

DIGITAL MAPPING TECHNIQUES 2020

The following was presented at DMT'20 (June 8 - 10, 2020 - A Virtual Event)

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2020)

http://ngmdb.usgs.gov/info/dmt/

Getting started with GeMS, part 2

Caroline Rose cmrose@wisc.edu Punwath Prum pprum@wisc.edu

Digital Mapping Techniques June 9, 2020 https://ngmdb.usgs.gov/Info/dmt/ github.com/wgnhs/gems

&

MIT Press, 2020

Datafeminism.io

Reading Group: videos and notes

Relates data visualization to feminist work on race, class, gender, and other aspects.

2 wgnhs/gems			0	Dunaath• 3 \$	tar 2 V fork
O Lode () Issue ()	17 Pull responds (Action [] Prop	en g mani () i	ecurity 🛛 🖂 insights	© Settings
VGNHS developed too tenage topics	is and documentati	on for working with the U	SGE Geologic Map Sch	orra (GeMS)	Li
-co- 28 commits	p 2 branches	💮 2 pacinges	© @ releases	g 1 energyment	Ph 2 contribution
Branch: master + No	ne pul request.		Create new file	Opload files Find file	Citra or download -
amelitane Update (0	ADME.md			Calest cor	rend 6898555 on Mer 9
D OWNER Making	Magn-In-Cellfs.pdl	elit slides PDF from SMF1 20	10 presentation		tamonths again
D DMT2010-moving-r	napi-lo-gene-ec. ()	and script of the DMI balk			12 months ago
DecodeCodedOuria	aire gy	had to decade coded dorse	ni into takites in a geodal	stune	1.1 months age:
DecodeColledDuria	airs.tin	lost to decade coded durine	ni into fables in a geodal	stere	1.1 months app
Ciefetti Layers and Ta	bin Quick Refer	pointe the quick reference of	herefs.		12 muetto apo
Carlot Layers and Ta	dales Quick Refer	and the gasts reference of	web:		12 months app
C READMENT		Ipdate README.red			2 months app
D Warkflass, Dversere	25-10-19pd	KDY anisymptotic publicate MDI			CE months ago

gems

Tools and documentation for working with the USGS Geologic Map Schema (GeMS), developed at the Weconsin Geological and Natural History Survey (WSNHS). Please direct questions to Caroline at caroline recollywise edu.

Resources developed by WGNHS:

Workflow documentation:

Workflow, Overview (PDF): This is a general overview of the steps we followed when converting previously published maps into GeNS

DMT2019 Moving Maps-to GeMS: Slides and the script from a presentation at the Digital Mapping Techniques meeting, May 2019, Butte, Montans, An almost identical presentation was given at the NGGDPP workshop in Gelden, CD in September of 2019.

GeME Juyers and Tables Quick Reference: This document summarizes all fields for any GeME layer or table. This mostly reproduces the tod in the GeME manuscript. It is mean to be painted as that one layer is summarized on one sheet of paper. We found this scalar because it helps among down the reference material. Provided in both doc and pdf format.

Specialty tools:

metadata-to-tables.py: A python script for extracting any Enumerated Domain Values and their corresponding detrivitors from FGDC metadata in .txt format. Outputs a .csv file for each Enumerated Domain.

DecodeCodedDomains.tbc: An ArcMap toolbox with one tool in it. It references the py script of the same name. The tool accepts a geodatabase as input, and it turns every coded domain into a table within the database.

0

Contact Gittlub Priving API Training Blog About

Other resources:

USGS GeMS official documentation: https://ngmdb.usgs.gov/info/standards/GeM5/

USGS GeMS Toolkit: https://gtthub.com/usgs/GeM5_Tools/

NCGMP09 on Github: https://github.com/ncgmp09

@ 2020 Gittula Inc. Terms Privacy Security Status Help

National Geological and Geophysical Data Preservation Program (NGCDPP) on GitHub: https://github.com/hggdpp

Arizona G5 web map of a NCGMP09 map. https://github.com/args/geologic map of arizona

github.com/

wgnhs/gems

Summary of resources

Workflow Overview (PDF on github)

