DIGITAL MAPPING TECHNIQUES 2013

The following was presented at DMT’13 (June 2-5, 2013 - Colorado Geological Survey and Colorado School of Mines, Golden, CO)

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2013)

http://ngmdb.usgs.gov/info/dmt/
Update on the Alaska state map compilation – towards completion but not closure

Frederic Wilson, Chad Hults, and Keith Labay
Outline

Background
 A new state map: The Geology of Alaska
 Basic data structure
 Spatial and attribute databases

Compilation issues and challenges
 Map scales
 Mapping style
 Description variances
 Age and geochronology

Tools we used, linking the databases
 Checking the spatial databases
 Creating a draft Correlation of Map units and all those colors

Preparation of the review draft
 Here is where the rubber meets the road
USGS participants and other collaborators

USGS Emeritus and former staff – George Plafker, Florence Weber, Gil Mull, Warren Coonrad, Hank Schmoll, Lynn Yehle, Dave Brew, Tom Hamilton, Bill Patton (deceased), Bill Brosgé (deceased), Don Richter (deceased), Joe Hoare (deceased), Hank Condon (deceased), and Bob Detterman (deceased) have been important.

In the Alaska Science Center, Solmaz Mohadjer and Chad Hults have been extremely valuable assistants and Alison Till and Julie Dumoulin are important participants for northern Alaska efforts and Sue Karl for southeast Alaska.

GIS help has come from Nora Shew, Keith Labay, and a large number of other staff over the more than a decade of this effort.

Alaska State agencies
- Alaska Division of Oil and Gas (DOG)
- Alaska Division of Geological and Geophysical Surveys (DGGS)

Regional Native Corporations
- Such as Calista Corp. and Bristol Bay Native Corp.

National Park Service
Outline

Background
- A new state map: The Geology of Alaska
- Basic data structure
- Spatial and attribute databases

Compilation issues and challenges
- Map scales
- Mapping style
- Description variances
- Age and geochronology

Tools we used, linking the databases
- Checking the spatial databases
- Creating a draft Correlation of Map units and all those colors

Preparation of the review draft
- Here is where the rubber meets the road
A new Alaska Geologic map

Existing map published in 1980
 Compiled in the 1970’s, it largely reflects pre-plate tectonic thinking.
 It is not digital and efforts to make so have yielded poor results.
 Since publication, an incredible amount of mapping in the state has been done.
 It depicts the state in something on the order of 60 to 70 map units

A new map was begun in 1998
 100% digital
 Compiled from data sources of all vintages; seeking the best data.
 Released initially as a series of regional maps
Challenges and Goals for the new map

Nominal scale to be 1:500,000

Acquire/Digitize maps suitable for this scale; actual data capture is at 1:250,000 or better

Integrate statewide (Nationwide)

Define standardized attributes and language:

Description,
Age,
Lithology....

Build a searchable database that captures the data
So, what did this mean for Alaska?

Our spatial database presently contains:

- About 450,000 arcs or lines
- About 250,000 polygons
- Stored in 153 1:250,000-scale quadrangle datasets

The attribute database contains:

- Nearly 17,000 individual map unit descriptions
- More than 1,300 composite map units, with related age, lithologic, and geologic-setting databases
- More 6,000 radiometric age determinations

Additionally, 15 regional compilations reflect:

- More than 1,700 regional map unit descriptions
Database structure
Outline

Background
- A new state map: The Geology of Alaska
- Basic data structure
- Spatial and attribute databases

Compilation issues and challenges
- Map scales
- Mapping style
- Description variances
- Age and geochronology

Tools we used, linking the databases
- Checking the spatial databases
- Creating a draft Correlation of Map units and all those colors

Preparation of the review draft
- Here is where the rubber meets the road
Map scale and mapping style

The adjacent Holy Cross and Iditarod quadrangles reflect distinctly different mapping styles and also reflect differing scales of data.

The Holy Cross (HC) map is at best a 1:500,000-scale reconnaissance map product, whereas the adjacent Iditarod (ID) map was compiled originally from 1:63,360-scale mapping.

