of the old granite areas and also covered the heavy masses of basalt and rhyolite hich had been poured out over the flanks of the granitic range. The lake beds are thus on the hole clearly later than the basalt and rhyolite, nd the latter was in places eroded before thei pay, howeyer, have taken ertions of these rock period of their depositin period of their ceposidion Dist an dasalt flows, which in the northeasterm part of the uadrangle, are intercalated in the uppermos trata of the lake beds. The sediments consist predominantly of sandy material, consolidated to reater or less extent, but they also contain to inate bodies of clay and volcanic tuffs. Usually the rocks are only slightly consolidated but some of the older lake beds and occasional exposure of the younger series are indurated to compact hard sandstones. The lake beds, which together ccupy nearly one-half of the quadrangle are nat rally subdivided in three groups: (1) The high ke beds on the western side of the quadrangle (2) those of the interior basin of Reynolds Creek; and (3) those of Snake River Valley, which cove he whole northeast corner and gradually rising reach as far as the southern boundary line.
Lake beds of the western part of the quadrangle.On the western side of the quadrangle the rocks consist of white shales, sandstones, and compact
clays. In general, the rocks are finer textured and more consolidated here than elsewhere, and they
${ }^{a}$ also extend higher up on the mountain side, reaching an elevation of about 5300 feet, their uppermost limit being most clearly indicated along the
valley of Cow Creek. Here the fine-grained and valley of Cow Creek. Here the fine-grained and
well-stratified lake beds cease at this elevation, and well-stratified lake beds cease at this elevation, and
the upper, gradually narrowing valley is filled with the upper, gradually narrowing valley is filled with
fluviatile gravels. The lake beds dip gently to the fluviatile gravels. The lake beds dip gently to the west and to the northwest, their surface evidently representing the old lake bottom. Much of the surface has been destroyed by the erosion of Suc cor, Jackson, and Cow creeks and their tributaries.
Trenches have been cut in the lake beds to a depth Trenches have been cut in the lake beds to a depth of 700 feet, but the mesas left between the watercourses show plainly that erosio
the general surface of the beds.
In the upper part of the lake beds, one-fourth of a mile northeast of Rockville, the following fossil plant remains were found: Acacia, pod; Quercus sp.; Acer, fruits; Ulmus sp.
Near the crossing of Succor Creek by the stage road from Caldwell to Jordan Valley, very near the State line, and at an elevation of 4800 feet, an extensive flora was found in the horizontal lake beds. The matrix is a pure white, fine-grained sandstone; partly, also a brownish clay shale. These beds are identical with the Payette formation
in the Boise quadrangle. Occasionally mammalian remains occur in these strata but not frequently as compared with their occurrence in the beds in the Snake River Valley.
The following fossil plants were identified:

Platanus
Celastrus
$\underset{\substack{\text { Acer trilobatum pro } \\ \text { Heer. }}}{\text { a }}$
Heer.
eer, fruits.
Hex n
Juglans nigella? Heer.

These fossils were held by Dr. Knowlton to indicate a late Miocene age, and the geologic discussions in previous reports on the mining district of Silver City, De Lamar, and the Idaho Basin were based on that determination. A revision of the Tertiary plants from various places, has, however, lately caused Dr. Knowton to change his opinion, and in Bulletin U. S. Geological Survey
No. 204, p. 110 , he expresses himzelf as follows. No. 204, p. 110, he expresses himself as follows: In a previous report 1 the Payette formation was
referred to the Upper Miocene, but I was misled by the knowledge then current regarding the position of the
Bridge Creek beds, as I have already pointed it is now necessary to change thet reference. The flor of the Payette formation undoubtedly finds its greatest affinity with that at Bridge Creek, a fact recognized al along, and, like it, is now referred to the Upper Eocene

Lake beds of the interior basin.-The interior valley of Reynolds Creek, in the center of the range, was clearly formed by the damming of the During Payette time the basin was filled with sediments which, for the most part, are clearly lake beds. The strata extend up to an elevation of 4300 feet, or 500 feet above the bottom of the valley. The upper 100 feet consist principally of soil, sand and pebbles, below which lie white or light-colored tuffaceous sands, tuffaceous clays, and occasiona strata of fine conglomerates. Beds of impure lignite 2 or 3 feet thick have been found at a few places in the basin. No lavas cover these lake beds, but as the beds at considerable depths are in part composed of pebbles of granite, basalt, and rhyolite, it is evident that they are later than any of the igneous rocks around the basin.
Lake beds in the Snake Valley.-On the eastern side of the range the conditions are different. Though the beds here are on the whole similar to those on the western side, they are less indurated
and consist of very soft, brilliantly white sandand consist of very soft, brilliantly white sand stones, changing in places to compact, gypsiferous
clay. In a few places, as near Walters Butte and Bernard Ferry, the strata contain gravel beds and Bernard Ferry, the strata contain gravel beds and
fluviatile sand. Along Snake River the sandstones are interbedded with soft, black, basatic flow which spread out over large areas as thin sheets These beds, along Snake River, contain no fossil leaves but do hold occasional carbonized grasse and silicified wood. Fresh-water shells are also common. The following fossil localities were noted Three miles west of Guffey; elevation 2500 feet

