DEPARTMENT OF THE INTERIOR
 UNITED STATES GEOLOGICAL SURVEY
 CHARLES D. WALCOTTT, DIREGTOR

 GEOLOGIC ATLAS

 GEOLOGIC ATLAS
 OF TETE
 UNITED STATES

COLUMBLA FOLIO

TENNESSEE

EXPLANATION.

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The thlas the parts of which are called folios Each thas, the parts of which are called folios. Lach oologic maps of a small area of country togeth with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, cilled and mountains; (2) distribution of wate, (3) the works of man, called culture, as road railroads, boundaries, villages, and cities.
Relief.-All elevations are measured from mea sea level. The heights of many points are accurately determined, and those which are most important are given on the map in figures.
It is desirable, however, to give the elevation of It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the horizontal outline, or contour, of all slopes, and to ndicate their grade or degree of steepness. This is done by lines connecting points of equal eleva tion above mean sea level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical space between each two contours is called the contour
interval. Contours and elevations are printed in brown.
The mer in which contous expres eleva tion, form, and grade is shown in the following sketch and corresponding contour map:

.
The sketch represents a river valley between wo hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On ach side of the valley is a terrace. From the terrace on the right a hill rises gradually, whil from that on the left the ground ascends steepl in a precipice. Contrasted with this precipice he gentle descent of the slope at the left. In the map each of these features is indicated, directly The following explanation may make clearer th nener in which contours delineate elevation, form, and grade:
orm, and grade:
height above sea level. In this illustration the eight above sea level. In this illustration the tours are drawn at $50,100,150,200$ feet, and so on, above sea level. Along the contour at 250 feet li all points of the surface 250 feet above sea; and imilarly with any other contour. In the space between any two contours are found all elevation above the lower and below the higher contour Thus the contour at 150 feet falls just below th edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but. less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours - say every fifth one-are accentuated and numbered; the heights of others may then ee ascertained by counting up or down from numbered contour.
2. Contours define the forms of slopes. Since g to the continuous horizontal lines conformgo the ground, they wind reentrant angles of ravines and project in passing bout prominences. The relations of be traced in the map and sketch.
3. Contours show the apprex
ay slope. The vertical space betwate grade of ours is the same, whether they lie along a clif or on a gentle slope; but to rise a given heigh on a gentle slope one must go farther than on steep slope, and therefore contours are far apart n gentle slopes and near together on steep ones. For a flat or gently undulating country a small contour interval is used ; for a steep or mountain ous country a large interval is necessary. The mallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for gions like the Mississippi delta and the Dism hase in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 0, 25,50 , and 100 feet are used.
Drainage.-Water courses are indicated by blue nes. If the streams flow the year round the ne is drawn unbroken, but if the channel is dry phart of the year the line is broken or dotted. me the supposed under reappears at the sur ace, the supposed bodies of water are also shown in blue, by approriate conventional signs.
Culture.-The works of man, such as road railroads, and towns, together with boundaries of ownships, counties, and States, and artificia etails, are printed in black
Scales.-The area of the United States (excludig Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch this
would cover $3,025,000$ square inches, and accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map i called the scale of the map. In this case it is " 1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the correspond ing length in nature expressed in the same unit
Thus, as there are 63,360 inches in a mile, the cale of " 1 mile to an inch" is expressed by $\frac{1}{6,3,3}$ Both of these methods are used on the maps he Geological Survey.
Three scales are used on the atlas sheets

 and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{\text { c.s.jo }}$ a square inch of map surface epresents and corresponds nearly to 1 squar and on the scale $\frac{1}{1, t, 50,}$ to about 4 square miles At the bottom of each atlas sheet the scale expressed in three different ways, one being raduated line representing miles and parts of miles in English inches, another indicating dis ance in the metric system, and a third giving th ractional scale.
Atlas sheets and quadrangles.-The map i being published in atlas sheets of convenient size, which are bounded by parallels and meridians. The corresponding four-cornered portions of ter itory are called quadrangles. Each sheet o the scale of $\frac{1}{20, w}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{125,000}$ contains one-quarter square degree; each sheet on a scale of $\frac{1}{6.500}$
contains one-sixteenth of a square degree. The reas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map The United States, are laid out without regard to hips. To each sheet, and to the quadrangle it ts is given the name of some well-known town or natural feature within its limits, and at

the sides and corners of each sheet the adjacent sheets, if published, are printed
 djacent sheets, if published, are printed

Uses of the topographic sheet.-Within the limit of scale the topographic sheet is an accurate an and culture of the district represented, Viewing the landscape, map in hand, every feature of sufficient magnitude should be reco nizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminar surveys in locating roads, railways, and irrigation ditches; provide educational material for school and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topograph base map, the distribution of rock formations on map shows their underground relations, as far map shows ineir underground relations, as far
known and in such detail as the scale permits.

kinds of rocks.

Rocks are of many kinds. The original crust of the earth was probably composed of igneou ocks, and all other rocks
Atmospheric agencies gradually break up igne ous rocks, forming superficial, or surficial, deposit f clay, sand, and gravel. Deposits of this clas have been formed on land surfaces since the eariest geologic time. Through the transporting
agencies of streams the surficial materials of a ges and origins are carried to the sea, where along with material derived from the land by the action of the waves on the coast, they form edimentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone but they may remain unconsolidated and still be called "rocks" by the geologist, though popularly nown as gravel, sand, and clay
From time to time in geologic history igneou and sedimentary rocks have been deeply buried onsolidated, and raised again above the surface of the water. In these processes, through the gencies of pressure, movement, and chemica ction, they are often greatly altered, and in th ondition they are called metamorphic rocks. Igneous rocks.-These are rocks which ha cooled and consolidated from a liquid state. A las been explained, sedimentary rocks wer deposited on the original igneous rocks. Through holten material has from time to noten material has from fie to time been forcel Wha whe his molten material is fored do not reath urfaee, it may consolidate in ara rossing the beiding planes, thes forming dike orspread out between the strata in la bodies alled sheets or laccoliths, or form large irregrla cross-cutting masses, called stocks. Such rocks are called intrusive. Within their rock inclosure they cool slowly, and hence are generally of crys talline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air acquiring a glassy or, more often, a partially crys talline condition. They are usually more or les porous. The igneous rocks thus formed upon the surface are called extrusive. Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragment hese materials when consolidated constitut breccias, agglomerates, and tuffs. The ash when arried into lakes or seas may become stratified, so The the sture of sedimentary rocks. The age of an igneous rock is often difficult or mpossible to determine. When it cuts across nd nd when a sedmentary rock is deposited ov Under the influence of dyna
Under the influence of dynamic and chemica The alteration may involve be metamorphosed f its minute particles or it may be accompanid by a change in chemical and mineralogic composi
tion. Further, the structure of the rock may b changed by the development of planes of divi than in others. Thus a granite may moss easily gneiss, and from that into a mica-schist
Sedimen from that in a mica-schist.
hich have ben desited under prise all rock in sea late or dre Therm part of the dry land
When the materi
When the materials of which sedimentary rock water and deposited as gravel, sand or or mud by deposit is called a mechanical sediment. Thes nay become hardened into conglomerate, sand tone, or shale. When the material is carried in solution by the water and is deposited withou he aid of life, it is called a chemical sediment if deposited with the aid of life, it is called a rganic sediment. The more important rock ormed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, ignite, and coal. Any one of the above sedimentary deposits may be separately formed, or he different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of yyers or beds which can be easily separated These layers are called strata. Rocks deposited successive layers are said to be stratified. the ; it very slowly rise or be, it very slowly ris sinks over wide expanses, and as the sher and ise above the water and become land areas, ar land areas may ank below the water reas of dep it If No A radually to sink a thousind feet the sea would low over the Atlantic coast and the Missisip and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would ecome an , would traverse Wisconsin, Iowa, and Kansas, and xtend thence to Texas. More extensive change than this have repeatedly occurred in the past. The character of the original sediments may be hanged by chemical and dynamic action so as to produce metamorphic rocks. In the metamo hism of a sedimentary rock, just as in the met norphism of an igneous rock, the substances of which it is composed may enter into new con ninations, or new substances may be added. When these processes are complete the sedimen tary rock becomes crystalline. Such changes ransform sandstone to quartzite, limestone to arble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the rigial beds or strata at any angle. Rock Rocks fa priol of the Rocks or any period of the ear his fions be really hemped moder hism, and gene then then enerally the in localitie remain essentially unchanged

Surfial roch. Thanged

Surfoial roks.-These embrace the soils, clays, whether derived from the breaking op or surface ration of the underlying rocks by atmospheric gencies or from glacial action. Surficial rock that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence re known as residual products. Soils and sub soils are the most important. Residual accumu ations are often washed or blown into valleys of ther depressions, where they lodge and form eposits that grade into the sedimentary clas urficial rocks that are due to glacial action are formed of the products of disintegration, togethe with bowlders and fragments of rock rubbed fro he surface and ground together. These are pread irregularly owe tho tory occupie nd ice, and form a mixure of clay, pebble nd bowders which is known at. It ma ccur as a sheet or be bunched into hills and z., Mo thim washed away from the ice assorted by water and
redeposited as beds or trains of sand and clay, thus forming another gradation into sedimentar deposits. Some of this glacial wash was deposited in tunnels and chanelsin the ice, and forms char known known as osass, drift, that washed from the ice onto the adja land is called modified drift. It is usual also to class as surficial rocks the deposits of the sea and of lakes and rivers that were made at the same time as the ice deposit.
ages of rocks.
Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's origin; igneons, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass is essentially the same, and it is bounded by rocks
of different materials, it is convenient to call the of different materials, it is convenient to call the mass throughout its extent a formation, and
a formation is the unit of geologic mapping.
Several formations considered together al designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some
larger fraction of a system, a period. The rocks larger fraction of a system, a period. The rocks
are mapped by formations, and the formations are are mapped by formations, and the formations are classified into systems. The rocks composing a
system and the time taken for its deposition are system and the time taken for its deposition are
given the same name, as, for instance, Cambrian given the same name, as, for instance, Cambrian
system, Cambrian period. ystem, Cambrian period.
As sedimentary deposits or strata accumulate the younger rest on those that are older, and the relative ages of the deposits may be discovered y observing their relative positions. This rela disturbance; sometimes in ruch regions of intense turbance of the beds has been so great that the position is reversed, and it is often difficult to determine the relative ages of the beds from their ositions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and
animals which lived in the sea or were washed from the land into lakes or seas or were buried in surficial deposits on the land. Rocks that conain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from thos of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked he fime of the oldest fossiliferous of life from present.

What two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in
Fossil remains found in the rocks of different
reas, provinces, and continents afford the mos mportant means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colors and symbol assigned to each, are given in the table in the next column. The names of certain subdivisions and groups of the periods, frequently used in geologic writings, are bracketed against the appropriate period names.
To distinguish the sedimentary formations of any one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception
of the one at the top of the column (Pleistocene) of the one at the top of the column (Pleistocene)
and the one at the bottom (Archean). The sedi-
mentary formations of any one period, excepting the Pleistocene and the Archean, are distinguished from one another by different patterns, made of parallel straight lines. Two tints of the periodcolor are used: a pale tint is printed evenly over
the whole surface representing the period; a dark tint brings out the different patterns representing formations. Each formation is furthermore given

	Pratos.
ic	Pleistocene
	Neocene $\left\{\begin{array}{l}\text { Pliocene } \\ \text { Miocene }\end{array}\right\}$
	Eocene, including $\begin{gathered}\text { Oligocene } .\end{gathered}$
sozoic	(Crẹtaceous
	(Juratrias $\left\{\begin{array}{l}\text { Jurassic } \\ \text { Triassic }\end{array}\right\}$
Paleozoic	$\left\{\begin{array}{c}\text { Carboniferous, includ- } \\ \text { ing Pernian }\end{array}\right.$
	Devonian
	Silurian, including O
	Cambrian
	Algonkia

