DEPARTMENT OF THE INTERIOR

UNITED STATES GEOLOGICAL SURVEY

 CHARLES D. WALCOTT, DIRECTOR

LIST OF SHEETS

EXPLANATION

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The
two are being issued together in the form of an atlas, the parts of which are called folios. Each folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys,
hills, and mountains; (2) distribution of water, called drainuge, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.
Reliet.-All elevations are measured from mean sea-level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the
horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. This is done by lines connecting points of equal elevation above mean sea-level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical space between each two contours is called the contour interval.

The manner in which contours express elevation, form, and grade is shown in the following sketch and corresponding contour map:

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand-bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply in a precipice. Contrasted with this precipice is
the gentle descent of the left-hand slope. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates approximately a certain
height above sea-level. In this illustration the height above sea-level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at $50,100,150,200$ feet, and so on, above sea-level. Along the contour at 250 feet lie all points of the surface $2 \tilde{0} 0$ feet above sea; and
similarly with any other contour. In the space between any two contours are found all elevations above the lower and below the higher contour. Thus the contour at 150 feet falls iust below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours-say every fifth one-are accentuated
and numbered; the heights of others may then and numbered; the heights of others may then numbered contour.
2. Contours define the forms of slopes. Since contours are continuous horizontal lines conforming to the surface of the ground, they wind moothly about smooth surfaces, recede into all about promines ravines, and project in passing curves and angles to forms of the landscape can be traced in the map and sketch.
3. Contours show the approximate grade of
any slope. The vertical space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones For a flat or gently undulating country a small contour interval is used; for a steep or nountainous country a large interval is necessary. The Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 $20,25,50$, and 100 feet are used.
Drainage.-Watercourses are indicated by blue ines. If the stream flows the year round the ine is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted. Where a stream sinks and reappears at the sur face, the supposed underground course is shown by a broken blue line. Lakes, marshes, and other bodies of water are also sh
priate conventional signs.
Culture.-The works of man, such as roads railroads, and towns, together with boundaries of townships, counties, and States, and artificial details, are printed in black.
Scales.-The area of the United States (excluding Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch this would cover $3,025,000$ square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by a
square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map
in in nature and corresponding distance on the map
is called the scale of the map. In this case it is "1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are 63,360 inches in a mile, the scale "1 mile to an inch" is expressed by $\frac{1}{6,3,200}$ scale "1 mile to an inch" is expressed by $\begin{aligned} & \text { ब3, } 5 \times 0 .\end{aligned}$
Both of these methods are used on the maps of Both of these methods
the Geological Survey.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250,00 \omega}$, the intermediate $\frac{1}{1.25,0000}$ and the largest $\frac{1}{\alpha, 5,500}$. These correspond approximately to 4 miles, 2 miles and 1 mile on the ground to an inch on the map On the scale $\frac{1}{\text { e2,b00 }}$ a square inch of map surfac represents and corresponds nearly to 1 square
mile; on the scale mile; on the scale $\frac{10}{1 \text { is,0,0, }}$ to about 4 square miles and on the scale $\frac{1,0}{\text { sen, }, 00}$, to ahout 16 square miles. At the bottom of each atlas sheet the scale is expressed in three different ways, one being a
graduated line representing miles and parts of miles in English inches, another indicating dis tance in the metric system, and a third giving the tractional scale.
Atlas sheets and quadrangles. - The map is being published in atlas sheets of convenient size, which are bounded by parallels and meridians. The corresponding four-cornered portions of ter ritory are called quadrangles. Each sheet on the scale of $\frac{1}{2 \text { so,000 }}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each
 square degree; each sheet on the scale of entains areas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map of the United States, are laid out without regard to the boundary lines of the States, counties, or town-
ships. To each sheet, and to the quadrangle it represents, is given the name of some well-known
thwn or natural feature within its limits, and at adjacent sheets, if published, are printed.
Uses of the topographic sheet. - Within the imits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drainge, and culture of the district represented. Viewing the landscape, map in hand, every character stic feature of sufficient magnitude should be recognizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far a known, and in such detail as the scale permits.

kinds of rocks

Rocks are of many kinds. The original crust of the earth was probably composed of igneous rocks, and all other rocks have been derived from hem in one way or another
Atmospheric agencies gradually break up igne us rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class have been formed on land surfaces since the earliest geologic time. Through the transporting agencies of streams the surficial materials of all ages and origins are carried to the sea, where, along with material derived from the land by the action of the waves on the coast, they form sedi mentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone, but they may remain unconsolidated and still be nown as gravel, sand, and clay.
From time to time in geologic bistory igne ous and sedimentary rocks have been deeply buried, consolidated, and raised again above the surface of the water. In these processes, through the agencies of pressure, movement, and chemical action, they are often greatly altered, and in this ondition they are called metamorphic rocks.
Igneous rocks.-These are rocks which have cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were deposited on the original igneous rocks. Through the igneous and sedimentary rocks of all ages molten material has from time to time been forced upward to or near the surface, and there consolidated. When the channels or vents into which this molten material is forced do not reach the surface, it either consolidates in cracks ing dikes, or in large bodies, called sills or laccoliths. Such rocks are called intrusive. Within their rock enclosures they cool slowly, and hence are gener ally of crystalline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air, acquiring a glassy or, more often, a partially crystalline condition. They are usually more or less urface are called extrusive Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragments. These materials when consolidated constitute breccias, agglomerates, and tuffs. The ash when carried into lakes or seas may become stratified, o as to have the structure of sedimentary rocks The age of an igneous rock is often difficult or mpossible to determine. When it cuts across a sedimentary rock, it is younger than that rock, nd when a sedimentary rock is deposited over it, the igneous rock is the older.
Under the influence of dynamic and chemical forces an igneous rock may be metamorphosed. The alteration may involve only a rearrangement of its minute particles or it may be accompanied by a change in chemical and mineralogic composi-
tion. Further, the structure of the rock may be
changed by the development of planes of divi sion, so that it splits in one direction more easily than in others. Thus a granite may pass into a gneiss, and from that into a mica-schist.
Sedimentary rocks.-These comprise all rocks
which have been deposited under water; whether in sea, lake, or stream. They form a very larg part of the dry land.
When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. Thes may become hardened into conglomerate, sand stone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment if deposited with the aid of life, it is called an organic sediment. The more important rock formed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in successive layers are said to be stratified. The surface of the earth is not fixed, as it seems to be, it very slowly rises or sinks over wide of the ocean are changed: areas of deposition ma rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississipp and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes than this have repeatedly occurred in the past. The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamorphism of a sedimentary rock, just as in the metamorphism of an igneous rock, the substances of which it is composed may enter into new combinations, or new substances may be added. When these processes are complete the sedimentary rock becomes crystalline. Such changes transform sandstone to quartzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger formations have generally escaped marked metamorphism, and the oldest sediments known, though generally the most altered, in some localities remain essentially unchanged.
Surficial rocks.-These embrace the soils, clays, sands, gravels, and howlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumulations are often washed or blown into valleys or other depressions, where they lodge and form deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are
spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, and bowlders which is known as till. It may occur as a sheet or be bunched into hills and ridges, forming moraines, drumlins, and other special forms. Much of this mixed material was washed away from the ice, assorted by water, and rede-
posited as beds or trains of sand and clay, thus
forming another gradation into sedimentar deposits. Some of this glacial wash was deposite acteristic ridges and min the ice, and forms cha known as osars, or and material deposited by the ice is called. In drift: that washed from the ice onto the glacia land is called modified drift. It is usual also to land is called modified drift. It is usual also to
class as surficial rocks the deposits of the sea and class lakes and rivers that were made the an time as the ice deposit.

AGES OF ROCKS

Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent of origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass
is essentially the same, and it is bounded by rock of different materials, it is convenient to call the mass throughout its extent a formation, and such a formation is the unit of geologic mapping. Several formations considered together are
designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some larger fraction of a system, a period. The rocks are mapped by formations, and the formations are are mapped by formations, and the formations are
classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian system, Cambrian period.
As sedimentary period.
the younger rest on those that are older and the relative ages of the deposits may be discovere by observing their relative positions. This rela tionship holds except in regions of intense dis tionship holds except in regions of intense dis
turbance; sometimes in such regions the disturbance of the beds has been so great that thei position is reversed, and it is often difficult to position is reversed, and it is often difficult to positions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and animals which lived in the sea or were washed from the land into lakes or seas or were buried in urficial deposits on the land. Rocks that con tain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from those of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones ived on in modified forms life became more varied. But during each period there lived pecular forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked he systems together, forming a chain of life from present.
When two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in them may determine which was deposited first.
Fossil remains found in the rocks of differen reas, provinces, and continents, afford the most important means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colo in the table in the next column. The names of certain subdivisions of the periods, frequently used in geologic writings, are bracketed against the appropriate period name.
To distinguish the sedimentary formations of ny one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception of the first (Pleistocene) and the last (Archean). The formations of any one period, excepting
the Pleistocene and the Archean, are distin guished from one another by different patterns, made of parallel straight lines. Two tints of the period-color are used: a pale tint (the underprint) is printed evenly over the whole surface represent ing the period; a dark tint (the overprint) bring out the different patterns representing formations

Each formation is furthermore given a letter ymbol of the period. In the case of a sedimen. tary formation of uncertain age the pattern is printed on white ground in the color of the period which the formation is supposed to belon The number and extent of surficial formations of the Pleistocene render them so important that, to distinguish them from those of other periods and from the igneous rocks, patterns of dots and circles, printed in any colors, are used.
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous. Whether sedimentary rocks are also included is hot determined. The Archean rocks, and all metamorphic rocks of unknown origin, of whatever age are represented on the maps by patterns consisting of short dashes irregularly placed. These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the rock is known to be of sedi mentary origin the hachure patterns may be combined with the parallel-line patterns of sedi mentary formations. If the metamorphic rock is recognized as having been originally igneous, the hachures may be combined with the igneous pattern.

thern.