Workflow steps

Workflow Step	Basic Steps	Tools/Scripts/Templates
Locate Data	 Create folders to house initial data, edited data, and eventually GeMS data. Download from WGNHS website or Find in past project folders 	
Convert to use in	 If in .E00 format: Use conversion tool Create a new file geodatabase (with correct spatial information) and within that create a new feature dataset. Import the converted shapefiles into the geodatabase/feature dataset. 	 Import from E00 (Conversion) (tool) Create new File Geodatabase Create new Feature Dataset
ArcMaps	 If already in a geodatabase: Create a new file geodatabase (with correct spatial information) and within that create a new feature dataset. Import the other geodatabase files into the geodatabase/feature dataset. 	 Create new File Geodatabase Create new Feature Dataset
Examine Data	 Extract metadata from larger metadata txt (if necessary). Write down the initial data type in the progress table. 	 Run in-house extract from metadata script

MAP SYMBOLS -	→ master
	glossary
Abandoned beaches and wave-cut bluffs.	•

Direction of flew of proglacial streams.

Cutbanks of large abandoned river channels.

1

Low, narrow drumlins formed during the last glacial advance. Arrowhead indicates direction of gla--cial movement-

High, wide drumling formed during an earlier glacial episode and only slightly modified during the last glacial episode.

glacial striation

Direction of subglacial scratches on rock surfaces.

Glacial ridges, transverse to ice-movement direction, including ice-thrust masses in map unit gt and small end moraines in map units gu, gc, gg, gm,sg, and p.

Eskers, prowhead point in direction of stream flow.

FI B3	le Home	Insert Page Layout Formulas Data Review Vi	ew Acrobat Q Tell me what you want to do	
83	A	B	C	D
1	MapUnit	Name	FullName	Age
2		Modern Sediment		
3	Msu	Modern Stream Sediment	Modern Stream Sediment	Holocene
4	Mbt	Talus	Talus of Barron Quartzite	Holocene
5	Mpm	Organic Sediment	Organic Sediment	Holocene
6		Copper Falls Formation		
7	Csu	Meltwater-Stream Sediment	Meltwater-Stream Sediment of the Copper Falls Formation (Undifferentiated)	Late Pleistocene
8	Css	Eroded Meltwater Stream Sediment	Eroded Meltwater Stream Sediment of the Copper Falls Formation (Undifferentiated)	Late Pleistocene
9		Chetek Member		Late Pleistocene
10	C5su	Meltwater-Stream Sediment of the Chetek Member	Meltwater-Stream Sediment of the Chetek Member of the Copper Falls Formation	Late Pleistocene
11	C5sp	Pitted Meltwater-Stream Sediment of the Chetek Member	Pitted Meltwater-Stream Sediment of the Chetek Member of the Copper Falls Formation	Late Pleistocene
12		Sylvan Lake Member		
13	C4uh	Hummocky Glacial Sediment of the Sylvan Lake Member	Hummocky Glacial Sediment of the Sylvan Lake Member of the Copper Falls Formation	Late Pleistocene
14	C4uu	Glacial Sediment of the Sylvan Lake Member	Glacial Sediment of the Sylvan Lake Member of the Copper Falls Formation	Late Pleistocene
15	C4sp	Pitted Meltwater-Stream Sediment of the Sylvan Lake Member	Pitted Meltwater-Stream Sediment of the Sylvan Lake Member	Late Pleistocene

AR

en PRA

Pratte

0450

Initial Topology Check	 Run initial topology check of feature dataset new topology. (Select lines and polygon) Load rules from template folder (TopologyRules.rul) In an editor session, open the Error Inspector tool 	 Add New>Topology to feature dataset tool (right click on feature dataset) Load TopologyRules.rul in New>Topology tool Error Inspector tool
	 Go through each error and correct as needed Save editor session Check line directions: Check that lines are going the same direction as PDF map Use long hash right lines for lines that have designs on the side (like cutbanks) and a line with an arrow for lines like drumlins Flip line where necessary: 1 line: in editor session click on line until vertices show, right click and select Flip Multiple lines: select all lines that need to be changed and use the Flip Line (Editing) Tool 	 Symbology Editing Session right click on line > Flip tool Multiple lines: Flip Line (Editing) tool
	 Lines to Points: Check if any lines need to be changed to points (line to Orientation Points or Direction Points) Select lines that need to be turned into points and export as its own 	 Select by Attributes (example: Type = 'surface slope of stream plains') Data > Export Data Add Geometry Attributes (Data Management) Tool Field Calculator for Azimuth in

MapUnitPolys (polygon feature class) required

Fields:

MapUnit	Short plain-text key (identifier) for the map unit. Example values: "Qal", "Tg", "Kit", "water", "Trc3", etc. Foreign key to DescriptionOfMapUnits table. Null values not permitted—a mapped polygon must have an assigned map unit
IdentityConfid	Ience How confidently is this polygon identified as MapUnit? Value is usually "certain", "questionable", or "unspecified". Null values not permitted. Suggest setting default value to "certain". Values must be defined in Glossary.
Label	Determined from the appropriate value of the Label in the DescriptionOfMapUnits table and identityConfidence: if identityConfidence = "questionable", then append "?" to Label value from the DescriptionOfMapUnits table. Allows for subscripts and special characters. Null values permitted
Symbol	References an area fill symbol (background color + optional pattern). Area fill symbols must be defined in an accompanying style file. If Esri Cartographic Representations are used to symbolize map units, the value may be null or blank. Null values permitted
DataSourceID	Foreign key to DataSources table, to track provenance of each data element. Null values not permitted
Notes	Optional field. Free text for additional information specific to this polygon. Null values permitted
MapUnitPolys_ID	Primary key. Example Values = MUP1, MUP2, MUP3, etc. Values must be unique in database. Null values not permitted

Topology rules:

Polygons must not overlap

No gaps between polygons

· Boundaries must be overlain by lines in ContactsAndFaults

Note that not all lines in ContactsAndFaults necessarily bound polygons: polygons separated by concealed contacts or faults may have been merged during construction of the database; also some faults, concealed contacts, and concealed faults may dangle (terminate within polygons) and thus not separate polygons. Note also that open water (lakes, double-line rivers), glaciers, and unmapped areas are polygons, and so must have non-null MapUnit values (e.g., water, glacier, unmapped). Water and glacier areas commonly are not labeled (Labelenull).

Quick-reference Sheets (PDF on github)

MapUnitPolys (polygon feature class) required

Fields:

MapUnit	Short plain-text key (identifier) for the map unit. Example values: "Qal", "Tg", "Kit", "water", "Trc3", etc. Foreign key to DescriptionOfMapUnits table. Null values not permitted—a mapped polygon must have an assigned map unit
IdentityConfid	ence How confidently is this polygon identified as MapUnit? Value is usually "certain", "questionable", or "unspecified". Null values not permitted. Suggest setting default value to "certain". Values must be defined in Glossary.
Label	Determined from the appropriate value of the Label in the DescriptionOfMapUnits table and IdentityConfidence: if IdentityConfidence = "questionable", then append "?" to Label value from the DescriptionOfMapUnits table. Allows for subscripts and special characters. Null values permitted
Symbol	References an area fill symbol (background color + optional pattern). Area fill symbols must be defined in an accompanying style file. If Esri Cartographic Representations are used to symbolize map units, the value may be null or blank. Null values permitted
DataSourceID	Foreign key to DataSources table, to track provenance of each data element. Null values not permitted
Notes	Optional field. Free text for additional information specific to this polygon. Null values permitted
MapUnitPolys_ID	Primary key. Example Values = MUP1, MUP2, MUP3, etc. Values must be unique in database. Null values not permitted

Quick-reference Sheets (PDF on github)

Topology rules:

- Polygons must not overlap
- No gaps between polygons
- · Boundaries must be overlain by lines in ContactsAndFaults

Note that not all lines in ContactsAndFaults necessarily bound polygons: polygons separated by concealed contacts or faults may have been merged during construction of

GeMS is flexible

DECISIONS:

estimating confidence values terms to use for 'type' attributes represent features as points or as lines hierarchy key assignment paragraph style descriptions how to cite the map which definitions to use in the Glossary which layers are best suited for which points etc.

GeMS is flexible

DECISIONS:

estimating confidence values \rightarrow Standard list of values terms to use for 'type' attributes \longrightarrow Draw from master glossary represent features as points or as lines \longrightarrow New feature classes as needed hierarchy key assignment ... paragraph style descriptions how to cite the map which definitions to use in the Glossary which layers are best suited for which points etc.

