The following was presented at DMT'21
(June 7 - 10, 2021 - A Virtual Event)

The contents of this document are provisional

See Presentations and Proceedings
from the DMT Meetings (1997-2021)

http://ngmdb.usgs.gov/info/dmt/
A Database Approach to Reviewing a Geologic Map Database: Lessons from the IMW Project

US Geological Survey, Denver, CO
Introduction

The following presentation, given at the ‘21 DMT virtual conference, addresses the process of technical/peer scientific review of geologic maps in the age of standardized database structure. The USGS FedMap Intermountain West project is producing a regional-scale, seamless, integrated geologic map database built upon a modified GeMS schema and is in the process of submitting the multi-authored product for technical review. In order to manage the complexity of the review process for such a large and diverse product, we have turned to the power of the GIS database environment. By migrating the technical review stage into the native data space of the geologic map itself, we create increased functionality for both the reviewers, the authors, and the approving officials.

The review data structure outlined here is a preliminary and basic framework being used provisionally between our project and external state survey partners performing the technical/peer review. The hope is to expand this approach within the NCGMP where formal standards can be built and widespread use can lead to a new and better, more efficient, easily documented process shared across the program. This will facilitate easier collaboration in cross-agency reviews, better data management, and eventual tool development to assist the GeoFramework effort in its goal to create a national, seamless, integrated geologic map database by 2030.
Intermountain West Project (IMW) & GeoFramework Initiative

IMW: Phase 1
- Seamless geologic mapping centered along 37°N latitude from High Plains to Sierra Nevadas (covering 14x 250k quadrangles) at intermediate scale
- Develop technology, data structure, and workflows necessary to create, review, and deliver seamless geologic map databases of large areas
- Developmental, project-level FedMap effort within larger NCGMP

GeoFramework Initiative:
- Create an integrated, 3D, digital geologic map of the United States and its territories to address the changing needs of the Nation by the year 2030
- Support operational integration of FedMap and StateMap work towards this central goal under “Phase 3” of NGMDB

IMW: Phases 2 & 3
- Extend geologic mapping effort north and south across entire intermountain west region following methodologies developed during Phase 1 maintaining a transect based approach
Developing and using SIGMa extension to GeMS

Seamless Integrated Geologic Mapping extension

(formerly referred to as rGeMS)

GeMS compliant extension allowing seamless integration of many (100s) source maps and new original mapping into a coherent regional geologic map database

Currently 15+ geologists with various roles and expertise producing map data within an enterprise GIS system

Sliding spectrum between straight compilation/data conversion and complex geologic reinterpretation and new mapping

Plans to incorporate data produced by other USGS teams and state survey data produced under Phase3 supplemental contracts
Developing and using SIGMa extension to GeMS

Seamless Integrated Geologic Mapping extension
(formerly referred to as rGeMS)

GeMS compliant extension allowing seamless integration of many (100s) source maps and new original mapping into a coherent regional geologic map database

Currently 15+ geologists with various roles and expertise producing map data within an enterprise GIS system

Sliding spectrum between straight compilation/data conversion and complex geologic reinterpretation and new mapping

Plans to incorporate data produced by other USGS teams and state survey data produced under Phase3 supplemental contracts

Not a map catalog
Intermountain West Project (IMW) Geologic Mapping

Developing and using SIGMa extension to GeMS

Seamless Integrated Geologic Mapping extension
(formerly referred to as rGeMS)

GeMS compliant extension allowing seamless integration of many (100s) source maps and new original mapping into a coherent regional geologic map database

Currently 15+ geologists with various roles and expertise producing map data within an enterprise GIS system

Sliding spectrum between straight compilation/data conversion and complex geologic reinterpretation and new mapping

Plans to incorporate data produced by other USGS teams and state survey data produced under Phase3 supplemental contracts

This is a seamless, multi-authored interpretive product
“Peer review is required for virtually all science information products” – Survey Manual 502.3 [3A]

“Peer reviewed information products submitted for Bureau approval must include the original comments from all peer reviewers, reconciliation indicating how review comments were addressed, and the revised manuscript after reconciliation” – Survey Manual 502.3 [3G]

“This Bulletin establishes that important scientific information shall be peer reviewed by qualified specialists before it is disseminated by the federal government” – OMB M-05-03 (December 16, 2004)
Peer review of geologic maps was last addressed in the USGS in 2010.
Revised and updated training materials by M. Reynolds and others, 1990

Cooperative effort led by S. Beard (USGS Flagstaff) to discuss the topic across the FedMap program and produce new guidelines (available on NGMDB website)

P. Stone and D. Bedford (USGS Menlo) led effort to revive internal training for peer review of geologic maps
TECHNICAL PEER REVIEW AT THE USGS

Peer review of geologic maps was last addressed in the USGS in 2010
Revised and updated training materials by M. Reynolds and others, 1990

Cooperative effort led by S. Beard (USGS Flagstaff) to discuss the topic across the FedMap program and produce new guidelines (available on NGMDB website)

P. Stone and D. Bedford (USGS Menlo) led effort to revive internal training for peer review of geologic maps

Things have changed since 2010 and it’s time to take a new look
A SHIFT IN PHILOSOPHY AND THINKING

The product is a database, not a traditional map graphic.

