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Presentation	Summary	
"Machine	Learning"	(ML)	is	an	interdisciplinary	field	developed	within	the	computer	sciences	

(Slide	2).	Although	machine	learning	algorithms	(MLAs)	have	been	around	for	decades	(formerly	being	
called	"Artificial	Intelligence"	or	similar),	there	has	been	a	renewed	interest	in	machine	learning	in	the	
past	few	years	across	a	wide	variety	of	domains.		This	interest	has	been	driven	by	the	development	of	
new,	robust	algorithms	and	techniques	capable	of	solving	problems	that	were	formally	considered	
intractable	in	the	computer	sciences:	vision	and	pattern	recognition;	time-series	and	high-dimensional	
data	predictions;	and	non-linear	or	complex	problems	that	are	resistant	to	more	traditional	modeling	
and	predictive	approaches.	Today,	machine	learning	encompasses	a	pragmatic	set	of	techniques	and	
approaches	to	computational	problems,	and	there	is	a	distinct	focus	among	practitioners	with	regards	to	
developing	practical	algorithms	that	'work'	in	real-time	or	near-real	time	over	the	development	of	
'theoretically	pure'	mathematical	theory.		

MLAs	are	new	enough	that	they	are	only	just	now	beginning	to	be	applied	to	domain	of	geology,	
and	ML	approaches	to	modeling	geologic	epiphenomenon	have	only	recently	become	a	trending	topic	in	
the	academic	literature	(Slide	3).	Nevertheless,	since	2014	there	have	been	several	outstanding	and	
notable	works	in	applying	ML	to	geology	and	geologic	mapping.	ML	and	MLAs	have	been	used	to	predict	
lithostratigraphic	classifications	from	wireline	geophysical	logging	data,	automatically	classify	surficial	
geology	from	remotely	sensed	satellite	data,	and	to	effectively	predict	geohazard	susceptibility.	

This	presentation	reports	back	on	a	"proof	of	concept"	study	conducted	to	evaluate	the	
effectiveness	of	ML	techniques	when	used	to	predict	stratigraphy	and	lithology	from	144	geophysical	
logging	files	supplied	by	the	St.	John's	Water	Management	District	(SJRWMD).	The	proof	of	concept	
evaluated	effectiveness	of	3	machine	learning	algorithms	and	3	"post-processing	strategies"	at	3	
different	stratigraphic	classification	tasks,	for	a	total	of	27	test	cases.	The	author	concludes	that	MLAs	
can	be	quickly,	easily,	and	effectively	applied	to	questions	in	geology	and	have	substantial	predictive	
power	and	are	able	to	classify	lithostratigraphy	from	geophysical	logging	data	just	as	well	as	a	human	
being	for	the	simplest	of	tasks.		
	

Summary	of	Slide	Content		
• Slide	4	discusses	technical	considerations	for	implementing	MLAs	by	contrasting	the	two	most	

popular	languages	that	have	active	ML	packages	under	development.	Python	is	by	far	the	easier	
language	to	learn	and	to	use,	but	encapsulating	content	in	a	web-based	format	and	parallelizing	
algorithms	can	be	difficult	for	the	beginner.	R	has	the	disadvantage	that	it	is	much	more	difficult	
to	learn	and	work	with	than	Python,	but	the	MLAs	available	to	the	user	tend	to	be	more	'cutting	
edge'	than	those	available	in	Python.	R	also	has	the	advantage	of	being	easy	to	implement	in	
parallel	by	using	the	doMC	package,	while	the	Shiny	package	makes	wrapping	R	analyses	in	



dynamic	web	content	relatively	trivial.	Whether	these	advantages	outweigh	the	horror	show	
that	is	R	syntax	is	left	to	the	user	to	decide.		

• Slide	5	illustrates	the	four	types	of	tasks	MLAs	can	perform:	regression,	binary	classifications,	
multiclass	classifications,	and	ranking	tasks.	

