

The following was presented at DMT'12 (May 20-23, 2012).

The contents are provisional and will be superseded by a paper in the DMT'12 Proceedings.

See also earlier Proceedings (1997-2011) http://ngmdb.usgs.gov/info/dmt/ **DMT 2012 Presentations in the ISGS Earth Systems Visualization Laboratory:** Tricks, Tools, and Techniques for 3-D Geologic Mapping

> **Don Keefer, Jason Thomason Illinois State Geological Survey**

3-D Geologic Mapping with ArcGIS

With some effort, ArcGIS can be used effectively as a software tool for building 3-D geologic maps. At the ISGS, geologists and GIS specialists have worked together to evolve a custom suite of tools and a workflow that allows us to visualize, analyze and interpret a wide range of geologic data types within ArcScene, and to build sets of surfaces that represent the tops or bottoms of geologic mapping units. In this presenta-

tion and discussion, we will highlight the toolbar developed at the ISGS and discuss some alternate workflows that we're using to build countywide 3-D geologic maps. We hope to generate a discussion in this session to discuss pros, cons, and alternatives to some of the methods we present. We will also spend a little time demonstrating some of the other software we are using to supplement our 3-D mapping workflow.

3-D Geologic Mapping with GSI3D

Recently, the British Geological Survey unveiled the new, GSI3D Research Consortium (www. gsi3d.org), which is an umbrella organization that is guiding the development and use of an exciting, new 3-D geologic mapping software product, GSI3D. The ISGS is an early member of the GSI3D Research Consortium and has begun integrating GSI3D into two major county-wide 3-D geologic mapping projects. GSI3D, as a software tool, has several strengths for developing 3-D geologic maps. In this presentation, we will highlight these strengths, discuss some of the limitations that we've found in 3-D mapping with

GSI3D, and we'll discuss how we're looking at integrating GSI3D into our larger geologic mapping program. We will encourage a larger discussion about how organizations might evolve into a **3-D geologic mapping program with GSI3D, or at** least how organizations might use GSI3D and it's sister product, Subsurface Viewer, to generate interactive 3-D geologic map products, even from traditional, 2-D mapping projects like STATEMAP. We will also spend a little time demonstrating some of the other software we are using to supplement our 3-D mapping workflow.

3-D Borehole Tools v. 072210

3-D Borehole 🔻 🙂 edit_attributes 🦨 edit_xyz 🎢 Split_line_at_z 🎘 split_tool 🗸 merge

Customized Arc Tools

🗱 delete 😥 select_entire_well 🐤 virtual_borehole 🗱 create_surface 3-D Borehole Tools v. 072210

-	5-D Borenole Tools V. 0722	210	
	3-D Borehole 🔻 🙂 ed	it_attributes ° edit_xyz 🎢 Split_line_at_z 庵 split_tool 🖌 me	rge
	<pre>@ create_3d_lines</pre>	ire_well 🐤 virtual_borehole 🗱 create_surface	
	update_xyz	Did Conv Incont Carvitation In	
	🍜 plot_gamma		
	symbolize_tubes		
	RGB_to_32bit		

3D Visualization, Interpretation, and Surfacing

GSI3D Interface

Cross Section Network

Cross Section Development

Water Well Log Standardization

Final Geologic Contact Grids