porous sandstone with much detritus of shells. The following were determined: Unio, Anodonta, Goni obasis, Ancylus, Corbicula, Lithasia antiqua Gabb also many fish bones. One mile west of Bernar Ferry; elevation 2800 feet; banks of Unio shells in soft sandstone. Though they indicate freshwater conditions these fossils justify no more definite conclusion than that the deposits are of eithe
Tiocene or Pliocene age.
Though indistinct
Though indistinct and silicified mammalian remains are not uncommon, few well-preserved bones have been found in the beds in this quad of 2400 feet, bones encrusted with opal were found in sandstone and identified as Protohippus, a Miocene or Pliocene renus. In the adjoining Nampa and Bisuka quadrangles mammalian remains, principally Equus, are frequent in these same beds. The beds generally occur at a low elevation, rarely extending up to 3000 feet.
Recent borings to the depth of a little over 1000 feet along Snake River between Guffey and Enterprise have shown that this thickness of clayey and closed no lavas. The predominantly clayey char acter of the beds is noteworthy as contrasted with the mostly sandy marginal deposits of the lake.
If there had been only one period of deposition in the lake-bed series, these deposits would certainly have been formed earlier than the Miocen plant beds of Rockville and Succor Creek. That his can not be the case is shown by the different petrographic character and decidedly later faun of the Snake River beds; besides, the basal intercalated in the series along Snake River are unmistakably later than the Miocene basalts of the $0_{\text {wyhee Range, and, as has been shown in the tex }}$ of the Nampa folio, connect with the basalt flow in the Boise Canyon, which were poured out after he deep erosion of the Payette lake beds. There ore, it is concluded that after this erosion a secon ransgression of the waters of the inland lake took place and filled the central part of Snake River alley. The lake was probably shallow, at time ds on the i of E E (Payette formation) bee he 10 S roughly suking 3000 feet, probably belong to ughly porg, ion feet, probably belong imilarity of the deposits and the obene defined shore lines it is not possible to differen fate these two formations by separate colors the map. The beds along Snake River gradually attai dary line of the quadrangle, and near its southeast corner reach an altitude of 4200 feet. Unless changes in elevation have taken place it is probable that these southeastern beds belong to the Payette formation, but no fossils have been found in them, ad no distinct line can be drawn differentiating hem from the beds exposed near Snake River. On the slopes of the Boise Range the lake beds reach an elevation of 4600 feet, while on the western ope of the Owyhee Range the shore line is clearly roded at 5200 or 5300 feet; on the more sharpl tain estern side of the Owyhee Range ble that ince their deposition, so that the shore line of th Payette lake is no longer horizontal, but the evidence of such change is not yet clearly established.
Detailed description of lake beds.-On the west orn side of the range a large part of the lake deposis are white or slightly yellowish sands, possibly in part tuffaceous. The clays are at some localitie. secidedly yellowish, but at others they are brown hor gish-brown. The brownish clays are sands loper to ands appear to be in part basatic tuffs. Gritt, noman, grur but con ond cons hare rarely coarse he old shore line whe fregrent of
 In a few places breaks through the lower part of the lake beds and spreads out in sheets near the top of the series, Silicified and opalized wood common. The small basin of Jump Creek, north of Rockville, is also filled with lake beds, which are tilted so that the beds dip slightly northeast,
hose on the northeastern side of the basin being about 200 feet lower than those on the southern side. Surficial deposits of gravel connect the deposits of Jump Creek with the main area near Rockville.
On the east side of the mountains the plains gradually descend from an elevation of 4300 feet, with a slope of about 100 feet to the mile. At everal places 1 to 3 miles south of the mouth of Sinker Creek Canyon, at an elevation of 3500 feet, are deposits of well-stratified white sand, similar to
the ordinary lake beds. he ordinary lake beds.
On the north side of Rabbit Creek the lake bed f 3800 to 3900 form an form rable that extend out $2 \frac{1}{2}$ miles from the foot of the mountains with a slope of 100 feet to the mile From Rablit Creek northward the beds mile he peculiarities briefly alluded to above in the eneral description, and the basalt flows that lie north of this point are interbedded as narrow sheets with the light-colored sand.
About 3 miles west of Guffey, and 1 mile west of Snake River, at an elevation of 2500 feet there are coarse-grained, thick-bedded strata of brownish andstones that have a maximum thickness of 75 iferous in places and contain the fauna described above. The beds are nearly horizontal and rest lightly unconformably on white, micaceous sand stone, the ordinary rock so characteristic of the ake beds. These sandstones lie about 200 fee bove the river and are clearly remnants of mor extensive deposits. On Castle Creek, in the Bisuka quadrangle, adjoining on the east, there are imilar sandstones, which also are fossiliferous, and which, like those just described, should probably e considered as among the very latest deposit of the Pliocene epoch.
A section from the river to the top of Walter Butte would show the following succession:
The first 50 to 100 feet above the river
The first 50 to 100 feet above the river are occu-
ied by fine-grained, sandy lake pied by fine-grained, sandy lake beds. Above hese is the first basaltic flow, approximately 100 teet in quitens. has lightly south appea tie quite level, but slopes slighty southeastur. small outcrop of this flow, resting divectly swal foor of fine hisectly on f water. Along the west side of Walters Butte 200 or 300 feet of sediments lie above the fist basalt flow. The lower part of the sediment consists of normal sandy lake beds, but the upe 50 feet are made up of coarser sediments, sand tones, and fine conglomerates, in places showin cross bedding and clearly of fluviatile origin This upper series occurs at an elevation of 2600 feet, and is probably equivalent to the fossiliferous andstones found 3 miles west of Guffey. On top of these sediments rest 50 feet of tuffs, mingled to some degree with coarse sediments, and finally capping these tuffs, there are 100 feet of basalt, which of the butte, a third flow appears, which is eparated from the second by sandy lake beds and attains a thickness of 100 feet.
In the vicinity of Bernard Ferry and Enterprise the beds consist predominantly of white, sandy sed ments, forming bare mesa-like hills which, with gradual slope, extend up to the foot of the mounOn - hat is to a maximum elevation of 2900 feet On the northeast side of the river the beds form f black basalt 500 feet high, capped by a sheet These lake beds and the basaltic flow thickness. hem underlie a large part of the mesa that extends northward from the river
The lake beds near Bernard Ferry form white rregularly eroded bluffs of soft, unconsolidate and. As a rule, the stratification is very indis nct, but where the outcrops are more compact, Wells that have been sunk near Enterprise in earch of artesian water penetrate at first som nd, but the rock below that is reported to be west of this locality there are small outcrops of basalts, which apparently break through the lake beds and sometimes disturb the horizontal strata Gravels are not altogether absent, as is shown by prominent bluff 1 mile west of Bernard Ferry where, at an elevation of 2600 feet, a gravel bed

5 feet thick rests on white sands containing streaks of clay. The gravel is partly cemented and condiameter consisting of rham 3 to 4 inches in kinds of consisting of rhyolite, granite, and other sandy beds with abundant casts of Unio shells, which again are covered by undoubtedly Pleistocene gravel. At the bluff on the mesa about 1 mile east of the mouth of Hardtrigger Canyon, he following section is shown:

North of Squaw Creek the lake beds attain great development and extend close to the river as broad mesas, with an elevation gradually sloping from near the river.
A section of a bluff 3 miles west of the river and west of Sommercamp is as follows, the elevation at the base of the section being 2675 feet:

Section of bluff s miles west of Snake River, north of Squaw Creek. Squaw Creel.
 At top, sand and gravel, probably Pleisto. cene, resting on the lake beds
 cene, resting ond the lake beds.......isto. Exceedingly well and evenly stratitied light
 gray to buff clay, in thin bedtatitied lide bedded with mand
 and typsiferous sand

At the northern boundary of the Silver City quadrangle, on the east side of Snake River, he basal part of the escarpment shows 50 feet of coarse-bedded sandstones, which are covered y friable white lake beds.
Along the northern foothills from Poison Creek lown to Bernard Ferry the lake beds contain coarse sediments and are partly consolidated where they overlie the rhyolite, as if by action of hot springs. A locality clearly showing this consolidation is at con of wilve reek the the north of Wilson Creek. The sandstone in places with with a notable dip-from 10° to 20°. This dip ances inc linat is, a slight hardeasedy mile wide In places it seems to be older than the est of the surrounding lake beds but thi is pobably due to its greater induration. Occasionally this hardened sandstone is used for building purposes.

sucorssion of eruptives.

The volcanic activity in the Owyhee Range began by the eruption of diabasic basalts in heavy flows, confined chiefly to the southern end of the range. Then followed rhyolite flows of very great volume of basalts, in part diabasic, but usually more glassy and more thin bedded. Intrusion of dacite dikes closed this earlier volcanic epoch. These rocks antedate the Payette lake beds and are therefore to be considered as early Eocene if the determination of the Payette formation as Eocene be accepted.
Finally, during the Pliocene epoch, glassy basalts of great fluidity were again forced out, and this late activity may in certain parts of the Snake River Valley have continued into the beginning of the Quaternary period.