a letter-symbol cosed or the period letter con bined with small letters standing for the forma tion name. In the case of a sedimentary formation of uncertain age the pattern is printed on white ground in the color of the period to which th ormation is supposed to belong, the letter-symbol of the period being omitted.
The number and extent of surficial formations, chiefly Pleistocene, render them so important that, to distinguish them from those of other periods and from the igneous rocks, patterns of dots and The oricin in any colors, are use
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous. het determined . The Archen rocks and netamorphic rocks of Archean rocks, and all ever age, are represented on the maps by patterns consisting of short dashes irrregularly placed These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the metamorphic rock is patterns to be of sedimentary origin the hachur patterns of sedimentary formations. If the rock s reeognized as having been originally igneous the hachures may be combined with the ignerus pattern.
Known igneous formations are represented by patterns of triangles or rhombs printed in any brilliant color. If the formation is of known age the letter-symbol of the formation is preceded by the capital letter-symbol of the proper period If the age of the formation is unknown the letter-symbol consists of small letters which uggest the name of the rocks.
the various geologic sheets
Areal geology sheet.-This sheet shows the areas occupied by the various formations. On the margin is a legend, which is the key to the colored pattern and its letter-symbol on the map the reader should look for that color, pattern, and nd description of the formation. If it is deired to find any given foration, its 1 , bould be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of t eologic history. In it the symbols and nam are arranged, in columnar form, according to the rigin of the formations-surficial, sedimentary nd igneous - and within each group they are
placed in the order of age, so far as known, the youngest at the top.
Economic geology sheet.-This sheet represents the distribution of useful minerals, the occurrence of artesian water, or other facts of economic inter est, showing their relations to the features of topo graphy and to the geologic formations. All the heet ans which appear on the historical geology terns. The areal geology, thus printed, affords subdued background upon which the areas of pro ductive formations may be emphasized by stron colors. A symbol for mines is introduced at each
principal mineral mined or of the stone quarried Structure-section sheet.-This sheet exhibits th In cliffs, the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different bed exhibits those relations is called a sectiong which ame name a plied to di the relations. The arrangement of recks in the earth is the earth' structure and a section exhibit arth this arrangement is called a structure section The geologist is not limited, however to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the manner of the formation of rocks, and having traced out the relations among beds on the sur face, he can infer their relative positions after they pass beneath the surface, draw section which represent the structure of the earth to considerable depth, and construct a diagram exhibiting what would be seen in the side of cutting many miles long and several thousand feet deep. This is illustrated in the following figure
parts slipped past one another. Such breaks are ormed fault
On the right of the sketch the section is composed of schists which are traversed by masses of gneous rock. The schists are much contorted and their arrangement underground can not be inferred. Hence that portion of the section known by observation or well-founded in no In fic. 2 there are three sets of formation, dis In fig. 2 there are three sets of formations, disfirst of these, seen at the left of the section, is the set of sandstones and shales, which lie in a horizontal position. These sedimentary strata are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has swelled upward from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable.
The horizonal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying deposits are, from their positions, evidently younger than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds and the accumulation of the younger. When younger strata thus rest upon an eroded surface of older strata the relation between the wo is an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their hastry travers by eruptions of molten presBut thi prese by eruptions of molten rocks have not affected the overlying strata of the second set. Thus it is evident that an interval of considerable duration elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets, marking a time interval between two periods of rock formation, is another unconformity.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections in the structure-section sheet are related to the landscape. The profiles of the surface in the section correspond to the actual slopes of the ground along the section line, and the depth from the surface of any mineral-producing or waterbearing stratum which appears in the section may be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a concise description of the rock formations which occur in the quadrangle. It presents a summary the thicknesses of the formations, and the order the thicknesses of the formations, and
of accumulation of successive deposits.
The rocks are described under the correspond ing heading, and their characters are indicated in the columnar diagrams by appropriate symbols The thicknesses of formations are given in figures which state the least and greatest measurements. The average thickness of each formation is shown in the column, which is drawn to a scale -usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrange. ment: the oldest formation is placed at the bottom of the column, the youngest at the top, and igneous rocks or surficial deposits, when present, are indicated in their proper relations.
The formations are combined into systems which correspond with the periods of geologic history. Thus the ages of the rocks are shown, and also the total thickness of each system.
The intervals of time which correspond to events of uplift and degradation and constitute interruptions of deposition of sediments are indicated graphically and by the word "unconformity." CHARLES D. WALCOTT,
Revised January, 1902.
Director

DESCRIPTION OF THE COLUMBIA QUADRANGLE.

general relations.

The Columbia quadrangle embraces 969 square miles, lying wholly within the State of Tennessee and extending from latitude $35^{\circ} 30^{\circ}$ on the south to 36° on the north and longitude 87° on the east to $87^{\circ} 30^{\prime}$ on the west. The name is derived from Columbia, the county seat of Maury County About two-thirds of the area is embraced in Maury and Hickman counties, but it includes also portions of the adjoining counties of Lewis, Dickson, Wil amson, and Davidson.
The quadrangle lies within the Ohio Basin, which forms the westernmost division of the Appaachian province. The Ohio Basin embraces th greater part of the Cumberland Plateau, the Alle
 estern Tennessee, Kentucky, and Ohio. It regarded as extending from the Mississippi River regarded as extending from the Mississippi River
at Cairo in a northeasterly direction across the at Cairo in a northeasterly direction across the
States of Illinois, Indiana, and Ohio to the western end of Lake Erie
When contrasted with the profoundly folded strata of the Appalachian Valley, the rocks of this region may be classed as horizontal, but, strictly speaking, they are rarely in this position, the beds being generally more or less inclined in varying directions.
The most important structural feature of the Ohio Basin is a broad fold in the strata known a end of this arch has two branches which diverge in western Ohio, one extending northwestward oward Chicago, the other northward through Toledo. These two branches of the Cincinnat reh are of great economic importance, since the afford conditions favorable for the accumulation o gas and oil in western Ohio and central Indiana. From Cincinnati the arch extends southward hrough Lexington and Danville, Ky., and thence outhwestward through the Central Basin of Tennessee. This portion of the arch south of Cincinnati is divided into two dome-like uplifts, of which he northern has its greatest development between Lexington and Danville, Ky., and the southern ear the center of Bedford County, Tenn. In both cases the dip of the strata from the summits of the lomes is steeper toward the south than toward the th. Jhe Cinati arch divides the Ohio Basin
 anch contain coal measures. The Appalachia fidd on the east and the Eastern Interio
 hibit almost everywhe mone fond places they have been broken gentle folds, and owever, are not common, nor are they very large he displacement rarely exceeding 500 feet.
topography of the ohio basin
The altitude of this division is greatest along its southeastern margin, where the mountainous belt Plateau and the Cumberland and Allegheny Mounains, rises from 500 feet at its southwestern extremty in Alabama to 2000 feet at Chattanooga, 3500 eet in the vicinity of Cumberland Gap, and fron 2000 to 4000 feet in eastern Kentucky and Wes irginia. From this line of maximum elevation 500 feet along the western border. This descent effected mainly by a series of steps or escarpment marking the extent of particularly resistant beds of rock. The highest and most pronounced of thes escarpments is along the western margin of the Appalachian coal field. In Kentucky, this escarpment séparates the interior plain from the highe and more hilly region of the coal field, and in Tenessee forms a division line between the eastern ighland Rim and the Cumberland Plateau. In Tennessee the escarpment is steep and regular
and the plateau is very perfectly preserved, but in

Kentucky the rocks were not hard enough to
protect the plain after it was uplifted, and as a protect the plain after it was uplifted, and as a umerous streams which drain its surface, produ ing a hilly region in place of a platean, and a rregular margin instead of an escarpment.
The interior plain of Kentucky is continuous with both the eastern and western highlands of Tennessee, and also with much of the highest land in Ohio and Indiana. Its general elevation along the western margin of the Appalachian coal field is about 1000 feet above sea level, but toward the est it descends to somewhat lower levels.
The principal streams draining the Ohio Basin have cut deep channels below the surface of the plain, producing in their immediate vicinity a rugged topography in place of the original gently ndulating surface. In central Tennessee the rosion has been especially active, and since the che highland to the action of the streams are sof second plain formed a lower row seco phin rertill in icinity of Nashille, and i known the Central Basin of Tennessee.
Since the formation of the lowland which occu pies the Central Basin, the land has been again evated and the streams have cut deep channels in is surface and have deepened their old valleys in he surrounding highland region.
pography of the collubia gdadrangle
The Central Basin of Tennessee has a gently ndulating surface whose altitude is about 600 fee is entirely surrounded by a more or less deeply dissected plateau known as the Highland Rim, leve. The outline of the basin is extremely irre ular. Outliers from the surrounding plateau extend far out into the basin in the form of spur and isolated hills. The Columbia quadrangle is located upon the western margin of the basin, mewhat over three-fourths of its surface being cecupied by the highlands which bound the basin on the west. The character of the Central Basin is represented by the gently undulating lowlands Which extend from Columbia to Mount Pleasant. hetely sout of Colinbia are more or less comest.
The larger part of the quadrangle lies withi drainage basin of Duck River, which crosses rom southeast to northwest a little south of it nter. A small area in the northeastern portion of e quadrangle is drained by the headwaters Harpeth Creek. Numerous tributaries enter Duck River from either side, the largest being Big Bigby, Siney Piver and Lan creeks on the south, and on the north. These streams, with their tributaries, have deeply dissected the central and southern por tions of the quadrangle. They are characterized y rather narrow, level valleys, with steep slopes to the intervening ridges. In the northern portion of the quadrangle the surface is less dissected, and considerable areas are found with comparatively level surfaces, the higher portions of which rise to nearly 1000 feet above sea level.
A careful study of the topography of this regio hows clearly that the present surface is the result of the dissection of a level or gently undulating plain, which, if restored, would have an altitude of between 900 and 1000 feet, This restore plain, extended eastward, would coincide with the he Central Basin and with the surface of the Highland Rim at its eastern edge. Such a con inuous plain doubtless at one time existed ove his region. It was probably produced by the slow process of subaerial erosion, and, when formed, it occupied a position near sea level. Throughout the limits of Tennessee, its surface was probably
occupied by the basal cherty member of the Lower Carboniferous. This cherty member, however, wa ery much thinner in the region now occupied by he Central Basin, since the beds had there been lifted by the doming of the Cincinnati arch and largely removed. When, therefore, the region was gain uplifted, and the streams began to cat their channels, the limestone which underlies the Car oniferous chert was first encountered by the treams upon the summit of this dome. The lime stones are much more easily eroded than the cherts, and hence the lowering of the surface went on most rapidly where the protecting cover of the herts was thinnest. In this way the Central Basin of Tennessee was developed by Duck River and of this basin whe head upon the lowlands valleys, cutting fow whr valleys, cutting down into the more resistan ltitude was not continuous but ocured at periods ser by intervo of The downsard cutting of the repose. The ingly interrupted. Thus Duck River cut a broad valley down to about 400 fet below urface of the old plain, and when the region wa gain uplifted cut a much narrower valley within this broad one. The remnants of the broader valley are now found as terraces at various points long Duck River, their surfaces showing a gradual descent downstream from about 600 feet in the vicinity of Columbia to 550 feet at Centerville.
At some time near the period when the formation of the older plain above described was practically completed, the region appears to have been depressed slightly, and its streams made considerable deposits of coarse gravel. These are most abundant along the western edge of the quad angle, and the streams by which they were eposited do not appear to have coincided with the main drainage lines as at present developed. Th gravels are thoroughly waterworn, and are com posed in part of chert and in part of vein quart The origin of the vein quartz is difficult to explain, an no rock of this character now occurs in the rainage basin of Duck River. These gravels are probably to be correlated with similar deposits wich extend around the margin of the Appalachian province from southern Illinois to New Jersey, and tood plains at or slightly above sea level.

GEOLOGY.

description of formations.
The formations occurring in the Columbia quadrangle are represented in the generalized columnar ections, and their age relative to corresponding eds in adjacent portions of the Ohio Basin is indicated in the Correlation Table. The rocks are al stending through portions of the Silurian, Devon ian, and Carboniferous periods.

ilurian system.