• Slides	6-9	detail	the	three	types	MLAs	used	in	this	study:	
o Slide	6:	Decision	Trees	are	an	algorithm	that	takes	a	'divide	and	conquer'	approach	to	

predictive	modeling.	The	decision	tree	algorithm	uses	recursive	partitioning	and	binary	
IF-THEN	logic	to	construct	a	logical	decision	tree	that	is	used	to	make	new	predictions.	

o Slide	7:	An	example	decision	tree	for	classifying	limestone	using	gamma	ray	geophysical	
logs.	Reading	the	graph,	we	begin	at	the	root	(topmost)	node	and	follow	the	decision	
tree	down.		

§ Each	node	shows	the	decision	criteria	at	that	node	(depth	<	174	ft	for	the	root	
node,	indicated	by	the	orange	overlay	text	and	arrow)	above	the	node	box.	
Inside	the	node	box,	we	see	the	decision	class	('Not	Limestone';	red	overlay	text	
and	arrow),	along	with	the	class	split	at	that	node	(62%	'Not	Limestone,	38%	
Limestone;	green	overlay	text	and	arrow)	for	all	data	points	that	fall	within	the	
node.	The	last	line	in	each	box	represents	the	total	percentage	of	the	entire	
dataset	that	falls	within	that	node	(purple	overlay	text	and	arrow).		

§ To	reconstruct	how	this	decision	tree	model	determines	a	data	point's	
classification,	we	follow	each	tree	down	to	its	terminal	node,	moving	left	if	the	
node's	decision	criteria	is	true,	and	right	if	it	is	false.		

§ For	example:	if	we	have	a	point	in	a	gamma	ray	geophysical	log	that	recorded	a	
value	of	10	CPS	at	a	depth	of	248	feet.,	we	can	use	the	decision	tree	to	
determine	how	the	model	will	classify	the	point	as	either	"Limestone"	or	"Not	
Limestone."		

§ In	the	above	case,	the	top	decision	node	would	be	false	("No")	the	depth	of	our	
example	point	is	greater	than	174	feet,	so	we	move	along	the	right	hand	branch	
and	down	one	level	to	the	next	node.		At	this	node,	our	decision	criteria	–	'val	>=	
28'	-	is	again	false,	so	we	again	move	along	the	right	hand	branch	and	down	a	
level,	arriving	at	the	terminal	node	in	the	bottom	right	hand	corner	of	the	
decision	tree.	

§ The	bottom-most	row	of	terminal	nodes	are	the	model's	predictive	classes	for	
our	data	point	("Limestone").	In	the	above	example,	the	class	split	at	the	
terminal	node	indicates	that	4%	of	our	training	data	at	this	node	were	classified	
as	"Not	Limestone"	and	that	96%	were	classified	as	"Limestone."	This	node	also	
indicates	that	31%	of	all	of	our	training	data	ultimately	fell	within	this	terminal	
decision	node.	

§ An	animated	example	of	the	decision	tree	classification	process	can	be	seen	by	
clicking	on	the	decision	tree	model,	which	will	follow	a	link	to	
https://youtu.be/XmnenS9d3cA.	

o Slide	8:	Random	Forest	(RF)	is	an	extension	of	decision	tree	models	first	described	by	
Brennan	(2001).	The	Random	Forest	algorithm	builds	a	large	number	of	trees	(N)	by	
randomly	subsampling	the	input	training	data.	All	of	these	decision	trees	are	then	used	
to	classify	each	data	point	provided	to	the	model	to	predict	that	data	point's	class,	with	



the	majority	prediction	of	all	of	the	decision	trees	'winning.'	This	technique	reduces	the	
sensitivity	to	variance	in	training	data	and	provides	for	more	robust	predictions	when	
applied	to	data	previously	unseen	by	the	model.	

o Support	Vector	Machines	(SVMs)	are	a	binary	classification	method	that	can	be	
extended	to	multiple	classes.	These	models	use	a	hyperplane	in	an	n-dimensional	
mathematical	space	to	cluster	input	data	into	groups.	SVMs	have	the	advantage	of	
working	well	with	small	training	sets	and	only	have	two	user-defined	parameters,		
gamma	and	cost.		Cross	validation	can	be	used	to	empirically	determine	the	optimum	
setting	for	these	parameters	and	reduce	the	subjective	decisions	required	of	the	user.	

