GEOLOGIC ATLAS

OF THE

UNITED STATMS

ELMORO FOLIO
 COLORADO

WASHINGTON, D. C

EXPLANATION

The Geological Survey is making a geologic map of the United States, which necessitates the preparation of a topographic base map. The
two are being issued together in the form of an atlas, the parts of which are called folios. Each folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainuye, as streams, lakes, and swamps; railroads, boundaries, villages, and cities. rallroads, boundaries, villages, and cities.
Reliet:-All elevations are measured from me sea-level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the indicate their grade or degree of steepness. This is done by lines connecting points of equal elevation above mean sea-level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical space between each two contours is called the contour interval.

The manner in which contours express elevation, form, and grade is shown in the following sketch and corresponding contour map:

The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand-bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply in a precipice. Contrasted with this precipice is the gentle descent of the left-hand slope. In the
map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade

1. A contour indicates approximately a certain
height above sea-level. In this illustration the height above sea-level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at $50,100,150,200$ feet, and so on, above sea-level. Along the contour at 250 feet lie all points of the surface 250 feet above sea; and
similarly with any other contour. In the space between any two contours are found all elevations above the lower and below the higher contour. Thus the contour at 150 feet falls iust below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration nearly all the contours are numbered. Where this is not possible, certain contours-say every fifth one-are accentuated
and numbered; the heights of others may then be ascertained by counting up or down from a numbered contour.
2. Contours define the forms of slopes. Since ontours are continuous horizontal lines conforming to the surface of the ground, they wind roentrant angles of ravines, and project in passing about prominences. The relations of contour curves and angles to forms of the landscape can be traced in the map and sketch.
3. Contours show the approximate grade of
any slope. The vertical space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones For a flat or gently undulating country a small contour interval is used; for a steep or mountainsmallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is used for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 $20,25,50$, and 100 feet are used.
Drainage--Watercourses are indicated by blue ines. If the stream flows the year round the line is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted Where a stream sinks and reappears at the surface, the supposed underground course is shown by a broken blue line. Lakes, marshes, and other bodies of water are also sh
priate conventional signs.
Culture.-The works of man, such as roads railroads, and towns, together with boundaries of townships, counties, and States, and artificial details, are printed in black.
Scales.-The area of the United States (excluding Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch this would cover $3,025,000$ square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile
of ground surface would be represented by a of ground surface would be represented by a
square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map
in in nature and corresponding distance on the map
is called the scale of the map. In this case it is "1 mile to an inch." The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are 63,360 inches in a mile, the scale "1 mile to an inch" is expressed by $\frac{1}{63,300}$ scale "1 mile to an inch" is expressed by बes, 5.
Both of these methods are used on the maps of Both of these methods
the Geological Survey.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250,0 \times \infty}$, the intermediate $\frac{1}{1.55,000}$ and the largest $\frac{1}{a, 5050}$. These correspond approximately to 4 miles, 2 miles and 1 mile on the ground to an inch on the map On the scale $\frac{1}{\text { ex,b00 }}$ a square inch of map surfac represents and corresponds nearly to 1 square
mile; on the scale mile; on the scale $\frac{10}{1 \text { is,oco, }}$ to about 4 square miles and on the scale $\frac{1,0}{\text { sen, }, 00}$, to ahout 16 square miles. At the bottom of each atlas sheet the scale is expressed in three different ways, one being a
graduated line representing miles and parts of miles in English inches, another indicating dis tance in the metric system, and a third giving the tractional scale.
Atlas sheets and quadrangles. - The map is being published in atlas sheets of convenient size, which are bounded by parallels and meridians. The corresponding four-cornered portions of ter ritory are called quadrangles. Each sheet on the scale of $\frac{1}{2 \text { so,000 }}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each
 square degree; each sheet on the scale of en entains one-sixteenth of a square degree. The areas of the corresponding quadrangles are about 4000,1000 , and 250 square miles, respectively. The atlas sheets, being only parts of one map the United States, are laid out without regard to the boundary lines of the States, counties, or town-
ships. To each sheet, and to the quadrangle it ships. To each sheet, and to the quadrangle it represents, is given the name of some well-known
town or natural feature within its limits, and at adjacent sheets, if published, are printed.
Uses of the topographic sheet.- Within the imits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drainge, and culture of the district represented. Viewing the landscape, map in hand, every character stic feature of sufficient magnitude should be recognizable. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far a known, and in such detail as the scale permits.