Lebanon limestone.-This formation consists of m-bedded, compact limestones and thin seams of hale, yellow, light gray, dove colored, or bluish often very fossiliferous. In the quadrangl has an average thickness of about 125 feet, une its outcrops, all of which occur in the asal are par. Ordinarily its presence is indicated by Where covered by the massive Carters limestons nd wien by hassive Carters Duck River at Columbia it and erosion, as along the forms at cliffs. of middle Tion with which the red cedar glades and in Safford's Geology of Tennessee (1869), it is led "Glade limestone"
The type locality for the limestone is Lebanon,
belong to Safford's original Stones River group. thee other members of this group, in descendimestone, are the Ridley limestone, the Pierce of these outcrop within the quadrangle.
Carters limestone.-This, the uppermost division of the Stones River group, is composed of whitishgray or light-blue, compact, heavy-bedded limestone, varying between 50 and 60 feet in thickness. It akes its name from Carters Creek, a stream draining a considerable area near the eastern border of he quadrangle. Along the lower end of the valley of this stream the formation is well exposed. Equally good or better exposures occur in the buffs of Rutherford Creek and Duck River, and in them it often presents a castellated appearance, with striking turret-like projections. In ordinary orface exposures it is distinguished at once formations by the eroded bowl er-like lite man der-ke whit masses sticking out of the red clay outcrops of Corter limesto in re portion part of the town of Columbia is situated. There are besides a number of other reasted. Nally of limited extent, where the rock has been grourht up by local uplifts. A number of these occur near he southeast corner of the quadrangle, and two thers just south of its center, in the banks of Duck River. Finally, Hampshire is in part situated on one and Sawdust Valley on another, while a third ars on Snow Creek near Santa Fe, on the south de of a small east-west fault.
As stated above, the average thickness of the formation is from 50 to 60 feet, but in some of the areas mentioned it is less than 40 feet, while the maxium thickness for middle Tennessee falls little, any, short of 100 feet. These differences are not wholly due to variation in amount originally deposited. On the contrary, it appears that the hat he result of erosion of the differences noted is deposition of the succeeding formation. In the horthern and northeastern portions of the Central Basin of Tennessee the Carters limestone has genrally 10 to 20 feet of shaly, thin-bedded limestone in the top, resembling the Lebanon limestone both irenaceous shale of the wis hich like the top , the Cort he, he the 1. one, is way was. Od by thin bed of f un conly ccurs at the base of the Hermitage The wide and distribution of the Stone River wroup nd even distribution of the Stones River group, as shown in the Correlation Table, and the erosion unconformity at its top clearly indicate that the Cincinnati geanticline was elevated above sea level, probably for the first time, at the close of the Stones River epoch.
The fauna of the Carters limestone, though very characteristic, is not a large one, and, excepting a few species, the forms found are generally rare. The fossils freed from the rock by natural means are always silicified.
Hermitage formaion.-This formation consists thin-bedded to medium-bedded, fine-grained to granular limestone and shale, with a fairly constant enss thronghout the quadrangle of 40 to 70 all. The basal portion as here developed is usunyade up of 12 to 20 feet of thin, even-bedded, argillaceous and siliceous blue limestone layers, sepfor seams of gray or bluish shale. These re followed by heavier-bedded, siliceous, subgranmestones, which occasionally include a litte hosphatice commonly more or less charged with ith Orthis (Dalm. Many of the layers are filled nd 43 on Illustration sheet), tharia (see figs. 42 re generally silicified sheet, the shells of which are generally silicified. The formation may be
recognized at once by these shells, even without
exposure, the light-red subsoil, where washed, being profusely speckled with their white fragments. In other parts of the Central Basin of Tennessee, especially toward its northern and eastern borders, the formation weathers into fine-grained, earthy, yellowish or brown sandston
sandstone is often phosphatic.
The name "Hermitage" is derived from the station of that name, situated near the old home of President Jackson, on the Tennessee Central Railroad, where a good section was secured. Bigby limestone.-In the Columbia quadrangle this formation consists of a nearly uniform series of semi-oolitic or granular, crystalline, laminated, phosphatic limestones, gray or bluish in color, and 30 to 100 feet in thickness, the minimum original thickness (i. e., where it has not suffered from Paleozoic erosion) being about 50 feet. At
the base there may be a few feet of shaly layers; the base there may be a few feet of shaly layers; also at the top, but there the shales are commonly
arenaceous. Throughout the quadrangle the forarenaceous. Throughout the quadrangle the for-
mation is sufficiently homogeneous and characteristic to be always readily recognized, but northward toward Nashville and thence eastward to Hartsville it gradually loses more and more of its granular structure aille phospace contents, until at Harts ville there is only an in this orthe grade phosphic in the seem to have deeped carsing the deposits seems to have deepened, causing the deposits to materially in thickness.
Between Hartsville and Carthage, for instance, the strata equivalent to the Bigby limestone of the Columbia quadrangle aggregate a thickness of from 120 to 150 feet. A considerable part of the limestone here is still more or less laminated in struct ure, but only a very small proportion has the beds. Besides, more than half of the limestone layers are compact, and of light-blue or gray ("dove") color, while most of the other layers contain a much greater proportion of subcrystalline matter than does the typical Bigby limestone. The in the fauna. Aside from the minute cyclorid and other molluscan shells which are common to all of the Tennessee phosphate horizons and Rafinesquina alternata, which is often very abundant, fossils are comparatively rare in the lower fourth of the Bigby limestone of this quadrangle. In the upper part
Bryozoa, especially three species of Constellaria (see Bryozoa, especially three species of Constellaria (see
figs. 30 and 31), and Eridotrypa briareus are somefigs. 30 and 31), and Eridotrypa briareus are some-
times extremely abundant. At Columbia, for times extremely abundant. At Columbia, for
instance, about 4 feet of shale and limestone are instance, about 4 feet of shale and limestone ar
filled with them. The other fossils are confined to local thin shaly layers or to small, almost purely ties, on the other hand, nearly all the layers are ties, on the other hand, nearly all the layers are
profusely fossiliferous, the series, moreover, affordprofusely
ing a large and varied fauna, in which the mollusea are strongly represented and the typical Bigby Bryozoa and Brachopoda are rare or are absen Big Bigby Creek, Big Bigby Creek, along which, and its tributaries, of large deposits of phosphate of lime this forma of large deposits of phosphate of the the one of the most important that is exposed within the quadrangle.
Catheys formation.-This series of highly fossiliferous, knotty, and fine-grained earthy limestones and shales has been named from Catheys Creek, a tributary of Duck River. In the quadrangle the formation is generally not difficult to distinguish from the underlying Bigby limestone, but the knotty and shaly beds, which make up the greater part of it, are often so much like portions
of the overlying Leipers formation that, unless one is thoroughly familiar with the fossils, confusion between them is very likely to occur. The minimum original thickness was probably not much less than 50 feet, the maximum 100 feet or more.
South of Duck River the thickness often falls to South of Duck River the thickness often falls to
less than 50 feet. This is due to Paleozoic erosion less than 50 feet. This is due to Paleozoic erosion which took place either in Utica time or later. At some places the formation was removed entirely,
as at a point one mile east of Hunter Ford, where as at a point one mile east of Hunter Ford, where
the cherty St . Louis limestone rests directly upon eroded Bigby limestone.
The Catheys formation varies considerably in its granular siliceous top Columbia, where the finely
extensively quarried, the Catheys formation begins
with a rather massive, coarsely crystalline limewith a rather massive, coarsely crystalline lime-
stone, holding many large masses (3 inches to 3 feet in diameter) of Stromatocerium pustulosum (se figs. 23 and 24). Following these are shaly, thinbedded, and often rough limestones, full of brachiopods and of Bryozoa highly characteristic of this horizon. Cyclonema varicosum probably deserves to rank as the most characteristic fossil. It is also a common one, especially in the lower beds of the formation. Farther north, about Jameson, for instance, the Stromatocerium bed is replaced, in spong least, by siliceous shales full of basalia of sponges (Pattersonia aurita) and corals of the genus Columnaria. In other places again, as at
points a few miles north and west of Mount Pleasant, the Stromatocerium bed which in these case is not well marked, is preceded by shaly beds simply crowded with monticuliporoid Bryozoa Finally, the basal part of the formation may look like a continuation of Bigby limestone, being, a is so commonly the case with that formation, full of Rafinesquina alternata, though always in association with characteristic Catheys Bryozoa like Heterotrypa parvulipora (see fig. 26)
As a rule the upper half of the formation convarying compact, impure, blue limestones, in layers varying from a few inches to 4 feet in thickness Generally the fossils belong almost wholly to brachiopodan, molluscan, and crustacean types, but ocasionally, especially toward the north, a small occasionan y, especially may be encountered. Several large Ostracoda, of the genera Leperditia and Isochilina, are highly characteristic of these upper beds. They are restricted to fine-grained impure limestones and with these increase in abundance northward from this area. On account of the erosion mentioned ing in the vicinity of Mount Pleasant and on Nel son Hill.
Leipers formation.-This formation consists of granular limestone, quite uniform in the western portion of the quadrangle, but changing toward the east to a knotty, earthy limestone overlying certain shaly and fossiliferous beds. In thickness the formation varies from nothing to 100 feet. A complete section is nowhere to be seen, the top being cut away in some places and the lower tion never having been deposited in others.
In the eastern half of the quadrangle a complete section, beginning below, would be as follows: (1) Shales and thin limestones, with a maximum observed thickness of 10 feet, usually containing fossils indicating early Lorraine. An undetermined species of Bucania or Salpingostoma is characteristic for this region. (2) A series of more or less coarsely crystaline speckled limestone, up to 20 feet thick, containing shells of Ctenodonta, a large branching Escharopora, and a small ramose bryo-
zoan (Bythopora). This and the preceding bed were zoan (Bythopora). This and the preceding bed were and in McClanahan Branch west of Hampshire. and in McClanahan Branch west of Hampshire.
(3) Thin-bedded, shaly, and very fossiliferous (3) Thin-bedded, shaly, and very fossiliferous
layers 6 to 14 feet thick. Among the fossils, a long hinged form of Platystrophia laticosta, a long hinged form of Platystrophia laticosta, a
Hindia, varying from a half inch to over one inch Hindia, varying from a half inch to over one inch
in diameter, and several undescribed Bryozoa, are characteristic. At Columbia, Mount Pleasant, and Negro Hill (just south of Greenfield Bend on Duck River) this bed forms the base of the forma tion. (4) Granular crystalline, occasionally arenaceous, grayish limestones, sparingly fossiliferous and slightly phosphatic. This bed may reach a thickness of over 40 feet. (5) Knotty impure limestones and shales, blue and gray, full of fossils; monticuliporoid Bryozoa extremely abundant; 5 to 12 feet thick. Of over fifty species of fossils, perhaps the most characteristic of this horizon are Amplexopora columbiana, Homotrypella nodosa, and
Strophomena planoconvexa (see figs. 11, 12, 14, 15, 18, and 19). The best exposure is found in the excavation for the Columbia waterworks reservoir on Mount Parnassus. (6) Next comes a rather widely distributed bed of earthy limestone and calcareous shale, not over 7 feet thick, holding Orthorhynchula linneyi and Tetradium fibratum and resembling very greatly several beds in the Catheys formation that afford the same species. (7) A thin bed of soft, calcareous, light-blue shale, rarely seen. This is the horizon of Bythopora gracilis (icholson), a
slender, branching bryozoan, described from the
rata at Cincinnati where it occurs in great abunance near the top of the hills. (8) Finally, the top the formation is usually formed by an earthy coid in fresh exposures. This evidently was curn ent formed, the valves of a large Platystrophia (see figs. 21 and 22), the only common fossil contained in it, being, as a rule, more or less waterworn.
Westward, in Hickman County, these eight bed re no longer distinguishable, the whole series ecoming more and more uniform in composition, nd fossils, good ones at least, comparatively rare In the region embracing the lower part of Swai reek and the streams emptying into Duck Rive from the north, below Anderson Bend, the formation consists almost entirely of granular (oolitic) or granular crystalline, laminated phosphatic limeones, the phosphate, especially toward the top eing so abundant in places that on leaching an excellent grade of light-brown phosphate rock is produced. The fossils found near or at the top of he formation in this region prove that the Platyrophia bed (No. 8 of the foregoing paragraph) i verywhere absent. Nos. 5, b, an 7 are often 90 fat, 60 tepresenting the Leipers formation is the equivalent of beds 1 to 4, and chiefly of the last.
The absence of the upper bed indicates elevation and then erosion during a long period, beginning pparently very soon after, if not before, the close of Lorraine time; it is a significant that those parts of he area which remained above water till the general subsidence which took place in the Devonian are precisely those which have the strongest develop nent of the Devonian black phosphate. Thes the detailed sections on the Columnar Section sheet As will be noted from the descriptions given, the formation is more variable even than the Catheys, which it greatly resembles in both physical and taunal characters. It is named from Leipers Creek, along which it has a good average developinent. Fernvale formation.-The Fernvale formation onsists mainly of soft chocolate and green shales Commonly the shales include one or more layer coarsely crystalline, occasionally flesh-colored, mestones, usually with greenish specks. No infrequently the lower of these layers is conglomeratic and highly phosphatic. In the valley of
South Harpeth Creek, south of Fernvale, and on both sides of Duck River, in Tottys Bend and Morgan and Haley creeks, the lower part of the formation is made up of 5 or 6 feet of strongly ferruginous, often vermilion-red limestone. Where the formation is thin, as along the borders and nore particularly the heads of the bays in which was deposited, the shales only are developed. In thickness the formation varies from not
40 feet, the average being less than 20 feet
As more fully explained later, the Fernval nation and the next following, Clifton limestone nation and the next following, Cliton limestone, cre deposited in shaw troghs embayment lusern ber the formation unmistakably indicated, in the valley and branches of Leipers, Lick, and South Harpeth bes which, in ancient depressions.
pper sllurian.
Clifton limestone.-In the Columbia quadrangle the Clifton limestone is composed of compact light-gray or light bluish-gray, and more or less thick, even-bedded limestones. Some of the layers are crinoidal, many contain green points, and
others have thin layers of chert. In the western part, portions may be thin bedded, and, in the
lower half, even shaly. The latter character increases westward beyond this quadrangle. At the top there is often a heavy, yellow, argillaceous
layer. It is easily distinguished from the preceding formations.
This formation was named by Safford from Clifton, a town in Wayne County, Tenn., where the formation has a thickness of nearly 200 feet In the Columbia quadrangle the formation is repncient ony by deposits in embayments along the nothing to about 60 feet, the mass increasing in nothing to about 60 feet, the mass increasing in
general way from east to west by the addition of eneral way from east to west by the addition of
middle Tennessee dome thereby indicated ceased at the close of Niagara time, when the land was elevated again, the sea being pushed westward dome probably continued through Cayugan and Helderbergian time, the rocks of those group being found but little east of the Tennessee River In view of the extremely fossiliferous character of the formation, as well as the varied character of is fauna, along the Tennessee River, fossils mus counted rare in the Clifton limestone exposure within this quadrangle. No sponges at all were en, and extremely few brachiopods, and of crioids only a single specimen of the small Haplocinus hemisphericus, which was found at Center ville. Corals alone are fairly abundant, but even hese grow rare toward the heads of the bays.
devontan system.
Chattanooga shale.-Excepting the bottom and p, which will be described separately, the mas of this formation is a nearly black, rather tough, plates. It is the well-known generally into thin plates. It is the well-known and sharply defined
formation so often called the Black shale. The formation as a whole is remarkably persistent in for distribution, being found nearly persistent in it Tennessee and adjoining states to the south, in and north, where its proper horizon is ocasional absence is due either to nondepsition or to erosion preceding Carboniferous deposition Generally throughout middle Tennessee there is the base of the formation a thin bed which i entirely different in character from the black shal bove. In the western part of the Columbia quad rangle, particularly in the valley of $S_{\text {wan }}$ Creek, this bed consists largely of calcium phosphate and forms the source of the Tennessee black phos phate. Its appearance varies somewhat from place o place, as well as its chemical composition. It may be gray, bluish-black, or black in color, and may be composed of grains large enough to be en by the naked eye, or may have a dense finerained structure. When examined with the glas mall oval grains are generally found to be more or less abundant, sometimes making up the mass of he rock. These have polished surfaces and a brown amber color. In many cases they are the cast of minute coiled shells. The phosphate bed passe by gradations laterally into a bed of coarse sandone or conglomerate containing varying amount of phosphate. The grains are in part phosphatic vules and in part quartz, with less abundant water orn fragments of other rocks, and fish bones.
The phosphate bed is also replaced, particularly Tward the southwest, in Hardin, Wayne, and Perry counties, by a fine-grained gray or black 12 feet in Hardin County where it has thickness of 12 feet in Hardin County, where it has been calle he Hardin sandstone by Safford. It may consist of a single massive bed or may have a shal It ise, and is generally more or less phosphatic It is evident that the black phosphate, the conthases of the sarely thre frmation, and represt mately the same time their diftere ing approxition being due to differences in the sources fro which their materials were derived. Occasionally, and this is particularly true of areas in which the Chattanooga formation rests on the Clifton and Hattanooga formation rests on the Clifton and lernvale formations, the conglomeratic phosphate
layer is replaced or represented by black shale like yer is replaced or represented by black shale lik
hat making up the body of the formation. Except in these cases the basal bed everywhere follows a nore or less easily determined erosion unconformity, nd was deposited over a nearly submerged land surace. This subsidence began in the Oriskany, and ontinuing through the Onondaga and Hamilton ges, resulted finally in the submergence of th hole of the middle Tennessee dome. This submergence occurred in the Portage and continued hrough the Chemung, these late Devonian age being represented by the typical Chattanooga shale. At the top of the formation there is very generally a thin stratum of greenish shale and earthy sandstone, which has recently received the desig nation "Maury green shale" from Professor Safford He says it ranges "from a few inches to 4 or 5 feet thickness;" but so far as our observation is con usually varies between 12 and 18 inches. Nearly
always this green shale has embedded in it smooth ark nodules or concretions of lime phosphat The nodules vary greatly in size, shape, and rela ive abundance. some are spherical, and from half inch oo severular ellinoids, 2 feet in length and over 6 inches thick; hey may be loosely disposed in the shale, losely packed. The green color is due to the closely packed. The green color is due to the
presence of glauconite or greensand, a silicate of presence of glauconite or greensand, a silicate of
ron and potash. Rarely, as in the upper part of East Fork of South Harpeth Creek, the green shale absent or not distinguishable, and in these case the black shale seems to pass very gradually into erlying green shale, which constitutes the bas of the full Tullahoma section.
Fossils are almost if not entirely restricted to he lower member of the Chattanooga formation In the dark-gray variety of phosphate rock, which really a conglomerate, casts of minute coiled and bivalve molluscan shells, washed out of the Ordovician rocks forming the surface of the land that was being gradually submerged, are very abundant. Waterworn bones of large fishes not infrequently occur with them. In the basal shale and fine grained sandstone a species of Lingula, probably L. spatulata, is frequently seen, while the shiny teeth, jaws, and cephalic plates of conodonts, sup-
posed to be small fishes related to myxinoids, are often found, sometimes in great numbers

