DIGITAL MAPPING TECHNIQUES 2020

The following was presented at DMT’20
(June 8 - 10, 2020 - A Virtual Event)

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2020)

http://ngmdb.usgs.gov/info/dmt/
Modifications to Geologic Mapping Schema (GeMS) to support regional compilation: An example from the USGS Geologic Framework of the Intermountain West project

Project overview

- Transect along 37° (N) from Great Plains to Sierra Nevada
 - Equivalent to 14,1° X 2° (1:250K) quadrangles

- Assemble seamless, integrated geologic map database to support hazard and resource assessment and research objectives
- Provide regional framework for subsurface model interpretation
Multi-map, Multi-scale
• Strictly honors original source mapping

• Map units not necessarily integrated across boundaries

Seamless regional coverage
• New interpretive lines are generated from original source maps

• Features are continuous across map and administrative boundaries

From Muehlberger, 1967; Steven and others, 1976
Summary of GeMS modifications

• Feature-level documentation of compilation processes and data sources

• Independent surficial and bedrock datasets

• Partition descriptive information into fields

• Method for organizing and maintaining unique map units
Data model

- **ESRI environment**—SDE geodatabase (although shown here as a file geodatabase)
- Independent surficial and bedrock data structure—No topologic relationship between them
- **MapUnitLines**—feature class with both line and map unit attributes
- Drop use of GeologicLines in favor of thematically specific line feature classes
DataSources and CompilationMethod

DataSources

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maldonado, F., Miggins, D.P., Budahn, J.R., and Spell, T.</td>
<td>2013</td>
<td>Deformational and erosional history for the Abiquiu and contiguous area, New Mexico Geological Society of America Special Paper</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series</th>
<th>Pages</th>
<th>Plates</th>
<th>Scale</th>
<th>DOI</th>
<th>Source</th>
<th>NGMDBProdLink</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>155-168</td>
<td><Null></td>
<td><Null></td>
<td><Null></td>
<td>Kempton and others, 2007</td>
<td><Null></td>
</tr>
</tbody>
</table>

CompilationMethod

<table>
<thead>
<tr>
<th>Method</th>
<th>Notes</th>
<th>CompilationMethod_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiled from sources cited in DataSource field</td>
<td>Features are modified from source data</td>
<td>COM1</td>
</tr>
<tr>
<td>Compiled unmodified from sources cited in DataSource field</td>
<td>Features are unmodified from source data</td>
<td>COM2</td>
</tr>
</tbody>
</table>

Feature-level attribution

<table>
<thead>
<tr>
<th>CompilationMethodID</th>
<th>COM4</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataSource</td>
<td>Bingler, 1968: Manley and others, 1987</td>
</tr>
</tbody>
</table>
Partitioning descriptive attributes

• Process and Materials
 • DepositGeneral; DepositMaterial (3 fields); DepositType (3 fields)

• Age
 • ChronoStratAgeMin; ChronoStratAgeMax
 • NumAgeMin; NumAgeMax; NumAgeMethod; NumAgeSource
 • **Seamless database will eventually be integrated with the national geochronologic database**
Surficial vs bedrock units

Surficial

• Unconsolidated sediment

• Usually Quaternary (not a requirement)

• Generally undeformed
Surficial vs bedrock units

Surficial
- Unconsolidated sediment
- Usually Quaternary (not a requirement)
- Generally undeformed

Bedrock
- Sedimentary, igneous, metamorphic rocks
- All volcanic rocks (regardless of age) including sedimentary deposits directly associated with volcanic processes
Characterization of surficial deposits

From Maldonado, 2008 (Abiquiu, NM: 1:24K)

From Koning and others, 2004 (Medanales, NM: 1:24K)
Surficial deposits

Categorize by process: DepositGeneral

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alluvium</td>
<td>groundwater / spring discharge deposits</td>
</tr>
<tr>
<td>alluvium / colluvium</td>
<td>playa, lake, wetland deposits</td>
</tr>
<tr>
<td>glacial deposits</td>
<td>water</td>
</tr>
<tr>
<td>eolian deposits</td>
<td>bedrock</td>
</tr>
<tr>
<td>mass wasting deposits</td>
<td>artificial fill</td>
</tr>
</tbody>
</table>
MapUnitPolys_Surficial