kinds of rocks

Rocks are of many kinds. The original crust of the earth was probably composed of igneous rocks, and all other rocks have been derived from hem in one way or another
Atmospheric agencies gradually break up igne us rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class have been formed on land surfaces since the earliest geologic time. Through the transporting agencies of streams the surficial materials of all ages and origins are carried to the sea, where, along with material derived from the land by the action of the waves on the coast, they form sedi mentary rocks. These are usually hardened into conglomerate, sandstone, shale, and limestone, but they may remain unconsolidated and still be known as gravel, sand, and clay.
From time to time in geologic bistory igne ous and sedimentary rocks have been deeply buried, consolidated, and raised again above the surface of the water. In these processes, through the agencies of pressure, movement, and chemical action, they are often greatly altered, and in this condition they are called metamorphic rocks.
Igneous rocks.-These are rocks which have cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were deposited on the original igneous rocks. Through the igneous and sedimentary rocks of all ages molten material has from time to time been forced upward to or near the surface, and there consolidated. When the channels or vents into which this molten material is forced do not reach the surface, it either consolidates in cracks ng dikes, or in large bodies, called sills or laccoliths. Such rocks are called intrusive. Within their rock enclosures they cool slowly, and hence are gener ally of crystalline texture. When the channels reach the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air, acquiring a glassy or, more often, a partially crys talline condition. They are usually more or less surface are called extrusive Explosive action ften accompanies volcanic eruptions, causing jections of dust or ash and larger fragments. These materials when consolidated constitute breccias, agglomerates, and tuffs. The ash when carried into lakes or seas may become stratified, o as to have the structure of sedimentary rocks The age of an igneous rock is often difficult or mpossible to determine. When it cuts across a sedimentary rock, it is younger than that rock, nd when a sedimentary rock is deposited over it, the igneous rock is the older.
Under the influence of dynamic and chemical forces an igneous rock may be metamorphosed.
The alteration may involve only a rearrangement of its minute particles or it may be accompanied by a change in chemical and mineralogic composition. Further, the structure of the rock may be
changed by the development of planes of divi sion, so that it splits in one direction more easily than in others. Thus a granite may pass into gneiss, and from that into a mica-schist.
Sedimentary rocks.-These comprise all rocks
which have been deposited under water; whether in sea, lake, or stream. They form a very laro part of the dry land.
When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. Thes may become hardened into conglomerate, sand stone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment if deposited with the aid of life, it is called an organic sediment. The more important rock formed from chemical and organic deposits are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in successive layers are said to be stratified The surface of the earth is not fixed, as it seems to be, it very slowly rises or sinks over wide of the ocean are changed: areas of deposition ma rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississipp and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes than this have repeatedly occurred in the past. The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamorphism of a sedimentary rock, just as in the metamorphism of an igneous rock, the substances of which it is composed may enter into new combinations, or new substances may be added. When these processes are complete the sedimentary rock becomes crystalline. Such changes transform sandstone to quartzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger formations have generally escaped marked metamorphism, and the oldest sediments known, though generally the most altered, in some localities remain essentially unchanged.
Surficial rocks.-These embrace the soils, clays, sands, gravels, and howlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumulations are often washed or blown into valleys or other depressions, where they lodge and form deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are
spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, and bowlders which is known as till. It may occur as a sheet or be bunched into hills and ridges, forming moraines, drumlins, and other special forms. Much of this mixed material was washed away from the ice, assorted by water, and rede-
posited as beds or trains of sand and clay, thus
forming another gradation into sedimentar deposits. Some of this glacial wash was deposite in tunnels and channels in the ice, and forms cha known as osars, or and material deposited by the ice is called 1 and drift: that washed from the ice onto the glacia land is called modifed drift. It is usual also to land is called modified drift. It is usual also to class lakes and rivers that were made the an time as the ice deposit.

ages of rocks

Rocks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent of origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass of different materials, it is convenient to call the mass throughout its extent a formation, and such a formation is the unit of geologic mapping. Several formations considered together are
designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some larger fraction of a system, a period. The rocks are mapped by formations, and the formations are are mapped by formations, and the formations are
classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian system, Cambrian period.
As sedimentary period.
the younger rest on those that are older and the relative ages of the deposits may be discovere by observing their relative positions. This rela tionship holds except in regions of intense dis tionship holds except in regions of intense dis
turbance; sometimes in such regions the disturbance of the beds has been so great that thei position is reversed, and it is often difficult to position is reversed, and it is often difficult to positions; then fossils, or the remains of plants and animals, are guides to show which of two or more formations is the oldest.
Strata often contain the remains of plants and nimals which lived in the sea or were washed from the land into lakes or seas or were buried in surficial deposits on the land. Rocks that con tain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from those of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones ived on in modified forms life became more varied. But during each period there lived pecular forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked he systems together, forming a chain of life from present.
When two formations are remote one from the ther and it is impossible to observe their relative positions, the characteristic fossil types found in them may determine which was deposited first.
Fossil remains found in the rocks of differen reas, provinces, and continents, afford the most important means for combining local histories into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the colo in the table in the next column. The names of certain subdivisions of the periods, frequently used in geologic writings, are bracketed against the appropriate period name.
To distinguish the sedimentary formations of any one period from those of another the patterns for the formations of each period are printed in the appropriate period-color, with the exception The formations of any one period, excepting
the Pleistocene and the Archean, are distin guished from one another by different patterns made of parallel straight lines. Two tints of the period-color are used: a pale tint (the underprint) is printed evenly over the whole surface represent ing the period; a dark tint (the overprint) bring out the different patterns representing formations.

Each formation is furthermore given a letter ymbol of the period. In the case of a sedimen. tary formation of uncertain age the pattern is printed on white ground in the color of the period which the formation is supposed to belong The number and extent of surficial formations f the Pleistocene render them so important that, odistinguish them from those of other periods and from the igneous rocks, patterns of dots and circles, printed in any colors, are used.
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous Whether sedimentary rocks are also included is hether sedimentary rocks are also included is morphic rocks of unknown origin, of whatever age are represented on the maps by patterns consisting of short dashes irregularly placed. These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy parallel lines. If the rock is known to be of sedi mentary origin the hachure patterns may be combined with the parallel-line patterns of sedi mentary formations. If the metamorphic rock is recognized as having been originally igneous, the hachures may be combined with the igneous pattern.

thern.