arboniferous system.

Tullahoma formation.-This formation consist hiefly of siliceous shales and limestones, but the owest member is a calcareous shale, generally rayish green or pale bhe, bous 30 feet in thick vess es. As this member is not often seen in the hat a guadrangle, it ma wo to mentio een, occurs on the first hill west of Mount Pleas nt . It is significant that all the known exposure occur within or in prolongations of the Fernvale and Clifton embayments shown on the Embayment heet. The fossils, though chiefly of undescribed pecies of Ostracoda, indicate very early Mississippian age. Fossils collected apparently from an quivalent shale by Safford, and reported by Alexander Winchell many years ago, were believed to indicate the age of the Marshall or Kinderhook.
A strongly siliceous and argillaceous limestone that weathers into a cherty, shale-like material ocurs stratigraphically above the calcareous shale but usually constitutes the ordinary base of the formation. Similar strata, in one place more shaly, in another more calcareous, and generally with hich has a maximum thickness of about 250 feet Usually it is much less, especially in the southeas n quarter of the quadrangle The decomposel iliceous shales and limestones, especially those of he lower third of the formation, often afford an cellent road material.
Excepting in the basal shales, specifically recog izable fossils are extremely few in this formation. Here and there the heavier chert blocks contain brge crinoid stems in abundance, and occasionall Keokuk horizon of Iowa and Illinois.
St. Louis limestone.-This, the latest or younges ormation exposed in the quadrangle, consists in he main of a thick bed of limestone, gray to blue n color, and associated with considerable chert. The limestone is rarely exposed away from stream beds, and as the formation occupies only the high ands, it is known mainly from its aspect after lecomposition. With chert-bearing formation decomposing as deeply as the St. Louis and Tullaoma do in this area, exposures showing contact are extremely rare. The two are, accordingly, seprated on the map by a more or less arbitrarily rawn line. For convenience, certain heavy and often cellular chert layers have been taken for the base of the St. Louis. These layers reach a thickhess of over 2 feet, and on this account alone fre quently constitute a conspicuous guide. They are urther distinguished from the preceding cherts by heir highly fossiliferous character. The fossils are mostly small, and consist mainly of Bryozoa and rachiopods more ,or less characteristic of the "Warsaw horizons" of Illinois, Indiana, and Ken-

Above these heavy layers come the more characteristic St. Louis fossils, like Melonites and Lonsdaleia or as the latter is generally called, Lithostrotion anadense (see fig. 2). The St. Louis may als be death it by fanges in the comater of the benean the the of the rocky slopes, while the St. Louis forms more roll og lands, with a red instead of a yellow, and nuch more fertile soil. The St. Louis chert, asid fom its fossiliferous character, occurs in lare ngular masses, is less abundant, less porous, and contains much less clay. Where the St. Loui limestone attains considerable thickness, the area of its outcrop are further distinguished by sink holes, underground streams, and caves. These are ue to the purer and more soluble character of its imestones. The iron-ore banks of middle Tennescee and western Kentucky are almost entirel restricted to this formation. They mark the locaion of old bogs, in which the mineral, derive from decomposing limestones, was deposited.
general sedimentary record
All the rocks appearing at the surface in the Columbia quadrangle are of sedimentary origin hat is, they were deposited by water. They consist chiefly of various kinds of limestone, ofte eparated by rather thin beds of shale and occamaximum thickness total exposed section having maximum thickness of about 1100 feet. Th materials of which they are composed were origially mud, sand, and gravel, derived from the wast and plats that lin in remains of animal and plants that lived in the seas when the strat were laid dow. The limestones, especially, were largely formed of the shells and other remains of sting relics of bygone ages, but are of the first mportance as
The rocks of this portion of the Ohio Basin fford a record, here and there incomplete of sedimentation from middle Ordovician to early Car boniferous time. They also present evidence concerning the depth of the water in which they vere deposited and the condition of the land areas which furnished more or less of the material of which they are composed. Judging from the charcter, distribution, and varying thickness of the deposits and their fossil contents, we may dete mine with considerable certainty the physical conditions of the region contributing to, or in other ays concerned in their formation.
The sea in which the Paleozoic sediments in the interior of the continent were laid down probably ame into existence during the latter half of Cambrian time, and at one time or another covere nost of the region now drained by the Mississipp River. Its outline probably varied greatly from ime to time, the floor of its basin having suffered many broad fluctuations and local warpings. Sev ral times before the final emergence of this regio解 basin was almost entirely drained, but, as local. In two limited reas ane were relatively orther for middle Tennessee, the oscillations of la have been exceptionally frequent, and, in some case t least, the two areas were alternately elevated and The
The Knox dolomite and equivalent beds of lime tone were deposited without serious interruption a sea extending from the present Appalachia northward into Canada. The Stones River group made up of mainly fine-grained, alternating mas ve and thin-bedded limestones, was then laid down pparently as an unbroken sheet from Alabam ortheastward into Canada, and westward to and perhaps across the Mississippi. In eastern Tennes see, however, the formations resting upon the Kno dolomite-like the Lenoir limestone, Athens shal Tellico sandstone, and Sevier shale-differ suff ciently in lithologic and faunal characteristics justify the assumption that they were deposited in narrow trough or bay separated from the larger sea by a narrow land barrier. The main Stone River sea evidently encroached northeastwardly unly thand area, since in New York and Canada nly the closing deposits of the age are present in
he Birdseye or Lowville limestone of that regio On the west it seems to have been bounded by arge land area lying in Missouri and Arkansas. At he close of the Stones River epoch, subsid increased, while the bottom of the sea becam he same time somethat the of the movement being the formation of gentle folds and a slight accentuation of previouly exis ing anticlines. These changes had little effect first beyond allowing the influx of a considerab portion of siliceous muddy sediment, but in time they resulted in great faunal changes. This wa the beginning of the elevation which resulted in the Cincinnati arch or geanticline. Its two highst points were between Lexington and Danville in Kentucky, and between Murfreesboro and She byville in Tennessee. The higher portions hese two dome-like elevations received very little of the deposits of the Hermitage formation; thos in Tennessee perhaps none. At the close of the Hermitage the folds were again somewhat emphasized, and the summit of the Kentucky dome hifted to Cincmnati, where it probably remain fill the close of the Trenton age. At the same time the central Kentucky portion of the axis was sub merged to receive the upper three-fourths of the Lexington limestone, while the Tennessee en received the Bigby limestone. Both of these near quivalent limestones are strongly phosphatic, an to this fact is to be ascribed the extreme fertility he areas where they now form the surface. This, he same time interval at such inata representing ies as Hartsville and Carthace on the Cue local River, he percet the plind hiver, the polly of the phophic ingredien llowg nothestwad from Columbian follow
ville.
During most of the time occupied by the deposition of the Catheys formation, the Cincinnati end of the axis was a land area and was denuded of Catheys it may have received and of nearl Catheys underlying Bigby. At the close of the ime - the summit of the northern dome was shifted back to central Kentucky. Almost immediately he Cincinnati end of the axis began to sink, allow ing first the Utica and then the Frankfort sea and deposits to cover more and more of the erode and surface. South of the Kentucky River, howver, there is no evidence of the presence of deposits of either age, the invading Utica barel crossing the Ohio at Cincinnati, and the Frankfo hale reaching only a point a few miles south of Lexington. It is quite certain that they are wan ing in northern Tennessee, where they might be xpected if the Urica sea covered the depressi between the Kentucky and Tennessee domes. What was going on in middle Tennessee in Utica times is an interesting problem. One might suspect that the upper part of the Catheys limeston epresented deposition during that time if it wer ot known that the equivalent beds in Kentuck re ollowed by Utica dopsis. In view of this and Frankfort divisions of the time w , ther words that land conditions then prat Furthermore, the frequent absence of more or less of the lower part of the deposits belonging to the Lorraine age shows that this interval of non-dep ition lasted longer than Utica time, which alone ver 500 feet thick. And yet a deposit of shale little evidence of unconformity between the top of the Trenton and the members of the Lorraine rest ng upon it. When unmistakable evidence of erosio of a Trenton surface is found, the following formation is not the Lorraine, but one of the two lowe Carboniferous formations. Two good examples o The relation occur within the Columbia quadrangle River , Tullahoma formation rests on the roded top of the Catheys formation; the other about one mile east of Hunter Ford, where the St. Louis limestone rests on the Bigby limestone On the other hand, it must be admitted that the uppermost beds of the Catheys formation do not y any means always have the same character, and this variation may be regarded as evidence of ero-
sion that took place during the first half of the Cin-
innatian. Still, the visible evidence of this erosion is so faint, and the passage from the Trenton into he Lorraine often apparently so gradual, that the the Utica interval must have been sea level during With the gradual shergence of he Lorraine densits ared more the Tennessee dome and the whole of the Kentucky dome The closing mer (Platytrophi bed) of the Leipers formation, which represents the entire Tennessee equivalent of Lorraine deposits, is commonly present, yet not infrequently in part or wholly absent. Here again we have the lapse of a time interval without deposition indicated by the total absence south of Nashville of the greater part of the Richmond formation. Of this age only the closing fauna, which is a very distinctive one, lived in the bays that indented the western shore line of the Tennessee island and in which the Fernvale formation was laid down. This same fauna alone represents the Richmond also in northern Illinois, Wisconsin and Minnesota, where it rests upon strata of late Utica age; also in Manitoba, W yoming, Colorado, Indian Territory, we rn Texas and Nevada, wions the strat containing it rest on rocks generally older than Lorraine
On comparing the shaly and often ferruginous and phosphatic conglomerate deposits of the Fernvale formation with the comparatively even-bedded and uniformly fine-grained limestones of the Niagaraking into account the it is evident, even without taking into account the great disparity in time represented by the Fenvale formation and Cirl muddy sediment and the formation was therefore laid down rapidly, and that the Clifton sea very little of seh seliment, which consequetly very and longer established conditions.

and longer established conditions.

he Clifton limestone was deposited, during which the Clifton limestone was deposited, the land area continent, and in middle Tennessee the Devonian submergence did not become effective till the advent of the Chattanooga shale, which is believed to be equivalent to the upper part of the Genesee and later Devonian sediments of New York. This remarkably uniform, and, considering its small volume, widely and evenly distributed formation, extended well over the submerged flanks of the middle Tennessee dome. If it did not entirely cover the summit, it at least encircled it, which cerainly was not the case with respect to the later silurian and the early and middle Devonian formations. It paved the way, though with a com paratively brief emergence and erosion interval, corresponding to latest Devonian and perhaps earliest Carboniferous time, for the sediments composing the Tullahoma formation which extended as a gradually thinning sheet over the summit of he dome. This was probably the last formation 0 wholly cover the dome, the St. Louis limestone being deposited in a retreating sea. The Cincinnati island was rising at the same time, but the the midde Tan
 St Loud Che the ret breaks in the stratimapic column abo desibed are clearly brought out in the detailed columar ections on Columnar Section sheet and in the Correlation Table.
The view has been held that the Appalachiai and Interior Coal Measure deposits originally xtended os an uninterrupted sheet across the space now separating them. It appears more probable either the Cincinnati uplift or the middle Tennessee dome. In other words, it appears that when in St. Louis and Chester times these areas emergel rom the seas, they did so never again to, be entirely covered by water.

