

DMT 2024

DIGITAL MAPPING TECHNIQUES 2024

The following was presented at DMT'24 May 13 - 16, 2024

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2024) http://ngmdb.usgs.gov/info/dmt/ Building a comprehensive QA/QC process for geologic mapping

By Ally Steinleitner and Mike Hendricks (Alaska Division of Geological & Geophysical Surveys)

The Alaska DGGS has placed an emphasis in the past few years on developing robust and efficient quality assurance (QA) and quality control (QC) procedures. Since the adoption of the AK GeMS Data Reviewer tool and custom AK GeMS validation tools, the completeness and quality of DGGS's geologic map data are greatly improved; as a result, QC has become highly valued at DGGS. To continue to make improvements in quality and efficiency we recently hired a dedicated AK GeMS Data QC GIS position here at DGGS. QC procedures are moving from ArcMap to ArcGIS Pro (Hendricks and others, 2022). This is a fundamental shift of methodology and brings a host of improvements, such as giving us the opportunity to embed data constraints and checks into the database and expanding the data quality focus from primarily QC to QA— this will prevent introduction of data errors from the outset.

BUILDING A COMPREHENSIVE QA/QC PROCESS FOR AK DGGS GEOLOGIC MAPPING

How we incorporate QA/QC practices to ensure high quality geologic map data at Alaska DGGS

Alaska Division of Geological & Geophysical Surveys 3354 College Rd, Fairbanks AK 99709

Agenda

- What does QA/QC mean?
- Current QA/QC process at DGGS
- Exciting future plans

Geospatial Data Quality Fundamentals

- Quality Assurance: Processes or methods to help <u>prevent errors</u> from being introduced in the data.
- Quality Control: Processes or tools to <u>identify errors</u> that are already in the data.

Some Causes of Data Quality Issues

Conceptualization errors

- •Example: Raster Cell size issues
- •Example: Vector representations of gradual change

Data Collection & Analysis Methods

- Example: GPS errors
- Example: Digitizing errors
- Example: Process model errors
- Example: Age analysis

Human Error

• Example: Blunders – typed 01.01.10 instead of 01.01.01

Temporal

• Example: Old Data

Kat	TRM	
	. тка	
		Ksc

	OBJECTID *	SHAPE *	contacts_and_faults_id	category	layer	type	symbol
1	1131	Polyline	{061E9470-02C3-4122	fault	0	fault, thrust	02.08.02
2	1212	Polyline	{C3902561-BAEB-4A39	fault	0	contact, other	02.08.02
3	1227	Polyline	{BAF52699-74E9-4B9B	fault	0	fault, thrust	02.08.07
4	1237	Polyline	{A5C47E79-3D71-4ADD	fault	0	fault, thrust	02.08.07
5	1276	Polyline	{F9DDFA43-28D2-4030	fault	0	fault, thrust	02.08.02
6	1278	Polyline	{23DF3518-329B-4857	fault	0	fault, thrust	02.08.07
7	1281	Polyline	/9CEB/251 D6D8 ///52	fault	0	fault thruct	02.08.07

Fitness for Use vs. Data Quality

<u>Fitness for Use</u>: The ability of data to effectively be used for some intended purpose.

<u>Data Quality</u>: How faithfully the data represents the true (a) location, (b) shape, or (c) characteristics of the phenomena.

• What level of data quality is required for a GeMS database to be fit for use? Not simple question

Error Propagation

In GIS data processing, the persistence of an error into new datasets calculated or created using datasets & maps that originally contained errors. *The study of error propagation is concerned with the effects of combined and accumulated errors throughout a series of data processing operations.*

Quality Assurance/Quality Control (QA/QC) at AK DGGS

- The prevention and elimination of errors in data at every step of workflow (from collection of data to publication)
- Established and documented data quality standard at all phases of production
- Workflow is repeatable, automated, and adaptable

= consistent, accurate, and useable data that meets the needs of intended audience

(accomplished through standardized schemas, domains, db rules, validation, custom tools, symbology, documentation, trainings)

Alaska DGGS Geologic Mapping System Components

AK GeMS QA/QC focused workflow phases

QA (don't make mistakes)

- Phase 2: Production
- Phases 5: Data Prep

QC (find mistakes)

- Phase 3: Approvals
- Phases 6-7: GeMS QC

QA/QC Accomplished with:

- Data Reviewer
- Python Scripts
- Implementing Attribute
 Rules

AK GeMS Production Workflow

Currently leveraging Esri advantage Program credits to leverage Tasks and upgrade data reviewer processes to ArcPro 3.0

The Future of AK DGGS QA/QC

CURRENT:

ArcGIS Data Reviewer Extension

FUTURE:

ArcPro Data Reviewer and Attribute Rules

- Constraint, Calculation, and Validation Rules
- Contingent Values
- Custom Python Tools

Map1 🗄 Attribute Rules: map_unit_polys	×						
Calculation Constraint Validation							
Add Rule Columns 👻 🝸 Filter 💙							
Rule Name	Description	Subtype	Min Pro Release	Min Enterprise Release	Min Arcade Release		Small Polygons Check
Small Polygons Check	Polygon feature	<all></all>	2.3	10.7	1.4.0	^	Validation
Invalid Geometry Check	All features mu:	<all></all>	3.0	11.0	1.0.0		2.3
Nulls and White Spaces Check	Nulls and empt	<all></all>	2.1	10.6	1.0.0		Rule Name Small Polygons Check
Domain Check	All values must	<all></all>	2.7	10.9	1.0.0		
Single Part Check	Map Units must	<all></all>	2.5	10.8	1.0.0		Description
Nonlinear Segment Check	Curved segmen	<all></all>	2.6	10.8.1	1.0.0		Polygon features must be larger than 100 square meters
Logical cateogry and type Check	The value in the	<all></all>	2.1	10.6	1.0.0		Subtype
product_id Check	The product_id	<all></all>	2.3	10.7	1.5.0		Expression 🔀
dmu_guid in dmu Check	The dmu_guid v	<all></all>	2.3	10.7	1.5.0		//get area of polygon
symbol code in dmu Check	The symbol cod	<all></all>	2.3	10.7	1.5.0		var polyArea = Area(\$feature, 'square- meters')
Identity confidence label Check	The feature labe	<all></all>	2.1	10.6	1.0.0	\sim	meters /
17 of 17 Validation rules listed at 2/15/2024 5:08:19 P	М.						//return error if area less 100 sqm

Current AK DGGS Rules List

Attribute Centric

- All values must meet database domain constraints
- The symbol code for a map unit must match that same map unit's symbol in the description_of_map_units table
- The feature label must match the correct value in the identity_confidence field and vice versa
- contacts_and_faults features must only be split when key attributes change
- map_units_polys features must only be split when key attributes change

Geometric Centric

- All features must have valid geometries
- Line features must not self intersect
- contacts_and_faults and map_units must be single part features
- Curved segments for lines and polygons are not allowed
- Point feature classes that reference a station feature must be collated with that feature in the stations feature class
- contracts_and_faults must be on the boundary of map unit polygons
- Line features must be longer than 10 meters
- Polygon features must be larger than 100 square meters

Additional Checks

- Check false Nulls, White space, carriage returns
- Report data_source_method field values used
- Check symbol is appropriate for attributes
- Report symbol field values not in style
- Check map unit abbreviations are correct
- Check map unit abbreviations is changed to proper code in label
- Check data_source value found in data_sources
- Check data_sources is found in GERILA (
- Check/report data_source records against the multimap data_sources_unique table
- Report layer values
- product_info equals contacts_and_faults where type equals boundary, map
- Check for valid RGB triplet and it matches the symbol color code for the map unit
- Check for valid geomaterial_dict_id value and is not Null
- Check symbol field is not null
- Check orientation point label and inclination values are logically consistent. If inclination is 0 or 90 label should be Null, otherwise label should equal inclination
- Check orientation point inclination value is consistent with symbol (ie 0 is horizontal, 90 is vertical)
- Check product_info polygon border is coincident with contact_and_faults type = "map, boundary"

Vertices Density

- Standardized range of vertices count
- Distance between vertices

total vertex count: 38001 average vertice spacing: 81.5 m

count of vertice spacings less than 25 m: 1156 percentage of total vertice spacings less than 25 m: 3.04%

errors: features with vertices error: 475 percentage of total features: 20.57%

Python

Dependent on complexity and scale of map

Documentation

QA/QC User Guide

AK DGGS

Quality Assurance and Quality Control Management Plan

April 2024

Questions?