The Holy Cross map also reflects the geologists inference of the extent bedrock, whereas the Iditarod map is more akin to an outcrop map.
Unit description variances

Same unit, different maps:

Kss -- Shallow marine sandstone, siltstone, and shale -- Late Cretaceous -- Fine-to medium-grained, thinly cross-bedded, fossiliferous sandstone and poorly exposed dark siltstone and shale. Clasts composed of 40 to 45 percent quartz, 45 to 50 percent volcanic and sedimentary lithic fragments, and 5 to 15 percent feldspar, chiefly plagioclase. Clasts set in a finely divided calcareous and argillaceous matrix. Unit deposited in a nearshore marine environment. Unit contains abundant early Late Cretaceous (Cenomanian) species of Inoceramus.

Kkq -- Kuskokwim Group, quartzose sandstone and siltstone -- Late Cretaceous, (Paleocene?) Campanian to Turonian? -- Quartzose sublithic sandstone, conglomerate, siltstone, and siliceous shale. Finer-grained layers locally contain abundant coaly leaf and stem debris; thin coal seams are present locally. Coquina layers composed of brackish to fresh water bivalves are locally interbedded with sandstone and siltstone. Rocks are interpreted as shallow-marine to locally nonmarine. Dicotyedon leaf fragment of probable Turonian to Paleocene age but may be as old as Cenomanian. K-Ar age of 77 Ma on interbedded andesite tuff in upper part of section.
Age and geochronology

As the compilation came together, access to about 7,000 radiometric dates, ranging from generally discredited 1950’s era Lead-alpha dates to conventional K/Ar, 40Ar/39Ar, Rb/Sr, and U/Pb (both TIMS and SHRIMP analyses) required careful examination of the analytical data of many dates.

Key considerations emerged:
1. Ignore most Lead-alpha dates,
2. Look for discordant K/Ar or 40Ar/39Ar or disagreement between the two complementary methods,
3. U/Pb, TIMS multi-grain or SHRIMP single-grain? If multi-grain, concordant or discordant, upper or lower intercept and how close to the intercept?

Ultimately, we found most K/Ar dates are in pretty good agreement with good U/Pb dates, but many TIMS multi-grain dates are questionable and some quite dubious.

In the example to the right, the top sketch shows a reasonable interpretation of age for a lower intercept and a likely spurious upper intercept. The middle sketch is the converse, a reasonable upper intercept and spurious lower intercept. The lower sketch shows data that is most likely completely spurious. Yet many age reports simply indicate a single age and maybe if it is concordant or an upper or lower intercept.
Lumping Map Units for the description (DMU)

An important step was to see if the 1,300 composite units could be reduced for the new map.

Step 1 was to link a number of existing databases to a copy of the “NSAkey” file (The database that tracks each of the 1,300 composite units.)

Another link was to a database that contained the unit descriptions used on published regional maps for each composite unit. The display then showed each description. And another link showed the description from each source map for that unit.

Step 2 was to examine that database with the links in place and do a rudimentary lumping based on related information.

For example, could all early Tertiary sedimentary units be combined? Or can Cretaceous plutons be lumped?
Linked files to create unit descriptions

The state link database was created by lumping similar units from the NSAKEY database, yet preserving regional differences.
Winnowing the units down

This database was populated with the new lumped labels and also linked to a number of existing databases.

Map unit descriptions from either source maps or regional compilations that appeared to be useful were dragged into this database’s description field for the regional map description database. Linked databases showed which regional maps were represented, which NSACLASS codes and related IPYCLASS codes were included, and abstracted descriptions from the key and IPY databases. Also added was a unit rank, numeric maximum and minimum age and lithology type.
An initial sort and scan

The view of the data was switched to a table-like view and records were sorted by sequence number.

A quick scan of the table indicated any units that might be significantly out of sequence.

At the completion of this phase, the number of units had been reduced from a little more than 1,300 to about 450. Our desire was to reduce this further, without compromising the geologic or tectonic story, but it hasn’t proved possible.
Creation of the draft document

Following the quick check, an export of the data was made.

The fields:
- State_label,
- Unit_name,
- Age_range,
- Description,
- Sequence number,

and the applicable NSACCLASS values were exported as tab delimited text, for import into MS Word.