structure

As stated in a previous paragraph, the Columbia quadrangle lies in a region of practically horizontal strata, but the beds are probably nowhere absolutely horizontal for a great distance. Lying upon the western flank of the Cincinnati arch, the strata have a general westerly dip, but
they have been affected by the uplift of the dome
which occupied the central basin, and now form numerous gentle but irregular flexures. The sections represented on the Structure Section sheet show the character of these flexures. It will be gerated, so that the profles do noen greatly exag slopes at the surface, nor the actual dips of the strata. The folds are so slight, however, that this cition the sections with reference to the Ahe indicated by the lines the embayment sheet. The unconformity at the base of the Tullahoma formation and the embay ment deposits of the Fernvale and Clifton ar clearly illustrated. The sections have been drawn chiefly to illustrate the structure in the southeas portion of the quadrangle, where it has a very direct and important bearing on the economi problems connected with the phosphates. In general the strata of this region are free from fracture but a few small faults have been observed. The most striking of these is in the Nebo Hill region, where a block of strata appears to be bounded by rectangular faults and to have dropped vertically distance of 300 or 400 feet

The undulations in the strata of this region date in part from early Ordovician time. The doming which has resulted in the Cincinnati arch probably did not attain the degree required to effect its first elevation above sea level before the conclusion of the period marked by the deposition of the Carter limestone. From that time until nearly the close of the Devomian middle Tennessee was subjected to repeated slight warpings, and in part or whole to successive submergences and emergences, receiving
deposits when under water and suffering subaerial erosion when above it. As shown in the Correla tion Table and the detailed sections on the Colum nar Section sheet, there are at least five breaks in the continuity of deposition, and these were all erosion. Two of the formations mapped, namely the Fernvale formation and the Clifton limestone were deposited over only a small portion of the quadrangle, apparently in a series of embayments produced by warping of the preexisting surface That these formations were not deposited continuously over the whole region and subsequently ously over the whole region and subsequently
eroded, except in the areas where they are now found, is proved by the fact that the outer edges of the lower beds of the formation are overlapped by the higher beds-a relation which could not result from continuous deposition and subsequent erosion. The Fernvale formation was deposited in a rather broad embayment at the northeast corner of the quadrangle and in a second extremely irregula embayment which extended nearly across the north central portion of the quadrangle, and probably opened to the sea toward the north. None of this formation appears ever to have been deposited in the southern half of the quadrangle. The later embayments in which the Clifton limestone was deposited appear to have coincided in a general way with those of the earlier Fernvale. A much less extensive area of this formation was deposited in the extreme northeast corner of the quadrangle. Another bay extended across its north-central por tone of Fengale time but prowly hearlie one of Fernvale time, but probably having its to the north. Two other long and narrow embay to the norts. quadrangle, also probably opening into the se quadrangle, also $p r$ the reably opening into the sea embayments are shown on the Embayment sheet The lines there drawn are in part actually determined and in part, by reason of the lack of expes ures, are conjectural

A are conjectural.

region between the present observed through this undulations in the strata. In a great majority of cases in ascending one of the larger tributaries of Duck River the strata are found to rise from the mouth of the stream toward its head, a particular bed thus retaining a practical parallelism with the bottom of the valley. Further, the same relation is often observed upon the side tributaries of the main creeks, which thus appear to be located in many cases in gentle synclines. The number of cases in which this relation was observed suggests that the structure of the strata has exercised some control upon the location of the minor drainage basins.

MINERAL RESOURCES

The most important mineral resources occurring in the Columbia quadrangle are rock phosphates stone, limestone for flux and lime, and a variety of stone, limestone for flux and
rock suitable for road metal.

PHOSPHATE.
Excepting the Clifton limestone and probably the Fernvale formation, phosphate deposits occur in all of the formations from the top of the Carters Of the five phosphate-bearing formations four are Ordovician and one, the uppermost, is Devonian in age. Two of the formations contain each three or four separable beds, so that no fewer than ten phosphate horizons are distinguishable within the Columbia quadrangle.
ordoviclan (brown residdal) phosphates,
Hermitage phosphate.-This bed occurs in the upper half of the Hermitage formation. Its presence is usually indicated by secondary tufaceous deposits covering the hill slopes at or slightly below the outcrops of the formation. Such deposits are o generally associated with this bed and so rately with any of the other Ordovician horizons that they may be accepted as a fairly reliable indication of this particular horizon. Sometimes, as on the farm of T. D. Simmons, several miles beyond the eastern margin of this quadrangle, between Jameson and Spring Hill, the tufaceous deposit forms considerble masses and is abundant enough to be worth nining. Concerning the bed itself from which hese secondary deposits are derived, it but rarely forms a continuous sheet of phosphate rock cor esponding to a particular stratu. Instead, th han the 1 imately uniform depth beneath the surface. In other words, the Hermitage phosphate usually other words, the Hermitage phosphate usually
occurs as a "collar deposit." As many different beds are concerned in the production of this type of phosphate deposit, the product of the mines is extremely variable in quality. The principal cause of this is the varying amount of siliceous material contained in the limestone. In the Columbia quadrangle but little sand occurs in the Hermitage quadrangle but lithe sand occurs in the Hermitage amount increases materially until, in Wilson and Smith counties, it sometimes makes up nearly half of the rock mass. In the latter cases the lime phosphate in the leached rock rarely exceeds 50 per cent, though here and there a thin bed may afford 70 per cent phosphate. In Maury and Williamson counties, however, the Hermitage phosphate commonly runs from 65 to 74 per cent, and considerable tracts are found furnishing a fair grade of such domestic rock. Too often, however, the rock is light and contains more silica than is desirable. A possible offset to the unfavorable features of the Hermitage phosphate is its relative solubil ity, which the frequent secondary deposits indicate to be greater for this bed than for any of the succeeding Ordovician phosphates.
Valuable deposits of this bed occur mainly abou Godwin and may be looked for in a northeas irection from that point beyond the limits of the uadrangle. The known occurrences are shown on the Phos phate Company has opened several promising
mines at this horizon about one mile north of mines at
Godwin.
Bigby phosphates.-The Bigby limestone emand recognized by physical peculiarities, fossils, and position in the formation. Becinning with the lowest, they may be conveniently dig with Bigby Nos. 1, 2, 3, and 4 . Under favorable cir cumstances, as at Mount Pleasant, Nos, 1 and are sometimes so closely associated as to form practically a single bed, generally, however, divided near the middle by a dark clay layer, the residue a more or less shaly limestone, which in its perhaps 4 or 5 feet. When the two zones are thus united they are difficult to distinguish, since there is little if any constant difference between the leached phosphate rock of the two zones. When the unchanged limestone rock is compared, some
difference may be detected. Recognizable fossils
are always rare in the lower bed, the small cyclorids even being broken up. The limestone of No. 2, on the contrary, is often very fossiliferous. The fossils, of course, occur mainly in the easily decomposed subcrystalline, pure limestone streaks traversing the rock, and this explains why they are so seldom seen in the phosphatic seams which alone re Bighy
Bighy zones Nos. 1 and 2 afford the typica rown or Mount Pleasant phosphate. It is a in rather thin horizontal plates, which r, divesed rather thin horzoral plates, which rest directly Cark clay. It is mined without the use of exploives, and according to various circumstances yield from 500 to 800 tons per foot of its thickness for each acre covered by the deposit. As seen in the mines the perpendicular face of the deposit exhib its a series of superposed wavy lines caused by local depressions between the unchanged limestone "horses" (see fig. 1) and the contraction or diminution in volume sustained by the rock during the process of leaching. The amount of lime phosphate varies from about 73 to over 82 pe nt. An average analysis is about as follo

When the beds are traced from Mount Pleasant o and beyond the borders of this quadrangle the percentage of lime phosphate is found to remain airly constant in a northeast direction to Spring Hill, and southeast into Giles County. Beyond
these points it becomes perceptibly less, as is also these points it becomes perceptibly less, as is also
the case when the formation is followed northward

In a district lying between 5 and 10 miles eas a line passing from Jameson southest through Mount Pleasant, the portion of the Bigby lime stone corresponding to phosphate zones Nos. 1 and 2 affords a phosphate rock differing in several respects from the Mount Pleasant variety. Nearly all of it is more massive and of a lighter color, and uch of it is softer. Some of the bands are almost white. Finally, this lighter-colored rock ans, on an average, higher in lime phosphate and prtion of the a considerable proportion of the output of the mines in this eastern ract, wath pestic with in some as hish as 88 per lime hate. In the southern part of the district, nea ts heginuing on the noth slope of Elk Pidge the lands holding the bed are usually too steep to perit the formation of true "blanket" deposits till, part of the phosphate rock resists tion so well after leaching that it often forms sloping sheets several hundred feet wide resting unconformably upon the limestone, or is overplaced on the lower slopes by solution of the underlying beds (see fig. 1). From 3 to 4 miles northeast of Columbia, however, where the topog raphy is less abrupt, larger deposits occur. Good examples of this light-colored Bigby phosphat may be seen at Alexander and Frayer's mine, 4 miles south of Columbia, on the Pulaski Pike; at the mine of the Southwestern Phosphate Company, situated a little over a mile south of McCains; and at several other points in this vicinity.
Bigby zone No. 3, where the rock is unleached, is generally to be distinguished at once by the bundant remains of several species of Constellaria which it contains (see fig. 31). Bands of the rock from an inch to several feet in thickness-the

beyond Williamsport and eastward from Maur into Marshall County.
Bigby Nos. 1 and 2 are mined as a single bed n the west side of the creek at Mount Pleasant Last of the creek denudation has removed more or less of No. 2 and in some places only the lower bed remains. At the Tennessee Phosphate Company's mines most of the rock is furnished by the pper bed, the leaching process there having as bule failed to reach No. 1. Both horizons are Wundantly leached along the Columbia and illiamsport Pike between Greens Lick Creek and oun holl Pa that hims Bend of Duck River Unimportant deposits occur also west of the latter limited ones of the Hermitage bod, ar in region south of Wisner Hill and Roberts Bend of Duck River and north of Tea Hill. A few relaively unimportant deposits of No. 1 are to be ound also in the vicinity of Godwin and also at intervals between that point and Jameson. Very large deposits, however, occur just east of this quadrangle between Jameson and the Louisville and Nashville Railroad. In the last area, at Carpenter and Wilson's mine, Nos. 1 and 2 are c
ined into a single bed about 20 feet thick.
thicker ones nearly always shaly-are almost made up of the star-covered fragments of this sharply defined type of Bryozoa. Unfortunately, very smilar species abound in the shales of the overly ing Catheys and Leipers formations, so that the presence of the "star coral" (Constellaria) indicate only. one of several horizons. Still if Constellaria is accompanied by numerous other ramose Bryozoa, and, better still, if the limestones above and beneath are of the granular kind that is usually the mother rock of the phosphates, then the the is fairly conclusive that the bed belong the upper third of the Bigby limestone. The only valuable deposit of Bigby phosphate o. 3 kn within this quadrangle We west ortheast of Jameson. The enstern anie of thil man last o. 2, whil Nu 1 and o. 2, wile No.. 1 an 2 or distare worked in Excepting that the Bigby No. 3 rock is a trifle Excepting that the Bigby No. 3 rock is a triffe
lower in grade, there is little difference between the products of the three Bigby beds in the Carters Creek region. In both quality and yield per acre the Carters Creek field is little if any inferior to the Mount Pleasant district.
Bigby No. 3 has not been satisfactorily identified
in other parts of the Central Basin of Tennesse However, it may be accepted as probable that the and seen at intervals as far east as Hartsville, is it equivalent It there furnished a 70 to 74 per cent rock, otherwise much like the bed under discus sion.
Bigby phosphate No. 4 is finer-grained and much more siliceous than the preceding Bigby phosphates, and it is doubtful if it anywhere yields a commercial product-certainly none within the $\frac{1}{2}$ mile quadrangle. At Cleburne staion, about was mined in 1899 by Swift and Company, but without satisfactory results. This company is no mining the same bed at Spring Hill, and here it a little improved in quality. Perhaps it continues to improve in the direction of Franklin, in which ase it may very well be the source from which he large secondary or precipitated deposits lying east of that town were derived.
About Hampshire and Mount Pleasant this deposit is, at present prices, quite valueless. In hese two regions it is soft, frequently shale-like and always contains a large percentage of fine sand It is well shown on the point of land occupied by the shacks of the Tennessee Phosphate Min ng Company and lying between their wor he The railroad cut. It was formerly mined by Tend alor , to be used again for many years.
The unleached representative
解 ne-grained lamoly is ing and flagging. It there lies directly beneath shaly layer holding many large masses of a spongelike coral called Stromatocerium pustulosum. The known occurrences of Bigby phosphate are show on the Economic Geology sheet.
Catheys phosphates. -The
Catheys formation frequently presents of the imestones that under favorable conditions migh by leaching become a fair quality of phosphate ock. Promising limestone was noticed at several points along Big Bigby Creek and again, more ral miles south and west of Jameson. Only in he latter the leached condition, and nowhere in encouraging quantity. Those cases that might possibly be so considered occurred chiefly on the low ridges between the prongs of Sycamore Branch,
Leipers phosphates.-The Leipers formation contains at least three distinct horizons that at one point rantly phosphatic to furnish of Tennesseeare suff ciently phosphatic to furnish a commercial product. As with the Bigby limestone, a large proportion of the limestone of the formation, especially that having a granular structure, is phosphatic, but only in certain areas is the mineral sufficiently concenmass after leaching. The three horizons in which mass att lis. his condition often prevails are all in the upper ield a which lose ly Pleasant rock in its physical characters but doe leasaverace above 70 or 72 per cent lime doe phate. The lowest of the beds is, so far as known, not being mined, though it occurs in promising quantity in the lower 3 miles of the valley of Lick Creek. This bed is marked by a subglobular bryozoan, recently named Amplexopora columbian see figs. 11 and 12 on Illustration sheet), varyin from a balf inch to 2 inches in diameter. This fossil may always be found wherever its prope horizon, which is a little above the middle of the formation, is exposed. When the horizon is not phosphatic, as at the top of Mount Parnassus at Columbia, many other fossils are found associated with it.
Zone No. 2 is marked by the large ponderosa variety of Rafinesquina alternata (see fig. 20), which is twice as large as the variety that occurs so abundantly in the underlying Catheys formation and Bigby limestone. Another characteristic fossil is Monticulipora molesta (see fig. 13), a frondose or palmate bryozoan having the surface studded with rythmically disposed conical elevations. Both of these fossils are represented merely by their moulds in the phosphate rock. The fossils themselves,
being calcareous, have been removed by solution.

