In an investigation of the space-time-composition relations of widely distributed Oligocene and early Miocene potassic calc-alkaline lava flows and shallow intrusions in the Great Basin by Barr and others (1992), ages of 300 chemically analyzed rocks were determined by a variety of methods. Many radiometric ages have been published in various geologic reports; other approximate ages were determined by stratigraphic relationships with dated units, especially widespread ash-flow sheets. In addition, the general age could be estimated for most rocks by their regional position in the southward sweep of volcanic activity in the province (McKee, 1971; Best and others, 1989a) which has proved to be remarkably consistent. Many rocks, however, have no adequate age control, and these were dated by K-Ar methods as part of the study and are reported here. Particularly important rocks in the study are those that record the regional transitions in magma composition, and dating was focused on these rocks. All ages are whole rock determinations. Figure 1 shows sample locations and figure 2 shows the alkali-silica contents of the dated lava flows and their IUGS classification (Le Maitre, 1989); samples 21 and 22 have been given names more appropriate to their intrusive origin.

FIGURE 1. Locations of dated samples.
Constants used are $\lambda_1 + \lambda_2^* = 0.581 \times 10^{-10}$ yr$^{-1}$; $\lambda_3 = 4.962 \times 10^{-11}$ yr$^{-1}$; 40K = 1.167×10^{-4} mole/mole.

We thank E. H. Christiansen for encouragement and Wanda Taylor for collecting sample 8. Financial support was provided by the National Science Foundation through grants EAR-8604195 and EAR-8904245 and by Brigham Young University.

SAMPLE DESCRIPTIONS

1. **GRGES-2**
 Basalt (38.257°N, 116.696°W, Georges Canyon Rim, NV, 7.5’ quad.). **Analytical data:** $K_2O = 0.482$ wt. %, 40Ar rad % = 2.12, 40Ar rad (10$^{-11}$ mol/g) = 1.06044. **Comments:** Lava flow contains phenocrysts of olivine, pyroxene, and plagioclase in a black aphanitic matrix.
 (whole rock) 15.7 ± 1.8 Ma

2. **WHBLTCH-1BC**
 Andesite (37.728°N, 115.869°W, White Blotch Springs NE, NV, 7.5’ quad.). **Analytical data:** $K_2O = 2.72$ wt. %, 40Ar rad % = 24.3, 40Ar rad (10$^{-11}$ mol/g) = 8.3402. **Comments:** Lava flow contains phenocrysts of pyroxene in gray aphanitic matrix.
 (whole rock) 21.2 ± 0.7 Ma

3. **QUINN-2C**
 Basalt (37.947°N, 115.811°W, Quinn Canyon Springs, NV, 7.5’ quad.). **Analytical data:** $K_2O = 1.272$ wt. %, 40Ar rad % = 31.4, 40Ar rad (10$^{-11}$ mol/g) = 3.60241. **Comments:**ephryic lava flow.
 (whole rock) 19.6 ± 0.7 Ma

4. **BUCKM-5**
 Basaltic trachyandesite (39.624°N, 115.586°W, Buck Mountain East, NV, 7.5’ quad.). **Analytical data:** $K_2O = 3.23$ wt. %, 40Ar rad % = 74.3, 40Ar rad (10$^{-11}$ mol/g) = 14.897. **Comments:** Aphyric lava flow.
 (whole rock) 31.8 ± 1.0 Ma

5. **BUCKM-2**
 Basaltic trachyandesite (39.739°N, 115.562°W, Buck Mountain East, NV, 7.5’ quad.). **Analytical data:** $K_2O = 3.53$ wt. %, 40Ar rad % = 84.3, 40Ar rad (10$^{-11}$ mol/g) = 13.741. **Comments:** Aphyric lava flow.
 (whole rock) 26.8 ± 0.8 Ma

6. **ILL-4**
 Transitional between andesite and basaltic andesite (39.400°N, 115.473°W, Antelope Mountain, NV, 7.5’ quad.). **Analytical data:** $K_2O = 1.785$ wt. %, 40Ar rad % = 89.1, 40Ar rad (10$^{-11}$ mol/g) = 9.6766. **Comments:** Lava flow contains sparse small phenocrysts of clinopyroxene and minor plagioclase.
 (whole rock) 37.3 ± 1.2 Ma