Known igneous formations are represented by patterns of triangles or rhombs printed in any the letter-symbol of the formation is preceded by he capital lettersymbol of the proper period If the age of the formation is unknown the letter ymbol consists of small letters which suggest the name of the rocks.
the various geologic sheets
Historical geology sheet.-This sheet shows the reas occupied by the various formations. On the margin is a legend, which is the key to the map. oo ascertain the meaning of any particular colored reader should look for that color, pattern, and symbol in the legend, where he will find the name and description of the formation. If it is desired to find any given formation, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of the geologic history. In it the symbols and names are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary, and igneous-and within each group they are placed in the order of age, so far as known, the youngest the top.
Economic geology sheet.-This sheet represents he distribution of useful minerals, the occurrence of artesian water, or other facts of economic opography and to the geologic formations. All the formations which appear on the historical reology sheet are shown on this sheet by fainter color-patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive formations may be emphasized by strong colors. A symbol for mines is introuced at each occurrence, accompanied by the ame of the principal mineral mined or of the stone quarried.
Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface.

In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which xhibits those relations is called a section, and th ame name is applied to a diagram representing the relations. The arrangement of rocks in the art this arrangement is called a structure section The anrog is not limited, however, to ar artical tince, hore to conrang the rarth's structure Knowing the concerng the earths structure. Knowing the trace out the rion of rock, and having fae he infer their relative poitions face, he can infer their relative positions att they pass beneath he surface, draw section widerable doph whilit he ha be a exhibiting what we seen in the side of deep. This is illustrated in the following figure

picture, with a landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground by a vertical plan that cuts a section so as to show the undergroun elations of the rocks.
The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes, these symbols admit of much variation, but following are generally used in sections to repr ent the commoner kinds of rock

Lentils in strata. Schists. Igneous roceks.
The plateau in fig. 2 presents toward the low and an ecerpment, or front, which is made of sandstones, forming the cliffs, and shales, con stituting the slopes, as shown at the extreme left of the section.

The broad belt of lower land is traversed by several ridges, which are seen in the section to correspond to beds of sandstone that rise to the surface. The upturned edges of these beds form the ridges, and the intermediate valleys follow the outcrops of limestone and calcareous shales.
Where the edges of the strata appear at th surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred.
When strata which are thus inclined are traced underground in mining, or by inference, it is fre quently observed that they form troughs or arches, shales, and limestones were deposited beneath the sea in nearly flat sheets. That they are now bent and folded is regarded as proof that forces exist which have from time to time caused the earth's surface to wrinkle along certain zones,
On the right of the sketch the section is com posed of schists which are traversed by masses of igneous rock. The schists are much contorted and their arrangement underground can not be delineates what is probably true but is not known by observation or well-founded inference.

In fig. 2 there are three sets of formations, dis tinguished by their underground relations. The first of these, seen at the left of the section, is th set of sandstones and shales, which lie in a hor zontal position. These sedimentary strata ar their the earth's mass bulled upor the earth from
 The, 1 which form are the Ther which form arches and troughs. These strat have bee like bea raved by degradation. The beta The those of the irrst set, are conformable.
the upturned, eroded edges of the beds of second set at the left ef thes of the beds of th lying deposits are their position lying deposits are, from their positions, evidently bending and degradation the bave ccurred between the dhe cition the beds and the becumulation of the wour younger strat thus rest upon an crod Wura younger stra the unconformable one, and their surface of contact is unconformable on
an unconformity.
an unconformity
The third set
The third set of formations consists of crystal line schists and igneous rocks. At some perio of their history the schists were plicated by pres
sure and traversed by eruptions of molten rock sure and traversed by eruptions of molten rock. have not affected the overlying strata of the second set. Thus it is the overlying strata of the secon. serable duration of the schists and the beginning of deposition the strata of the second set During this interval the schists suffered motam. Durng the scene of eruptive activity; and they were deeply eroded. The catary, third m a ine ing betwer periods of rock formation, is another unconormity.
The section and landscape in fig. 2 are ideal but they illustrate relations which actually occur The sections in the structure-section sheet ar related to the maps as the section in the figure is related to the landscape. The profiles of the su face in the section correspond to the actual slope of the ground along the section line, and th depth of any mineral-producing or water baring stratum which appears in the section may b the map. the map
ar-section sheet.-This sheet contains concise description of the rock formations which occur in the quadrangle. The diagrams and
verbal statements form a summary of the fact relating to the character of the rocks, to the thick nesses of the formations, and to the order accumulation of successive deposits.
The rocks are described under the correspond ing heading, and their characters are indicated in the columnar diagrams by appropriate symbols. The thicknesses of formations are given under the heading "Thickness in feet," in figures which state the least and greatest measurements. The average thickness of each formation is shown i the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrang ment: the oldest formation is placed at the bottom of the column, the youngest at the top and igneous rocks or other formations, whe The formaticated in their proper relations. which correspond with the periods of seologic history. Thus the ages of the rocks are shown and also the total thickness of each system.
The intervale of time which events of uplift and degradation and constitut interruptions of deposition of sediments may be indicated graphically or by the word "unconform ity," printed in the columnar section.
Each forma
an by its name a deconnar section character and its lettersymbol as used in th maps and their legends.

CHARLES D. WALCOTTT,
Revised June, 1897.

DESCRIPTION OF THE COOS BAY QUADRANGLE.

TOPOGRAPHY,

topography of the pacific coast The portion of the United States bordering the Pacific Ocean is mountainous, containing thre anges, the Coast, Cascade, and Sierra Nevada. In California the Coast and Mountain the inlying range are separated by the
Great Valley; farther north, by the Great Valley; farther north, by the valleys of the Willamette and Puget Sound Between the heads of these great valleys is complex group of uplands, the Klamath Moun tains, in which the three ranges appear to join and it is only upon geological grounds that thei mits can be determined.
The Cascade Range is composed almost wholly volcanic material and is thus distinguished from the Sierra Nevada, which is composed largely of Moumt Shasta is usually regarded as the southern end of the Coscade Range but in reality the range axtends obout 75 miles farther railhy the range short distance beyond Lassen Peak, which fils depression between the northern end of th Sierra Nevada and the Coast Range.
The Klamath Mountains, although composed largely of old rocks like those of the Sierra Nevada, belong to the Coast Range. Klamath Mount Shasta to the ocean, and from near the fortieth parallel in California to the forty-third in Oregon, embracing the Salmon, Trinity, Scott Siskiyou, and Rogue River mountains, and many ther ridges and peaks known by local name only. Although a unit geologically, the Klamat Mountain mass appears to have many distinct parts, owing to the cross drainage of the Klamath and Rogue rivers, as well as that of the Trinity and Sacramento. North of the Klamath Moun tains the Coast Range of Oregon lies between th Great Valley and the coast.
topography of the coos bay quadrangle.
Location and area.-For convenience, the fou sided tract of country represented by any of the maps of the Geologic Atlas of the United States, is called a quadrangle. The Coos Bay quadrangle lies at the northern edge of the Klamath Mountains, between parallels 43° and $43^{\circ} 30^{\prime}$ north atitude and meridian 124° west longitude an the Pacific Ocean, among the foothills at the
western base of the Coast Range of Oregon. It western base of the Coast Range
embraces about 640 square miles.
mbraces about 640 square miles.
General features.-A general view of the country from one of its elevations shows it to be a
dissected platform in which the flat. topped hills are the remnants of what filtites.epped we originally more extensive plains. The streams have cut into the plain so exten hilly. The hilltops, although flat, are rarely broad, and the slopes toward the are rarely broad, and the slopes toward the valleys are
steep. In some cases they are well terraced The valleys of the principal streamways are wide and characterized by comparatively broad floo lains. The flat-topped hills, terraced slopes, and broad alluvial plains are all features which will be readily understood as results of geologic pro cesses now at work when we consider the later stages of the geological history of the region, Drainage.-The northern half of the quadrangle is drained by the Coos River and the southern half by the Coquille. Both of these streams have cut deep canyons in the Coast Range and take constitute one of the most striking features of the principal and subordinate streams. There seems to be no agreement in the stream course except in meandering. The North Fork of the Coquille, rising only a few miles from the South Fork of the Coos and scarcely more than 25 mile rom the ocean, flows south for over 25 miles to near Myrtle Point, where it joins the South For of the Coquille and turns seaward, having yet ver 30 miles to travel to its mouth.