Pliestocene Pleistoncene Pleistoecne Pleistoecne **Pleistocene & other difficulties**

GeMS Fields Checklist

 "Validate database" script

Metadata For GeMS Maps -Step by Step in ArcCatalog

Metadata Summary for GeMS Fields "FGDC CSDGM2 Metadata" script

+

"GeMS Fields Checklist" (PDF on github)

Glossary (non-spatial table)

Term	 Check paragraphStyl Terms are in the mas Master glossary has 'Maps' column 		
Definition	Look for truncated definition		
DefinitionSourceID			
SeeAlso	DataSources (non-spat	al table)	
TermSrcFld			
TermSrcFC	DataSources_ID	Unique and readable abbreviations of the cita	itions
Glossary_ID	Source	 Cite the entire publication instead of the itself. Citations follow USGS format) plate
	Notes		
	URL	If referencing a past Survey publication, the U directs to the overall publication, not just the	

ArcCatalog		FGDC metadata	
Overview > Citation	Titles	2	Lineage > Source_Information > Source_Citation > Citation_Information
Overview > Citation	FGDC Geospatial Data Presentation Form	1	Citation > Citation Information > Geospatial Data Presentation Form
Overview > Citation	Dates > add a Publication Date	1	Time Period of Content >Time Period Information > Single Date/Time > Calendar Date
Overview > Citation	Series > Name	1	Citation > Citation Information > Series Information > Series Name

Also reference:

The Esri Illustrated Guide to FGDC metadata: <u>http://desktop.arcgis.com/en/arcmap/10.6/manage-data/metadata/illustrated-guide-to-complete-fgdc-metadata.htm</u>

"Metadata Summary for GeMS Fields" (PDF on github)

Metadata summary: MapUnitPolys (polygon feature class) required

Attribute Label:	Attribute Domain Values:	
MapUnit	 Enumerated Domain: Value drawn from this table. Value_Definition drawn from the "FullName" attribute of the DescriptionofMapUnits table (linked by foreign key "MapUnit") Value_Definition_Source is "this report, table DescriptionofMapUnits" 	
IdentityConfidence	 Enumerated Domain: Value drawn from this table. Value_Definition drawn from the "Definition" attribute of the Glossary table (linked by foreign key "Term") Value_Definition_Source drawn from the "Source" attribute of the DataSources table (linked by foreign key "DataSources_ID" connected to the "DefinitionSourceID" in the Glossary table) 	
Label	Unrepresentable domain	
Symbol	Unrepresentable domain	
DataSourceID	Enumerated Domain:	

J. E. g Attig, John W. and Rawling, J. Elmo, III, 2020, Quaternary Geology of Oneida County, Wisconsin: Wisconsin Geological and Natural History Survey M507, scale 1:100,000. Map 507

http://wgnhs.wisc.edu/pubs/m507/ https://wgnhs.wisc.edu/pubs/m507/

A shift in focus

Support our 500K statewide surficial compilation project

- Cartographic Representations have been helpful for this
- ArcGIS online helps collaborators working remotely

☑ Cartographic Representations

DataSourceID	MapUnitPolys_ID	RuleID
Forest_Pleistocene_Simpkins_1987	MUP1	ts
Forest_Pleistocene_Simpkins_1987	MUP2	P
Forest_Pleistocene_Simpkins_1987	MUP3	sup
Forest_Pleistocene_Simpkins_1987	MUP4	sup
Forest_Pleistocene_Simpkins_1987	MUP5	sup
Forest_Pleistocene_Simpkins_1987	MUP6	ts
Forest_Pleistocene_Simpkins_1987	MUP7	p
Forest_Pleistocene_Simpkins_1987	MUP8	p
Forest_Pleistocene_Simpkins_1987	MUP9	ts

-The representation is stored within geodatabase.

-The map features are drawn by rule.

Legend

Glacial till, mostly sandy

Alluvial sediment

Water or ice

Lacustrine sediment, mostly coarsegrained

Marathon

Peat and muck

Ice-contact and ice-marginal sediment, mostly coarse-grained

Water or ice

Alluvial sediment, mostly coarsegrained

Glacial till, mostly sandy

Residual material

Lacustrine sediment, mostly finegrained

Glacial till, mostly silty

Igneous and metamorphic rock

Sandstone

More thoughts: Will it be helpful to combine our many "master" datasets?

- Master glossary (.*xls*)
- Master data sources
- List of maps and their status (*Trello board*)
- Points, lines, polygons
- List of formal names and links to GeoLex (Google sheets)
- List of links to maps in NGMDB (*Google sheets*)

Let me know if you have done this!

github.com/wgnhs/gems

Caroline Rose cmrose@wisc.edu Punwath Prum pprum@wisc.edu

Wisconsin Geological and Natural History Survey

&