Main rhyolite flows.-Rhyolite occupies large reas in this quadrangle, areas about equal in extent to those covered by basalt. Heavy flows of this quadrangle and along nearly the whole of the quadrangle and along nearly the whole of the southern boundary line. These two large areas
almost connect by means of smaller detached flows along both the western and the eastern slope of the range. Thus it is seen that the rhyolite surrounds, as it were, the central part of the mountains. Large areas of this rock have been removed by erosion, so that its former extent was much larger than that seen to-day. The rhyolite was one of the earliest eruptives, but was preceded by some coarse diabasic basalts and was followed by the main
mass of basaltic eruptives. The rhyolite, which is a lava that is rich in silica and alkalies, flowed over the earlier basalt and over the granite in
thick, viscous masses. It was poured out upon an thick, viscous masses. It was poured out upon an
irregular surface and moved slowly, so that its thickness is extremely variable from place to place. In the northern area its thickness reaches 1500 feet. On Florida Mountain it is 1200 feet deep and on Cinnabar Mountain it rises in precipitous bluffs just outside of the southern boundary of the quadrangle, not far from War Eagle Mountain,
with a total thickness of about 2000 feet. Where the rock is fresh its surface forms are characterized the rock is fresh its surface forms are characterized
by rough plateaus bordered by abrupt and rocky bluffs, and the faces of the cliffs often present rough columnar structure. Where softened by rough columnar structure. Where softened by as Florida Mountain.
In appearance the rhyolite is very similar to that seen in most of the areas of that rock found in the West. It is compact, hard, and very resist-
ant to weathering; more rarely it is vesicular, ant to weathering; more rarely it is vesicular opal. Its color is grayish, greenish, yellowish, or brownish in different shades, varying greatly and abruptly. A spherulitic structure is locall across. Sometimes, as in the small rhyolite area $3 \frac{1}{2}$ miles west of Flat Top Mountain, the spherulite form almost the whole mass of the rock. A streaky and banded appearance is very common Along Cow Creek the glassy and the flow-structur rhyolites are often intermingled with wavy layer of reddish rhyolite that run irregularly through glassy magma. The rock often breaks into shelly flat pieces on weathering. Brecciated rhyolite and tuffs are of frequent occurrence. Near the mouth of Reynolds Creek a thickness of 200 fee of light-colored tuffs rest upon granite and are capped by a heavy rhyolite flow.
Practically all of the varieties belong to the structural group comprising felsophyric rhyolite Porphyritic crystals are represented by small sani dines, and by occasional, though not abundant quartz grains. Biotite is seldom noted, although partially resorbed crystals of that mineral are some times seen under the microscope. The groundmass is nearly always cryptocrystalline, is frequently fed whan spler ligh, and sho a banded treaks Pure thyolite olass oceus in specimen streaks. Pure rhyolite glass occurs in specimen rarely is the rhyolite microcrystalline in structure Rock of this type is found in the small area 4 mile east-southeast of Rockville. Its appearance, owing to the dark color of the rock and its dense texture, is not unlike that of certain basalts. This variety contains a few larger orthoclase crystals, smaller and rounded grains of andesine in a groundmass of feldspar grains, and micropoikilitic quartz. specimen of this rock was partially analyzed.

Over large areas near De Lamar and on Florida Mountain hydrothermal alteration has so affected the rock that it has become soft, earthy, or silicified, or filled with pyrite.
Rhyolitic dikes.-Not many rhyolite dikes can be found in the vicinity of the large areas, some being doubtless covered up by later eruptions, but in a few places the vents through which the rock was erupted are exposed. One of the most interesting of these vents is the neck in granite $1 \frac{1}{2}$ mile above Dewey, on the road leading to Silver City In cross section it is roughly triangular, with side about 1000 feet long, and was probably one of the main vents for the eruption that covered Florida
Mountain. Dikes Mountain. Dikes of rhyolite are visible at several places on War Eagle Mountain, the largest being about 40 feet wide and having strikes ranging rom east to north. Rhyolite dikes breakin two rocks north of the Trade Dollar mine of the two rocks north of the Trade Dollar mine. Near Peak, a rhyolite dike from 50 to 100 feet wid Peak, a rhyolite dike from 50 to 100 feet wide ward, and it is traceable for at least 1500 feet.
Along the divide between Cow Creek and Succo

Creek many rhyolite dikes break through basalt and rhyolite. The largest of these is 50 feet wide. They have a general strike of N. $25^{\circ} \mathrm{W}$., and on of them is traceable for 2 miles.
The rock of these dikes, in whatever part of the quadrangle they may occur, is usually light gray and has conspicuous phenocrysts of quartz scattered through it. Biotite is rare or absent. The ground mass is much more uniform than that of the rhyolite flows and consists of a microcrystalline mixture of quartz and unstriated feldspar. Numerous quartz crystals and a feen
clase are contained in it.
Dase are contained in it.
Dacite dikes.-In a few places in the Owyhee ange there are dikes that belong to a family of rocks which is not elsewhere represented in the Hardtrigger Creek, about 5 miles the west side of f the canyon, dike is 10 feet wide and 1500 feet long. striking V. $15^{\circ} \mathrm{E}$. About one-fourth of a mile farther down the creek is a larger dike of the same kind which forms a crescent-shaped mass that is 150 feet wide at its widest part. The first dike is evidently n offshoot from this. A third dike of smaller size was noted at an elevation of 3600 feet on the east side of the creek. All of these break through the older (Eocene?) basalt.
Near the head of Squaw Creek, 1 mile south of Keiths ranch, a small dacite dike cuts basaltic flows. Still another dike breaks through the granite 4 miles east of Dewey. These dikes are believed to represent the youngest of the early Tertiary Eocene?) series of igneous outflows. The rocks have a trachytic appearance, light-gray to brownish olor, and contain small phenocrysts of orthoclase ndesine or labradorite, biotite, and hornblende, in very fine-grained microcrystalline groundmass of quartz and feldspar. The hornblende usually ppears in prismatic, greenish-brown crystals, and the feldspars, though smaller, are equally wel
developed. An analysis of one of these rocks, the developed. An analysis of one of these rocks, the one that outcrops 4 miles northwest
Mountain, gave the following result:

The rock is, therefore, most closely related to acite. It should be noted that the chemical comof course, its structure is very different.