The Coos River Valley is remarkable for its fertile plains, which rise in places 15 feet above low-tide level and are devoted largely yalleyofr. to dairying, the traffic for which is cooskiver. wholly by small steamers on the river. The tide beyond the south form an scends the North Forl or Millicoma River nearl ascends the North Fork or Millicoma River nearly ontinuous flood plains do not extend upstrean beyond the tide limit, to which point the river is navigable. Above this point the stream is sha low and flows in a rocky or pebbly bed in a na row valley, presenting a strong contrast with its lower course. In both cases, however, the sides of the valley are steep and occasionally terace. The course of the river is in places deeply curved, ts present flo nain but to some is present food plain but to cider the f the topar ap for outhwest part of T $25 \mathrm{~S}, \mathrm{R}, 12 \mathrm{~W}$, the characte f the drainage changes and the river enters Coos Bay, which differs from the river especially in the reater extent of its tidal flats and in having tidal branches or sloughs. The bay itself may be considered in two parts, one extending southeast from North Bend, the other extending southwest. Of these the southeastern bas the greater expanse of tidal flats and several sloughs; the other arm has but a small margin of tidal flats and one slough. This difference is due chiefly to the mode of development, the one arm of the bay being ver much older than the other
The Coquille River is ascended by the tide nearly to Myrtle Point, a distance of about 3 miles from the mouth, although only 15 miles in a direct line from the ocean. In the Coos River the tide ascends about 30 miles by the river and reaches a point 17 miles in a direct line from the beach. This difference between the two rivers is due to the greater crookedness in the course of the Coquille. In all its meanderings the Coquille follows the general course of the valley, except, notably, between Norway and the mouth of Glen Aiken Creek, where the river wanders in its own flood plain. Another excepted stretch occurs o Frouth Fork 4 miles south of Myrtle Point. From Riverton to the mouth of the Coquille he river is bordered most the way by arabl flood plains from one-fourth to nearly ne-half mile wide. They are rarely $\begin{gathered}\text { Yalleyof } \\ \text { River. } \\ \text { Rive }\end{gathered}$ wampy and are gon \qquad Between Riverton and Norway these lood plain expand to a hey largell Som these marshes have been cleared and cultivated Most of the remainder could be made valuable in the manner so as greatly to increase the productive agricultural land of the region. The Coquille is navigable for small steamers to th head of tide water. A short distance above that point the river becomes shallow, full of pebbly rapids, and occasionally rocky. The flood plain extend 5 miles up the river beyond the present limit of high tide, and mark a point to which the tide once ascended.
Relief.-As the streams are irregular in the courses, so the hills, which are carved out by them, are irregular in outline. The rainfall is heavy would rocks are generally so soft that erosit influence of the dense vegetation, which break the dash of the rain.
The highest point in the quadrangle is between the forks of Coos River, where the elevatio reaches 1700 feet. The next highest point is on Sugarloaf Ridge, directly east of Myrtle Point The most prominent upland in the quadrangle on account of its mass, and the only one commonly called a mountain in that region, is Blue Moun tain, which for nearly 3 miles has an elevation of rangle is Bill Peak, rising to over 1500 feet within
miles of the coast. The tops of the highest hills and the crests of the highest ridges are generally somewhat flat, although rather narrow, and the slopes are usually steep. The arrange ment of the hills is digitate and they closel approximate a general altitude, but this feature is much more prominent at an elevation of from 500 to 700 feet in the region between Coos Bay and the Coquille, where there is a broad tabl land incised by various sloughs.
This is the region, too, of elevated terraces o the mouth of Coos Bay and the hill of the mouth of Coos Bay and the hill of Seven Devis, especially upon its seaar slope. The in Yokam Point and Cape Arago The slope the hill north of Cape Argo. ce The olit the firh prest l, is that feet in bieht and capped by terrace at leat 200 yards in width 4 tits enstern limit rises teep slope an ancient sea cliff which is cappe by a second terrace, and so upward a successio of steps and terraces of ancient beaches extend to the top of the hill. Above 800 feet elevation the beaches are less distinct, although they may be detected about the summits of the highes peaks near the sea. On the southwest side of Bill Peak, at an altitude of about 1500 feet, terrace is cut in the fissured sandstone of the peak. That this terrace is an ancient beach is hown by the presence of occasional pebbles and cobblestones upon its surface. Upon the eastern ped but are soils Hill, terraces are well devel be seen also at points on the road from Sout Slough to Bandon.
A well-marked coastal plain, $2 \frac{1}{2}$ to 4 miles in width, borders the coast south of Fivemile Cree Generally it terminates along the sea in a cliff, whereas to the landward it rises by occasional terraces (old sea beaches) to an altitude of several hundred feet before abut ting against the low hills. The black auriferou and, which has attracted so much attentio long the Oregon coast, is found locally not only long the present beach but also along the elev ed beaches.
An old trail to the Randolph mines at the moun or What to Cape Arago was easy on the first Devils. broad Arago wa bat point for 2 mile the cost is out by mue ous dep rave on by nume dashes argainst the high cliffs. The name of this rugged feature, the Seven Devils, arose from the difficulties it imposed upon the early traveler From Coos Bay northward the coast is b dered by a waste of drifting sand, in places over miles in width, which is thrown by $\begin{gathered}\text { punes and } \\ \text { sand spits. }\end{gathered}$ the waves upon the beach and carried sana spits. and dunes winds. The irregular their larges diameters approximately parallel to the coast and frequently inclose lakes, like those west of North Slough, which appear to have no outlet to the sea save through the barrier of sand. A simila and area, but one of much smaller size, extend north from the mouth of the Coquille for about 4 miles, with a maximum width of nearly a mile The landward portion of this area, as well as some of that north of the Coos, is well covered with timber, showing that it assumed its present form long ago. Another sand stretch occurs along he coast near the mouth of Fourmile Creek, hutting in Davidson Lake.
Tupper Rock is an excellent example of a con sicuous rocky, stack-shaped ledge rising out of lever plain. it is composed of hard

ocks and withstood the force of the

runding rocks Other rock sur ess conspicuous, occur in the northern
sec. 20, T. 28 S., R. 14 W., and on the western line of sec. 7 , T. $29 \mathrm{~S} ., \mathrm{R} .14 \mathrm{~W}$. More procoast.

GEOLOGY.

The geological maps of this folio exhibit the distribution of eleven formations, of which nine re sedimentary and two igneous. In the legend he formations are arranged in the order of geological age, with the oldest at the base. The sedi mentary rocks, beginning with the oldest, will considered first, and then the igneous rocks.

sedimentary rocks.

Chert.-The chert of this quadrangle, which is doubtfully assigned to the Cretaceous period, is doubtfully assigned to the Cretaceous period, is compact, hard, and highly siliceous. It closely resembles some forms of fi.jer, and wide range of 1 and gray to yeps of this rock whin are the man rops of this rock which are shown on the map, exaggeration. They all lie in the southern portion of the quadrangle.
One of the most accessible areas is on Indian Creek, where the red and gray cherts are exposed. Although full of minute veins of quartz, the red chert contains a multi- $\begin{gathered}\text { Radiolarian } \\ \text { teme mintin } \\ \text { thert. }\end{gathered}$ tude of small round specks that clearly represent organisms, radiolaria, which lived in the water at the time the deposit was formed. Some of the ledges in this area are clearly but irregularly banded.
The small area in the NE. $\frac{1}{4}$ of sec. $3, \mathrm{~T} .30 \mathrm{~S}$., R. 12 W ., contains dull-red chert in which the ossils are well preserved. To the naked eye the argest of these forms are scarcely visible, but with the aid of a small lens they appear as minute white spots, and when magnified in thin section heir organic nature is evident. Similar areas of the rock occur in the neighborhood of Bill Peak, nd in some of them the organic nature is evident, but in others the alteration is so great that the structure is obscured. A small area occurs at the China Creek bridge, and one also in the cliff west of Tupper Rock, too small to appear on the map. The materal hedro brown, veined with quartz and aria.
y in all masses, showing have been local and not general. The
 cates that one of the peculiarities of the local conditions must have been the abunance of siliceous organisms. On Johnson Creek larian remains is interstratified with fine sandstone composed almost wholly of volcanic material. The minute forms associated with volcanic deposits, both in lakes and in the sea, are most frequently highly siliceous. Among the lacustrine deposits of the great volcanic region of northern California and Oregon, diatomaceous earth composed almost wholly of silica is not uncommon. The marine equivalent of such deposits appears to be radiolarian chert.
Radiolaria are of little value in determining closely the geological age of the strata containing them. No other fossils are associated Age ot the hales with which the chert appears to be inter stratified are known in the Port Orford quadangle to be of Cretaceous age, it is reasonable to regard a part of the chert as of the same age. In ther cases, however, it is equally evident that the chert is of greater antiquity, for well-rounded pebbles of chert in which the radiolaria are disinct occur in the basal conglomerate of the Cre-

