DIGITAL MAPPING TECHNIQUES 2023

The following was presented at DMT’23
May 21 - 24, 2023

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2023)

http://ngmdb.usgs.gov/info/dmt/
3D Geologic Modeling Tool for Watershed Planning

Jacqueline Hamilton, Geological Information Scientist
Minnesota Geological Survey
5/23/23, DMT Anchorage, Alaska
Outline

• County Geologic Atlas Mapping Program
• GRAPS program
• MGS & MDH GRAPS Pilot Projects
• Project watersheds and products
• Mapping and compilation methods for Quaternary and Bedrock
• Compiled watershed maps and texture dot models
• Model discussion
• Questions and answers
County Geologic Atlas Mapping Program

Part A: Geology (by MGS)

- Database
- Bedrock geology
- Surficial geology
- Quaternary stratigraphy
- Sand distribution model
- Bedrock topography and Depth to bedrock
- Supplemental data (GIS data used in project, GIS products created and 3D geologic surfaces)

https://conservancy.umn.edu/handle/11299/57196
Minnesota Department of Health (MDH) + Minnesota Geological Survey (MGS)
What is GRAPS? Groundwater Restoration and Protection Strategies

What is GRAPS for?
Local planning efforts prioritize groundwater

Who participates in the GRAPS program?
18 watersheds including multiple state agencies

One Watershed, One Plan: GRAPS Grant and Report Status

1W1P Planning Areas
- Grant Recipient - 2015
- Grant Recipient - 2016
- Grant Recipient - 2017
- Grant Recipient - 2018
- Grant Recipient - 2019
- Grant Recipient - 2020
- Grant Recipient - 2021

Completed GRAPS Report

https://www.health.state.mn.us/communities/environment/water/cwf/localimplem.html
GRAPS Pilot Project

• Goals of our project:
 – Provide a compilation of surface and subsurface geologic data within selected watersheds in a format for modelers, planners and general public
 – 3D model of surficial, bedrock and unconsolidated deposits
 – Establishes a physical setting at watershed planning scale, both for education and outreach, and groundwater modeling.
 – Depict aquifers and confining units
 – Can be viewed in a browser, **does not require GIS software**
MGS Modeling Strategies

- Surficial Model
- Subsurface Quaternary Model
 - Subsurface with data
 - Subsurface without data (interpolated)
- Bedrock Model
Nine Counties within the watershed
1. Goodhue
2. Dakota
3. Rice
4. Steele
5. Le Sueur
6. Waseca
7. Freeborn
8. Scott
9. Blue Earth
Surficial Quaternary Compilation Methods

- Goodhue, Dakota, Rice, Steele, Scott and Blue Earth counties have been mapped as part of the CGA program, however, they have been individually published over several decades ranging from 1990 to present day and vary in GIS data availability.

- 1:100,000 scale GIS files of the statewide digital database D-1 were combined with GIS data from more recent maps.
Surficial Geologic Model for the GRAPS project
Web model can be accessed here: https://arcg.is/09OS1L0

-Quaternary deposits are depicted with a texture-based point model

-Bedrock layers are depicted with unit surfaces
Texture-based Point Model

- Three methods to define sand, mixed or clay (250m x 5’)
 - Surficial Model
 - Subsurface Model (existing CGA data)
 - Interpolation Model (Tipping, 2019)

Tipping, 2019:
https://conservancy.umn.edu/handle/11299/219591
Bedrock Topography and Geology

- Bedrock topography (elevation of the bedrock surface) and unit surfaces are created from contours from geologic data in GIS using the Topo to Raster tool.

- Existing 25-to-50-foot contours were edited to match along county boundaries.

- Unit surfaces are calculated by adding or subtracting their estimated thicknesses.

- For units with thickness variations, isopachs are created and used to derive surfaces.

- New mapping was needed in parts of Wabasha, Goodhue and Rice Counties to more accurately depict the geologic structure in the faulted area.
Bedrock rasters can be viewed in 2D or 3D in a GIS environment or through our online 3D browser.
https://arcg.is/09OS1L0
Cannon River Watershed 3D Model

https://arcg.is/09OS1L0
Minnesota Geological Survey links

MGS GRAPS Projects

3D Geology for Watershed Planning
(https://mngs-umn.opendata.arcgis.com/apps/25e6260fe5744de3a49cd4f615730dc6)

Compilation Geologic Model for Cannon River Watershed: A Pilot Project
(https://hdl.handle.net/11299/231040)
Thank You

Jacqueline Hamilton
Minnesota Geological Survey
stub0035@umn.edu