Known igneous formations are represented by patterns of triangles or rhombs printed in any the letter-symbol of the formation is preceded by he capital lettersymbol of the proper period If the age of the formation is unknown the letter ymbol consists of small letters which suggest the name of the rocks.
the various geologic sheets
Historical geology sheet.-This sheet shows the reas occupied by the various formations. On the margin is a legend, which is the key to the map. oo ascertain the meaning of any particular colored reader should look for that color, pattern, and symbol in the legend, where he will find the name and description of the formation. If it is desired to find any given formation, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.
The legend is also a partial statement of the reologic history. In it the symbols and names are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary, and gneous-and within each group they are placed the orde

the top.

e distributiogy sheet.-This sheet represents of artesian water, or other facts of eccurrence interest, showing their relations to the features of opography and to the geologic formations. All the formations which appear on the historical reology sheet are shown on this sheet by fainter color-patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive formations may be emphasized by strong colors. A symbol for mines is introduced at each occurrence, accompanied by the name of the principal mineral mined or of the stone quarried.
Structure-section sheet.--This sheet exhibits the relations of the formations beneath the surface.

In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which xhibits those relations is called a section, and th ame name is applied to a diagram representing the relations. The arrangement of rocks in the art this arrangement is called a structure section The arrogist is not limited, however to the atural and artificial cutting for his information conrang the warth's structure Knowing the concering the earths structure. Knowing the traed out the rion rion far it ar face, he can infer their relative positions after they pass beneath he surface, draw section widerable dopth, 1 whilit wh be in exhibiting what deep. This is illustrated in the following figure

picture, with a landscape beyond

The figure represents a landscape which is cut ff sharply in the foreground by a vertical plane that cuts a section so as to show the undergroun relations of the rocks.
The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes These symbols admit of much variation, but the following are generally used in sections to repr ent the commoner kinds of rock

Lentils in strata. Schists. Igneous rocks.
The plateau in fig. 2 presents toward the low pment, or front, which is made u of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section.

The broad belt of lower land is traversed by several ridges, which are seen in the section to correspond to beds of sandstone that rise to the surface. The upturned edges of these beds form the ridges, and the intermediate valleys follow the outcrops of limestone and calcareous shales
Where the edges of the strata appear at th surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred.
When strata which are thus inclined are traced underground in mining, or by inference, it is fre quently observed that they form troughs or arches, such as the section shows. But these sandstone sea in nearly flat sheets. That they are now bent and folded is regarded as proof that forces exist which have from time to time caused the earth's surface to wrinkle along certain zones.
On the right of the sketch the section is com posed of schists which are traversed by masses of igneous rock. The schists are much contorted and their arrangement underground can not be delineates what is probably true but is no known by observation or well-founded inference.

In fig. 2 there are three sets of formations, dis tinguished by their underground relations. The first of these, seen at the left of the section, is th set of sandstones and shales, which lie in a ho zontal position. These sedimentary strata now high above the sea, forming a plateau, an their change of elevation show that a portion the earth mas from lower to a h. Thel Thel, which form are the Ther which form arches and troughs. These strat have been by derion like been 0 a The those of the first set, are conformable.
the upturned, eroded edges of the beds of th second set at the left of the section lying deposits are the pition lying deposits are, from their positions, evidently bending and degrad tion the bave ocurred between the dhe cition the beds and the becumulation the when younger strat thus rest upon an crod Wura younger stra the unconformable one, and their surface of contact is anconformable an unconformity.
an unconformity
The third set
The third set of formations consists of crystal line schists and igneous rocks. At some perio of their history the schists were plicated by pres
sure and traversed by eruptions of molten rock sure and traversed by eruptions of molten rock. have not affected the overlying strata of the second set. Thus it is evident that an interval of consid set. Thable duration of the schists and the beginning of deposition the strata of the second set During this interval the schists suffer motar. Dism scene of suptive activity; and they were deeply sconed. The activiy, and they were deeply third m a b ine periods of rock formation, is another unconformity.
The section and landscape in fig. 2 are ideal but they illustrate relations which actually occur The sections in the structure-section sheet ar related to the maps as the section in the figure is related to the landscape. The profiles of the su face in the section correspond to the actual slope of the ground along the section line, and th depth of any mineral-producing or water bearing stratum which appears in the section may be measured from the surface by using the sede the map.
ar-section sheet.-This sheet contains concise description of the rock formations which occur in the quadrangle. The diagrams and
verbal statements form a summary of the fact relating to the chacter of the rocks, to the thick relatses of the formations, and to the order accumulation of successive deposit
The rocks are described under the correspond ing heading, and their characters are indicated in the columnar diagrams by appropriate symbols. The thicknesses of formations are given under the heading "Thickness in feet," in figures which state the least and greatest measurements. The average thickness of each formation is shown i the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrang ment: the oldest formation is placed at the bottom of the column, the youngest at the top and igneous rocks or other formations, whe present, are indicated in their proper relations. The formations are combined into system. which correspond with the periods of geologi andory. Thus the ages of the rocks are
The intervals of time which yotem
events of uplift and degradation and constitut interruptions of deposition of sediments may be indicated graphically or by the word "unconform ity," printed in the columnar section.
Each forma
bech by its namee a columnar section character and its lettersymbol as used in th maps and their legends.