The basaltic flows of the quadrangle are very extensive and belong to several distinctly different periods of eruption. In the first place, the basalts that are older than the Payette formation should be separated from the thin and liquid flows inter To the former class belong nearly all of the basalts in the range proper; to the latter class belong hose that occur in the lake beds in the northeast ern part of the quadrangle and extend in patche o the southern boundary of the quadrangle.
Early basalt flows.-In the main Owyhee Range there are a great number of superimposed flows of basaltic rocks, some of which have distinct charf these. Gencrally speaking, the older basal ome of them are practically fine-grained diabase while the younger part of the early flows belongs more clearly to the normal glassy basalts. Heavy cruptions of diabasic basalt certainly took place before the main eruption of rhyolite occurred; and
this, again, was followed by another series of basaltic flows which were accompanied in places by large quantities of tuffs. This is not, however, accur which are certainly later than the rhyolite.
The diabasic basalts occupy large areas around Silver City and De Lamar, and long ridges of the mountains, by Flat Top Mountain, to the vicinity of Squaw Creek.
Topographically these basalt areas form long loping ridges of dark-brown, somber color, relieved by patches of grasses and willows. The southern roughly terraced outlines, indicating the existence
of three or four heavy and distinct flows. The exposures show a thickness exceeding 1000 feet Besides, a well 975 feet deep has been bored a De Lamar, all the way through black lava, so that he total thickness of the basaltic flow in th ocality probably approaches 2000 feet.
The diabasic basalts are medium-grained to dense lack, or greenish rocks, composed of labradorite ugite, and ilmenite, with or without olivine. In ructure they vary greatly. Most of them are rains grains varying from 0.0 to 2 millimeters, othe re dense, sometimes vesicular, and contain more
 ronal forms. Near he Trade Dollar mine the orite Uuder the wi varieties the typical diabase structure howing the development of lath-like feldsp rystals inclosed in large augite grains. Wherever he quantity of feldspar increases the Wugite will appear as a filling of triangular interstices between the laths. The former type prevails, as the rock are very basic and ordinarily carry more augite han feldspar. In the varieties containing glass his substance, which usually is of dark-brown color, is squeezed in between the grains. Transi ions to normal basalts are formed by the appearnce of increasing amounts of glass and by reduction in the size of the feldspar crystals an augite grains.
The second series of basaltic flows are mostl developed on the west and east side of Reynold Creek Basin and extend northward to Squaw Creek and Hardtrigger Creek. One flow, which is prob ably the most uniform in character, is that lying on the east side of the hills northwest of Reynold Creek Basin and on the headwaters of Hardtrigge Creek. This flow is distinguished from the others by its comparatively light, dark-gray color, by it ontent of small amygdules of hyalite, by its weathering into splintery or shaly pieces, and by he absence of flow structure. Microscopically this basalt is glassy, containing larger augite crys-
tals in a groundmass of glass filled with minute tals in a ground
feldspar needles.
Another marked basalt flow covers in part the Another marked basalt flow covers in part the
south end of the area just described and forms a elt extending from near the headwaters of succer reek to Linle Aisw breek. On the western in shaly fragments and contains small white crystals of feldspar. Its microscopic character is simila to that described above; it is principally a normal basalt of hyalopilitic structure.
Many of the younger basaltic
Many of thin superimposed flows, differing in thi respect from the thick beds of the diabasic basalts. Later basalt flows.-The basalts intercalated in the Pliocene lake beds along Snake River and Sinker Creek differ considerably from the early basalts of the Owyhee Range. They are feldsparbasalts with a glassy groundmass with or without olivine, usually very vesicular, and have an extremely fresh appearance. Unlike the early basalt their amygdaloid cavities are rarely filled with secondary material, as opal or calcite. The thin flows are occasionally underlain by thin bed f basaltic tuff.
Basalt dikes.-Near Silver City several basalt dikes of interest were noted. One of these follows he Black Jack and Trade Dollar vein where cuts through the granite below the rhyolite and basalt of Florida Mountain. This is a coarse grained, diabasic rock and evidently formed one of the vents from which the basalts in this vicinit were extruded. Another dike of the same material
crosses the road junction half a mile north of Silver City. Still another crosses Jordan Creek half wile south of the town and clearly joins the basal he cranite for a distance of 3000 fuet In the gan for a disance of in diere with ol f comparatively late age and the equivalent of Pliocene eruptives found along Snake River. One of these, only about 10 feet wide, appears $1 t$ mil southwest of Flat Top Mountain and continues due north for $1 \frac{1}{2}$ miles, breaking through diabase. A nall area of basaltic glass cos of the between Democrat and Dewey.

Tuffs.-Small deposits of tuffs, associated chiefly with diabasic basalts and the basalts proper, but also with the rhyolite, are widely distributed over the quadrangle. In the rhyolite areas a little tuff is in many places associated with obsidian and with
brecciated flows, as near the head of Little Squaw Creek, on the north side of Jackson Creek Canyon, and on the north branch of Cow Creek. The tuff areas that are indicated by separate patterns on the map comprise only the large masses that can be easily differentiated, most of which were evidently meditely borth of Flat Top Mourain, mmediately north of Tat Top Mountain, along quaw Creek (these are in part rayoite tufss), f Salmon Cree Mas ar the f the same are and orn to have been to it subsequent to the peculiar basalt having the shaly sabsequent to the pecuring mentioned above On the the shaly f Flat Top Mourtain are fully 100 fet of tuff hid down with smooth, regalar bedding plane and varying from beds of coarse, black, scoriaceous fragments to strata of fine-grained material resembling sandy clays. A thin flow of vesicular basalt, 1 to 2 feet thick, is embedded in these tuffs.

guaternary deposits.

Quaternary sediments-that is, those that were formed after the deposition of the last Pliocene lake These do not occupy large areas in this quadrangle. erosion of Snake River and its tributaries, and might be subdivided into several groups. They are almost exclusively sands and gravels, the latter in part well washed, in part angular.
The flat table north of Snake River is almost continuously underlain by basalt, but has a thin covering of lake beds, which are capped by loam and gravel that in some places appear to rest nconformably on the Pliocene rocks.
Local stream fans.-Spread over the lake beds from both sides of the range is a thin sheet of angular gravel. These deposits are clearly the work of the many little streams and creeks of the mounains, which spread their débris fans over the gently sloping lake beds at a time not far distant from hat at which the lake was drained. Ordinarily hese gravels are considerably above the present drainage lines and consequently they are of consida Plo. Pathe Payotecene, at his lis developed 1 the erosion has been most intense Owing to the diffculties of mapping it adequately it has not been indicated on the map. Along the northeastern lope of the Owyhee Range, as far south as Bernard Ferry the wash covers almost every ridge. Close o the mountains it is coarse and angular but farther away from them it becomes finer and more rounded.
On both sides of Sinker Creek this sheet of wash strongly developed and extends to a distance of 6 or 7 miles from the foothills with a slope averaging 100 feet to the mile-a little steeper near the mountains-and gradually lessening away from them. The wash consists of a uniform mixture of angular pebbles and loam.
Early terrace gravels.-In the northeast corner of the quadrangle, just west of the railroad, is a low hill about 4 miles in length, composed entirely of pebble deposits and coarse sand. The pebbles are well rounded, often 5 inches in diameter, and consist of granite or porphyry. It seems probable that these gravels were deposited by Boise River and mark one of the early meanders of that stream. It has been shown in the Nampa folio that the river formerly followed a more southern course than at present, and that very likely it emptied into Snake River at some point in the northeastern part of the Silver City quadrangle. The thin loam fat north of the Snake, which is long the boury line ther le is phe north later than Late terrace gravels and hese gravels. iderably more recent are the alluvial deposit that follow Snake River. These are ordinarily very sandy and narrow, cupsing an ordinarily very of only a mile along the river bottom. Frequently they form a sloping bench that gradually rises to an elevation of 75 feet above the river and have
been distinguished from the alluvium on the map. Near Walters Butte is a somewhat higher rive terrace, about 100 feet abov
with loam, sand, and gravel.
Small deposits of alluvium of the same age as the Snake River bottom lands occur in Reynolds Valley and on Sinker Creek, as well as on Jorda and Cow creeks.
Glaciation.-Although it is certain that no extensive glaciers existed in the Owyhee Range during the Pleistocene epoch, there seems to be
some evidence that considerable masses of névé, and possibly small incipient glaciers, were forming under favorable conditions near the highest eleva tions. Certain local accumulations of angular tions. Certain local accumulations of angular
gravel indicate such conditions near the head of gravel indicate such conditions near the head of Florida and War Eagle mountains. On the headwaters of Succor Creek also, there is some evidenc of glacial action in the form of incipient moraine of angular bowlders and fragments.