o Slide	10:	A	humorous	attempt	to	illustrate	that	while	machine	learning	might	seem	
complicated	at	first	glance,	there	is	a	very	well	defined	and	concrete	workflow	that	is	
comprehensible	even	to	the	most	unsophisticated	user.	

o Slide	11:	Training	Workflow	for	Training	ML	models.		
§ Step	1:	Subset	input	data	from	the	total	bucket	of	raw	data	
§ Step	2:	Label	input	data	with	known	class	labels.	
§ Step	3:	Split	the	labeled	data	into	two	groups	by	random	assignment:	the	

training	and	test	sets.	The	training	set	is	comprised	of	60%	of	the	labeled	input	
data,	and	will	be	used	to	train	the	algorithm.	The	test	set	is	comprised	of	40%	of	
the	labeled	data	and	will	be	held	in	reserve	in	order	to	assess	model	
performance.	

• Classes	should	be	balanced	so	that	they	have	a	50/50	rate	of	occurance	
in	both	the	training	set	and	the	test	set.	Note	that	this	was	not	done	for	
this	project.	

§ Step	4:	Train	model	using	the	training	set.			
§ Step	5:	Use	the	trained	model	to	predict	the	classes	of	the	points	within	the	test	

data	
§ Step	6:	Use	the	test	set	to	compare	the	model	predictions	against	the	known	

class	labels	in	order	to	assess	model	performance	and	predictive	accuracy.		
o Slide	12	shows	the	labeled	dataset	used	as	training/test	input	in	this	study.	This	data	

consisted	of	22	gamma	radiation	geophysical	logs	labeled	with	matching	stratigraphic	
formation	picks.	

o Slides	14-15	show	examples	of	the	labeled	data	used	in	this	study.	In	slide	15,	yellows	
and	oranges	represent	surficial	sediments,	greens	represent	the	clay-bearing	Hawthorn	
group,	and	blues	represent	consolidated	rock	in	the	form	of	limestone	

o Slide	16	shows	the	3	different	classification	tasks	developed	for	this	project,	as	well	as	
the	formula	notation	for	the	models.	Task	complexity	is	an	important	factor	in	model	
performance,	with	models	performing	better	at	simpler	tasks	than	more	complex	tasks.	

§ The	pick2	task	is	the	simplest	task	and	is	the	primary	focus	of	this	presentation.	
This	task	asks	the	model	to	classify	each	input	data	point	as	"limestone"	or	"not	
limestone."	

§ The	pick3	task	is	slightly	more	complex,	asking	each	model	to	predict	whether	a	
data	point	represents	surficial	sediments,	the	clay-bearing	hawthorn	group,	or	
limestone	rock.	



§ The	pick6	task	is	the	most	difficult	task	developed,	and	asks	the	models	to	
predict	the	formal	lithostratigraphic	formation	of	each	data	point.	

§ The	model	formula	gives	that	the	dependent	(predictive)	variable	is	the	pick	
classes	from	each	of	the	three	tasks.	The	independent	variables	used	to	make	
this	prediction	are	the	gamma	radiation	intensity	in	Counts	per	Second	(CPS)	of	
each	geophysical	log	data	point,	the	elevation	of	each	data	point,	the	depth	
from	land	surface	of	each	data	point,	and	the	projected	X	and	Y	location	of	each	
data	point.	

o Slide	19	shows	the	accuracy	and	kappa	statistics	measured	against	the	test	data	for	each	
of	the	three	types	of	models	across	each	of	the	three	predictive	tasks.	As	expected,	
tasks	with	fewer	predictive	classes	were	performed	more	accurately	than	tasks	with	
more	predictive	classes.	Significantly,	the	test	accuracy	of	each	of	the	models	was	above	
94%,	suggesting	that	overmodeling	might	be	a	problem.	

o Slide	21	shows	the	workflow	for	applying	trained	models	to	novel	data	in	order	to	
generate	predictions.		