Myrtle formation. - The Myrtle formation eceived its name from Myrtle Creek, Douglas
well exposed and characterized by definite fossils. In the Coos Bay quadrangle the exposures, although much larger than those of the radiola rian chert, are not of great extent. The area south of Myrtle Point, which is the largest, occupies scarcely 6 square miles.
The most prominent rock in this formation is gray sandstone, moderately hard and in general so greatly fissured as to break into small pieces. It has evidently been much affected by pressure, It is frequently It is fequety sce mined. Fine conglomerates and shales also cccur The sandstone is well exposed in a The sandstone of the river in the southern lart near the T $29 \mathrm{~S}, \mathrm{R} 12 \mathrm{~W}$ and also at a places the river road around the hill of diabose in bec. 26 It is well exposed also near the southeast corner of sec. 28 in the same township, where it contains of sec. 28 in the same township, where it contains
some fine conglomerate. Farther south thin beds of shale and sandstone are interstratified
There is another small area, embracing about 3 square miles, southeast of Bill Peak. The
itself is composed of much fissured sandstone.
As to the age of this formation no conclusive evidence has been found. That it is older than the relatively soft, yellowish, unaltered fossiliferous sandstone appears to be Aze of the evident, although the contact has not mation. been found within the quadrangle. In the Port Orford quadrangle, which lies next southward, rocks which appear to belong to the same formation as those under consideration contain Aucella piochii, which is a characteristic Cretaceous fossil.
Amphibole-schist.-Under this head are included certain crystalline rocks which are closely related in structure, mode of occurrence, and origin, although they differ widely in composition and general appearance. Their outcrops are usually prominent, standing out in conspicuous ledges, of best examples.
Like the radiolarian chert, the schists have third of the quadrangle. The largest third of the quadrangle. The largest
area is scarcely 50 acres in extent, and the smallest contains less than that
number of square feet. Toward the southeast corner of the quadrangle there are at least four teen outcrops, and in the southwest least four equal number, some of which are well exposed along the beach.
The most important varieties of these crystal line rocks found in the Coos Bay quadrangle are amphibolite, amphibole-schist, mica-schist, and chlorite-schist.
Amphibolite and amphibole-schist are charac terized by an abundance of amphibole, which may be either blue or green. When the schistose structure is evident the rock is amphibole-schist; otherwise it is amphibolite. Amphibole-schist is more abundant, although amphibolite usually distinction between them and they frequently occur in the same outcrop, as, for example, Tupper Rock. In portions of the mass the rock splits readily in one direction and is amphibole-schist, but in other parts it is amphibolite. The blue amphibole of Tupper Rock and the Giancoppane
other similar crystalline rocks of the she other similar crystalline rocks of the schist
region is probably not all the same, but most of region is probably not all the same, but most of
it appears to be of the variety known as glaucoit appears to be of the variety so that the schist may be appropriately lled glaucophane-schist.
Besides glaucophane, the blue schists frequently contain other minerals, among which epidote, garnet, muscovite, zoisite, and albite are most
common and important. Epidote that is usually of a faint yellowish color may be scattered rather of a faint yellowish color may be scattered rather regularly through the whole mass or arranged
in bands alternating with the blue amphibole, producing epidote-glaucophane-schist. A finely producing epidote-glaucophane-schist. A finely
crumpled epidote-glaucophane-schist occurs on crumpled epidote-glaucophane-schist occurs on
Johnson Creek 3 miles southeast of Bandon, Johnson Creek 3 miles southeast of Bandon,
where it contains small quantities of other minerals also.
Garnets are rarely conspicuous. - In some outcrops there are well-defined crystals, but more frequently the garnet appears as round, reddish which in some places contains considerable gold
is composed largely of garnets derived from these rocks. One of the best garnet localities in the
Coos Bay quadrangle is in the small area one mile Coos Bay quadrangle is in the small area one mile
northeast of Bandon, but even there they are not abundant
Muscovite-mica is a common constituent of the glaucophane-schists and sometimes becomes so abundant that the rock passes into regular micarist. Zoisite, althongh somewh wis ributed, is rarely abundant, but feldspar, which is generally ir not always a ite, becomes import ant in places and forms many small veins. With quartz it occasionaly forms wand observed examples of albite veins occur with greenish amphibole chist near about 31 miles directly south of Bandon, while the alternating bands of albite and occur near Mr. Peter Axes's, on Big Creek, just east of the quadrangle. Many of the amphibo lites and amphibole-schists are charac terized by green amphibole, which is almost as abundant as the blue. The blue and green amphiboles are generally not intermingled in the same rock. They appear to be in a measure mutually exclusive, and yet they occur abundantly in adjacent masses and are closely related in origin. One of the best examples of green amphibole-schist occurs about $3 \frac{1}{3}$ miles south of Myrtle Point, where the fibrous green amphibole is prominent and forms practically the whole mass. Another occurs 1 mile southeast of Bill Peak, where the green rock is With tholite rather than a schist
With the green amphibole is commonly found considerable chlorite, and it may become so abun dant as to form the principal portion of the rock As it contains alumina, one would expect it to be associated with glaucophone, but its most common association is with green amphibole, which is no aluminous. A fue example of chorite-amphibole schist occurs near the road ap Creek three fourths of a mile abo 1 . Whorte occurs also in the greenish schist one mile northeast of
Gravelford and on the spur above Weaklys, near Gravelford and on the sp.
A green schist in which chlorite is so abundant as to become one of the most important constitu ents, occurs 4 miles southeast of Myrtle Point Chlorite in small green scales is most conspicuous. The mass is penetrated by many bluish.green blade-like crystals of amphibole, and in thin section numerous small crystals of sphene may be
seen. A short distance west of Tupper Rock, on the beach, is a chlorite-schist containing much the beach, is a chlorite-schist con
muscovite and considerable quartz.
An exceptional form of rock which may be considered in this place occurs at Ban Creek. It is composed chiefly of mod- $\begin{gathered}\text { cantritite } \\ \text { amphititole. } \\ \text { dit }\end{gathered}$ erately fine granular quartz, penetrated by a multitude of acicular and hair-like crystal of a blue and green pleochroic mineral that appears to be amphibole, so that the rock may be considered quartzite containing amphibole, or, more likely, a form of chert.
The sporadic distribution of the amphibole and associated schists shows that their origin is not due to regional metamorphism, but oritin ot
is to be ascribed rather to some form
theschists. is to be ascribed rather to some form the schists. of local metamorphism. Their intimate associa-
tion with igneous rocks on the one hand and with tion with igneous rocks on the one hand and with sedimentary rocks on the other points emphatic ally to some form of contact metamorphism as their source. Further than this the evidence is
less specific. The parent rock from which they less specific. The parent rock from which they
were derived and the peculiar conditions under were derived and the pecaliar conar not clearly which the changes were effected are not clearly
understood, although in a few cases there are suggestions as to the course of events. The asso ciated sedimentary rocks of the Myrtle formation are not infrequently much affected by pressure and shearing has rendered them fissile, but in such cases they clearly retain their fragmentary chartrace of blue amphibole was observed within the quadrangle. This is surprising when we remem ber that in the neighborhood of San Francisco blue amphibole occurs not only in slightly altered sandstones but also in rocks exhibiting intermediate stages of metamorphism and, finally, in those showing complete alteration to amphibole-schist.

The apparent absence of a transition phase in the Coos Bay quadrangle is due possibly to lack of
contact exposures. The only sedimentary rock of contact exposures. The only sedimentary rock of tion to amphibole-schist by the intruded rock is the chert, and in this case the evidence furnished by the small ledge on the flat near the mouth of Fairy Creek at Bandon is very meager
On the other han, the contemporaneous or absequent changes which occar within th truded masses are more clearly in the direction producing the peculiar amphibole-schists. It sition of the metamorphic rocks must indicate either their derivation from rocks differing widely ther their donvalion row rocks difering widely ion that permits the transfer of much chemical tion that
matter.
Inter

Interval between Myrtle and Pulaski forma tions.-There was a long interval between the completion of the Myrtle formation and the beginning of Eocene deposition in the Pulask formation. This interval is represented in other parts of Oregon and California by 5000 feet or more of marine sediments, known to geologists as the Chico formation. The absence of the Chico rom the Coos Bay region indicates that some time after the Myrtle formation was laid down the Coos Bay region was raised above the sea and exposed
$\substack{\text { ceous era- } \\ \text { sion. }}$ erosion, but it again subsided beneath the ocea receive the deposits of the Arago formation. The topmost portion of the Myrtle formation was removed during this epoch of erosion, and possibly also strata equivalent to a part of the Chico formation of California, for the beds now exposed in the Coos Bay quadrangle are those which should immediately underlie the Chico Study of the structure of the region demonstrates that much has been washed away.
Within the interval between the Myrtle and the Arago epochs, probably in connection with the uplifting of the region, the molten igneous masses of older basalt and perhaps also of saxonite were intruded from below into and through the Myrtle formation. Along portions of their metamorphic rocks already described were in some way developed
gocene period.
The rocks of the Eocene period in this region have been called the Arago formation, but in this quadrangle they are grouped into two formations occupy almost the whole of the Coos Bay region They are composed generally of sandstones and shales, which are especially well exposed near the mouth of Coos Bay and at Cape Arago, where they contain Cardita planicosta and numerous other characteristic Eocene fossils. Heavy-bedded sandstones prevail in the eastern part of the area, toward the Coast Range, where the Eocene abundantly wide distribution, and shales becom the western part near the coast. In the eastern part of the quadrangle the sandstones are pene trated and separated by dark, heavy intrusions of
igneous rock, basalt, and the overlying sandstone igneous rock, basalt, and the overlying sandstone
nearby generally contains much sediment derived from it.
The strata among which the coal beds are found contain at a number of places the fossils which characterize the Arago formation, and it is there fore evident that the coal-bearing strata are of the Fame age as that formation and form part of it - or convenence and clearness, however, in describ-coal-bearing fela is necessary to consider the of the Araco formation From the other portion the Arago form will. be designot purpose the almation bed vicinity of Coaledo. The other portion of the Arago forma hich ither of the the Coaledo formation, will be designated the Pulaski, because it forms the hills about the head of Pulaski Creek and makes the Pulaski arch which separates the Beaver Slough and the Coquille coal basins. The distribution of both the Pulaski and Coaledo formations is shown upon the Historical Geology sheet. Their com bined area is that of the Arago formation.

Pulaski formation.-The Pulaski formation mbraces all the Eocene strata of the Coos Bay quadrangle not included in the coal field. In the northern portion of the quadrangle, along the orks of the Coos River near the junction, ar assive sandstones which have been quarried for building jetties. Toward the south the sand ones are less massive and locally shales becom where within the area occupied by the Pulaski here within the area occupied by the Pulask rmation is rall soft, yellowish sand Pone, contormation in its color and freedom from the mul
 he coast the beds of Pulaki sudstone are this ner and more frequently interstratified with thin beds of shale.
Traces of limestone have been found at a num ber of places within the Coos Bay quadrangle, but the masses are too small to be indicated upon he map. They are of scarcely any economi Slough, in sec. 3, T. 25 S., R. 12 W., several bowlders of limestone were observed. The rock is composed almost arieties. On Denton Creek in sec. 13 T. 25 S., R. 12 W ., and also in sec. 27 , T. 25 S R. 12 W ., one-fourth mile southwest of the fork of Coos River, there are similar rocks full o minute fossils, which, according to Dr. G. H Girty, are calcareous algæ and foraminifera of marine origin. On Daniels Creek, near it mouth, concretions of limestone occur in Pulask hales. No traces of fossils have been found at hat point. The nodules are so abundant tha some years ago they were burned to furnish the me used in constructing a neighboring building All of the outcrops of limestone are close to th iabase and in some cases contain lapilli, sugges ng that the eruption of the igneous material wa
At the close of the long interval of erosion fol lowing the deposition of the Myrtle formation th Pulaski epoch was initiated by a subsidence which hnd and the Coos Bay quadrangle and the and, and the Coos bay quadrangle and the adja cent region was comp quy wherged beneat were then derived lay only a hort tiseame to the south. The tilted strata of the Myrtle for the south. The the sea Bay region and the Pulaski beds were laid down nconformably upon their upturned edges.

During the earlier portion of the Pulaski epoc there were but slight changes in the relative ele vation of the land and sea, and they had but little effect upon the character of the material deposited, but near the end of that epoch there occurred in the eastern portion of the quadrangle eruptions f large masses of basalt. The eruptions were in some measure explosive, for fragmental volcanic material was thrown out and | Yoticanic tuft |
| :---: |
| with |
| with the | ormed tuff beds near the border of the igneous rocks. The amount of this fragmental material is insignificant when compared with that of the sandstones of the Pulaski formation.