ECONOMIC GEOLOGY

Gold- and silver-bearing veins.-The larger part of the rocks of this quadrangle do not contain fissure veins or otner metalliferous deposits of any kind. The rhyolites, basalts, and granites show, as a rule, but little evidence of mineralization The granite cropping on Hardtrigger Creek, in the northern part of the quadrangle, contains in places small quartz veins that have a southwestern or
southern strike. These have been prospected to southern strike. These have been prospected to
some extent, but thus far little of value has been some ex
found.

As indicated by the placer gold found in Succor Creek, a gold-bearing area occurs somewhere nea its head, but the primary deposits have not thus far been located.
Along the southern boundary of the quadrangle there is a mining district of small extent, but of both sides of Jordan Creek, on War Fagle Moun tain, Florida Mountain, and near De Eagar Moun were discovered in 1863 and have yielded a tota of over $\$ 30,000,000$, of which amount approximately $\$ 12,000,000$ is in wold and $\$ 18,000,000$ in silver.
Soon after the discovery, in 1863, the War Eagle veins were extensively worked, the output up to of twelve years, the De Lamar veins came into bonanza in 1890, and in seven years produced $\$ 6,000,000$, mostly in gold.
About 1892 the deposits on Florida Mountain began to be exploited and now overshadow the D_{e} Lamar mines in output. The production in 1900 was nearly $\$ 776,000$ in gold, and $1,000,000$ ounce of silver. The process used to recover the gold and silver from the ores is ordinarily that of pan amalgamation. In late years the cyanide proces has also been used to treat low-grade ore and tailings.
In their general character the deposits are fissur veins containing native gold and silver, as well as argentite, chalcopyrite, and other sulphides rich in gold and silver. The gangue is predominantly quartz. The age of these fissure veins is compara-
tively recent; they cut the early Tertiary basalts tively recent; they cut the early Tertiary basalts and rhyolite as well as the underlying granite and are, therefore, post-Eocene. These deposits have been described in great detail in the Twentieth Annual Report of the U.S. Geological Survey pt. 3, pp. 67 to 256.
The vein systems of War Eagle Mountain are ontained in granite and the veins have a general north-south direction and usually dip eastward
at angles above 60°. Considered more in detail at angles above 60°. Considered more in detail there are three systems of veins: The first includes group Poorman), the second those with northerl to southwesterly ; direction, crossing the Poorman vein (Empire, Illinois Central); the third, those with northerly and northeasterly direction. Of the latter but few are known. The vein system are probably contemporaneous; they do not continue southward into the rhyolite area but apparently disappear before this rock is reached. The veins are narrow, often a few inches, rarely a few
feet, in width. Gold almost always predominates in the values of the ore, which is ordinarily rich, Silver City.
frequently containing $\$ 40$ or more per ton. Rich silver ores were frequently found in the uppe levels, as, for instance, in he Poorman vein, Th pay shoots may be several hundred feet long but ordinarily are much less. Sometimes they ar vertical (laa, Elmore, Minois Central), or dip Oro Fino) On the whole they), or io the sou pockety, and barren quartz often occurs between the pay shoots. The celebrated veins in the O_{2} Fino group (containing the Oro Fino, Golde Chariot, and Ida Elmore Oro Fino, Golde exploited in the early davs of the district, conained the largest masses of ore above the 900 -foot level and were exploited to a depth of 1400 feet The ore shoot of the Poorman vein, also celebrated or its richness, was chiefly confined to upper levels. During the last year the Oro Fino veins have een opened by a tunnel from Sinker Creek having length of 6100 feet, which has cut the Golden Chariot vein at a depth of 2000 feet beneath the ollar of the shaft. The vein was found to connative gold. The exploration of this level is not as yet completed.
The veins of Florida Mountain have only lately een worked on a large scale. The total production may be something like $\$ 7,000,000$ or $\$ 8,000,000$ Since 1891 there has been renewed activity and ich ore bodies have been discovered in the Black Jack and Trade Dollar mines.
The geology needs but a brief reference. Granite outcropping on the northeastern part of Florid Mountain is covered by a flow of coarse-grained diabasic basalt which, again, is capped by rhyolite he principal vent through which the basalt was upted is a long dike in the granite parallel to郎 amerous and dikes and ned. There a $20^{\circ} \mathrm{W}$ Their dip is usually very steep awa . 20 W. Their dip is usually very steep towa vell defined, the Black Jack being traceable f ver $1^{\frac{1}{3}}$ miles. The croppingy are 8 . The veins are narrow, rarely reaching prominent ften close down to a seam. The development of the ore bodies is accomplished by long tunnels run near the base of the mountains. From these unnels, in the Black Jack and Trade Dollar mines, hafts several hundred feet deep have been sunk. The ore consists of finely divided argentite, chalcopyrite, and a little galena and zinc blende. Nativ gold and silver also occur. The sulphides are ver rich but their value is chiefly in silver, the averag content of the ore being 45 ounces per ton. Gold curs in amounts varying from $\$ 3$ to $\$ 8$ per ton The veins of Florida Mountain are of specia interest, as they cut through granite as well a he capping basalt and rhyolite. There is no mate e, wherence in the value and composition of the he largest it occurs in basalt, rhyolite, or granite ranite. An in the presence orthoclase as a part of the gangue material together with quartz in the Black Jack and Trad Dollar vein.
Near De Lamar, which is situated on Jordan Creek 5 miles below Silver City, the canyon is cu in heavy basaltic flows. This rock, however, doe not contain any valuable minerals; the veins are confined to the rhyolite, which outcrops 600 feet The De Lamar on he south side or the creek, The dip is usually 45° to the southwest, but he dip is usually 40 to the southwest, but nto silver veins and gold-silver veins To the frer ble Herrietta, Silver Vait, rme thers of less importance, These are narro issure vein carrying only rich ailver narro inty pes carying only rich silver ores in lay, sometimes filling it. The oold-silver vein are chiefly represented by the De Lamar vein sysem . The ore carries native gold in an extremel finely divided state, together with a little pyrite marcasite, and rich silver sulphides. The gangue is quartz, almost exclusively in a peculiar laminate form, showing its pseudomorphic derivation from calcite. The veins, of which a great number have been found, are parallel and well defined, bein harply separated from the country rock, and con ain angular inclusions of rhyolite. The De Lama mine is opened by tunnels and by a shaft sunk
several hundred feet on the incline below the 6000 feet .eepest tunel leve, which is at an elevation of nain ore. The whos ary extensive. The the surface down to the tenth level, or 100 fet below the Wabl tunnel following the or 100 feet "iron dike" Nearly all of the ve che socall ive with thi distance The "iron dike" strongly pyritiferous sheet of elayey rhalite, ndoubtedly due to crushing and my dips varying from 70° to 20° northward. Th richest ore was found near the place where th veins abut against this "iron dike," which would eem to indicate that it acted as a barrier towar the ascending solutions by which the deposit wa formed and caused the deposition of the load of dissolved metals at this point
During the last few years a tunnel has been driven from the level of Jordan Creek into the De Lamar veins, thus opening them to a distance of bout 800 feet below the croppings. The mine is still productive, although the ore bodies are not so large as during the bonanza period between 1891 and 1896. The principal producing mines in the district are the De Lamar, the Trade Dollar, and the Poorman.
Placer deposits.-The largest placer deposits of he region were found in the creeks draining the ilver City mining district. Most of them were either extensive nor deep and were exhausted long time ago. Jordan Creek has been worked more or less from below De Lamar to its head All the less steep gulches leading down from War Eagle Mountain show evidence of placer wor Those on Florida Mountain have been equally productive. On its northern slope extensive placer have been washed near the Silver City cemetery Specialy rich were the placers of Long Gulct, Cord Gu, laces 30 feet thick and are said to hel aided \$200000 The ple of Blue Creek, ley lorida Mouna were ich yielding man oret of rad nuggets of gold
of silver. Cow
Cow Creek, heading 2 miles due west of D waters the gravel is throughout; near its head during the short period of available water. If more water could be had a large amount of the surface ravels might possibly pay for working. These ravels are probably of early Tertiary age havin een accumulated during the high-level period of the Tertiary lake.
Scattered remnants of gravel occur on the slope of the rhyolite 3 miles southwest of De Lamar For some distance south of this the Jordan Valley oad follows a long ridge which is covered by gravels. It is stated that it would pay to wor hese with sufficient supply of water.
On the west side of the mountains Succor Creek is stated to have been worked for placer gold, but it is said that the quantity obtained was very small. Snake River contains in this quadrangle, as oes all through the Snake River Valley, a con siderable amount of gold in its sandy gravel bars. The gold is extremely fine and flaky, containing about 1000 colors to the cent. During many year from several hundred to a thousand dollars wer nnually washed from the stream in this quadran le, but at present only very little work is done intervals.