§ Step	1:	Query	all	data	
§ Step	2:	Predict	against	all	of	the	data	using	the	trained	models	
§ Step	3:	Post-process	predicted	classes	in	order	to	remove	or	mitigate	problems	

with	thin-section	units.		
§ Step	4:	Take	the	maximum	elevation	of	each	predicted	class	as	the	"top"	of	that	

class	
§ Step	5:	Compare	with	known	values	for	the	top	of	the	Floridan	Aquifer	System	

(FAS)	and	the	top	of	the	Intermediate	Confining	Unit	(ICU).	In	this	geographic	
area,	the	top	of	the	FAS	is	equivalent	to	the	top	of	limestone,	and	the	top	of	the	
ICU	is	equivalent	to	the	top	of	the	Hawthorn	group.	

§ Step	6:	Assess	model	accuracy	
o Slide	22	shows	the	geographic	distribution	of	the	geophysical	logging	dataset	that	was	

used	to	generate	predictions	using	the	three,	trained	machine	learning	algorithms.	
§ This	dataset	consisted	of	144	gamma	logs	that	were	not	used	during	the	

training/test	process	
§ The	geophysical	logs	in	this	dataset	had	been	assess	by	a	SJRWMD	geologist,	

who	had	assigned	a	'Top	of	FAS'	and	'Top	of	ICU'	value	by	interpreting	the	
gamma	curve	for	every	log.		

§ Note	that	this	geologist	did	not	look	at	physical	samples	to	determine	these	
values;	rather,	the	geologist	relied	only	upon	the	geophysical	logging	data.	

§ The	MLAs	outlined	above	were	used	to	generate	predictive	classifications	for	
every	data	point	in	every	well	within	this	dataset.	

o Slide	23	illustrates	the	problem	with	'thin-section	classifications'	and	some	approaches	
to	correcting	or	mitigating	their	influence.	Three	machine	learning	algorithms	engaging	
in	3	predictive	tasks	with	three	postprocessing	strategies	gives	a	total	of	27	test	cases	to	
assess	for	accuracy.		

§ The	left-most	gamma	curve	in	the	chart	shows	predictive	classes	generated	by	
the	random	forest	model.		



§ The	two	thin-sections	of	limestone	predictions	between	–200	and	–250	ft	MSL	
are	problematic.		

§ While	thin	sections	of	limestone	are	known	to	occur	within	the	Hawthorn	group,	
these	predictions	place	the	"top"	of	the	limestone	unit	at	–200	ft	rather	than	at	
–500	ft	when	the	"naïve	maximum	elevation'	for	the	limestone	class	is	taken	
from	this	prediction.	

§ Two	techniques	were	used	to	postprocess	the	model	predictions	and	mitigate	
the	influence	of	thin	sections:	changepoint	clustering	and	a	majority	filter.	

• The	changepoint	algorithm	clusters	a	continuous	curve	into	groups,	
based	on	breakpoints	detected	within	the	curve.	The	second	graph	from	
the	left	labeled	"Changepoint	Clusters"	shows	the	6	clusters	the	
changepoint	algorithm	found	in	this	particular	gamma	log.		Each	cluster	
is	then	assigned	to	the	same	predictive	class	as	the	majority	of	the	
points	that	within	the	cluster	–	this	is	shown	in	the	third	graph	from	the	
left,	labeled	"RF	+	Changepoints"	graph.	

• The	majority	filter	takes	each	5	ft	interval	of	the	gamma	log	and	assigns	
a	predictive	class	to	the	interval	based	on	the	majority	predictive	class	
within	the	interval.		This	method	essentially	downsamples	the	model	
predictions	to	a	vertical	resolution	of	5	feet	ft.		

o Slide	24	shows	the	formula	for	calculating	predictive	error.	
o Slide	25	&	26	show	model	performance	and	accuracy	metrics.		

§ The	best	performing	model	across	all	predictive	tasks	was	the	random	forest	
algorithm.		