The bed is being mined at Parson Grimes's farm Mount Pleasant. Here it lies within a few feet of the top of the formation, and is less than 3 feet thick. Prospect holes have been dug into the bed at several points near Swan Bluff.
Zone No. 3 is in the upper member of the Leipers formation. It is marked by a large brachopod, Platystrophia lynx (see figs. 21 and 22), the particular variety of the species characterizing the horizon being over an inch and sometimes 2 inches in diameter. The bed is often wanting in the Columbia quadrangle, having been removed by erosion, but toward the north, especially in Sum ner County, where it contains extensive deposits of phosphate, it has a maximum thickness of at leas 30 feet.
The most important of the Leipers phosphatic deposits occur in the valley of Duck River, between the mouth of Swan Creek and Centerville, and along Indian Creek for 2 or 3 miles north of Dean, as shown on the Economic Geology sheet The deposits occur along the bases of the hills in the creek valley, but being thick, almost without dirt seams, and as a rule wholly leached, they yield, despite their limited horizontal extent, a large quantity of rock. In the wider Duck RiverValley xpy are to extinse, but having been long xposed to solution agencies they are softer herefore li lo grelo wase in mining. ith the Mount Plent moduct, ime phot Per 81 cent, while the iron and alumina generally averag less than in the Bigby phosphates.
The deposits describe in
raph are equivalent to Nos 1 preceding para deposited under such conditions that they form single bed. Indeed, in the district lying between Graytown and Dean, the greater part of the Leipe formation is sufficiently phosphatic to yield, under the proper conditions of weathering, a fair to excellent quality of phosphate rock. The distribution of the phosphate, however, is more uniform and more compact in the upper 30 or 40 feet, the unleached limestone frequently carrying as much as 40 to 50 per cent of lime phosphate.
Recent developments near the mouth of Piney Branch of Swan Creek give a good idea of the reat thickness of the Leipers phosphate in Hickman County. In the locality mentioned tunnels have been driven along vertical joint planes in the phosphatic limestone, showing that contiguous to
these planes the limestone is leached into 74 to 78 these planes the limestone is leached into 74 to 78
devonian (black, blue, bedded) phosphates.
distribution of the chattanooga phosphates.
The commercially important deposits of Devonan phosphates in the Columbia quadrangle are, with perhaps a few unimportant exceptions, conned to the reas Geology map as Chattanooga phosphates. In the chiefly determine whether the phosphate can be chiefly determine whether the phosphate can be bed and the grade of rock. If it is exceptionally high-grade rock, a bed 12 inches thick can be worked under favorable conditions, while if the rock is below certain'grade it can not now be worked with profit, no matter how thick the bed may be. The map gives information principally concerning the first of these two factors; thoroughly satisfactory information on the second, referring to the grade of the rock, requiring so many chemical analyses that it is beyond the scope of this report.
Excepting the small areas on Leatherwood Cree and its main northern tributary, Gracey Branch, he area just west of Tucker Bend of Duck Rive and another on Indian Creek, between 2 and miles south of Centerville, all the workable part of this bed thus far discovered lies along Swa Creek and its tributaries, and principally to east of the northern half of the creek itself.
varietiks of chattanooga phosphates.

These phosphates of this area consist, first, of everal varieties of black or blue, bedded phosphate Which usually forms the basal member of the Chat tanooga shale, and, second, of nodular phosphate,
which occurs usually in a thin bed of greensand
shale lying immediately over the black shale and The Devonian phosphates differ from the Ordovician. phosphates, which are the result of leaching of a phosphatic limestone, in being simply beds unchanged from their original form and composition excepting such alterations as resulted from the process of consolidation to which all deeply buried sediments have been subjected. They are therefore harder and have a much denser structure than most of the Ordovician phosphates, and are richer in phosphoric acid than the unleached Ordovician phosphatic limestone. They are mined, not ike the leached phosphates, by stripping, but like coal, by the much more expensive method of driving tunnels.
The bedded phosphate occurs in intermittent seams varying from 0 to 50 inches in thicknes. The percentage of lime phosphate varies from les han 30 to about 85 per cent, while in the bett grades such injurious ingredients as iron and lumina usually aggregate less than 3 per cent. Where the bed furnishes high-grade rock it rarely exceeds 20 inches in thickness. When the thickness is much greater the rock is apt to be of inferior quality, being generally too sandy. A ootable exception, hur, is ous the roty Bend mines of the Duck River Phosphate Com pany, where the bed is at least 40 inches in thic under which it was depoite thed expected to wary conderably in thay thickness within short distances. In the manu facture of fertilizers, so far as regards consumption f acid, the black, bedded phosphate, or, it i of acid, the black, bedded phosphate, or, as it be the best rock yet found in the United States,
The phosphatic nodules of the upper greensan member contain about 60 per cent of lime phos hate. The expense of mining them, however, is too great at present to make them of commercial mportance. Under unusually favorable circumsances they might be worked in connection with the bed of black phosphate beneath them.
The Devonian bedded phosphates may divided, according to physical peculiarities, into our varieties, viz: oolitic, compact, conglomeratic and shaly
Ookic phosphate.-This variety on the weathered outcrop has the appearance of a rusty, porous sandstone, but in a fresh condition its structure is more dense and its color light gray to bluish black, the darker tints being much the more common and due to finely disseminated carbonaceous matter. On close examination the rock proves to be composed chiefly of round or flattened ovules having a glazed surface. These are embedded in a fine-grained structureless matrix. The ovules do not have concentric structure, so the rock is not, strictly speaking, an oolite, although it closely resemble one in appearance. The constituent grains or ovules appear to be for the most part the more hells and cats of hells and of fagens bryou hat lived at ded in an Ordovician phosphatic limestone Th fine-grained matrix in which they are embedded fine-grained matrix in which they are embeded more easily soluble than the oviles and loosely con pacted mass of the less soluble grains.

Compact phosphate.-This variety resembles homogeneous fine-grained sandstone. It has a dark-gray or bluish-black color, and weathers less ish sandstone. When examined under the microscope the rock is seen to be made up of very small flattened ovules or grains closely packed together with much less or none of the amorphous or granular groundmass observed in the oolitic rock.
Conglomeratic phosphate. - Closely with the oolitic and compact varieties, and often entirely replacing them, are beds of coarse sandtone or conglomerate containing varying amount of phosphate. They are usually gray or black, and, like the other varieties, weather to rusty sandstone. The constituent grains vary greatly in size, the largest reaching one-fourth of an inch in diameter. They are partly phosphatic ovules, similar to those making up the oolitic rock, and partly quartz. In addition to these smaller grains, the rock often includes fattened pebbles, apparently
diameter. These are composed of hard, black phosphate, so fine grained and homogeneous as to resemble black flint. Occasionally the rock conains also waterworn bones and teeth of large fishes.
The shaly phosphates have the appearance of a dark-gray or black fine-grained shaly sandstone. The shaly structure is sometimes pronounced, but glazed surface, are an inch or more in thickness. Some parts of the bed often resemble very closely the compact phosphate above described, but its appearance is deceptive, as it generally contains much less phosphate, and thin sections, when examined under the microscope, are seen to be largely composed of fine grains of angular quartz. The spiny teeth and jaws of conodonts and a thin satulate or tongue-shaped phosphatic shell, two perhaps not unimportant sources of the phosphatic constituents of this geologic horizon, occur often abundantly on the bedding planes.
origin of the phosphates.
Ordovician deposits. - The Ordovician phosphatic limestones were deposited in a very shallow sea, the bottom of which must have been more or less affected by wave action and tidal currents, and but little foreign detrital matter. This reans be southwestern border of the uplift, which, at the close of Stone Piver time uplif,, which, at the close of Stones River time, In this shallow sea the deposits were almost wholly of organic origin, consisting in part of the phe phatic shells of small mollusks-which seem to have flourished almost to the exclusion of the more characteristic elements of the Ordovician faunaand in part of the more common calcium carbonate shells which form ordinary limestone. Some porion of the calcium carbonate was probably redissolved by the sea water while the less soluble phosphatic shells were rolled and polished by wave action and tidal currents, and finally deposited on the sea bottom together with more or less carbonate. The rolled fragments of phosphatic shells were probably enlarged somewhat by coatings of phosphate, derived by precipitation from the water which in turn had received it from the decomposing animal remains. The presence of phosphate in any considerable amount in a limestone can generally be detected by the appearance of small, highly polished oval grains having a brown or amber color. The more abundant these oolitic grains in the limestone the greater is the propor-
tion of phosphate which it contains. With the tion of phosphate which it contains. With the decrease of its phosphatic content the limestone becomes more crystalline and the volume of the bed greater, indicating that the richer portions are the result of concentration by solution of a part of the originally deposited carbonate. Thus, while the principal phosphate-bearing formation is less than 50 feet feet thick about Wiliamsort and over 80 feet between arres Wand Valley on Leipers phosphate northward from Mount Pleasant.
The brown phosphate of commerce is the result of a process of leaching to which the phosphatic limestones have been and are now being subjected Originally it constituted what may be called the phosphatic skeleton of the limestone In the course of the leaching process this skeleton he been increased by additional phosphate derived from other beds or other parts of the same bed and precipitated in the place of other constituents removed. The calcium carbonate has been more or less completely removed by percolating surface waters charged with carbonic and other organic acids, most of the clay and iron, together with the less soluble calcium phosphate, being left behind. Leaching usually begins in joint planes in the phosphatic limestone. These planes form avenues for the descent of the acidulated surface waters, capillarity being chiefly responsible for the movement of the waters. In wet weather the flow is downward and outward from the joint plane into the bedding planes of the limestone. In consequence of the alternation of wet and dry seasons a system of circulation is estabished. As more and more of the lime is dissolved and carried away the remaining rock becomes correspondingly more phos-
phatic, until practically all of the calcium carbonate
sremoved and nothing remains but brown phosphat rock with varying proportions of residual clay. By a continuation of the leaching and decomporition process the phosphatic skeleton is issel in the ordinary manner into soil. Under certain onditions, however, a valuable body of phosphat rock is formed beneath the soil, which is generally much thinner than when no phosphate bed exists. The leached deposits of brown phosphates are divisible, according to the conditions under which hey occur, into two classes, which may be desig nated "blanket deposits" and "collar deposits" (see fig. 1,p.4). By a "blanket deposit" is meant a nearly miform sheet of phosphate rock extending withou nterruption over a considerable area, either the crown of a low hill or the surface of a gently sloping terrace, approximately the same strata through being conco , , deposit," on the other hand, only the edges of the ill wis to hish ill without reaching the top, which is composed of , 1 ep way of the two In nd Williamson counties they are confined largely the Birby phosphates, but in Sumner County e beds in the Leipers formation often afford sood examples of blanket deposits. This class of deposi xcurs only when the land slopes are comparativel entle and is therefore dependent primarily o favorable conditions of erosion.
Certain conditions of underground drainage are particularly favorable to the production of a blanket deposit. The best result is reached when the phosphatic layers are underlain by one of those me-grained, easily soluble limestones that so comOrdinary sink-holes are rare in phosphate region but this is due to the resistance of the phosphat ock to decomposition. As a rule, the leaching of the phosphatic limestone begins where surface waters gain access to the bed along joints and cracks, from which the process extends outward until the alcium carbonate is removed from the entir mass. Where the process is incomplete unchange portions of the limestone frequently remain a horses." During the process of leaching, the purer limestone beds, which oecur in alternatio with the highly phosphatic layers, decrease in bulk, foot of limestone being represented in the leached mass by anch or lay. The phosphat ayers hare a in the bloy tructure, always noticed in the blanket deposits, produced (see fig. 1). The high points of
The "collar deposits" are produced
The collar deposits are produced where th phosphate bed outcrops on a steep slope. They esult chiely fom capilay thation, the wat xtending into the beds along the seams from the the bed, except to a very limited extent, its effect n the rock is correspondingly mall and is confined to the outcropping edges of the bed. Th rainage in this case is not underground but sut ficial.
What might be called a third type or class of brown phosphatic deposits occurs in areas-notably about the mouth of Piney Branch of Swan Creek -where the Leipers formation consists almo ase with nearly all the phosphatic limestones, th leaching process either begins in, or its progress particularly favored by, vertical joints in the rock mass. On account of the unusual thickness he phosphatic bed, the leaching of the rock on each side of the joint plane results in vertical ein-like deposits that at first sight may appear ery different from the horizontal deposits. act, however, they are merely earlier stages in the evelopment of either a "collar" or a "blanket" deposit, into one or the other of which continue

aching would finally convert them.