7. **ILL-1**
 Andesite (39.456°N, 115.370°W, Sammys Summit, NV, 7.5’ quad.). **Analytical data:** $K_2O = 3.08$ wt. %, 40Ar rad % = 88.8, 40Ar rad (10$^{-11}$ mol/g) = 13.609. **Comments:** Lava flow contains sparse small phenocrysts of orthopyroxene and corroded plagioclase.
 (whole rock) 30.9 ± 0.9 Ma

8. **WHRN-3.126-430**
 Basaltic andesite (38.784°N, 115.033°W, White River Narrows, NV, 7.5’ quad.). **Analytical data:** $K_2O = 1.65$ wt. %, 40Ar rad % = 58.4, 40Ar rad (10$^{-11}$ mol/g) = 43.392. **Comments:** Lava flow contains altered olivine phenocrysts.
 (whole rock) 18.2 ± 0.5 Ma

9. **BECKY-1**
 Trachyandesite (39.993°N, 114.516°W, Becky Peak, NV, 7.5’ quad.). **Analytical data:** $K_2O = 3.58$
wt. %, ^{40}Ar rad % = 88.6, ^{40}Ar rad (10-11 mol/g) = 16.347. *Comments:* Lava flow contains abundant phenocrysts, commonly clotted, of plagioclase, two pyroxenes, and Fe-Ti oxide in a very fine grained matrix.

(whole rock) 31.4 ± 0.9 Ma

10. **BOON-2**
Trachyandesite (40.202°N, 114.438°W, Boone Canyon, NV, 7.5° quad.). *Analytical data:* $K_2O = 4.87$ wt. %, ^{40}Ar rad % = 89.0, ^{40}Ar rad (10-11 mol/g) = 22.364. *Comments:* Lava flow contains sparse small phenocrysts of altered amphibole.

(whole rock) 33.4 ± 1.0 Ma

11. **PIERSON-2**
Trachybasalt (38.075°N, 114.293°W, Pierson Summit, NV, 7.5° quad.). *Analytical data:* $K_2O = 1.655$ wt. %, ^{40}Ar rad % = 46.3, ^{40}Ar rad (10-11 mol/g) = 43.599. *Comments:* Lava flow contains phenocrysts of plagioclase and olivine.

(whole rock) 18.2 ± 0.6 Ma

12. **MOSEY-1A**
Trachyandesite (37.713°N, 114.265°W, Mosey Mountain, NV, 7.5° quad.). *Analytical data:* $K_2O = 3.69$ wt. %, ^{40}Ar rad % = 54.4, ^{40}Ar rad (10-11 mol/g) = 8.2982. *Comments:* Lava flow contains abundant large phenocrysts of plagioclase, smaller clin- and ortho-pyroxene, and lesser Fe-Ti oxide, amphibole, and biotite, all commonly clotted.

(whole rock) 15.6 ± 0.5 Ma

13. **BBS-788-1**
Trachybasalt (38.001°N, 113.750°W, Bible Spring, UT, 7.5° quad.). *Analytical data:* $K_2O = 2.438$ wt. %, ^{40}Ar rad % = 42.7, ^{40}Ar rad (10-11 mol/g) = 4.4647. *Comments:* Lava flow contains phenocrysts of plagioclase and olivine.

(whole rock) 12.7 ± 0.4 Ma

14. **GRANMT-6**
Trachyandesite (39.643°N, 113.744°W, Granite Mountain, UT, 7.5° quad.). *Analytical data:* $K_2O = 4.53$ wt. %, ^{40}Ar rad % = 70.7, ^{40}Ar rad (10-11 mol/g) = 21.868. *Comments:* Lava flow contains small clotted phenocrysts of clinopyroxene in an olivine-rich matrix.

(whole rock) 33.2 ± 1.0 Ma

15. **ARAGON-1**
Trachyandesite (40.738°N, 113.149°W, Aragonite NW, UT, 7.5° quad.). *Analytical data:* $K_2O = 3.97$ wt. %, ^{40}Ar rad % = 72.0, ^{40}Ar rad (10-11 mol/g) = 18.253. *Comments:* Lava flow contains phenocrysts of two pyroxenes, plagioclase, amphibole, and olivine.