§ The	best	overall	performance	was	by	the	random	forest	algorithm	in	the	pick2	
classification	task,	using	the	changepoint	postprocessing	strategy.	This	model	
managed	to	pick	the	top	of	limestone	with	a	median	difference	of	2.5	feet	from	
what	the	human	geologist	picked.	Additionally,	the	mean	error	was	only	8.69	ft,	
and	75%	of	all	model	predictions	for	the	top	of	limestone	were	within	8	ft	of	the	
Top	of	FAS	pick	made	by	the	SJRWMD	geologist.	

o Slides	27-36	show	the	Random	Forest	+	Changepoint	predictions	for	the	pick2	class,	
plotted	against	the	actual	Top	of	FAS	values	picked	by	the	SJRWMD	geologist.	

§ The	color	of	the	gamma	curve	itself	shows	the	model's	predicted	class	for	each	
data	point	within	the	curve	

§ The	dashed	blue	line	illustrates	the	human	geologist's	pick	for	top	of	FAS	for	
that	well.	

§ Agreement	between	the	geologist	and	the	machine	learning	algorithms	is	
shown	when	the	color	break	in	the	gamma	curve	occurs	at	or	near	the	dashed	
blue	line.		

o Slides	37-39	show	how	applying	machine	learning	to	geophysical	logs	helps	to	increase	
the	accuracy	of	geologic	mapping.	The	accuracy	of	mapping	stratigraphic	structure	is	
highly	dependent	upon	the	spatial	density	of	the	geologic	data	available	for	a	region,	
with	more	data	points	producing	a	higher	resolution	map.	

§ The	primary	structural	feature	in	this	study	area	is	the	Jacksonville	Basin,	a	
large,	bowl	shaped	depression	in	the	top	of	the	bedrock	limestone	



§ Slide	37	shows	an	exact	interpolation	(Radial	Basis	Function/Spline)	of	the	top	of	
limestone	for	the	Jacksonville	basin	using	only	the	formation	picks	generated	by	
the	FGS	STATEMAP	team.	

§ Slide	38	shows	the	same	interpolation	method	used	with	both	the	STATEMAP	
geologic	picks	and	the	top	of	limestone	picks	made	by	the	Random	Forest	+	
Changepoint	method	

§ Slide	39	compares	these	two	interpolated	surfaces	side-by-side	for	convenience.	
It	is	evident	that	the	inclusion	of	more	data	has	produced	a	much	higher	
resolution	map	of	the	structure	and	shape	of	the	Jacksonville	Basin.		

o Slide	40	details	some	conclusions	and	lessons	learned	by	the	author	during	the	course	of	
the	project	
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What is Machine Learning (ML)?

• Machine learning “gives computers the 
ability to learn without being explicitly 
programmed.” (Arthur Samuel, 1959)

• A set of robust predictive modeling 
techniques that have been developed and 
popularized within the field of computer 
science 

• Applications include ‘hard’ CS problems such 
as image recognition and feature detection

• Focus of machine learning is a pragmatic, 
multi-disciplinary approach to expert 
systems and predictive modeling

• Spatial autocorrelation improves the 
predictive power of many ML algorithms

• Deep learning is a further extension of ML 
that uses more complex modeling 
techniques
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• Gifford, Christopher M., and Arvin Agah. 2010. “Collaborative Multi-Agent Rock Facies Classification from Wireline Well Log Data.” 
Engineering Applications of Artificial Intelligence 23 (7): 1158–72. doi:10.1016/j.engappai.2010.02.004.

• Goncalves, Carlos A. 1998. “Lithologic Interpretation of Downhole Logging Data from the Cote D’Ivoire Tranform Margin: A Statistical 
Approach.” In Proceedings of the Ocean Drilling Program, Scientific Results, 159:157–70. College Station, TX.

• ML Classification of Surficial Geologic Maps Using Remotely Sensed Data
• Harvey, A. S., and G. Fotopoulos. 2016. “Geological Mapping Using Machine Learning Algorithms.” ISPRS - International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8: 423–430. doi:10.5194/isprs-archives-XLI-B8-423-2016.
• Harris, J. R., and E. C. Grunsky. 2015. “Predictive Lithological Mapping of Canada’s North Using Random Forest Classification Applied to 

Geophysical and Geochemical Data.” Computers & Geosciences 80: 9–25. doi:http://dx.doi.org/10.1016/j.cageo.2015.03.013.
• Cracknell, Matthew J., and Anya M. Reading. 2014. “Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine 

Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial 
Information.” Computers & Geosciences 63: 22–33. doi:10.1016/j.cageo.2013.10.008.