The review should occur within the database environment.
vs. DATABASE
A SHIFT IN PHILOSOPHY AND THINKING

The product is a database, not a traditional map graphic.

The review should occur within the database environment.

All routing and approval steps should also use the map database which represents the entire complexity and detail of the publication.
A SHIFT IN PHILOSOPHY AND THINKING

Multi-author map data and regional geologic mapping under the GeoFramework initiative will require many authors responding to reviews.

Versioning can lead to multiple stages of review.

The review is part of a continuous process.

There may be many reviewers and many authors over a prolonged period of creation, compilation, and editing.
A SHIFT IN PHILOSOPHY AND THINKING

Reviews, responses, and approval steps are data

Databases allow management of data

Current USGS routing uses the Information Product Data System (IPDS) database for logging steps in the process

The actual reviews and responses are stored in separate files with no data structure or interconnection within IPDS

(scans of paper with handwriting)
A SHIFT IN PHILOSOPHY AND THINKING

This all supports a database approach to technical review of geologic map data.
A SHIFT IN PHILOSOPHY AND THINKING

This all supports a database approach to technical review of geologic map data.

How do we capture the traditional technical peer review within a database?
WE WANT TO CAPTURE ALL OF THIS
A SHIFT IN PHILOSOPHY AND THINKING

This all supports a database approach to technical review of geologic map data.

How do we capture the traditional technical peer review within a database?

Annotation of a digital graphic
sticky notes on a PDF
most common approach to create “digital” review comments
A SHIFT IN PHILOSOPHY AND THINKING

This all supports a database approach to technical review of geologic map data.

How do we capture the traditional technical peer review within a database?

Annotation of a digital graphic
sticky notes on a PDF
most common approach to create “digital” review comments

NOT A TRUE DATA DRIVEN APPROACH
A SHIFT IN PHILOSOPHY AND THINKING

This all supports a database approach to technical review of geologic map data.

How do we capture the traditional technical peer review within a database?

A TRUE DATA DRIVEN APPROACH CREATES FUNCTIONALITY FOR THE REVIEWER, THE RESPONDING AUTHORS, AND THE APPROVING OFFICIALS.
RECORDING REVIEW COMMENTS

Allow the reviewer all feature types of GIS to provide comments:

- Polygons (ReviewPolys)
- Lines (ReviewLines)
- Points (ReviewPoints)
- Tables (ReviewTable)
Allow the reviewer all feature types of GIS to provide comments:

- Polygons (ReviewPolys)
- Lines (ReviewLines)
- Points (ReviewPoints)
- Tables (ReviewTable)

Separate database from the GeMS database being reviewed
Allow the reviewer all feature types of GIS to provide comments:

- Polygons (ReviewPolys)
- Lines (ReviewLines)
- Points (ReviewPoints)
- Tables (ReviewTable)

Separate database from the GeMS database being reviewed

Polys can be used to circle a bunch of lines
A point can be snapped to a line to comment
Can copy and edit a line to suggest new geometry
Allow the reviewer all feature types of GIS to provide comments:

- Polygons (ReviewPolys)
- Lines (ReviewLines)
- Points (ReviewPoints)
- Tables (ReviewTable)

Separate database from the GeMS database being reviewed

- Polys can be used to circle a bunch of lines
- A point can be snapped to a line to comment
- Can copy and edit a line to suggest new geometry
- Tabular comments are best suited to address a tabular field
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

• Name of reviewer making comment
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

- Name of reviewer making comment
- Name of author responding to comment
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

- Name of reviewer making comment
- Name of author responding to comment
- Progress of the comment (routing step)
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

• Name of reviewer making comment
• Name of author responding to comment
• Progress of the comment (routing step)
 • Data targeted by the comment
Attribution to address comment and routing of comment:

- Name of reviewer making comment
- Name of author responding to comment
- Progress of the comment (routing step)
 - Data targeted by the comment
 - Comment open text
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

• Name of reviewer making comment
• Name of author responding to comment
• Progress of the comment (routing step)
 • Data targeted by the comment
 • Comment open text
 • Author response open text
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