CHARLES D. WALCOTT,
Revised June, 1897.

DESCRIPTION OF THE ELMORO QUADRANGLE.

GEOGRAPHY

The Elmoro quadrangle is bounded by meridians 104° and $104^{\circ} 30^{\prime}$ and parallels 37° and 37° 30^{\prime}, being 34.5 miles long (north and south) and 27.5 miles wide and containing 950 square miles. It is situated wholly within the boundaries of as Animas County, Colorado, and extends nearly o the south line of the State
The area represented belongs mainly to the rugged border zone where the Great Plains graduate into the foothills of the Rocky Mountains. he foothils of the Rocky Mountains, quadrangle have in general, a broadly undulating uadrangle have, in general, a broadly undulating urface, of from 5500 to 6000 feet elevation, which rocky bluffs, and toward the south rises abruptly into the lofty plateau of Raton Mesa. The latter is the chief topographic feature of the quadrangle. (See fig. 2, sheet of illustrations.) It is the most elevated portion of an east-west line of heights elevated portion of an east-west line of heights Raton Mountains. 'The plateau itself has a mean elevation of about 9000 feet and is bordered by an escarpment, or perpendicular wall of rock, from 200 to 300 feet high, which renders it inaccessible except in a few places. At a point midway along except in a few places. At a point midway along
the southern boundary the escarpment trends bruptly southward into New Mexico, and, circling around the Trinchera Creek embayment, passes back into Colorado a few miles beyond the eastern line of the quadrangle. Beyond the western oundary, though at one point appearing just within the boundary, is a line of bluffs rising to a height of 500 feet above the plain and marking height of 500 feet above the plain and marking
the eastern border of a broad belt of wooded hills which extends westward with gradually increasing elevation to the base of the Culebra Range. A number of low mesas are a notable feature of the central and western part of the quadrangle, and several conical buttes, the necks of old volcanic vents, are conspicuous in the southeastern portion. (See fig. 3 , sheet of illustrations.)
The small streams rising on the northern side of the plateau drain northward into Purgatory River, which flows, with a general easterly course, through a shallow valley acros
the quadrangle to a point near the eastern border, where it plunges into a canyon 300 feet deep. The drainage of the northeastern portion of the quad rangle is eastward, and also into the Purgatory, which, beyond the limits of the quadrangle, bends northward. The northwestern portion drains into the Apishapa.
The central part of the quadrangle is practically destitute of timber, except a fringe of cottonwoods along the Apishapa, the Purgatory, and small streams heading in the plateau
Along the northern and eastern borders there are narrow belts of scattered piñon and juniper, with a dense growth of the same kind of timber along the base of the Raton Mountains. On the steep slopes of the plateau, pine and spruce trees are scattered through a dense undergrowth of scrub oak, with aspens in places near the base of the escarpment. The entire district up to an elevation of 7500 feet affords a rather scanty growth of exceedingly nutritious grass, well suited for sheep farming, which is one of the chief industries. In the vicinity of the plateau the growth is stronger, owing to greater condensation of moisture, and on the table-land of the summit bunch grass flourishes luxuriantly.
The character of the vegetation corresponds to the climate, which varies with the elevation, the mountainous portion being cool and humid and subject to frequent summer rains, while the low-lying portion is warm and arid, with only occasional showers of brief dura tion, or down-pourings equally brief but of torrential violence. As a consequence of the general aridity of the climate, the land is not susceptible of tillage without irrigation, except in a very few favored places, and at the present time agriculture is restricted to the valleys of the streams that afford sufficient water for irrigation. Purgatory River, rising in the Culebra Range, is the main source of supply, and an important acreage of second-bottom land adjacent
to that river has been brought under cultivation. to that river has been brought under cultivation.
This acreage, however, is but a fraction of what
might be cultivated by considerate use of th available water in connection with systemati storage of the supply during the flood season, for
which purpose the topography and nature of the which purpose the topography and nature of the outcropping formations are, in a great measure,
favorable. The chief agricultural products are alfalfa, oats, wheat, barley, corn, and garden vege tables, the ch, wheat, barley, corn, and garden veg rather by the demands of the local markets than rather by the demands of soil
by the capabilities of the soil