(whole rock) 31.7 ± 0.9 Ma

16. **MIL-2**
Andesitic rock (38.421°N, 113.109°W, Milford, UT, 7.5° quad.). *Analytical data:* $K_2O = 2.33$ wt. %, ^{40}Ar rad % = 55.5, ^{40}Ar rad (10-11 mol/g) = 6.7916. *Comments:* Not chemically analyzed. Dike containing plagioclase phenocrysts in aphanitic matrix intruded into granite (Best and others, 1989b).

(whole rock) 20.1 ± 0.6 Ma

17. **COVE-1**
Andesite (38.653°N, 112.594°W, Dog Valley, UT, 7.5° quad.). *Comments:* Lava flow in volcanic rocks of Dog Valley (Cunningham and others, 1983) containing abundant phenocrysts of plagioclase, two pyroxenes, and amphibole.

Analytical data:

$K_2O = 1.87$ wt. %, ^{40}Ar rad % = 34.1, ^{40}Ar rad (10-11 mol/g) = 3.2951.

(whole rock) 12.2 ± 0.4 Ma

$K_2O = 1.70$ wt. %, ^{40}Ar rad % = 45.9, ^{40}Ar rad (10-11 mol/g) = 3.0811.

(whole rock) 12.5 ± 0.4 Ma

$K_2O = 1.72$ wt. %, ^{40}Ar rad % = 34.5, ^{40}Ar rad (10-11 mol/g) = 3.1528.

(whole rock) 12.8 ± 0.4 Ma

18. **TICK-2**
Basanite (40.432°N, 112.099°W, Tickville Spring, UT, 7.5° quad.). *Analytical data:* $K_2O = 1.17$ wt. %, ^{40}Ar rad % = 66.1, ^{40}Ar rad (10-11 mol/g) = 6.4154. *Comments:* Lava flow containing abundant phenocrysts of olivine in a matrix of phlogopite, clinopyroxene, and Fe-Ti oxides. Probably same flow as dated by Moore and McKee (1983; sample 35) at 38.5 ± 0.3 Ma.

(whole rock) 37.7 ± 1.2 Ma

19. **SOLDPASS-2**
Trachybasalt (40.167°N, 111.983°W, Soldier Pass, UT, 7.5° quad.). *Analytical data:* $K_2O = 2.293$ wt. %, ^{40}Ar rad % = 70, ^{40}Ar rad (10-11 mol/g) = 5.62677. *Comments:* Lava flow containing sparse plagioclase and olivine phenocrysts in a matrix of the same plus clinopyroxene, Fe-Ti oxides, and phlogopite.

(whole rock) 17.0 ± 0.5 Ma

20. **SOLDPASS-1B**
Basaltic trachyandesite (40.158°N, 111.971°W, Soldier Pass, UT, 7.5° quad.). *Analytical data:* $K_2O = 2.479$ wt. %, ^{40}Ar rad % = 70.8, ^{40}Ar rad (10-11 mol/g) = 5.89237.

(whole rock) 17.0 ± 0.5 Ma
mol/g) = 11.735. Comments: Aphyric lava flow containing abundant olivine.

(whole rock) 32.6 ± 1.0 Ma

21. LEVAN-4
Hornblende porphyry (39.542°N, 111.783°W, Levan, UT, 7.5' quad.). Analytical data: K2O = 3.43 wt. %, 40Ar rad % = 69.1, 40Ar rad (10^-11 mol/g) = 1.12253. Comments: Shallow intrusion containing abundant large hornblende phenocrysts and smaller phenocrysts of clinopyroxene in a groundmass of altered plagioclase and lesser biotite, Fe-Ti oxides, and sparse apatite.

(whole rock) 22.6 ± 0.7 Ma

22. WC-2
Minette (40.772°N, 111.261°W, Crandall Canyon, UT, 7.5' quad.). Analytical data: K2O = 10.31 wt. %, 40Ar rad % = 41.6, 40Ar rad (10^-11 mol/g) = 17.475. Comments: Shallow intrusion containing abundant phenocrysts of phlogopite in a matrix of phlogopite, diopside, and sanidine. Ages published by Best and others (1968) are 12.8 and 13.7 Ma.

(whole rock) 11.7 ± 0.4 Ma

REFERENCES