The Mount Pleasant field is an example of region in which the conditions are exceptionally orabits of phe phaction oxtensive blank eposits of phy phe Bigy limest ere is very phosphatic, and, as shown in th east of Mount Pleasant occupy a low dome dipping away from the center in every direction except the away from the center in every direction except the has proceeded to such a point that the Bigby lime-
tone occupies the surface over a broad, undulatin errace between Sugar Creek and the hills to the utheast. The stream channels are sufficiently leep to secure perfect drainage of all portions times cavern-making limestone occurs beneath th phosphatic beds, affording conditions favorable for anderground circulation. In all other good Ordo vician phosphate regions of middle Tennessee all most of these conditions are present.
The absence of these favorable conditions is observed north of Ridley, along East Fork, an along Big Bigby to Duck River. The same is tru of the district between Canaan, Frierson, and Ash ood. In these districts the Bigby limestone lie either almost flat or in a syncine, and this struc are does not favor rapid underground drainag which is necessary to dissolve and carry a way the me of the phosphatic beds. A further reaso why there are rew any gophersit neco areas and
 horthward from Mount Pleasant.
Devonian deposits. - The conditions that pro uced the Devonian phosphate rocks were some what similar to those prevailing when the Ordovicia addition, however, to the lime phosphate derived from animals then living, they also obtained a large amount of phosphate from the residual mantle verlying the weathered Ordovician limestone Their phosphate, in other words, is in part primary, derived from organisms living at the time the rock were formed, and in part secondary, derived from the waste of a pre-existing rock. It was deposited in a shallower sea, where fewer lime-carbonat creting animals lived; hence it contains red her less carbonate and more phosphate, and ther make it almost as rich in phosphoric acid as th eached Ordovician rock. Excepting the nodulen which doubtless were formed by subsequent segre gation, the Devonian phosphate was concentrate when originally laid down, the sifting and washing process that carried away the detrital and calcareon matter probably having been, though in more limited areas, even more thorough than in earlie imes. Besides, the animals from whose decompo sition presumably a part of the phosphates of the Devonian formation was derived were all of Kinds secreting more of thal Ordovician types of life. That fishes of large size bounded in bend, heir skeletons in the phosphate beds. Lingula lso were more abundant, but it is doubun in otal for they are restricted wholly to the rel ively uphopatic shaly beds Perhaps a more mportant source of phosphate is supplied by th mpordonts. These are small teeth jaws and plate of probably myxinoid fishes-a low type of verte brates related to the sharks. Countless numbers of hese conodonts occur in the shales associated with the Swan Creek phosphate bed.
However, the principal source of the phosphate if not the only one of consequence when we importance, is the underlying Ordovician limeston of the Leipers formation. This limestone is unusually phosphatic in the southwestern quarter of the quadrangle, to which also the valuable deposits of the Devonian phosphate are almost wholly con fined; and it is full of the same minute spiral and ther shells that occur so abundantly in the Swa Creek phosphate, especialy in the oolitic variet The latter never forms a valuable deposit where does not rest directly upon the Leipers formation, being of low grade and generally shaly-neve oolitic-where the Clifton limestone and Fernvale formation intervene. That portion of the surface of he Leipers formation not covered by the Clifto limestone and Fernvale formation was exposed as low land to subaerial decomposition, the phosphatic imestone becoming leached and broken up much a being highly phosphatic resisted decompotio nd p in , oil, which fosiod cating over the ancient land Finally, when the nd was arain sunk beneath the shallow Devoni a the soil was washed and sifted, the clayey and finely divided phosphatic matter taken into suspen-
ion and carried away by the currents, and the carser ovules and sand were left to form the raterial composing the present layers of high
rade oolitic phosphate rock. The sorting and disribution of the material depended on gravity an currents, and the different varieties therefore should be expected to grade into one another
Perhaps the most convincing proof of the conlomeratic origin of the blue Swan Creek pho phate bed is found in the fact that the organi vules and casts of shells which constitute a larg part of its bulk consist solely of more or less werworn casts of the interior, thin sections of which must have enveloped them when they wel formed, and which actually does inclose the cast in the Ordovician limestone of which they orig nally formed a part.

IRON ORE.

Iron-ore deposits of sufficient size to be commercially important are confined to the northwes orner of the quadrangle. The largest deposit at Nunnelly. Within an area a mile and a half in length east and west and three-quarters of mile broad north and south large deposits of lim clay. Some waterworn pound are found at the surface, sometimes cemented into a conglomerate by the iron oxide. It appears probable, therefore that the region has been covered by alluvial deposits, but that they have been almost entirel emoved, and the great depth of clay found asso ciated with the iron is doubtless residual, bein derived from the weathering of the St. Louis imestone. Abundant fragments of chert, associated with the clay and iron, are a proof of thi rigin. The iron occurs in irregular pockets, fre quently in the form of geodes which range in siz from a few inches to several feet. The working at Nunnelly have reached a depth of 60 feet, and haft put down 60 feet farther is reported to be still in iron-bearing ground. Three other deposits of limonite occur to the northeast of Nunnelly, bu hese are small and unimportan in comaris with the deposit above described. In the adjacent quadrangle, to the west, very extensive deposits of iron ore occur. These have been worked for man years at Aetna and Mannie. They closely resemb he Nunnelly deposits, and in every case are asso iated with more or less waterworn gravel. Th act condions under which these iron ores wer segregated are not clearly understood. Evidently or the dopition of the in which fimestone removed by solution. Being por mestone removed by solution. Being pocket re they will yield. Tven with the prospecting considerable uncertainty necessavily remains. The Nunnelly deposit has been worl for a number of years, being in part utilized at the Goodrich furnace and in part shipped to other it making districts.

ROAD MATERIAL

The rocks of this region yield an abundance of aterial admirably suited for road building. In the southeastern, more thickly populated portion the region the roads, without macadamizing ecome practically impassable in wet weather a the clayey character of the soin. All he main roads are, therefore, toll pikes. Th he but crmonly used for road making he surface in this pore, which occupies most Certain portio this portion of the qua ist of very siliceous shaly limestone. Th reathers by sy riceous shaly limestone. Thi in solution, leaving a hard, porous chert, whic makes a most excellent road material. In its natural state it is ready for use without crushing r other treatment. It packs quickly and is much more durable and affords less dust than the lime tone. This material is very abundant whereve he Tullahoma formation comes to the surface in the nortern and western portions of the quadin the southeastern portion.

LAY.

All the areas in this region underlain by Silurian and St. Louis limestones are almost entirely covered
by a residual red clay soil. This is used for the
manufacture of brick. The methods employed are rather crude, and the resulting product is conse quently of low grade. The clay generally contain too high a proportion of iron to make first-class building brick, but the quality of the product would doubtless be much improved by proper manipulation.

butlding stone.

Several of the Silurian formations occur in regu har, even layers, which can be easily quarried. N quarrying on a large scale, however, has been done in this region. The quarries now open merely meet local demands. Some of the beds contain large a proportion of lime phosphate that they tend 10 disentegrate rather rapidy, as is the case with much of the rock used in the construction of the Capitol at Nashville. The purer beds of lime tone, however, are very durable, and beds of any esired size for foundations, or other purp might be obtained from the Carters limestone.

SOILS.

The soils of this quadrangle are almost entirel he result of the decay and disintegration of th ocks outcropping at the surface. Since such lose relationship exists between the rocks and the oils, the geologic map of the region may become ith proper interpretation, a valuable soil map. Lebanon limestone is the characteristic of the former great red-cedar glades of middle rocky, but is fertile and forms to shallow and grass land where the slopes are gentle.
The Carters limestone, except close to the streams, produces an excellent and generally deep light-red soil, usually distinguished from that formed from the beds next above and below by he small chert nodules or fragments which it contains. Under cover the rock disintegrates rather rapidly, especially along the joints, so that it outrops usually in the form of white limestone bowlders. For the same reason, sinks, underground drainage, and large springs are perhaps more frequently associated with outcrops of this formation han with any other coming to the surface within his quadrangle.
The Hermitage formation gives, on the whole, very good soil. This is true especially of the phosphatic upper portion, which forms the surface ver considerable gently rolling tracts in the vicinty of Columbia. Close to the streams, especially near Duck River, it washes rather badly
The Bigby limestone ranks first as a producer of durable and productive soils, and its large outcrops in the southeastern quarter of this area are counted mong the best of the naral blas regions middle Tennessee. They are highly prized as wheat lands.
Both the Catheys and Leipers formation also roduce excellent soils, but, as they usually outcrop on rather steep slopes and wash readily, they are liable rapidly to deteri
exercised in their tillage.
The next three formations, Fernvale, Clifto The next three formations, Fernvale, Clifton, and Chattanooga, directly contribute very little
material to the soil in this region. They outcrop chiefly in bluffs and steep slopes, and their outcrop ural value, therefore, is confined to furnishing lime and phosphoric acid to the small tracts of bottom and beneath them.
The poorest soil of this territory is derived from he Tullahoma formation. It occurs nearly always on steep slopes, is flinty, and, when thoroughly, leached and light in color, constitutes the "barrens" of the Highland Rim. Occasionally, however, when the under clay is red and tenacious, so that the calcareous matter is not readily leached out, the soil is very good and capable of producing abundant crops of corn and other staple products. The St. Louis limestone weathers deeply, and, when it forms the surface rock of moderately level and, produces a good red soil. But where the tracts are narrow, as on the summits of the ridges in the southeastern quarter of this quadrangle, the oil is little if any superior to that of the underying Tullahoma formation.
Narrow strips of bottom lands occur along the arge streams, particularly along Duck River. The soil on these is a fine clay loam of great

June, 1902.

U.S.GEOLOGICAL SURVEY

FERNVALE AND CLIFTON EMBAYMENTS
TENNESSEE

$\mathbb{C O U M} \mathbb{N}$ R $\operatorname{SECTINS}$

THE CORRELATION TABLE.
The first column at the left shows the major geologic |known in more complete sections have no stratigraphic |higher beds, and the Clifton limestone both lower and time divisions, and on the right, the principal and representation here. In the third case the Utica and higher members that are wanting in this quadrangle. generally accepted geologic subdivisions of the Paleozoie . Frankfort shales are absent, in the fourth case the lower $\begin{aligned} & \text { The earlier sections by Safford, given in the fourth and }\end{aligned}$ rocks of the region between the Appalachian Mountains
and the Mississippi River. The units of the column are and the Mississippi River. The units of the column are
believed to represent consecutive periods of time and are distinguished by more or less well-marked breaks in the continuity of the faunal and physical history of the continent.
The second column contains the formations that are distinguished in the Columbia quadrangle and shows graphic unconformities, determined chiefly by paleontologic evidence, are indicated by wavy divisional lines. When the wavy line extends only half across the column
it indicates that the unconformity is not general it indicates that the unconformity is not general
throughout the quadrangle. The first unconformity or stratigraphic hiatus occurs between the Carters limestone and the Hermitage formation, the top of the former
having been reduced by erosion during the deposition having been reduced by erosion during the deposition
elsewhere of the Black River rocks and the basal portion of the overlapping Hermitage formation. The unconlocal occurrence. The third, fourth, fifth and sixth uncouformities, however, seem to be general for the
quadrangle. In each case one or more formations three fourths of the Richmond group seems not to have been deposited, and in the fifth case the Clinton is want-
ing, while the sixth unconformity represents the long time during which in other areas the formations intervening between the Niagara and the Portage were deposited. Further, the Chattanooga formation, despite its very limited volume here, seems to represent the whole of, and perhaps more than, the upper Devonian
deposits of Pennsylvania and New York. Locally a seventh and an eighth unconformity, due like the preceding ones to erosion and nou-deposition, occur
respectively between the Chattanooga and Tullahoma formations and between the latter and the St ahoma limestone. Killebrew's section of the rocks of middle Tennessee, the formations and parts of formations wanting in the Columbia quadrangle, but occurring in other parts of
the State, are inserted in their proper positions. The the State, are inserted in their proper positions. The
Maury green shale they place at the base of the Carboniferous instead of at the top of the Devonian Chat tanooga shale, the latter being the position assigned to
the bed in this folio. Their Carters limestone embrace fifth columns, are not so exactly correlated, the principal reason for their insertion here being the wish to show the changes in nomenclature and classification that the for In the mations in Tennessee have undergone since 1851. In the section taken from the Richmond and London Ky.) folios the Clifton limestone of the Columbia quad. the Panola formation, while the Richmond formation of the Kentucky section does not include the Fernvale formation, but, on the contrary, is made up of lower Richmond deposits wanting in the Columbia quadrangle. The statements that Cayuga, Helderberg, Oriskany Hamilton, upper Richmond, lower Frankfort, and Utica deposits are absent in this section are inserted by he anthors.
In the last column, representing the section in Ohio,
the St. Louis limestone is wanting, while the Maxvill limestone is correlated with the middle part of the Chester. Further noteworthy features shown in this upper Trenton deposits in Ohisk, the early Trenton age of the Point Pleasant beds, and the lower position of the quarangle. In each case one or more

Nore--Italics in the last two columus are insertions by the authors
C. WILLARD HAYES,

GEneralized faunal chart.
Only a few of the more striking species of some of
the formations exposed within the Columbia quadrangle
the formations exposed within the Columbia quadrangle
are figured on the Illustration sheet. There are many other fossils equally characteristic of the formations and these are listed in the generalized faunal chart oppo-
site, which aims to show their first occurrence and their site, which aims to show their airsi occurrence and heir
vertical range by the letters a (signifiying abundant), \mathbf{c} (common), or r (rare), in spaces each representing approximately 20 feet of the stratigraphic column. A the chart is intended to serve for the whole of the Ce tral Basin of Tennessee, it includes the species ocenrring in the Ridley, Pierce, and Murfreesboro
which do not outcrop within this quadrangle.