oal.

In other parts of the Snake River Valley the early Tertiary lake deposits frequently contain thi trata of lignitic material, or impure lignite. Such eds, up to 2 feet thick, have been prospected on well as in Reynolds Valley, but none of these bed are believed to be economically important.

opals.

The basalts and rhyolites of the northern end of
the Owyhee Range contain at various places opals in the abundant vesicular cavities and as filling of little veinlets in the rock. Near the head of Squaw Creek and at various places along the contact of the rhyolite with the lake beds opals occur in the eruptive rock. Prospects are scattered from 2 miles south of Sommercamp up to the stage station on the Caldwell-Rockville road. Some good fire
opals are reported to have been found, and at one ime there was a considerable mining excitement By to the reported finds of this precious stone. opal of no value, for the precious variety apparopal of no value, for the precious variety apparity, the stones are reported to have been soft and brittle.
About three-eighths of a mile below the junction of Little Squaw Creek and Squaw Creek fire pals were found as amygdaloid filling in highly vesicular basalt. The opals are abundant but are generally small and very brittle. The basalt in 25 to 50 feet thick, which partially fills the canyon and rests on the rhyolite, the principal rock in the vicinity.
water supply.
Surface waters.-As stated above, the immense mount of water crossing the quadrangle along nake River has not yet been utilized. The mount to be obtained from the smaller creeks where they issue from the mountains is not great many cases it would be possible to store the water by building reservoirs in proper places. The waters of Jordan Creek below Silver City are used in the various mines and at De Lamar power is obtained from it, at least for a part of the year. The amount is not nearly sufficient, however, and plans have been suggested to introduce electric power generated at a point on Snake River. Springs of small volume are common throughout he mountains but they are rare in the Snake River Plains. A spring, flowing 2 miner's inches,
breaks through the level lake bed at a point $2 \frac{1}{2}$ breaks through the level lake
miles westward from Guffey.
Warm springs and artesian wells.-One and onehalf miles north of Walters Butte, at an elevation half miles north of Walters Butte, at an elevation of 2340 feet, a spring of considerable volume and temperatue of in the locally contained in the lake beds. A hot spring River, at an elevation of 2220 feet. It has a temperature of $128^{\circ} \mathrm{F}$ and to irrigate 10 acres of ground. A well has been unk at this vicinity to a depth of 380 feet. The well traversed 6 feet of soil, 10 feet of gravel, and hen continued through light-colored sediments referred to as "yellowish shale." Two strata of "iron rock," probably basalt flows, were also bored through and there was obtained a moderate low of warm water containing a small quantity of dissolved salts. Another well, bored at Bernard Ferry, attained a depth of 520 feet but found no flowing water. Water was struck 200 feet from he surface and rose up to 40 feet from the surface. The well is said to have struck clay material at a depth of 20 feet and continued through this material all the way down except for occasional strata of sandstone.
A third deep well was sunk at De Lamar, which penetrated basaltic lava to a depth of 975 feet, from which level a few miner's inches of flowing water having a temperature of 120° are said to have been obtained. The flow did not persist. There is a possible chance for artesian waters along the eastern and northeastern base of the
Owyhee Range. But large quantities are probably Owyhee Range. But large quantities are probably ot obtainable
Further borings have been undertaken near Enterprise and Guffey. The developments made in 1902 have been described by Po. I. C. Russell in Water Supply and Irrigation Paper No. 78, issued by the United States Geo
In the small valley cut by Dry Creek, about $1 \frac{1}{2}$ miles outhwest of Guffey, Owyhee County, a well drilled to a July 12, 1902), passed through 30 feet of loose surface gravel and then about 538 feet of soft light-colored strata belonging to the Payette formation, containing 3 seams of hard material, and reached a hard rock, perhaps quartzite, which checked the drill. The well is 3
nches in diameter. A surface flow was obtained from depth of 160 feet, and an additional flow at 416 feet. The discharge is nearly one cubic foot of water per minate; temperature $761^{\circ} \mathrm{F}$. The well is not cased below depth of 38 feet. Elevation at surface 2335 feet, or River.
In a small gulch at Guffey and about 120 feet above
nake River, a well bored with a $1 \frac{1}{2}$ inch hand anger to
a depth of 30 feet through light-colored beds, probably 1 gallon per minute, but has since ceased to flow. Near Central (Bernard Ferry) in the Snake River Can yon, and from 7 to 9 miles northwest of Guffey, four artesian wells have been driled. All of them are situ-
ated near the bottom of the valley, and within a dis. tance of $1 \frac{1}{2}$ miles of Central, toward the southeast, where the elevation is approximately 2300 feet. The records of these wells are as follows: On the land of Alfred Cox a 3 -inch well, completed in June, 1902 , has a depth of about 1033 feet. It is case
from surface to a depth' of 39 feet and discharges by estimate one-half gallon of water per second; tempera ture $100^{\circ} \mathrm{F}$. Flowing water was first reached at a depth of 600 feet, and the delivery at the surface steadily increased as long as drilling was continued. The
water brings sand and gravel to the surface with it, *** Water brings sand and gravel to the surface with it.**