• Waske, Bjorn, Benediktsson, Jon Atli, Arnason, Kolbeinn, and Sveinsson, Johannes. 2009. “Mapping of Hyperspectral AVIRIS Data Using 
Machine-Learning Algorithms.” Candian Journal of Remote Sensing 35 (Suppl. 1): S106–16.

• ML & Geohazard Susceptibility
• Goetz, J. N., A. Brenning, H. Petschko, and P. Leopold. 2015. “Evaluating Machine Learning and Statistical Prediction Techniques for 

Landslide Susceptibility Modeling.” Computers & Geosciences 81: 1–11. doi:http://dx.doi.org/10.1016/j.cageo.2015.04.007.
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Technical Considerations
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Python
Packages

• Scikit-learn
• Scikit-image
• Pandas
• Matplotlib

Advantages
• Easy to learn, interpret, use
• Import antigravity! (Python does anything)
• Direct ArcGIS integration via ArcPy

Disadvantages
• ML algorithms are less ‘cutting edge’ than in R
• Dynamic web dashboards require substantial 

amount of learning and effort
• Parallel implementation is difficult

R
Packages

• caret
• e1071
• randomForest
• rpart
• [dozens more]

Advantages
• Cutting edge ML algorithms
• Easy web dashboards using shiny-server
• DataTables support makes R extremely fast with 

large datasets
• Easy parallel implementation in caret and doMC

Disadvantages
• It’s R. 



Machine Learning Capabilities

• Predict real valuesRegression

• Predict membership in 1 of 2 
categories

Binary 
Classification

• Predict membership in 1 of 3 or 
more categories

Multiclass 
Classification

• Order objects according to 
relevanceRanking

5/23/2017 5



Model Selection: Decision Trees

• Classic ‘divide and conquer’ approach to machine 
learning

• Uses recursive partitioning and binary IF/THEN logic 
to construct a logical flow chart (a decision tree) 
that is then used to make predictions against new 
data

• Decision trees have the advantage that the output 
is extremely simple to interpret and understand

5/23/2017 6



Model Selection: Decision Trees

5/23/2017 7Bassett

Decision ClassDecision Criteria

Class Split

% of data @ node

https://www.youtube.com/watch?v=XmnenS9d3cA


Model Selection: 
Random Forest

• Extension of Decision Trees by 
Brennan (2001)

• Uses a technique known as 
bagging to reduce variance in 
input data

• Training data is randomly 
sampled (with replacement) and 
a decision tree is built

• Process is repeated N times to 
generate N decision trees

• N selected by user as a model 
parameter but usually 500

• All N-trees are used to classify 
a new data point, with the 
majority vote from all decision 
trees taken as the final value

Bassett5/23/2017 8



Model Selection:
Support Vector Machines

• Binary classification 
method that can be 
extended to multiple 
classes

• Uses a hyperplane to 
cluster data groups 
using a n-dimensional 
vector space 

• ‘Kernel trick’ allows 
SVMs to cluster groups 
that are not linearly 
separable

• Works well with small 
training sets

• User selected 
parameters (gamma and 
cost) can be searched 
empirically using cross 
validation to find the 
best values

Bassett5/23/2017 9



Life Rule #1
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Training Workflow

Subset input 
data from 
raw data

Label input 
data

Split Data
• Training Data: 

60%
• Test Data: 40%
• Class balance 

should be 
50/50!

• By well or by 
point?

Train using 
training data

Predict 
against test 

data

Assess 
accuracy by 
comparing 

test 
predictions 

to labels
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Example ML Training Task
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• 22 log-description combos from across SJRWMD
• 11 historic descriptions
• 11 wells drilled and described in the past 3-5 years



Training Workflow

Subset input 
data from 
raw data

Label input 
data

Split Data
• Training Data: 

60%
• Test Data: 40%
• Class balance 

should be 
50/50!