During the Pulaski epoch there were doubtles many slight oscillations of the land and the se foor, but the sea appears to have almost entirely covered the quadrangle throughout the whole of the epoch, for the fossils found are everywher parely marine except at a place a few miles south Myrtle Point, where some brackish and fresh ater shells have been discovered. After th became frequent and led to the development of became frequent
the Coaledo beds.
Coaledo formation.-The Coaledo formation, besides bearing coal, is found to have characteris ics by which it may be distinguished from th Pulaski formation. One of its especially interest ing features is the occurrence of freshor brackish-water fossils in immediate onnection with the coal, while between
the coals, and sometimes close to them, arely marine fossils are occasionally found. The
resh- or brackish-water fossils most frequentl fresh- or brackish-water fossils most frequently
occur in the roofs of coal beds, as at Newport, Beaver Hill, and Riverton, but may be found at some distance from the coal in the associated strata. They evidently indicate variations in
saltness of the estuary, variations probably due to irregular subsidence accompanied by sedimenta water, and now inclosed lagoons of brackish water, and now admitted the sea. When the water marshes in which the peaty vegetation water marshes in which the peaty
accumulated to form beds of coal.
The Coaledo formation is characterized not only by the presence of coal, but also by the relatively large proportion of beds containing brackishwater fossils, which have been found in rocks outside of the coal field at only a few places, although they are common within it. In the Pulaski formation of the Coos Bay quadrangle mere traces of coal occur, and strata containing brackish-wate fossils are rare.
Upon the Historical Geology sheet is shown the area of the coal field, i. e., the region over which the Coaledo formation is exposed. Besides coal the rocks of the Coaledo formation are varied sandstones and shales. In the lower portion sandstones predominate; then comes the portion where the workable coal beds occur, and the associated rocks consist of about equal thicknesses of sandstones and rather dark-colored shales. In the upper portion light-colored shales are most abundant and characteristic, none like them occur ring outside of the coal field in the Coos Bay quadrangle. This fine, white shale of the Coaledo cormation is well exposed by the roadside at a field. Whber of points between Coquille and Marsh field. When examined under a microscope it is found to contain numerous minute flakes of biotite mica, with much clear, glassy material which look like volcanic dust. A so what simiar whit Slough near the ferry but under the microscope this is readily distinguished from the white shate of the Coaledo tude of peculiar minute fossils which the Empire shale contains.
Development and structure of the coal field.--In its early stages of development the surface of the coal field was flat and the strata deposited were nearly level. The swamp in which the vegetation accumulated to form beds of coal extended more or less continuously over the whole field. It bordered upon the sea and was but little above the sea level. When the associated sandstones and were laid down the field was covered by fresh water or a brackish-water estuary, but when the sediments containing purely marine shells were deposited it was invaded by the open sea.
During the deposition of the Arago formation the whole area receiving such deposits was subsiding irregularly. Slight subsidences alternated with episodes of constant level, and accumulations of sand or shale succeeded those of peaty vegetation. In the coal field the movements were repeated many times, resulting in the alternate deposition of many beds of coal, sandstone, and shale over the same area. They were so slight that the strata wer laid upon one another in parallel positions. Later, after the Arago epoch formed, there ame a change The rocks, wigi nally horizontal, were then compressed laterally and thrown into folds, i.e., into laterally and thrown into folds, i. e., into
upward and downward flexures. On opposite sides of an upward flexure the strat opposite sides of an upward flexure the strata
incline away from each other, forming an anticline incline away from each other, forming an anticline
or arch, while on opposite sides of a downward flexure the strata incline toward each other, form ing a syncline or basin. When such compression continues far enough folds may be pressed close and the strata may be driven into a vertical position, or beyond the vertical into an overturned attitude. During such folding the rocks are generally broken and may be displaced or faulted along lines of fracture. The Arago formation has been both folded and faulted, but was most affected by the folding. The faulting, so far as
known, is of minor importance, and the displaceknown, is of m
ment is small. ment is small.
Considering the folds of the coal-bearing rocks-the Coaledo formation - the coal field may be divided into six portions, four
 marked upon the Structure Section coaledo beds.
sheet. The basins contain the coal; the arches sheet. The basins contain the coal; the arches
bring to the surface the underlying strata of the
Coos Bay.

Coos Bay.

Pulaski formation, which are generally without coal beds. The basins are the Newport, the Beaver Slough, the Coquille, and the Sout and Pulaski arches. Upon the Structure Section sheet the attitude of the strata upon the surface is indicated by the strike and dip symbol, and beneath the surface by a series of structure sec tions. The dark color used to represent the lower portion of the Coaledo formation, where coal occurs, makes the coal basins conspicuous, in contrast with the anticlines between them. It is possible, however, that the Westport arch is made up of coal-bearing strata. Upon the west the and D-D only, and the Coquille in D-D only, while the Beaver Slough Basin appears in all the sections. The folding of the strata was doubtless accom panied by the raising of a large tract of sea botton o make dry land of part if not the whole of th Coast Range of Oregon, and before the beginning of the next epoch (the Empire) the country was subjected to much erosion.
Along the coast for 2 miles east of Coos Bay ight-house the Coaledo beds dip eastward at a agle of about 70°, and afford an excelent opportunity to measure their $\begin{aligned} & \text { Thickness } \\ & \text { the } \\ & \text { lormation. }\end{aligned}$ hickness. At a few points heavy sand-
tones occur, but generally the strata are compar aively thin beds of sandstone and shale. Th over 7000 feet, and there ase pred at this place over feet, and there are probably several the coast from the light house to Cape arg. Eastward from the lighthouse there is Arago iderable thickess of strata which could not be accurately measured, so that the total thicknes the Araco beds must be at least 10,000 feet. Th measured section includes foraminiferal and other hales (2200 feet) and the sandstones of Tunne Point (850 feet), which are paleontologically dis inguished from the Arago formation by Dr. Dall Eighteenth Ann. Rept., Pt. II, 1898, pp. 340-343) The Tunnel Point sandstones and the foraminif eral shales are conformable with each other and are apparently conformable with the underlying arago beds, with which they are herein combined lithologic grounds. As far as known, these
pper beds have a very limited distribution and ccur only in the middle portion of the South Slough syncline.

neocfene pertod

Empire formation.-The Empire epoch wa initiated by the general erosion which followe the uplift at the close of the Arago epoch. A arrow tract about South Slough and along the ubmerged fom Seven Devils, however, was stil ilt whid, and received deposits of sand and haracter contained numerous marine fossils posed of massive sandstones belonging to thi and northeast of the mouth of Sout lough, as far as Pigeon Point, there is a mass of arker, somewhat shaly, and hig
ndstone containing concretion
The Miocene strata upon the opposite sides of ouch other as if frming a syncline hese strata lie in the South Slough Basin, and is probable that the South Slough syncline con inued as an axis of down-folding after the close of the Arago epoch and its terminating upheaval A white shale lies in the middle of the synclin and rests upon the sandstones and arker shales which form the lower portion of the Empire formation. This whitish shale appears to be closely related in its general appearance and composition that which occurs at Mist, on the Nehalem Caver, in Oregon, and to the Monterey shale of
California. Upon the bank of South Sloug near the ferry the whitish shale contains a mul titude of microscopic fossils. Shale of the same sort occurs by the road upon the grade above the west end of South Slough bridge, and the syncline in which these beds are contained evidently rises outhward. Similar beds occur on the coast 3 miles south of Bandon. The whitish Miocene shale closely resembles that found in the Coaledo
formation associated with the coal, but it may be
readily distinguished by the fact that the latter does not contain microscopic fossils. The whole hickness of the Miocene in the Coos Bay region The
The Empire formation rests unconformably upon the Arago, which had previously been folded
and eroded. The unconformity may be seen on he shore a short distance west of Coos Head.

SURFICIAL ROCKS.
 plefstocene period

At the time the Empire beds were laid down along the coast the region of the Coast Range had been reduced by long-continued erosion to a ediments of the Empire formation were derived This formation was afterwards bent and in par raised above sea level. In the Coast Range regio the uplifting was greater than along the shore, and as the region rose by intervals the ocean cut terraces upon the western slope of the range a each halt, the terraces varying in breadth accord ing to the duration of the pause and the hardnes of the rocks covered. Although the movemen was generally upward it was occasionally down ward, submerging the wave-cut terrac
a thick deposit of marine sediments.

thick deposit of marine sediments.