GENERAL GEOLOGY

sedimentary rocks.
The geology of the Elmoro quadrangle is, in most respects, quite simple as compared with cor responding areas in the more mountainous part of the State. The principal formations succeed or, as they appear on the sheet, from northeast southwest. The different strata representing them are frequently exposed, and in most cases the boundaries of the individual groups are not difficult to place approximately, owing to the recur rence, at interrals, of characteristic harder and more resistant layers that stand out in relie With the exception of a few easily recognized occurrences, the surface rocks form a Ago of the to one period in the geologic time scale. Thi period, the Cretaceous, was an eventful one in the geologic history of the Rocky Mountains, and the important changes that characterized it a prominence to the last part of the Mesozoic er and culminated in its close.
pre-cretaceous history.
The Mesozoic history of the district previous the Cretaceous can be inferred only from occu boundaries. There is strong probabil. Eory. hiso ity that a series of beds having at the base stratum of red sandstone, representing the upper part of the Fountain formation, and succeeded by sandstones, marls, and shales of variegated colors known as the Morrison formation, underlies the whole of the quadrangle; and while these beds do not outcrop, the uppermost layers of the Morrison can not be far below the surface along the bottom of Purgatory Canyon near the eastern border of the preceding or Paleozoic era beneath the dis trict, the evidence is less conclusive. However there is geod reason for the belief that for a por tion of the time, at least, the area was below the level of the ocean, and therefore receiving sedi ments; though, owing to the limited extent of the derived, they could but poorly represent the sue cessive Silurian, Devonian, and Carboniferou periods. In fact, the exposures in the neighboruntil near the end of the Carboniferous, when th Sangre de Cristo conglomerate was formed, that place; and it is doubtful if the Devonian is repre sented at all.

The facts bearing upon the early physical history of the region indicate that it was subject to changes of level, whereby elevation | Early phys |
| :--- |
| ical change | repeated. These conditions continued into the Mesozoic era. The character of the lower forma tions of this era in central Colorado suggests deposition in shallow waters, which were fresh o brackish in the beginning, but at last reached that point of saline concentration where lime sulphate, or gypsum, begins to precipitate. These conditions, indicating bodies of water shut off from the ocean, were terminated by an elevation, which was, apparently, long continued and was followed by a great subsidence of the land and the latest invasion by the ocean.

oretaceous period
Dakota formation.-The time at which this sub sidence began was near the middle of the Cret ceous period, and it was marked by the laying down of the Dakota sandstone, the oldest formation exposed within the limits of the quadrangle At first the waters were shallow and brackish and the shore line alternately advanced and retreated;
but toward the latter part of the epoch the advance became persistent, and