GENERALIZED FAUNAL CHART
FOR THE WESTERN SIDE OF THE MIDDLE TENNESSEE BASIN

Names of species arranged in groups under the formation in which they first appear．									
		Lenter							
	\％								
	Come								
	\％								
	and								
	cosememe								
	ateme								
商	Stememe								
	Cratememer								
	，								
	comem								
	\％								
	Comen								
	Preme								
	Sember								
	Lemericeme								
	隹								
	Solen								
	Tratemememm								
	and								
	Smemememe								
	ememe								
	Exem								
	，								
							！		
	－								
	边								
	Sememe								
	隹								
	\％minemem								
	Steme								
	Onember								
	Oneme		\cdots						
家	为								
	边				－		－		
	边								
	and								
	O，								
	边								
	andememe								
	come								
			\pm		\square			－	
	Hatew								
	Lemamemex								
	Lubem								
	边								
	Lomem								
	min								
				－			－		
		－	1	1			\because		

THE ILLUSTRATION SHEET

On the Illustration sheet are figured some of the more striking species of fossils found in t
tions, as follows:

- sr. houis limestone.

FIG. 2. Upper surface of Lonsdaleia (or Lithostrotion) eanadense (Castlenau), a coral growing, as in the figure, into compact masses reaching a foot in diameter. In the
associated L. prolifera the individual corallites do not touch each other and there fore are cylindrical instead of prismatic. The latter variety is the more conmmon
in this reat in this region and probably occurs alone in the lower beds of the formation. "lace Bryozoa,", the specied views of the front and bed being Fenestella tenax on one of the delich. The broken
remains of these beautiful Bryozoa often cover the heavy layers of thet remains of these beauti
base of the formation.

- cheton umestove

FIa. 5 . Upper surface of Favosites favasus, one of the honey-comb corals,
species of Favosites, having much smaller cells, are often found with this. If. 6 . One of the varieties of Halysites catenulatus-the chain-coral-which in this region is highly characateristice of the clifton limestone.
fernvale formation
Figs. 7 and 8. Views of the exterior and interior of the ventral (in this case the flatter
valve of Dinorthis subquadrata (Hall).
Figs. 9 and 10. A group of three speeimens of Monotrypella quadrata (Rominger), and the surface of one of them magnangified five diameters. At the ends of the
branches the cells are rhombic in shape. leipers formation.
Flas. 11 and 12 . A sub-globular bryozoan, Amplexpopora columbiana Ulrich and Bass.
ler, conposed of small radiating prismatic tubes. Fig. 12 shows the openings of ler, composed of small radiating prismatic tubes. Fig. 12 shows the openings of
these tubes magnified five diameters. Ils. 13. A frond of the strongly pustulose bryozoan Monticulipora molesta Nicholson
This fossil is highly characteristic of the upper middele part of the formation and its empty molds were frequently observed in the phosphate of this horizon in the
Swan Creek region. (An out $\mathbf{t a r a r l y}$ similar but structurally quite different species
owe Swan Creek region. (An outwardy similar
oceurs in the underlying Catheys formation.)
Figs. 14 and 15. Homotrypella nodosa Ulitich and Bassler. A group of three speci-
mens and the surface of a fourth magnified five times. The cells are very small and mens and the surface
the walls granulose.
1ta. 16. Glyptocrinus decadactylus Hall. This fine crinoid occurs about the middle G. 16. Glyptorinus decaidactylus Hall. This ine crinoid occurs about the midie
of the formation. Fragnents of the annulated stem or column, which in life was
otteched to the lower end of the portion shown in the illustration, are common and attached to the lower end of the portion shown in t.
heads even are not rare where the strata are shaly.
FIG. 17. The dorsal side of Hebertella sinuata Hall, a common brachiopod of this and
the underlying Catheys formation. In the latter the plications are usually a little
the underlying Catheys formation. In the tatter the plications are usually a little coarser than in the Leipers formation variety.
Fras 18 and 19. Strophomena planooonvexa Hall. The first shows the convex or d
side of an entire specinen; the seoond the interior of the flat ventral valve.
FIt. 20. The convex side (ventral valve) of an entire shell of Rafinesquina alternaua
var. ponderosa. The opposite valve is concave. This species is even more abue ant in the Catheys and Bigby formations, but in those lower horizons it searcely reaches hall the size of the ponderosa variety which characterizes the upper middle
part of the Leipers formation. TIGS. 21 and 22. Platystrophia lynxx Von Buch. Dorsal and cardinal views of two spec imens of the large variety of this species which is so abundant in and characteris.
tic of the uppermost bed of the formation. catheys formation.
Fitas. 23 and 24. Stronatoceriium pustulosum Safford. Portions of a silicified mass on
this coumon hydro-coralline, the first showing the upper surface, the second the this common hydro coralline, the first showing the upper surface, the second the
laminar structure of the edge and bottom. Masses of this coral vary from a few
inches to 2 or 3 feet in diameter. A variety of the species reappears in the upper
art of the Leipers formation, while along the northern margin of the basin it occurs in rocks that are equivalent to the Bigby limestone of
Almost invariably the matrix is an earthy, finegrained limestone.
FIG. 25. Portion of the weathered upper surface of a mass of Columnaria alveolata Goldfuss, showing the strongly septate corallites. This coral and the preceding pustulose Stromatoeerium are nearly always found asso
pany with one or another of the species of Tetradium.
FIg. 28. Heterotrypa parvulipora Ulrich and Bassler, a frondescent or palmate bryo-
zoan zoan found very abundantly in the shaly lower third or half of the formation. The Fig. 27. Oxydiscus craistatus Safto and a asyar apmeetriures of very small tinvolutes.
shell, highly characteristic of the lower part of the formation. The keel is very thin and sharp.
FIas. 28 and 29 . A very large and small specimen of Cyclonema varicosum Hall. The
species is distinguished by its strong revolving lines, is very common, and restricted to the Catheys formation.

Fig. 30. A group of eight specimens of Constellaria florida var. emaciata Ulrich and FIG. 31. A group of five specimens of Constellaria teres Ulurich and Bassler. These
two species of Constellaria are often extremely abundant in the upper part of the Sigby limestone. In this quadrangle Constellaria teres appears tope ob restricted to formation. Constellaria ftorida is very common in the sbaly parts of the Leipers
formation, and the variety emaciata is not infrequently found also in the Catheys

Dorsal, lateral and apertural views of two specimens of Bellerophon
This species is generally associated with another gasteropod, a
 ay be regarded as reliable indications of a horizon lying between the middle of the formation and the Constellaria bed at the top-in other words, to the horizon
intervening between Bighy phosphates Nos. 2 and 3 . Fit. 35. Lingulops norwoodi (James), a small, strongly convex linguloid brachiopod,
of the natural size and magnified, found in the unleached limestone horses of Bigby of the natural size and magnified, found in the unleached limestone horses of B
phosphate No. 2 . Fias. 36 and 37 . Opposite view of two specimens of Hebertella borealis (Billings).
Fras. 38 and 39 . Opposite views of two specimens of Rhynchotrema increbescens (H) Figs. 40 and 41. Exterior and interior views of a valve of Ctenodonta subrotunda Ulich. A much smaller undescribed species of this type occurs sometimes very
abundantly in the Hermitage formation in the region between Mount Pleasant and hermitage formation.
FIGS. 42 and 43. Portions of a slab of chert alm
variety of Orthis (Dalmanella) testudinaria.
IIGS. 44 to A thin It is common and highly characatexistic of the shaly lower third of the formation.
 teed five diameters, and fig. 46 the concentrically striated u.
cells are more angular and the walls thinner than in fig. 45 .
carters himestone
Frg. 47. Columnaria halli i Nicholson. Comparing figs. 47 and 25 it will be noticed that
the radiating septa are much shorter in this species than in C alveolata which marks the Catheys and Leipers formations.
Figs. 48 and 49. Side and top views of two specimens of a fine sponge that is often
found in the upper part of the Carters limestone. The speeimens are silicified lound in the upper part of the Carters limestone. The specimens are silicified
and were freed from the limestone matrix by means of hydrochlorie acid The
species is provisionally identified with Dystactopongia minor Ulrich. It usually which differs from Stromatocerium pustontulosum (see figs. 23 and 24) in wanting the regularly disposed puistules on the upper surface.
U. S. GEOLOGICAL SURVEY
CAARLES D. WALCOTT, DIRECTOR

ILLUSTRATION SMEET

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger
			Cents.
1	Livingston	Montana	25
2	Ringgold	Georgia-Tennessee	25
3	Placerville	California.	25
$\ddagger 4$	Kingston	Tennessee	25
5	Sacramento	Califomia	25
± 6	Chattanooga	Tennessee.	25
$\ddagger 7$	Pikes Peak.	Golorado	25
8	Sewanee	Tennessee	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50
10	Harpers Ferry	Va.-W. Va.-Md.	25
11	Jackson ..	California	25
12	Estillville	Va.-Ky.-Tenn.	25
13	Fredericksburg	Maryland-Virginia	25
14	Staunton	Virginia-West Virginia	25
15	Lassen Peak	California .	25
16	Knoxville	Tennessee-North Carolina	25
17	Marysville	California	25
18	Smartsville	California	25
19	Stevenson	Ala.-Ga.-Tenn.	25
20	Cleveland.	Tennessee	25
21	Pikeville	Tennessee	25
22	McMinnville	Tennessee	25
23	Nomini	Maryland-Virginia	25
24	Three Forks	Montana	50
25	Loudon	Tennessee	25
26	Pocahontas	Virginia-West Virginia	25
27	Morristopn	Tennessee	25
28	Piedmont.	Maryland-West Virginia	25
29	Nevada City Special	California.	50
30	Yellowstone National Park	Wyoming	75
31	Pyramid Peak	California.	25
32	Franklin	Virginia-West Virginia	25
33	Briceville	Tennessee	23
34	Buckhannon	West Virginia	25
35	Gadsden	Alabama	25
36	Pueblo	Colorado	50
37	Downieville.	California	25
38	Butte Special	Montana	50
39	Truckee	California	25
40	Wartburg	Tennessee	25
41	Sonora	California	25
42	Nueces	Texas	25
43	Bidwell Bar	California.	25
44	Tazewell	Virginia-West Virginia	25
45	Boise	Idaho	25
46	Richmond	Kentucky	25
47	London	Kentucky	25
48	Tenmile District Special	Colorado	25

No.*	Name of folio.	State.	Price.t
			Cents.
49	Roseburg	Oregon	25
50	Holyoke	Mass.-Conn.	50
51	Big Trees	California.	25
52	Absaroka	Wyoming	25
53	Standingstone	Tennessee	25
54	Tacoma.	Washington	25
55	Fort Benton	Montana	25
56	Little Belt Mountains	Montana	25
57	Telluride	Colorado	25
58,	Elmoro	Colorado	25
59	Bristol	Virginia-Tennessee	25
60	La Plata	Colorado	25
61	Monterey	Virginia-West Virginia	25
62	Menominee Special	Michigan	25
63	Mother Lode District	California	50
64	Uvalde	Texas	25
65	Tintic Special	Utah	25
66	Colfax	California	25
67	Danville	mlinois-Indiana	25
68	Walsenburg	Colorado	25
69	Huntington.	West Virginia-Ohio	25
70	Washington.	D. C.-Va.-Md.	50
71	Spanish Peaks	Golorado	25
72	Charleston	West Virginia	25
73	Coos Bay	Oregon.	25
74	Coalgate	Indian Territory	25
75	Maynardville	Tennessee	25
76	Austin	Texas	25
77	Raleigh.	West Virginia	25
78	Rome. .	Georgia-Alabama	25
79	Atoka.	Indian Territory.	25
80	Norfolk	Virginia-North Carolina	25
81	Chicago.	Illinois-Indiana	50
82	Masontown-Uniontown	Pennsylvania.	25
83	New York City	New York-New Jersey	50
84	Ditney .	Indiana	25
85	Oelrichs	South Dakota-Nebraska	25
86	Ellensburg	Washington.	25
87	Camp Clarke	Nebraska.	25
88	Scotts Bluff	Nebraska	25
89	Port Orford	Oregon	25
90	Cranberry	N. Car.-Tenn.	25.
91	Hartville	Wyoming	25
92	Gaines	Pennsylvania-New York	25
93	Elkland-Tioga	Pennsylvania	25
94 95	Brownsville-Connellsville	Pennsylvania	25 25
95	Columbia	Tennessee	25

- Order by number.
+ Payment must be made by money order or in cash.
Circulars showimg the location of the area covered by any of the above folios, as