Coos conglomerate.-The Pleistocene deposits which were formed mainly during the epoch o uprising, are almost wholly unconsoli. ated, but at the east side of the mouth f South Slough there is a conglomer a which is a remarkable exception. It has bee Part 1898 p 336) the Cghtenth Ann. Rep Part il 18 , p. 886) "Fossil Rock" of the large number of contains. Some of the shells represent till living in the adjacent waters, but the large part were derived by erosion directly from the ossiliferous Empire beds, upon the eroded surace of which the Coos conglomerate rests uncon formably. According to Dr. Dall this conglom rate is probably Pleistocene. Its thickness is not over 30 feet and it contains cross-beddin dipping to the southwest. Some of the fossilif erous fragments from the adjacent Empire beds are a foot in diameter. Most of the pebbles are of sandstone, but the small, smooth ones, which appear to have traveled a long distance, are of igneous rocks and chert, like those associated with the Myrtle formation. This Coos conglomerate is completely lithified, so that it is as ancient in appearance as the Miocene and presents a stron ontrast to all the unlithified Pleistocene deposit of that region.
The exposed extent of the Coos conglomerate is very limited, covering less than an acre, and is time it rime it had a much more extensive distribution along the coast. Much of it may have been removed by erosion, for after its deposition there as an una nd 10 last 20 fevel and exposed the Coos conglomerate to igneou feet of marine sands and gravels.
Marine sand.-The unconsolidated Pleistocene deposits are almost wholly sand, although local accumulations of pebbles have been
 est deposit of this sort noted is upon the
wave-cut terrace about the summit of Bill Peak, at an elevation of 1500 feet. The neighboring hilltops are generally flattish, and many of the slopes, where not abrupt, have a covering of sand ranging in thickness from a few feet to over 100 feet. As would be expected, the thickest deposits are near sea level. At Empire is a prominent bluff, 100 feet in height, of clearly stratified sand of this epoch, and similar deposits occur in South Slough near the bridge. At both of these points the base of the deposit lies below sea level. The sand is white in places, as on the road at the head of Big Creek and also upon a branch of Bill Nye The near its mouth.
The largest mass of this deposit in the Coos Bay quadrangle occurs upon the coastal plain Devils Theng coast southward from Seven Devils. This plain becomes a prominent feature
south of Threemile Creek. In the vicinity of

Bandon it is 4 miles in width, and rises to over 00 feet above sea level along its eastern border, where it terminates in a series of more or less well-defined terraces which mark ancient coast gravels of this plain are well exposed in some of the black sand mines and ravines to a depth of nearly 100 feet. This is the only area of "Pleistocene marine sands" represented on the map, partly because it is better defined than any of the other areas, but largely also for the reason that to represent the areas about South Slough and Coos Bay would in a measure obscure the general features of the coal field, which are of much greater importance.
Canyon erosion.-The evidence of uplift after the close of the Empire epoch (Miocene) is found not only in the elevated beaches but also in the canyons carved in the land by the streams. As the land was raised the streams acquired greater slope to the sea, and consequently greater power to carry away sediment and deepen their valleys. The Coos and Coquille rivers and their tributaries then cut deep valleys, with steep slopes that extend far below the level not only of their present flood plains but of the sea. This feature was discovered by borings made near the edge of the flood plains at Newport and Kentuck Slough. Fig. 1 ilustrates the borings made a few years
ago by Mr. Campbell while prospecting for coal gelow the Newport vein near Nrospecting for coal ing was started in vend near New. The bor slope near the edge the marsh As reported by Mr. Campell it pased the of sandstone and then struck the marsh deposits,

Sine, showing buried cliff revealea by boring (Libby)

which it penetrated to a depth of 200 feet without reaching solid rock. The deposit contains logs in the mud, which is so soft that the boring could not be kept open and had to be abandoned. The outline of the valley below the surface of the flood plain, as indicated in the figure, must be a cliff.
From evidence which is not displayed in the Coos Bay region but is abundant on the slopes of the Sierra Nevada in California, the epoch of canyon cutting belonged to $\begin{gathered}\text { canyon nut- } \\ \text { Sinis } \\ \text { Sieran age. }\end{gathered}$解 earlier portion of the Pleistocene, ltely called by Professor Le Conte the Sierran. It preceded the Glacial epoch. The large glaciers, which sculptured are ors the upper nd the Klath Montains, did not reach the Coos Bay ion, and the tream there continted Coos Bay reg , and the heir activity through the Glacial epoch.
River terracs.-The ine of the land recorded Their courses were extended in the valleys which they had carved out during their period of previous elevation. They found the valleys to some extent filled by marine deposits which had accumulated during submergence. This material was worked over by the streams and augmented by the large amount of loose marine sediments spread over the surface during the submergence, which at first overloaded the streams. However, they soon gained control and swept their narrow valleys, leaving only a few terraces here and there in
protected places to mark their original gorged condition.
The best-marked terraces of the Coquille are those on which the town of Myrtle Point is situated. They are near the junction of the North and South forks of the Coquille. The river at that place enters a narrow gap through a sandtone ridge. Farther downstream terraces occur in protected places near the mouths of tributaries

電
and rise occasionally to a height of over 200 feet. The higher terraces appear to be cut in sandstone and capped by a comparatively thin layer of sand and gravel.
On the Coos River the river terraces are in general lower. At about 25 feet above sea there is one well developed near the forks of the river, as well as others at many points along the east side of the bay between the mouth of the rive and Jordan Point.
Some years ago the Harrison brothers discov ered the tusk of a mastodon in the river bank along the North Fork of the Coquille about $1 \frac{1}{4}$ miles east of Myrtle Point. $\begin{gathered}\text { Tusk of } \\ \text { natiot in in } \\ \text { riber bank. }\end{gathered}$ The bone, although not waterworn, wa
found close to the stream about 5 feet above low water, resting on a terrace of sandstones and shales and covered by a thin layer of alluvium A fragment of this tusk was examined by F. A. Lucas, of the National Museum, who reports it to contain bands of enamel which are characteristic of a mastodon that lived probably during the Procone. If the tusk had not beon tran ported, it would indicate that the ca.

Alluvium.-This formation includes the mate rial deposited by the larger streams along their It is and fing fine silt and is deposited by the It is generaly When the plains sufficiently highest floods. When the plains are sufficiently
dry to be arable the soil is found to be very fer tile. The fertility is renewed with every flood The same material is carried by Coos River into the bay and its many slough branches, where it forms mud flats. The tidal motion of the water is so gentle as not to remove it, excepting in the channels, so that the sloughs and the bay are gradually filling up. On approaching the mouth of the bay, where the tidal motions are stronger and the force of the waves is felt more fully, the fine material is removed and carried out to sea leaving the flats and beaches composed of sand At this point the alluvium merges into the dune sand which results from the combined action of the sea and the winds. The sand carried out by the water of the bay, joined with that thrown up by the waves of the sea and drifting along the coast, makes the bar at the mouth of the bay which is such an obstruction to navigation.
Sand dunes.-The sea shore is one of nature's greatest mills for grinding rocks to furnish the sediments spread over the sea floor. The waves are unceasingly pounding the shore and knocking the rocks against one another, breaking them to pieces, and if this action is continued long enough the fragments are ground to sand and mud. The sand is in some cases thrown upon the beach and under favorable circumstances is gradually carried hills and ridges called dunes, The drifting sand hills and ridges called dunes. The drifting sand destroys vegetaio, and the and prevents vege wastes so long as hem gaining a foothold. However, the plants soon take root and hold the sand in places, reclaiming the dune tracts. The largest dune area reclaiming the dune tracts. The largest dune area
is along the shore north of Coos Bay, where the dune belt has a width of about 2 miles. The landward portion of the belt is partly covered landward portion of the belt is partly covered
with trees. There are numerous ridges parallel with trees. There are numerous ridges parallel them by bars thrown up by the wind.
Sand dunes occur along the coast north of the mouth of the Coquille and about the mouth of Fourmile Creek, and there is evidence that sand dunes of long ago, now covered with vegetation
and in places thickly forested, extend inland in some cases over a mile.

igneous rocks.

In the Coos Bay quadrangle igneous rocks ar much less abundant than sedimentary rocks, and are of two types, serpentine and basalt.
Serpentine.-Only one small mass of serpentine by the road one-fourth mile southeast of Gravel by the road one-fourth mile southeast of Gravel
ford. It has the mesh structure characteristic of serpentine derived from olivine, which once formed by far the greater part of the rock. Some of the serpentine has the fibrous structure of bas tite, like that derived from enstatite, so that the original rock was apparently an olivine-enstatite rock or saxonite.

South and southeast of this area serpentine ccurs in large masses throughout the Klamath Mountains. The Gravelford outcrop is the most northern exposure of serpentine known in the in diameter and is surrounded by sandstone of the Pulaski formation, with no trace of metamorphic rocks upon its borders. It is most likely, there fore, that it was intruded before the surrounding rocks were deposited. It appears to be an irreg ular hill projecting up through the Eocene beds and exposed by erosion.
Basalt.-Along the eastern portion of the quadrangle, in range 12, extending from the head of Kentuck Slough to the Middle Fork of the Coquille, there are four igneous masses which are generally basaltic in character. They are all composed essentially of plagioclase feldspar (anorthite or labradorite) and augite, with more or less olivine and magnetite, and differ chiefly crystalization and structure.
ently separate outcrops, which are in ail prob ently separate outcrops, which are in all prob-
ability connected beneath the adjacent sandstone ability connected beneath the adjacent sandstone
The basalt is well exposed about the head of Ke buck and Willanch slough and ang o River below the forks but the interm River below the fork, but the intermediat Pulaski formation. Where unalteled the rock is in many places rich in olivine and pyroxene but upon the surface it is generally weathered, the olivine being replaced by serpentine, oxide of iron, and carbonate of lime, and the augite chiefly by chlorite.
In places the basalt is rather coarse grained The grains of feldspar have crystallographic boundaries and the augite occupies the irregula spaces between them, giving rise to the ophitic structure which characterizes diabase, but gen erally the structure of the rock when wholly crystalline is granulitic. The largest grains are ounde, sometimes in well-defined crystals, sur malled by many small grains of augite and mall lath-shaped crystals of feldspar. Generaly the matter is amorphous and the rock has the appearance of a lava which flowed out upon the arface. This view is supported by the fact that the basalt is not infrequently amygda
oidal and is associated with fragmental Amya adalo tidid olcanic rocks, tuff, due to explosive eruptions pon the surface. The fragmental material may be regularly stratified and interbedded in the haracter of the Arago formation. Strata of thi haracter occur at Jordan Point and in the road whort the Coaledo beds of the coal field the only pla in whe for the in the pold Where the Pulaski formation and the basalt are best the sheets of basalt either lie colt are best exposed the beds of Pulaski sandstone or break through them. It is exident from these facts that the eruption of the basalt occurred during Age of the the Pulaski epoch and before the depo- Agertion. sition of the coal beds in the Coos Bay region pe igneous material of the Glasgow locality may although the sediments may have been derived from such material farther east.
In the region immediately north of Coos River he basalt is chiefly exposed in the valleys, while the adjacent hills are made of the overlying sandstone. In the Blue Mountain, however, the basalt occurs at a greater altitude and forms a prominent elevation, from which the overlying sandstone has been removed. The basalt is in all respects like that in the masses farther north.
The third large area of basalt lies southeast of Coquille, forming the prominent hills about the head of Glen Aiken Creek. The rock is gen
erally of the normal type, but occasionally it is coarse grained, with a structure somewhat like that of granite, and is especially rich in olivine and augite. This, however, is only a local varia developed on the North Fork of Coquille River just below the bridge near Lee, where the mass of salt is bordered by tuff.
The fourth large area is about Sugarloaf, a few Fork of the Coint. Along the Middle
he sandstones is well exposed. In some places it ies conformably between the beds of sandstone small ours it breaks through them. A numbe Bandon, especially near the mouth of Crooked Creek. In the valley of Twomile Creek there are few areas of considerable size. The rocks are basaltic, but more highly altered than those already noted, and are associated with the Myrtle forma tion. They are probably of greater age than those found in the Pulaski formation and are the prod uct of eruptions occurring at the close of the Cretaceous. In some of these altered rocks the eldspar is largely oligoclase, and such varietie hould probably be separated from the rocks in hich the feldspar is nearer the basic end of th series. One of these, 2 miles northwest of Bill
Peak, is quite rich in ilmenite partly altered to Peak, is qui
eucoxene.