Doney, 1968
Bedrock units

LIST OF MAP UNITS

VOLCANIC ROCKS

- Qhd: Basaltic andesites Mačana cone (very Pleistocene)
- Tdan: Servite Basalt (Pleistocene)
- Toa: Olave andesite (Pleistocene)
- Tsb: Basaltic andesite of San Pedro Mesa (Miocene)
- Tact: Basaltic andesite and trachyandesite, undivided (Miocene)
- Tde: Andesite and dacite of San Pedro Mesa (Miocene)
- Thf: Hinsdale Formation (Oligocene)

Dakota Sandstone (Upper Cretaceous, Cenomanian)

- **Kdt**: Twin Wells Tongue—Yellowish-gray (SY7/2-5/SY7/4), very fine grained to fine-grained sandstone, conglomeratic sandstone, and conglomerate. Thickness 10-30 ft (0-9 m). PINNEDALE AREA, PINNEDALE: 608109N 1061620W to 608129N 1061645W, and as much as 10 ft (3 m) south.
- **Kd**: Main body—Mostly light-grayish-yellow and very pale orange (10YR8/2) siliciclastic sandstone in cliff-forming beds as thick as 10 m and commonly bedded as much as 10 ft (3 m).

(Robertson, 2006: Pinedale, 1:24k)

National Geologic Map Database

Search Count: 3,662 Units

(Ferguson and Osburn, 2012: Luera Mtns, 1:24k)

Basalt flows (Pliocene and Miocene)

- **Tby**: Basalt (Pleistocene and Pliocene, 0.9–2.5 Ma)

(Ratte, 2001: Tularosa, 1:100k)

Basalt (Oligocene): Phenocryst-poor basaltic lava containing <5%, <2.5mm phenocrysts of olivine (typically altered to iddingsite), pyroxene, and sparse plagioclase. Matrix ranges from vitric to strongly crystalline with abundant plagioclase microlites. Thickness up to 300m.

(Ulrich and others, 1984: Flagstaff, 1:250K)

Basalt flow (Upper Tertiary): Medium- to dark-gray or black, holocrystalline, hard, vuggy, noritic, olivine basalt. Commonly has

(Scott, 1986: Springer, 1:100K)

VS.

(Ulrich and others, 1984: Flagstaff, 1:250K)

(Rwucke and others, 2004: San Carlos, 1:125k)
Concept of geologic province

Tectonic, magmatic, or stratigraphic associations

Spatial and temporal characteristics

No fixed spatial boundaries

Include 3 GeolProvince fields

Ranked GeolProvince1

Cenozoic extension

Magmatism of uncertain association

Southern Rocky Mountains volcanic field

Cordilleran orogenic system
Hierarchy of GeolProvince fields

Cordilleran orogenic system
 └── Laramide province
 ├── Laramide province: Sevier foreland
 │ └── Sevier foreland
 │ └── Sevier foreland: Mesozoic back arc
 └── Mesozoic back arc
Hierarchy of GeoProvince fields

Cordilleran orogenic system

- Laramide province
 - Sevier foreland
 - Sevier foreland:
 - Mesozoic back arc
 - Mesozoic back arc
 - Laramide province:
 - Sevier foreland
 - Laramide subduction-related magmatism

GeoProvince1

GeoProvince2

GeoProvince3

- Raton Basin
 - El-Rito-Galisteo Basin
 - San Juan Sag
 - San Juan Sag: San Juan Basin
 - San Juan Basin
- Laramide subduction-related magmatism
 - Raton Basin: Western interior seaway
 - San Juan Basin: Western interior seaway
 - Western interior seaway
 - Late Jurassic epeirogenic uplift
 - Late Jurassic epeirogenic uplift:
 - Sundance Sea shoreline
 - Sundance Sea shoreline
 - Chinle depositional system
Map units and GeolProvince association

• Map unit **names** only need to be unique within a particular GeolProvince

• An individual **map unit** can only be associated with a single GeolProvince regardless of location
 • Like the Lava Creek B example
Map units and GeolProvince association

Unit is unique based on combination:
GeolProvince1-GeolProvince2-GeolProvince3-MapUnitName