• By well or by 
point?

Train using 
training data

Predict 
against test 

data

Assess 
accuracy by 
comparing 
test data 

predictions 
to known 

labels
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Example Labeled Data
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Example Labeled Data
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Model Formula: pick ~ CPS + elevation + depth + X + Y



Example Classification Tasks

Predictive Class Relationships

pick2 pick3 pick6

Not Limestone

Sediments

Undifferentiated Quaternary Sediments

Pliocene/Pleistocene Shelly Sediments

Cypresshead Formation

Hawthorn Group Hawthorn Group

Limestone Limestone Ocala Limestone

Avon Park Formation

pick ~ CPS + elevation + depth + X + Y
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Training Workflow

Subset 
training data 

from raw 
data

Label 
training data

Split Data
• Training Data: 

60%
• Test Data: 40%
• Class balance 

should be 
50/50!

• By point or by 
well?

Train against 
training data

Predict 
against test 

data

Assess 
accuracy by 
comparing 

test 
predictions 
to known 

labels
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Dramatic Recreation
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Example Test Accuracy

Accuracy Kappa

pick2 pick3 pick6 pick2 pick3 pick6

Decision Tree 0.994 0.97 0.9459 0.9871 0.9542 0.9272

Random Forest 0.9993 0.9987 0.9979 0.9986 0.998 0.9971

Support Vector Machine 0.9871 0.97 0.9459 0.9871 0.9542 0.9272

The Kappa statistic (or value) is a metric that compares an Observed Accuracy with an Expected Accuracy (random chance). Kappa takes into account random chance (agreement with a random 
classifier), which generally means it is less misleading than simply using accuracy as a metric (an Observed Accuracy of 80% is a lot less impressive with an Expected Accuracy of 75% versus 
an Expected Accuracy of 50%). 

5/23/2017 Bassett 19

Observed accuracy decreases as task complexity increases



Training Workflow 
Complete!

Subset 
training 

data from 
raw data

Label 
training 

data

Split Data
• Training Data: 

60%
• Test Data: 

40%
• Class balance 

should be 
50/50!

Train 
against 
training 

data

Predict 
against test 

data

Assess 
accuracy by 
comparing 
test data 

predictions 
to known 

labels
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Predictive Workflow

Query all 
data

Predict 
against all 
data using 

trained 
model

(Optional)
Post-

process to 
remove 

thin 
sections

Take the 
maximum 

TRUE 
elevation 
for class 

within each 
well

Compare 
with 

FAS/ICU 
values 

picked by 
geologist

Assess Best 
Model

5/23/2017 Bassett 21



Example ML Predictive Task

• 144 St. Johns River WMD 
gamma logs not used in the 
labeled training/test data

• Each log has a “Top of 
Floridan Aquifer 
System (FAS)” value 
picked by a SJRWMD 
geologist. 

• Top of FAS value is 
equivalent to top of 
limestone in this area.

• Models used to predict the 
classification of every data 
point in each gamma log

• Models had not “seen” this 
data prior to predictive 
classification

5/23/2017 Bassett 22



Postprocessing 
Strategies & Thin 
Sections

Naive Minimum
Changepoint Clustering
Majority Filtering

(3 Tasks) 
x (3 Models) 
x (3 PP methods) 
------------------
= 27 Outcomes to assess

Thin
Section

Classifications



Example:
Validation Error
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(Absolute Error)WELL =  
| (Top of FAS pick)WELL – (Maximum elevation of predicted TRUE class)WELL |