onditions prevailed. The most completer

The most complete exposure of the Dakota he thickness shown pproximes 20 , where he total is poblt but is not revealed. The lower two-thirds of the Dakota consists of sandstones, with fine character of Dakota consists of sandstones, with fine charater of
conglomerates, imperfectly stratified or . he Dakota. cross bedded, and the heavy layers which make p this part of the formation are separated from one another by thin bands of finer, shaly material. The upper one-third also consists of sandstone layers parted from one another by thin bands of shale, but the individual beds are not so thick and the shale partings are more numerous. Thes promintions are separated from each other the position of which, in cliff exposures, is often indicated by a narrow shelf or terrace immediately below it.
The color of the upper sandstone is generally grayish white, the lower somewhat darker, with yellowish and brownish weathered surfaces. The pebbles of the coarser layers are quartzite, quartz and chert. The finer-grained layers are made up pecks are included. The lower sandstone is of an open, porous texture, and more loosely aggregated than that lying above the fire-clay stratum. But the texture of any particular layer varies from place to place, and the same is true of the thickness of the individual beds, so that the only constant features are the fine-grained, compact sandstone above and the coarser, porous sandstone below the persistent bed of fire clay separating them.
The Dakota sandstone undoubtedly underlies the entire quadrangle, but the surface exposures are chiefly confined to the eastern part, Exten of the that of limited extent, along the north line of the quadrangle. Owing to the hardness of the rock, the resistance it has offered to the action of eroding agencies, and the non-resistant, soft, shaly char acter of the succeeding formation, the exposed loors of sandstoner as slightly inclined, smoot sil. It is only where the superior cutting powe of running water has manifested itself that there is any noteworthy departure $\begin{gathered}\text { Surface forms } \\ \text { witho } \\ \text { Data } \\ \text { the }\end{gathered}$ from this form. The effect of stream erosion has been to produce deep, narrow canyons bounded by high, inaccessible walls, the edges of which generally terminate sharply in the profile of the surface. The gorges of the Purgatory and rom 200 to 300 f this character. Thay third being represented by the bounding walls. Graneros formation.-The Graneros, Green orn, and Carlile formations, which it has been hought advisable to differentiate, constitute a group which corresponds to $\begin{aligned} & \text { Benton } \\ & \text { group. }\end{aligned}$ the Benton formation elsewhere and which may be called the Benton group. They are separated partly on account of their geographic extent partly as a guide in boring for water, and partly because their individuality and their frequent recognize and trace them.
The Graneros formation, which marks the begin aing of the marine conditions following the subsidence that terminated the Dakota epoch, consists of dark-gray clay shale, from 200 to 210 feet in resting on the Dakota sandstone and graduating rather abruptly into it. Large limestone concre tions are not uncommon in the upper half, but are not a distinguishing feature, as similar concretions are met with in the other shale formations of the district. At a distance of about 30 feet above th base there is a layer, from 1 to 2 feet thick, of hard, concretionary limestone, weathering an orange tint, which is noticeable and characteristic Owing to the soft, loose nature of the shale, it offers but slight resistance to erosion, and its rapid removal has exposed broad, ent. The outcrop extends nearly length of the quadrangle along the eastern border
and doubtless underlies the entire quadrangle west of it. There is also a small area outcropping in Apishapa Valley near the northern border. The slopes are rare. The protection afforded by the lopes are rare. The protection afforded by the has greatly aided in preserving the lower the base has greatly aided in preserving the lower portion
of the formation, which in places occupies a comparatively large extent of country.
Greenhorn formation.-This formation is made up of layers of dove-colored limestone, usually less than 12 inches thick, separated from one character another by somewhat thicker layers of $\begin{gathered}\text { character } \\ \text { ind orent of } \\ \text { hor oren- }\end{gathered}$ shaly material. It graduates into the Fossil shells are abundant in the limestone above. Fossil shells are abundant in the limestone layers,
especially the flat, oval, concentrically ridged Inoespecially the flat, oval, concentrically ridged Inoclus, is sometimes present. The thickness varies from place to place owing to the thickening or from place to place, owing to the thickening or
thinning of the shaly layers. At the same time thinning of the shaly layers. At the same time the gradation into the Graneros and Carile for-
mations is more abrupt in some places than in mations is more abrupt in some places than in
others, thus rendering it doubtful at times where to draw the line. The maximum thickness occurs. in the northeastern part of the quadrangle, where it is often 50 feet. In the southeastern part the exposed sections are not so complete and it is thought that in some places the thickness may not exceed 30 feet. The outcrop is usually very narrow, though widening out occasionally to over a mile. In a few instances it is found capping a mile. In a few instances it is found capping
low, piñon-clad mesas, but it generally appears as a narrow terrace of irregular outline, fringed with piñon and juniper trees. It outcrops along the entire eastern border of the quadrangle and on the Apishapa.
Carlile formation.-This formation consists of about 180 feet of dark-gray shale, the middle portion the darkest, overlain by from 10 to 15 feet of soft, shaly, yellowish-gray $\begin{gathered}\text { character or or } \\ \text { che } \\ \text { the cartille. }\end{gathered}$ sandstone, into which it graduates
through a varying thickness of more distinctively shaly material. A thin band of purplish, bituminous limestone containing large numbers of coiled ammonites is persistently present capping coiled ammonites is persistently present capping
the formation. Concretionary nodules several feet in diameter and seamed with lime spar are feet in diameter and seamed with lime spar are
rather common, especially in the upper half of the beds. The Carlile shale is soft and easily eroded and the meandering outcrep is generally much and the meandering outcrep is generally mach tion. This is partly due to the protection afforded by the hard limestone of the succeeding Niobrara group. Owing to this protection the exposures usually appear as steep, barren slopes descending rapidly toward the contact with the Greenhorn below. Like the formations that precede it, its geographic range leaves no doubt of its extending continuously beneath the quadrangle west of the meandering eastern outcrog. Timpas formation.-The NI倬rara group, which corresponds to the Niobrara formation elsewhere, is represented by sediments of which Niobrara shale, or other rocks containing a notable proportion of lime is the most characteristic feature. The group is separable into two portions: the lower, or Timpas formation, and the upper, or Apishapa formation. The division line between the two is not always strongly marked, though the individual characters are easily recogwized, and they are not more difficult of separation than is the Niobrara group itself from the succeeding Pierre.
The Timpas formation consists of a basal limestone, about 50 feet thick, followed by from 150 to 200 feet of calcareous shale interrupted at intervals by thin limestone
layers from 12 to 18 inches thick. The layers from 12 to 18 inches thick. The
basal limestone is made up of layers, a foot or more in thickness, separated by shale partings. The color is grayish white, often creamy white on weathering. It has an easy conchoidal fracture rudely parallel with the bedding, and the exposed surface is generally thus fractured. Small faceted nodules of iron oxide are often found near the bottom. They result from the oxidation of the iron sulphide, marcasite. Fossils are not numerous, but a short search will usually reveal the
presence of casts of a large, concentrically ridged,
hoof-shaped marine shell, Inoceramus deformis. When examined microscopically in thin, transpar ent slices, the mass is found to be made up largely of the skeletons of minute organisms, Foraminifera The overlying shale beds are alternately light colored and of a bluish tint. They graduate at intervals into thin bands of grayish-white lime stone, which sooner or later disappear. Toward the top these bands are more persistent and form at least two well-defined, hard limestone beds, rom 12 to 18 inches thick and within a few feet of each other. The upper one marks the summit of the formation.
The capacity of the Timpas limestone to resist rosion renders it the most conspicuous of marine Cretaceous beds. It caps a nearly continuous line of bluffs extending irregularly from one end of the quadrangle to the other along the eastern margin, and a similar line of bluffs along the the Purgatory and on the Apishapa the face of the bluff fronting eastward usually terminates in imestone cliff.
Apishapa formation.-The Apishapa beds have a total thickness of from 450 to 500 feet. The lower 50 to 75 feet consists of argilla. character of