<table>
<thead>
<tr>
<th>GeolProvince1</th>
<th>GeolProvince2</th>
<th>GeolProvince3</th>
<th>MapUnitName</th>
<th>MapUnit</th>
<th>DMUID</th>
<th>HierarchyKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenozoic ext.</td>
<td></td>
<td></td>
<td>Bridgetimber Gravel</td>
<td>Tbg</td>
<td>6</td>
<td>001-000-000-001</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td></td>
<td>Brazos Basalt</td>
<td>Qbl</td>
<td>43</td>
<td>001-001-000-001</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td></td>
<td>Santa Fe Group</td>
<td>Tsf</td>
<td>678</td>
<td>001-001-000-002</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td>Jemez vol. field</td>
<td>Bandelier Tuff</td>
<td>Qbt</td>
<td>532</td>
<td>001-001-001-001</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td>Jemez vol. field</td>
<td>Otowi Mbr. of Bandelier T.</td>
<td>Qbo</td>
<td>45</td>
<td>001-001-001-002</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td>Jemez vol. field</td>
<td>Tshirege Mbr. of Bandelier T.</td>
<td>Qbt</td>
<td>543</td>
<td>001-001-001-003</td>
</tr>
<tr>
<td>Cenozoic ext.</td>
<td>Rio Grande rift</td>
<td>Espanola Basin</td>
<td>Abiquiu Formation</td>
<td>Ta</td>
<td>456</td>
<td>001-001-002-001</td>
</tr>
</tbody>
</table>
NonUnique MapUnitNames

- Informal unit names referring to lithology, color, or type of deposit (ex. basalt lava flow) can be nonunique within database, BUT must be unique with a GeolProvince

- Using hypothetical example of MapUnitName = basalt lava flow

<table>
<thead>
<tr>
<th>GeolProvince1</th>
<th>GeolProvince2</th>
<th>GeolProvince3</th>
<th>MapUnitName</th>
<th>MapUnit</th>
<th>DOMUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenozoic extension</td>
<td>Rio Grande rift</td>
<td>Ocate vol. fld.</td>
<td>basalt lava flow</td>
<td>Tbf</td>
<td>9</td>
</tr>
<tr>
<td>Cenozoic extension</td>
<td>Rio Grande rift</td>
<td>Taos Plateau vol. fld.</td>
<td>basalt lava flow</td>
<td>Tbf</td>
<td>101</td>
</tr>
<tr>
<td>Cenozoic extension</td>
<td></td>
<td>Basin and range</td>
<td>basalt lava flow</td>
<td>Tbf</td>
<td>400</td>
</tr>
<tr>
<td>Mogollon/Datil</td>
<td></td>
<td></td>
<td>basalt lava flow</td>
<td>Tbf</td>
<td>304</td>
</tr>
</tbody>
</table>
Bedrock attributes

MapUnitPolys_Bedrock

DescriptionOfMapUnits_Bedrock

<table>
<thead>
<tr>
<th>OB</th>
<th>GeolProvince1</th>
<th>GeolProvince2</th>
<th>GeolProvince3</th>
<th>MapUnitName</th>
<th>MapUnit</th>
<th>Group</th>
<th>Formation</th>
<th>Member</th>
<th>DepositGeneral</th>
<th>DepositMaterial1</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Cenozoic</td>
<td>extension</td>
<td>Rio Grande</td>
<td>rift</td>
<td>Espanola</td>
<td>Basin</td>
<td>Abiquiu</td>
<td>Formation</td>
<td>Ta</td>
<td>Abiquiu</td>
</tr>
<tr>
<td></td>
<td>sedimentary-terrestrial</td>
<td>sandstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DepositType1</th>
<th>DepositType2</th>
<th>DepositType3</th>
<th>DepositSource</th>
<th>ChronoStratAgeMin</th>
<th>ChronoStratAgeMax</th>
<th>NumAgeMin</th>
<th>NumAgeMax</th>
<th>NumAgeMethod</th>
<th>NumAgeSource</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluvial</td>
<td>alluvial</td>
<td><Null></td>
<td><Null></td>
<td>Miocene</td>
<td>Oligocene</td>
<td><Null></td>
<td><Null></td>
<td><Null></td>
<td><Null></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SourceVolcano</th>
<th>EruptiveCycleTiming</th>
<th>hierarchy DA</th>
<th>Description</th>
<th>DOMU Bedrock</th>
<th>GeoMaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td><Null></td>
<td><Null></td>
<td>001-001-003-009</td>
<td><Null></td>
<td>148</td>
<td>---Clastic sedimentary rock</td>
</tr>
</tbody>
</table>
Surficial, bedrock, and combined