- Name of reviewer making comment
- Name of author responding to comment
- Progress of the comment (routing step)
 - Data targeted by the comment
 - Comment open text
 - Author response open text
 - Approving official response open text
RECORDING REVIEW COMMENTS

Attribution to address comment and routing of comment:

- Name of reviewer making comment
- Name of author responding to comment
- Progress of the comment (routing step)
 - Data targeted by the comment
 - Comment open text
 - Author response open text
 - Approving official response open text
- Approval check-box to close out the comment
RECORDING REVIEW COMMENTS

Spatial feature comments vs Tabular feature comments

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>shape</td>
<td>Geometry</td>
</tr>
<tr>
<td>reviewer</td>
<td>Text</td>
</tr>
<tr>
<td>responder</td>
<td>Text</td>
</tr>
<tr>
<td>progress</td>
<td>Text</td>
</tr>
<tr>
<td>featuredataset</td>
<td>Text</td>
</tr>
<tr>
<td>featureclass</td>
<td>Text</td>
</tr>
<tr>
<td>commenttype</td>
<td>Text</td>
</tr>
<tr>
<td>comment</td>
<td>Text</td>
</tr>
<tr>
<td>comment2</td>
<td>Text</td>
</tr>
<tr>
<td>authorresponse</td>
<td>Text</td>
</tr>
<tr>
<td>approvingofficialcomment</td>
<td>Text</td>
</tr>
<tr>
<td>approval</td>
<td>Text</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECTID</td>
<td>Object ID</td>
</tr>
<tr>
<td>reviewer</td>
<td>Text</td>
</tr>
<tr>
<td>responder</td>
<td>Text</td>
</tr>
<tr>
<td>progress</td>
<td>Text</td>
</tr>
<tr>
<td>tablename</td>
<td>Text</td>
</tr>
<tr>
<td>commentid</td>
<td>Text</td>
</tr>
<tr>
<td>commenttype</td>
<td>Text</td>
</tr>
<tr>
<td>comment</td>
<td>Text</td>
</tr>
<tr>
<td>comment2</td>
<td>Text</td>
</tr>
<tr>
<td>authorresponse</td>
<td>Text</td>
</tr>
<tr>
<td>approvingofficialcomment</td>
<td>Text</td>
</tr>
<tr>
<td>approval</td>
<td>Text</td>
</tr>
</tbody>
</table>
RECORDING REVIEW COMMENTS

Spatial feature comments vs Tabular feature comments

IDENTIFY THE TARGET FEATURE OF THE COMMENT
RECORDING REVIEW COMMENTS

Spatial feature comments vs Tabular feature comments

FeatureDataset for multi-map databases

FeatureClass to identify the target feature type (concatenation)

Use spatial review features (poly, line, point) to identify specific target
RECORDING REVIEW COMMENTS

Spatial feature comments vs Tabular feature comments

TableName to identify the target table

CommentID (or **FieldID**) to identify the row of the table

FieldName to identify comments for entire fields?
RECORDING REVIEW COMMENTS

Analyzing the review process?

CommentType is a field intended to record general categories of comments:

- Allow post assessment of the process:
 - What types of comments are we getting?
- Are different areas/rock types/etc. producing different problems?
- Are different coauthors’ workflows producing inconsistencies?
METHODS MADE POSSIBLE IN A DATABASE ENVIRONMENT

• Use of AGOL MapViewer for technical peer review
• TileService provides smooth viewing of symbolized map – map author controls visualization
• Queryable FeatureService provides controlled access to GeMS map database for querying – data remain secure
 Allows map authors full control over their pre-publication data
• Editable FeatureService provides full access to review database – technical reviewer can draw and attribute comments

• Web interface only requires the technical reviewer has an Org AGOL account
• Simple review feature/comment creation tools
• Domains create easy drop-down attribution
• Low technology threshold for reviewer
MANAGING THE REVIEW COMMENTS

Map authors can track progress while addressing review comments

Project managers overseeing multi-authored maps can use spatial and attribute queries of review comments to assign response duties and track progress

Multiple reviews can be managed simultaneously with ease due to comment level metadata

Routing and approval for updates to sections of a previously approved database can be treated in a more continuous workflow

Review comments can easily be archived in a uniform format and accessed later for full transparency of process
A BASIC FRAMEWORK FOR A STANDARD

A database approach requires a standard

A standard will facilitate construction of tools and consistency in the technical peer review process

The GeoFramework Initiative requires consistency of process across all agencies involved and may incorporate work from 100’s of geologists as authors and as reviewers (crowd sourcing)

Management of this process will require a robust data solution