ECONOMIC GEOLOGY.

COAL.

The Coos Bay coal field is the only productive eld yet discovered in Oregon. It is described greater detail than is here possible in a pape teenth Annual Report of the Geological Survey Part III.
TI.
rom its princinal mine Newport Basin is named Its length north and south, from Yokam Hill to the neighborhood of Marshfield, is about 3 miles Excepting the trace of coal at North Bend, no oal has been found north of the ravine containing the Marshfield waterworks, although it is probable that the Newport Basin extends some what farther in that direction. The average breadth of the basin is about a mile, and it occupies the greater part of secs. 4 and 9, T. 26 S R. 13 W., as well as sec. 33, T. 25 S., R. 13 W besides small portions of several adjoining sec tions, so that the total area of the coal basin ie early 3 square miles.
The Newport Basin is well defined, and in it he outcrop of coal has been traced more carefully han in any other portion of the field. It is the ost convenienty situated with reference to coal hipment of all the productive portions of the ooal field, and the attitude of the strata is such greatly to facilitate mining. The basin is hallow, with gentle dips on both sides. It lies in a ridge so high above local drainage that the mine not only drains itself but the coal is readily brought out by gravity. Three mines have been orked in this basin, but only one, the Newport, now in operation. The Eastport was closed he for in the nished by the borings made at Libby in prospect ing for coal near the mouth of the Newport mine. One of the borings penetrated 800 feet. The section revealed, together with that afforded by the exposures near the mine, is shown in fig. 34 on the Coal Section sheet.
The Newport Basin has only one bed of coal that is extensively worked. The bed is generally known throughout the region as $\begin{aligned} & \text { The Newpo } \\ & \text { the Newport bed. It contains about } 6 \text { bea. }\end{aligned}$ feet of coal, in three benches, yielding 5 feet of workable coal.
Fig. 2 illustrates a section of the Newport bed
the Newport mine. The roof is generally andstone but locally shale, and requires ver

Fig. 2.-Section of Newport coal bed at Newport mine.
little timbering. Where shale occurs in the roo it is often full of brackish-water fossils. The top bench is usually left with the upper parting to frm the roof. It occasionally contains small eins of pitch coal which intersect the other coals. me middle bench within a few inches of its top Newport bed and is used by some as a means of dentifying the ber in of the coal field. The bottom bench is regarded
as the best coal at Newport, although it contain little bony coal at the base. The different benches vary somewhat in thickness, but the triple arrangement extends throughout the New port Basin, and even a considerable distance port bed the Coos Bay coal field, and in working out the tructure of the field it is found to be of much mportance.
The only coal bed of considerable size found in he Newport Basin as far north as the waterwork est of Marshfield is the one close to the pipe line here it descends the rocky bluff about a quarte of a mile from the reservoir. It has been recently prospected again by James Flanagan, and a sec
tion of it is shown in fig. 3. This coal is supposed

rig. 3.-Section of coal near conduit of Marshfield waterworks
to overlie the Newport coal and to have been dropped by a fault in the strata between th eservoir and the South Marshfield mine
The outcrop of the coal about the northern end of the Newport Basin, especially upon the slope of Pony Slough, has not been traced so continuusly as around the southern end and eastern sid of the basin. North of the Eastport mine the Gulch and swings outcrops at to the South Marshfiel

-Section of Newport coal at South M
mine, which is at an elevation of about 200 fee above tide and scarcely a mile from Marshfield The mine was operated for some time to supply
local demand. Fig. 4 shows the section of the Newport bed at that point
Beaver Slough Basin.-The Beaver Slough oal basin takes its name from Beaver Slough which lies near the middle of the most importan portion of the basin. The basin has a length of ver 20 miles, extending from the neighborhood Hiverton northeast between Isthmus and ay It sugs in the ay. Its widest part is in the co lhe Valley, herrows it C Bo the 1 arrow appoak Coos Bay. A show dis asin. It and Newport Basin can be best seen upon the Eco omic Geology sheet.
Beaver Slough Basin, although many times a large as the Newport Basin and containing much more coal, has not yet yielded so great an output, for the reason that it is not so conveniently loca ed for economical mining. The basin is deep, fthe far below sea level, so that the rainag nd ventila the surface, as well as conside ably more expensive than at Newport. Man mines have been started in this basin. The Timo and Liberty (Ferrey) mines at Riverton, and th Beaver Hill and several others farther northeas are yet active, while the Glasgow, Southport, Henryville, and Utter mines are among those which have ceased operations. Only the lower portion of the Coaledo formation contains coal beds worthy of consideration. These crop out close to the border of the basin, or farther withi the basin where brought to the surface by an upward bend of the strata. The coal-bearing series of the Beaver Slough Basin is nearly 600 eet in thickness and contains about six beds of . 27 S., R. 13 W best sections occurs in sec. 9 . 24 S., h . 13 W., and is ilusted in fig. 8 own at the side of the principal section an mat scale The position association on nlarged scale. The posion, association, compoth, 1 bed. If so, the bed of coal mined at Beaver Hill
and Beaverton is the same as that mined at |users in Marshfield. It is supposed to be the Newport. The section measured in that region is shown in fig. 9. At this point a coal bed of considerable size appears beneath $\begin{gathered}\text { the Neatport, } \\ \text { ton. }\end{gathered}$ the Newport. The Newport bed has not yet been traced with certainty much farther southwest than Beaverton, nor farther northeast than the vicinity of Henryville. A coal bed resembling it to a considerable extent, as illustrated in fig. 14, occurs near the western edge of sec. 19, T. 27 S., R. 13 W . The coal mined at Riverton is called the Timon bed and has the

FIG. $\overline{\text {. }}$-Section of Timon coal in Timon's mine, Riverton. section shown in fig. 5. It is also shown as the second coal bed from the top in fig. 10. Both the Timon and the Liberty (Ferrey) mines are operating upon this bed.
The structure, size, and general relations of the Urquhart coal at Riverton (fig. 6) suggest that it corresponds to the Newport coal mined at Beaverton, but of this correlation $\begin{gathered}\text { Newport bea } \\ \text { Rossing yat } \\ \text { Riverto.t }\end{gathered}$ there is as yet no completely satisfacory evidence. This is especially true since the reported discovery by J. H. Timon of promising
coal west of Lamprey Creek.

FI. 6.-Section of Urquhart coal at Riverton
The Beaver Slough Basin joins the South Slough Basin a short distance south of Riverton, where the coals swing around and strike northwest, as shown on the Structure Section sheet. A columnar section of the coals and associated rocks on Fat Elk Creek is shown in fig. 13, while that of the old Utter mines on a branch of Beaver Creek is shown in fig. 15, and that of the Glasgow region in fig. 11, on the Coal Section sheet.
Many prospects have been opened in the Beaver Slough Basin and some of the sections exposed are given in figs. 16 to 33 . Individual beds can not be traced for any considerable distance. They change rather rapidly, and generally near the eastern borders of the basin contain much sediment. The best coal of this basin is near the western sill, Beaver Hill region, where, all things considered, ful mining the in a outher portion of the bass ful mining than excepting, perh
of smaller size
On December 16, 1900, Beaverton was practiHill under the direction of W. S. Chandler Since the report on the Coos Bay coal field was published (Nineteenth Ann. Rept., Part III, 1899 p. 333), the openings northeast of Caulfield Marsh have been extended. A slope is down 400 feet from the adit, with gangways at 340 feet, and the mine will evidently soon be in condition to yield a good output.
Mr. Chandler reports that north of Beaver Hill, in sec. 26, T. 26 S., R. 13 W., a drill hole was sunk 550 feet, showing a disturbed condition of the rocks and no coal. The Southport coal was opened at several promising points in sec. 22, and if the coal is found where drilling was going on, as is expected, this portion of the coal field will be opened up.
Near Coos City, W. A. Maxwell was sinking a prospecting shaft, which was down about 250 feet, and it was expected that the Henryville coals would be reached.
A promising prospect has been recently opened along the eastern border of the Beaver Slough Basin near the mouth of Coos River, in sec. 4, T. 26 S. . R. 12 W . Three beds are exposed, but the
middle one is of most importance. It is known middle one is of most importance. It is known Coal from this mine is well spoken of by local Coal from this m
same coal as that at Nortons, which coke

Section of Lillian coal (see. 4, T. 26 S., R. 12 W.)
miles southeast of mouth of Coos River.
The following analyses show the composition the coal in the three benches. The analyse were made by Dr. W. F. Hillebrand, who reports as follows concerning them When heated in the usual manner for the determination of
fixed and volatile combustible matter - that is, by apply ing
suddenly the full heat of a burner--it beeame manifest at once suddenly the full heat of a burner-it became manifest at once
that the results, especially in the ease of 5329 , could not be a that the results, especially in the case of 5329 , eould not be at
all exact, beeaune of the jection of much undecomposed coal
by the by the foree of the eseaping gases. In order to correet for this
error separate ash determinations were made in such a man error, separate ash determinations were made in such a man-
ner as to preclude any mechanical loss, and with the data
thus obtained, were calculated the values for volatile and thus obtained, were calculated the values for volatile an
fixed combustible matter given under the heading for recal inxed combustibs.
culated values.