ceous shale of a bluish tint, cleavable the Aplshapa. ceous shale of a bluish tint, cleavable the Apishapa into paper-like layers, and sometimes containing stony concretions which lie with their greatest
diameter parallel with the bedding. The middle diameter parallel with the bedding. The middle portion of the formation, which constitutes the bulk of it, is composed of coarse, calcareo-arenaceous shale of a yellowish-gray color and more or
less bituminous throughout. The upper half of less bituminous throughout. The upper half of
this middle zone affords the coarsest material. this middle zone affords the coarsest material.
Where the Apishapa crosses the outcrop this por Where the Apishapa crosses the outcrop this por
tion is made up of hard, resistant layers that break tion is made up of hard, resistant layers that break out in flags of several square feet of surface.
upper 50 feet of the Apishapa contains two or upper 50 feet of the grayish-white limestone, the uppermost marking the summit of the formation.
Fish scales are abundant from top to bottom. In Fish scales are abundant from top to bottom. In the bituminous zone tracks of an undetermined animal, probably a small crustacean, are frequently met with and may be regarded as characteristic.
The tracks appear as a double row of very short, The tracks appear as a double row of very short,
parallel markings, those of one row being inclined parallel markings, those of one row being inclined
toward those of the other. Imperfect casts of toward those of the other. Imperfect casts Inoceramus are occasionally present in the lime-
stone layers. The middle portion of the formation is most frequently exposed, owing doubtless to its superior resisting power; but the exposures are nowhere extensive, though the area it occupies exceeds that of any other in the district.
Pierre formation.- The beds referred to the Pierre epoch attain a thickness of from 1250 to 1300 feet in the southern half of th quadrangle, though this amount may $\begin{gathered}\text { aeneral char- } \\ \text { piterce. the }\end{gathered}$ be exceeded in the northern half. They consist of shale throughout. The basal portion is soft, clay shale, weathering to a pale greenish ellow tint. A bove this appear bands of darke color, in places almost black, and the material flakes up into paper-like scales. Still higher there are dark-gray and lead-gray shales, containing in abundance concretions of impure ferruginous limestone seamed with carbonates of lime and iron and crumbling readily on exposure. These concretions
are arranged parallel with the bedding of the are arranged parallel with the bedding of the
shale, at certain levels situated at varying disshale, at certain levels situated at varying dis
tances from one another. The nodules may be as much as 3 feet in diameter at one level, but less han a foot at the next level above or below, the ize being nearly uniform at a given level. The upper portion resembles the lower in character
and general appearance, except that it contains and general appearance, except that it contains
flat calcareous concretions, about 6 inches thick and calcareous concretions, abourds in diameter, lying conformable with the bedding. It can hardly be said that the characters enumerated are constant throughout he district, as the exposures are few and of limited extent. However, the presence of the concretions,
generally of a rusty color, near the middle of the formation can be depended upon as characteristic.
The area occupied by the Pierre beds forms a
The area occupied by the Pierre beds forms a
broad belt of irregular outline crossing the southwestern portion of the quadrangle, and
very much wider at the northwestern Pierre. han at the southeastern extremity. The forma ion yields readily to erosion, more so indeed than the Apishapa, and the exposures that present steep
slopes are generally such as are protected by the slopes are generally such as are protected
overlying beds or by intrusions of lava.
verlying beds or by intrusions of lava. Trinidad formation.-It is uncertain what part
of the Fox Hills group elsewhere observed is rep-
resented in this section of the district, though it thought to be the upper. In view of this uncer tainty the section near Trinidad can not
be regarded as typical of the formation
group. generally, but merely of the beds occurring with the limits of the quadrangle, for which reason th name Trinidad has been applied to it.
The marine conditions that had prevailed since the Dakota continued into the Fox Hills epoch though a change was foreshadowed in the fact that while previous marine deposits were shate
and limestone those of the Fox Hills were chiefly and limeston
The total thickness of the Trinidad is about 150 feet. The lower portion, which grades abruptly into the Pierre, consists of thin layers Lower of fine-grained dark-gray sandstone, Trinicad. with shale partings, aggregating 75 feet in thickness, sometimes less. The sandstone layers are
from 1 to 3 inches thick, with local occurrences of from 1 to 3 inches thick, with local occurrences of thicker and more prominent, lighter-colored layers
toward the base. The shale partings are generally toward the base. The shale partings are generally subordinate to the layers of sandstone. Imper-
fectly preserved baculites have been found in this fectly preserved baculites have been found in this part of the formation in localities northwest of quadrangle, but none in the quadrangle itself.
The upper portion consists of from 70 to 80 feet of light-gray sandstone, sometimes with a pale
greenish tint, usually massive or very greenish tint, usually massive or very heavy bedded, but with prominently Trinidad. developed joint planes. A layer of brown sand stone, the color emphasized by weathering, cap the formation. Remains of a certain kind of sea weed, Halymenites, are abundant and character istic, but other forms of organic remains seem to be wanting. The formation outcrops as a narrow irregular line of exposures extending across th southwestern part of the quadrangle in a southeast northwest direction, the upper sandstone usually appearing as a prominent escarpment. With the
close of the Trinidad epoch the ocean finally cose of the Trinidad epoch the ocean finally receded, and has not since invaded the territory in which the district is situated.
Laramie formation.-The water bodies that succeeded the marine Cretaceous were
but were connected with the ocean and but were connected with the ocean and
varied in depth according as the rate of varied in depth according as the rate of $\begin{gathered}\text { conditionso } \\ \text { sitimen in } \\ \text { mitara } \\ \text { mit time. }\end{gathered}$ absidence exceeded that of sedimenta-
 tion, or the reverse. Throughout the Laramie these conditions were constantly changing from one extreme to the other. For a time the wate
would be sufficiently deep would be sufficiently deep and the currents sufficiently strong to admit of the deposition of sand only; then the water would become shallower and silt-like material be deposited. Finally, broad areas of swamp or marsh land would be formed, capable of supporting a luxuriant semi-tropical vegetation and favoring the accumulation of exten sive peat-like deposits. Subsequent changes, slow but long continued, consolidated these deposits, respectively, into sandstone, shale, and coal. Thus, the operation being many times repeated, the alter nating sandstones and coal-bearing shaly beds of the Laramie were built up until they attained an gregate thickness of 2500 feet
The formation presents much the same charac teristics throughout, the chief points of differenc being those that bear on the economic questions, to be considered later. Howver, the upper and lower portions,
 while they grade almost imperceptibly into each hasal are in some respects dissimilar. In the basal portion, the lower 200 feet shows the pre
dominance of shaly sandstone - that is, beds made dominance of shaly sandstone - that is, beds mad up of thin layers of fine-grained greenish-gray
sandstone separated from one another by thinner sandstone separated from one another by thinner partings of shale. These beds are interrupted at intervals by bands of light-gray sandstone of
coarser texture and by bands of shale containing coarser texture and by bands of shale containing seams of coal. Dark-brown concretionary nodules, from 2 to 3 feet in diameter, are also present. They consist of impure limestone seamed with iron carbonate. In ascending order, the shaly argillaceous shale and orer, argillaceous shale, and coarse-grained, thick-bedded sandstone finally predominates, varied at interval toward the top by beds of fine-grained, greenish Wray, wirked decrease in the number and thickn is the beds of as wil thin the beds of coal, and while thin seams occasionally appear well toward the summit of the formatio While the general features of the formation ma regarded as constant for the quadrangle, the
details, when closely examined, show that within are not absent here. For instance, only the more prominent beds of sandston and shale are persistent for any con
\qquad ern Timpas outcrop. The inclination of the beds near the axis is about 7° westward, but they flatten out rapidy toward the central part of the quad rangle. On the east side of the axis the strat are nearly horizontal. This flexure excepted, ther is a remarkable absence of displacements of any kind. This is especially noticeable in the coal mine workings, where normal faults worthy of note are practically unknown, the only disturbed ground being that which is more or less deformed in the immediate vicinity of intruded bodies of lava.