About one-half mile west of the Cox well a boring approximately 1000 feet deep was put down in 1900 ,
which failed to reach water under sufficient pressure to which ialed to reach water under sufficient pressure to
force it to the surface. No other record in reference to this boring has been obtained.
On the farm of P. B. Smith, adjacent to the land of Mr. Cox, and about 1 miles southeast of Central, an
artesian well drilled in 1901 has a depth of 940 feet, is 3 inches in diameter, is cased to a depth of 30 feet, and discharges about one third of a gallon of water per
second; temperature $98^{\circ} \mathrm{F}$. Water which wese to second; tenperature $98^{\circ} \mathrm{F}$. Water which rose to the
surface was first reached at surface was first reached at a depth of 550 feet. At 700
feet a seam of black sand, etc., was penetrated and the flow of water increased. At the bottom of the well the drill dropped about 3 feet, having reached a stratum of sand and gravel, from which the main supply of water is derived. The well discharges sand and gravel. * ** On the land of Mr. Barnard, about one-half mile south-
east of Central, a well drilled in 1901 has a depth of about 1035 feet, is 3 inches in diameter, cased for a short distance at the top, and discharges, by estimate, 1 gallon of water per second, with a temperature of 106° F. At Mr. Barnard's home, in Central, a well drilled
in 1901, to a depth of 720 feet, delivers about three in 1901, to a depth of 720 feet, delivers about three
fourths of a gallon of water per second, not measured, with a temperature of 99° or $100^{\circ} \mathrm{F}$
The four wells near Central just referred to were all
drilled in the unconsolidated lacustral deposits, mostly sandy clays and soft shales of the Payette formation. A notable fact in connection with them is that no sheets of
basalt were encountered. The water from each of the wells is used for irrigation.
Abont $3 \frac{1}{2}$ miles down Snake River from Central or Bernard Ferry, is the post-office known as Enterprise, situated near Warm Spring Ferry. Within a radius of about $1 \ddagger$ miles of Enterprise and to the southeast there
are four artesian wells. are four artesian wells.
At the home of George Newell, there are two flowing
wells, one with a depth of 340 feet, cased with 24 -inch pipe, temperature $87^{\circ} \mathbf{F}$., and the other 385 feet deep, 6 inches in diameter; temperature $90^{\circ} \mathrm{F}$. The surface larger well, particularly, is strong, but on account of
leakage about the pipe could not be measnred. An
estimate places the combined flow from the two wells at bout 1 gallon per second. The water is used for irrig tion. About $1 \frac{1}{2}$ miles sonthwest of Mr. Newell's home where the elevation is 2500 feet, a well drilled in 190
to a depth of 165 feet, diameter 10 inches, discharge by estimate 10 bout 2 gallons of water per second; tempe ature $87^{\circ} \mathrm{F}$. The water is used for irrigation. This well was begun in igneous rock, probably rhyolite, but
t a depth of a few feet entered clay, and below the clay at a depth of a few feet entered clay, and below the clay several changes in the nature of the material occurred,
but an accurate record has not been preserved. Near out an accurate record has not been preserved. Near
where the well was drilled there is a small spring of warm water. Approximately one-half mile west of Mr . Newell's ranch, on land reported to belong to Mr. Shirley, a well was drilled in 1891 to a depth of about
580 feet. 580 feet.
The four wells just referred to, with the exception of the 10 -inch well, were drilled in the light-colored sed
mentary beds of the Payette formation and, like thos near Central, have surprisingly high temperatures for their depth. They are within a distance of $1 \frac{2}{2}$ miles or the copious hot spring at Enterprise, which has a temper
ture of 128°., and, as it seems justifiable to assun ature of $128^{\circ} \mathbf{F}$., and, as it seems justifiable to assume,
derive a part of their water at least from that or some other similar source.
The records of two drill holes made at Ontario, Oreg., are as follows:
A well own
A well owned by the city of Ontario, incomplete in Ctober, 1902, has, as I am informed by Mr. A. L. proul, of Ontario, a depth of 1025 feet, is 4 inches in
diameter, and reached water at 195 feet which rose to diameter, and reached water at 195 feet which rose to
within 6 feet of the surface. The material passed through is sand and gravel to a depth of 35 feet and the remainder blue clay. The water is charged with gas, which, when prope.
of the well, $\$ 750$.
of the well, $\$ 750$.
The well thus d
The well chus described is situated where the surface the artesian head of the Lewis artesian basin. The well is not cased, and the rise of the water to within 6 feet
of the surface makes it probable that if of the surface makes it probable that if proper tests
of the water pressure should be made, it wonld be found that a surface flow could be had by putting in proper casing.
The second
completed send well at Ontario, owned by A. F. Boyer, depth of 215 feet. Water rose nes in diameter, has a sischarged with the water. Material passed through: Cost $\$ 100$ feet; gravel, 20 feet; and the balance shale.
A flowing well at Vale, Oreg., drilled near a hot spring to a depth of 140 feet, as already stated, discharges a strong flow of water so long as the casing is
not obstructed by mineral matter deposited from it, and has a temperature of $198 \frac{1}{\frac{1}{2}^{\circ}}$ F. This well may be considered as a developed hot spring, and has but little significance in reference to the artesian water supply of he basin in which it is located.
The artesian wells near Guffey, Central, and Enter-