A template in Word, provided by our publications unit was then used to set the basic format.
A unit description would come in looking like:

Tng Nenana Gravel Tertiary, Pliocene and Miocene Yellowish-gray to reddish-brown well-sorted, poorly to moderately consolidated conglomerate and coarse-grained sandstone having interbedded mudflow deposits, thin claystone layers, and local thin lignite beds widely distributed on the north side of the Alaska Range. Unit is more than 1,300-m-thick and moderately deformed (Csejtey and others, 1992; Bela Csejtey, written commun., 1993)

And upon revision and editing (minimal in this case) would look like:

Tng **Nenana Gravel** (Tertiary, Pliocene and late Miocene)—Yellowish-gray to reddish-brown well-sorted, poorly to moderately consolidated conglomerate and coarse-grained sandstone having interbedded mudflow deposits, thin claystone layers, and local thin lignite beds widely distributed on the north side of the Alaska Range. Unit is more than 1,300-m-thick and moderately deformed (Csejtey and others, 1992; Bela Csejtey, USGS, written commun., 1993)
Outline

Background
- A new state map: The Geology of Alaska
- Basic data structure
- Spatial and attribute databases

Compilation issues and challenges
- Map scales
- Mapping style
- Description variances
- Age and geochronology

Tools we used, linking the databases
- Checking the spatial databases
- Creating a draft Correlation of Map units and all those colors

Preparation of the review draft
- Here is where the rubber meets the road
As we use geodatabases as well as coverages, we have created Python or AML check routines which generate a report we use to insure consistent coding. Items checked include:

1) Topology issues,
2) That polygon and arc codes are within proper ranges,
3) That polygon codes used are consistent with the master units database.
Typical check output

Shown here is a typical output from a “check” run for a quadrangle database. These check runs help us to ensure our data is topologically correct, properly and completely attributed.
Correlation of Map Units (CMU)

Levering off of the “State_link” database, a graph tool was written using a Python script that reads the database, capturing State_label, sequence number, color symbol, and the numeric maximum and minimum age, and lithologic type.

This Python script, run through ArcToolbox, is used to create the draft CMU graphic. The script uses the ArcMap graph tool to create a minimum-maximum age bar graph that shows the age relationships of units. Each bar on the graph is colored using the assigned color and identified by its unit label and sequence number. A numeric age scale-bar is drawn along the left side while the right side shows a geologic time scale.

Input to the tool can be a feature dataset or standalone table.

Graphs are created for each lithologic category selected when the tool is run. More than one category can be selected at once. For example, if just sedimentary rocks only one graph would be created; if sedimentary and igneous rocks were selected, two separate graphs would be created.

Output is a graphics file such as an image or eps file. There is also an option to output an ArcMap graph file that can be loaded into the ArcMap Graph Manager.

The graph tool is intended to provide a quick way to view the age relationships between units within different lithologic categories and to assist with the creation of a correlation of map units chart, but it is not a substitute for the cartographic process of creating the published version of a correlation of map units chart.
Next – Correlation of Map Units

Shown is output from the Python script was created that read the State_link database and its newly added minimum and maximum age fields and generated a graphic of a draft Correlation of Map Units (CMU). As there are about 450 units, the images are sub-divided by lithologic type and apportioned to a reasonable units number per image.

Sample image
The draft CMU images were used as guides to create an ArcGIS MXD for the final CMU. The MXD is linked to the Filemaker Pro State_link database (using ODBC) such that once a box is drawn and attributed with a sequence number, the label and color symbol are automatically added. A hidden fishnet grid is used to snap vertices, ensuring proper alignment of boxes. If a label or color symbol is changed in the database, this change is reflected in the MXD by doing a refresh.

This draft version covers only the sedimentary rock units for the state map; additional charts will cover igneous and metamorphic rock units.
A mock-up of the new Alaska map
END OF PRESENTATION

Following slide adds information regarding CMU python script.
A python script, run through ArcToolbox is used to create the draft CMU graphic. The tool is written as a python script that is run through ArcToolbox.

The python script uses the ArcMap graph tool to create a min.-max. age bar graph that shows the age relationships of units for a particular lithology. Each bar on the graph is colored using the correct color from the map and identified by its unit label and sequence number. A numeric age scale-bar is shown along the left side while the right side shows a geologic time scale.

Input to the tool can be a feature dataset or standalone table.

The input data for the geologic units must include the unit label, lithologic category, numeric minimum and maximum ages, and the color symbol values to apply.

Graphs are created for each lithologic category selected when the tool is run. More than one category can be selected at once. For example, if just sedimentary only one graph would created; if sedimentary and igneous were selected, two separate graphs would be created.

Output from the tool are graphics files such as images or eps files. There is also an option to output an ArcMap graph file that can be loaded into the ArcMap Graph Manager.

The graph tool is intended to provide a quick way to view the age relationships between units within different lithologic categories and to assist with the creation of a correlation of map units chart, but it is not a substitute for the cartographic process of creating the published version of a correlation of map units chart.