Results actually obtained by a
 Moisture in vacuoover
Volatile combustible

Sulphur.....
Coke san

. ${ }^{2}$ sandy, hardly sintered

Volatile combustib.
Fixed carbon......
Ash

The applieation of corrections made as above seems theo retically justifianole for alll coals whade shave of quantities of
parks on sudden heating - a sure indication of mechanical sparks on sudden heating - a sure indication of mechanical
loss - for in the analyst's opinion the results for volatile combustible matter and fixed carbon thus obtained will be more
strictly comparable with those for non sparking coals than if they were determined directly by slow application of heat, a is sometimes done. It is well known that in practicanly all
coals the values for these wo components iffer alagely cocord-
ing as they are determined by rapid or by slow heating.
South Slough Basin.-The South Slough Basin has the South Slough for its central topographic feature, and lies to the west of the Newport and Beaver Slough basins, from which it is separated by the Westport arch. Except at the southern end, where it joins the Beaver Slough Basin, the limits of the South Slough drainage mark approximately the outline of the basin. The coal exposed at several localities near Empire, as well as farther southwest in secs. 8, 17, and 18, T. 26 S., R. 13 W ., and sec. 1, T. $27 \mathrm{~S} .$, R. 14 W ., belongs to the eastern arm of the basin. In sec. 2 the coals turn and extend west, then northwest, cropping out at several points, and reach the coast south to Hatchet Slough, where it swings across the end of the Westport arch and joins Beaver Slough Basin.
Slough Basin
In sec. 2, T. 27 S., R. 14 W., near South Slough the principal coal is evidently the Newport bed.
 tory, however, the rocks are highly tilted, and it is probable that the area promising the most favorable conditions for mining is less than a square
mile in extent. The same mile in extent. The same coal occurs farther south, and in that part of the which has been traced northwest and southeast for about miles. Part of the coal in this latter bed is of good quality, but, like the associated strata, it is generally soft and inclined at a high angle. At first this coal was regarded as the probable equiv. alent of the Newport coal, but later investigations tend to show that it lies far below the Newport bed. These two large beds occur nearest together in sec. 10, T. 27 S., R. 14 W., where their but crops are about a mile apart and each has a dip of $80^{\circ} \mathrm{E}$. On this basis, if the beds are not faulted, about 5000 feet of strata lie between them. If it is so far below the Newport bed and widely developed, it may underie the whole of recognized in any other part of the coal field beyond that alre or pated, the coal field able that it may yet be positively identified
farther south. This basin was extensively pros pected in 1897, and a number of the
exposed are shown in figs. 35 to 44 .
Coquille Basin.-The Coquille Basin embraces the coal beds extending from the town of Coquille southward past Harlocker Hill to the upper portion of Hall Creek. The complete outline of this basin is shown on the Economic Geology sheet. The coals of the Coquille Basin have been prospected at Coquille and Harlocker Hin sufficient value to be worked. not yet proved of sufficient their associated rocks in the basin at Coquille and Harlocker Hill are shown in figs. 45 and 46 .
"Pitch coal."-In the mine at Newport and in the Old Ferrey mine at Riverton, a dark-brown coaly substance, commonly known in that region as "pitch coal," occurs associated with the lignite. It is brittle, and readily ignites from a match, yielding an odor like that of burning asphalt. At Newport, according to P. Hennessey, the superintendent of the mine, it forms vertical seams and sometimes passes directly through portions of
the coal bed. In chemical composition as well as in its other properties it appears to be asphalt in its other properties it appears to be asphal that it ha do dive from the presence of " pitch coal " in Oregon offers ine presence of ping with in Oregon offers occurrence of petroleum, too little is known of the facts to warrant any predictions.
building stone
Sandstone--Sandstone occurs in both the Myrtle and Pulaski formations. In the former it is generally too much fissured to furnish stones
of sufficient size for building, and in the latter the rock is generally too soft to stand great presRiver quarries have been opened to obtain stones for making the jetties at the mouth of the bay. The rock is a micaceous sandstone, and when fresh is bluish in color, but weathers yellowish owing to the oxidation of its contained iron. No buildings have been made of this stone so far as known. From one of the quarries on the North Fork of Coos River much stone has been taken for the jetties, although it is far less durable material than is desired for such purpose. The beds are thick, but easily quarried, and very con veniently located for transportation on the river. A large amount of such stone may be obtained in that locality.
On the Coquille the sandstone of the Pulaski formation is not quarried, but some years ago one of the sandstones in the Coaledo formation 2 miles southwest of Riverton was quarried for building the Light House at Bandon. The
proved to be sufficiently durable.
proved to be sufficiently durable.
Basalt.-A far more durable st
ara it is masalt of the best stones harder to quarry. It is one building the jetties, but on account of its hardness, toughness, and lack of good planes of separation it would be much more expensive to quarry than the sandstone so commonly used in the jetties. Basalt occurs upon both banks of Coos River a short distance below the forks, where it could be conveniently obtained for any purpose. Although basalt is abundant at many points in the quadrangle, the locality on Coos River.
Amphibole-schist.-Amphibole-schist occurs at
number of points in the southern part of the quadrangle, but Bandon is the only point where is quarried for any purpose. Tupper Rock, at Bandon, is a prominent ledge which once reached nearly 100 feet above the general level of the plain on which the upper part of Bandon is loca ted. It was an attractive feature, affording a fine outlook along the coast, but now it has been largely blasted away and removed to build the jetties at the mouth of the Coquille. Although the loss of this prominent ledge is to be greatly deplored, no better rock for the jetties could be

found.

clay.

Clay is more or less abundant at many points in the alluvium, but appears to be used only at Myrtle Point, whe is employed in the manu facture of tiles and brick.

GOLD.

The Pleistocene marine deposits at a number of points contain auriferous black sand and have been washed for gold. Wave action upon a beach results in separating the heavier and lighter materials when there is a wide range in specific gravities, and the gold, when present, is found with the magnetite and other heavy black minerals. The output of gold in Oregon has steadily increased from year to year, until in 1897 it reached $\$ 1,354,593.43$. Although the greater part of this was obtained among the Blue Mountains of east ern Oregon, nearly one.fifth of the whole amount was obtained chiefly in placer mines among the Klamath Mountains, in the southwestern portion of the State.
Coos County is not an important factor in this production, and yet there is more or less active gold mining carried on all the time in the Pleistocene "black sands" within the Coos Bay quadrangle. These mines are confined to the present beach and the ancient beaches raised only a few hundred feet above the present ocean level Many years ago the mes were of much import ance, espe the is for this kun, with great difficulty. There has been more or
less mining along the beach from Coos Bay south less mining along the beach from Coos Bay south
ward, and it is the belief of miners that the depos its art renewed from year to year by the winter its art renes. These mines arerally have paid but storms. These mines generaly have paid but
little. In a few cases, however, the yield has little. In a few cases, however, the yield has
been more encouraging. For a short time in the been more encouraging. For a short time in the
summer of 1897, three men took out nearly a hundred dollars a day a short distance south of the mouth of Whiskey Run.
The most extensive elevated beach mining in the Coos Bay quadrangle has been carried on at the foot of a bluff extending from Threemile Creek to the head of the $\begin{gathered}\substack{\text { Eleevated } \\ \text { binates. }} \\ \text { mind }\end{gathered}$ lagoons. The plain at the base of the sea cliff is about 200 feet above sea level, and the black sand lies about 30 feet below the leve of the plain-that is, at an elevation of about 170 feet above the present sea level. The only mines of this kind that have been worked recently are the Rose mine, in sec. 21, T. 27 S., R. 14 W., and the Pioneer, at the head of the lagoons near the northeast corner of sec. 33 in the same township. The Rose mine has been worked during the season of high water for a number of years. The bed rock shale has been laid bare and the black sand is well exposed. The latter generally lies next to the bed rock and stretches along the foot of the
bluff for several miles. The belt of black sand is about 150 feet in width. In cross section sand is about 150 feet in width. In cross section it is lenticular in shape, about 4 feet thick in the middle, tapering to an edge upon each side, with lenaard border, where it is highest and repre landward border, where it is highest and repre of the thick coating (30 feet) of sand and gravel of the thick coating (30 feet) of sand and grave made in some of the mines especially in the Eagle to remove the auriferous sand by means of tunnels Logs and bowlders of various sizes, especially bowlders of the harder rocks of the Klamath Moun tains, are found occasionally in the black sand. The black sand is composed chiefly of garnet magnetite, ilmenite, and chromite, with a smaller amount of zircon, epidote, and a few other min erals. Gold is generally found more or less abundantly, and platinum with iridosmine is locally found in recognizable quantities among the heavy concentrates. These metals should be looked for. In some cases they may be so abundant as to pay for saving.
The gold in the black sand is derived imme diately from the Eocene shales and sandstones by the concentrating action of the streams and waves, and originally it was derived from the older rocks of the Klamath Mountains. Garnets and epidote, usually so abundant in the black sand, are con tained mainly in the amphiboleschist, such as that of Tupper Rock, and it is possible that more or less gold also occurs in these masses, although discovered in them.

January, 1901.
U. S.GEOLOGICAL SURVEY 12430 DIRECTOR

TOPQGRAPHIC SHEEI

SECTIONS OF COAL-BEARING ROCKS IN COOS BAY QUADRANGLE.

beaver slough basin

CDAD-EECTID SHET 2
SECTIONS OF COAL-BEARING ROCKS IN COOS BAY QUADRANGLE.

newport basin.

SOUTH sLough basin.

Information Concerning

Topographic and Geologio Maps and Fohos
and Other Publicattons of the Grological Survey
n be had on application to

The Director, U. S. Geologioal Survey
Washiveton, D. C.