Dotted Blue Line = Geologist’s Pick for Top of FAS



Example Validation Accuracy

Model Validation: Absolute Error
Decision Tree

Naive Maximum Changepoint Majority Filter

Median Mean Q3 Median Mean Q3 Median Mean Q3

Top of Limestone (pick2) 215.50 200.43 319.88 2 41.42 6.125 174.50 160.00 267.00

Top of Hawthorn (pick3) 19.50 23.99 31.88 13.75 31.19 47.88 20.00 23.03 30.00

Top of Hawthorn (pick6) 41.75 43.50 62.00 40.50 43.38 64.50 38.75 38.75 59.75

Random Forest

Naive Maximum Changepoint Majority Filter

Median Mean Q3 Median Mean Q3 Median Mean Q3

Top of Limestone (pick2) 6.50 22.08 15.62 2.50 8.69 8.00 8.00 16.95 15.13

Top of Hawthorn (pick3) 21.25 25.26 37.88 14.50 28.19 47.88 19.00 24.01 34.00

Top of Hawthorn (pick6) 24.50 28.30 41.88 25.00 35.74 62.00 20.75 26.27 38.38

Support Vector Machine

Naive Maximum Changepoint Majority Filter

Median Mean Q3 Median Mean Q3 Median Mean Q3

Top of Limestone (pick2) 11.00 30.23 44.25 2.50 18.67 10.00 11.50 30.34 35.50

Top of Hawthorn (pick3) 21.75 32.09 38.50 22.50 41.94 56.50 20.50 33.84 37.00

Top of Hawthorn (pick6) 23.50 29.64 35.50 23.00 37.99 56.25 22.75 32.16 35.50

Bassett



Example Validation Accuracy

Decision Tree
Naive Maximum Changepoint Majority Filter

RMSE SD Error MAD RMSE SD MAD RMSE SD MAD

Top of Limestone (pick2) 259.63 165.43 216.83 123.9 117.0668 2.2239 223.50 156.46 247.59

Top of Hawthorn (pick3) 33.18 21.98 17.79 60.16 47.35 19.64 31.78 21.02 15.57

Top of Hawthorn (pick6) 63.48 25.26 28.54 77.88 50.30 40.77 57.69 26.27 29.28

Random Forest
Naive Maximum Changepoint Majority Filter

RMSE SD MAD RMSE SD MAD RMSE SD MAD

Top of Limestone (pick2) 54.09 49.55 7.78 23.24 21.62 2.97 39.91 36.26 6.67

Top of Hawthorn (pick3) 33.37 21.39 21.12 48.95 31.61 20.75 31.44 19.90 17.79

Top of Hawthorn (pick6) 37.95 24.08 22.98 58.79 35.84 34.84 35.14 22.80 20.02

Support Vector Machine
Naive Maximum Changepoint Majority Filter

RMSE SD MAD RMSE SD MAD RMSE SD MAD

Top of Limestone (pick2) 54.33 39.88 14.08 52.25 46.78 2.97 53.66 39.29 13.34

Top of Hawthorn (pick3) 53.67 42.19 20.75 76.68 59.23 31.13 59.00 47.61 18.53

Top of Hawthorn (pick6) 43.00 29.66 17.04 67.12 48.61 32.24 47.43 33.65 15.94
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Seeing is Believing...

5/23/2017 Bassett 27

Dotted blue 
line is the 
SJRWMD 

geologist’s 
Top of FAS 

pick for each 
wellColor break in curve indicates model 

prediction for top of limestone



Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Seeing is Believing...
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Ensemble Geospatial Modeling:
The Jacksonville Basin
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Ensemble Geospatial Modeling:
The Jacksonville Basin
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Ensemble Geospatial Modeling:
The Jacksonville Basin
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Conclusion: 
We are living in the future

• Computers can “learn” to perform expert tasks like lithostratigraphic
identification robustly and accurately

• Machine learning algorithms are effective at predicting lithostratigraphy using 
geophysical logging data

• Combining machine learning models and geospatial models produces a significant 
increase in mapping resolution due to increased data density

• Simpler/binary tasks are easier to model effectively than multiple classifications
• Machine learning algorithms will not replace all professional geologists in the 

workforce (GIGO)
• However, one geologist supervising a computer will replace a geologists supervising a 

number of human staff in the next 15 years
• Cf. drafting staff vs GIS personnel

• What about descriptions?
• This ML workflow could be extended to automatically describe core samples based on 

continuous core images
• Other applications include hydrologic modeling, geohazard detection and 

prediction, automated surficial geologic mapping using remotely sensed data, and 
many more
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