They are located essentially on a line extending northwest and southeast and measuring about $11 \frac{1}{2}$ miles. At The depth of the line is the hot spring at Enterprise. follows, beginning at Guffey and approaching Enterpis Depth and temperature of wells at Guffey, Central, and

Locality.		㫛	免	
Guffey		${ }_{\substack{\text { Feet. } \\ 538 \\ \hline \\ \hline}}$		18.42
Central.	5	1033	100	19.66
Do.	4	940	${ }_{98}$	18.54
Do.	$3{ }^{3}$	1035	108	17.57
Do.	${ }^{8!}$	\%20	100	13.40
Enterprise	1	340	87	7.83
Do.	1	${ }^{385}$	${ }^{90}$	8.37
Do.	${ }^{1} 1$	165	87	3.10
Enterprise hot spring			128	

The temperature gradient, it will be remembered, is obtained by dividing the depth of a well below the
stratum of no seasonal variation in temperature, assumed as 50 feet, by the number of degrees the temperature of the water discharged exceeds the temperature of the stratum of no seasonal variation, assumed to be 5o feet for each increase of one degree in temperature. As is indicated in the above table, the tem gradient in the region considered increases in a conspicuous manner as the distance from the Enterprise hot spring decreases. An exceptional increase, however, is
seen in the case of the last well mentioned in the table, which, as noted above, is near a small tepid spring, and no doubt for this reason shows a more rapid increase of temperature with depth than any of the others. Not considering the well just referred to, the temperature gradient increases as the Enterprise hot spring is
approached, but the rate of inerease can not be approached, but the rate of increase can not be
accurately determined from the data available, since the wells are not cased and are not supplied from the same stratum.
The facts
The facts just presented seem to indicate that the porous beds in the Payette formation in the vicinity of
Enterprise are supplied in part at least from the hot spring at that place. A legitimate conclusion seems to spring at that place. A legitimate conclusion seems to fissured and hot water rising through the fissure has charged the porous beds above. Whether there is a deep artesian basin beneath the Payette formation or
not, there are no data for judging. In general, however, hot springs rise through deep fissures and are probably in most cases not an indication of the presence of a true artesian basin. As has already been stated, the Lewis artesian basin was formed by a bending of the rocks no doubt affected a great thickness of the earth's crust
below the beds now forming the surface. For this reason
it is possible that a true artesian basin exists, the porous beds of which are depressed in the vicinity of Snake River to a depth of 4000 or 5000 feet.
In addition to the supply of water reaching the Payette
beds from below, the shape of the basin and the fact that beds from below, the shape of the basin and the fact that
he beds composing it outcrop in the hills and mountains bordering the Suake River Plains on the north and south make it evident that additional water may reach the central part of the basin by descending from the surface. The most logical conclusion to be drawn from all the
evidence presented in reference to the probability of evidence presented in reference to the probability of
obtaining water in the Lewis artesian basin seems to be that flowing water may be expected when a well is so drilled as to penetrate deeply or pass through the Payette formation at any locality within its borders where the surface elevation is less than 2500 feet. As already
stated, 2500 feet is the minimum measure of the artesian head as shown by existing wells, but the true artesian head may considerably exceed this amount. The wells in Bruneau Valley, as shown by an unsatisfactory method, namely, aneroid barometer measurements, have
an altitude of 2700 feet an altitude of 2700 feet; and the artesian head at Boise
is about 2850 feet. It is not safe at present, however, is anceept any of 2500 feet, and until more wells are drilled all attempts to obtain flowing water should be confined to localities below that horizon. It chances that nearly all the good land along Snake River and in the lower portions of
Malheur Valley and much of that in Boise Valley is below 2500 feet. Abundant localities for developing the Lewis artesian basin are thus available, and should be tested before attempts are made to obtain artesian wells on the aplands.
The wells drilled in Snake River Valley at Central, Enterprise, Ontario, and other places, passed through soft strata and did not show the presence of beds of
basalt or other hard rock in the Payette formation. It is probable that only soft beds will be encountered in drilling to a depth of about 1000 or 1200 feet in the portion of Snake River Valley between Guffey and Weiser,
but no positive assurance that such will be found to be the case can at present be given.
the case can at present be given.
As may be judged from the f
reference to the occurrence of hot above presented in artesian wells now flowing, the most faverable near the for drilling additional wells may be assumed to be near where warm or hot springs rise through the Payette formation. A qualification of this statement is sug Vested, however, by the fact that the hot spring at ale is depositing mineral matter in the beds it passes through in rising toward the surface, and presumably
in this way forms for itself a condnit which prevents in this way forms for itself a cond uit which prevents its
water from spreading laterally. This exceptional con dition is also indicated by the exceptionally high temperature of the spring referred to. In choosing a location for a well, therefore, it would be best, at least until more facts are gathered in this connection, to avoid the proximity of a hot spring.
August, 1902.

STRUCTURE SECTIONS

3

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. ${ }^{\text {t }}$	No.*	Name of folio.	State.	Price.t
			Cents.				Cents.
	Livingston	Montana	25	53	Standingstone	Tennessee	25
2	Ringgold	Georgia-Tennessee	25	54	Tacoma.	Washington.	25
3	Placerville	California .	25	55	Fort Benton	Montana	25
$\ddagger 4$	Kingston	Tennessee	25	56	Little Belt Mountains	Montana	25
5	Sacramento	California	25	57	Telluride	Golorado	25
$\ddagger 6$	Chattanooga	Tennessee.	25	58	Elmoro	Colorado	25
$\ddagger 7$	Pikes Peak	Colorado	25	59	Bristol	Virginia-Tennessee	25
8	Sewanee	Tennessee	25	60	La Plata	Colorado	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	61	Monterey	Virginia-West Virginia	25
10	Harpers Ferry	Va.-W. Va.-Md.	25	62	Menominee Special	Michigan	25
11	Jackson	Californa.	25	63	Mother Lode District	California.	50
12	Estillville	Va.-Ky.-Tenn.	25	64	Uvalde	Texas	25
13	Fredericksburg	Maryland-Virginia	25	65	Tintic Special	Utah	25
14	Staunton	Virginia-West Virginia	25	66	Colfax	California	25
15	Lassen Peak	California.	25	67	Danville	Illinois-Indiana	25
16	Knoxville.	Tennessee-North Carolina	25	68	Walsenburg	Colorado	25
17	Marysville	California	25	69	Huntington.	West Virginia-Ohio	25
18	Smartsville	California	25	70	Washington.	D. C.-Va.-Md.	50
19	Stevenson	Ala.-Ga.-Tenn.	25	71	Spanish Peaks	Colorado	25
20	Cleveland.	Tennessee	25	72	Charleston	West Virginia	25
21	Pikeville	Terinessee	25	73	Coos Bay	Oregon.	25
22	McMinnville	Tennessee	25	74	Coalgate	Indian Territory	25
23	Nomini	Maryland-Virginia	25	75	Maynardville	Tennessee	25
24	Three Forks	Montana	50	76	Austin	Texas	25
25	Loudon.	Tennessee	25	77	Raleigh	West Virginia	25
26	Pocahontas	Virginia-West Virginia	25	78	Rome	Georgia-Alabama	25
27	Morristown	Tennessee	25	79	Atoka	Indian Territory	25
28	Piedmont.	Maryland-West Virginia	25	80	Norfolk	Virginia-North Carolina	25
29	Nevada City Special	California.	50	81	Chicago.	Illinois-Indiana	50
30	Yellowstone National Park	Wyoming	75	82	Masontown-Uniontown	Pennsylvania	25
31	Pyramid Peak	California	25	83	New York City	New York-New Jersey	50
32	Franklin	Virginia-West Virginia	25	84	Ditney	Indiana.	25
33	Briceville	Tennessee	25	85	Oelrichs	South Dakota-Nebraska	25
34	Buckhannon	West Virginia	25	86	Ellensburg	Washington.	25
35	Gadsden	Alabama	25	87	Camp Clarke	Nebraska	25
36	Pueblo	Colorado	50	88	Scotts Bluff	Nebraska	25
37	Downieville.	Califormia .	25	89	Port Orford	Oregon	25
38	Butte Special .	Montana	50	90	Granberry	North Carolina-Tennessee	25
39	Truckee	California .	25	91	Hartville	Wyoming	25
40	Wartburg	Tennessee	25	92	Gaines	Pennsylvania-New York	25
41	Sonora	Califormia	25	93	Elkland-Tioga	Pennsylvania .	25
42	Nueces.	Texas	25	94	Brownsville-Connellsville	Pennsylvania.	25
43	Bidwell Bar	California	25	95	Columbia	Tennessee	25
44	Tazewell	Virginia-West Virginia	25	96	Olivet	South Dakota	25
45	Boise .	Idaho	25	97	Parker	South Dakota	25
46	Richmond	Kentucky	25	98	Tishomingo.	Indian Territory.	25
47	London	Kentucky -	25	99	Mitchell	South Dakota.	25
48	Tenmile District Special	Colorado	25	100	Alexandria	South Dakota.	25
49	Roseburg .	Oregon	25	102	Indiana	Pennsylvania	25
50	Holyoke Big Trees	Mass.-Conn.	50	103	Nampa	Idaho-Oregon	25
51 52	Big Trees Absaroka .	California. Wyoming .	25 25	104	Silver City	Idaho	25

* Order by number.
+ Payment must be
\dagger Payment must be made by money order or in cash.
+ These folios are out of stock
\ddagger These folios are out of stock.
Circulars showing the location of the area covered by any of the above folios, as wel
had on application to the Director, United States Geological Survey. Washington, D. C.