typical exposures

It rarely happens that a complete section of a formation is exposed to view at any one point, or that the division lines between the less resistant beds can be observed except at long intervals.
For this reason mention will be made of a few For this reason mention will be made of a few
accessible localities where characteristic exposures accessible localities where characteris
can be studied to the best advantage.
Dakota sandstone.-The canyons of the Purgatory and Trinchera present the best sections of this formation, though the bed of the stream is not deep enough by probably 50 feet to reveal
the base of the group. But the basal portion dif. the base of the group. But the
fers but little from that above.
Graneros shale.-The complete section, including the upper and lower contacts, can be seen on both sides of the river at the head of Purgatory Canyon; also on the Apishapa near the north line of the quadrangle.
Greenhorn limestone.-There are many exposures of this formation north of Van Bremer
Arroyo and on the Apishapa that afford good Arroyo and on the Apishapa that afford good
sections, but none better than the locality already sections, but none better than the locality alread
mentioned at the head of Purgatory Canyon.
mentioned at the head of Purgatory Canyon.
Carlile shale.-Complete sections, including the Carlile shale.-Complete sections, including the
upper and lower contacts, can be seen about 4 upper and lower contacts, can be seen about 4
miles north of Van Bremer Arroyo, also on the miles north of Van Bremer Arroyo, also on the
Apishapa near where it leaves the quadrangle. It Apishapa near where it leaves the quadrangle. It can likewise be seen to advantage, between the
two contacts, in the hills southeast from Trinchera. Timpas formation.- The basal limestone usually outcrops wherever the formation is present, the lower contact being frequently exposed to view. The upper portion as well as the upper contact can be seen at the base of a hill just south of the
railway track near Adair. All the upper bands railway track near Adair. All the upper bands of limestone are there exposed.
Apishapa formation. -The best exposure of the lower portion of the Apishapa is at the locality last mentioned. The upper portion and its relation to the Pierre can be best studied near the junction of the roads northwest from Barela. At one point the Barela-Trinidad road crosses the contact between the two formations, and the
upper half of the Apishapa with its limestone upper half of the Apishapa
bands is very fully exposed.
bands is very fully exposed.
Pierre shale.-The basal portion of the Pierre outcrops at the locality just cited, and the overlying beds appear close to the road as one travels westward. The middle-zone exposures are most numerous in the country around Beshoar and in the vicinity of the dikes due north from Elmoro, where the concretions are abundant. The upper
portion is well exposed in the vicinity of Trinidad, portion is well exposed in the vicinity of Trinidad,
and the upper contact appears in several places and the upper co
close to the town.

close to the town.

Irinidad formation.-A complete section is afforded in the vicinity of Trinidad, the most accessible being at Simpsons Rest, or at a point
just north of it, where the top of the sandstone just north of it, wh
Laramie group.-The valley of Raton Creek afords the best section of the Laramie, there being fully 1500 for oxp ville and the summit at Raton Pass.
ing 1000 feet underlying Raton Mesa is pretty ing 1000 feet underlying Raton Mesa is ore and thoroughly masked by surface accumulations, ar in
an idea of its true character must be sought for in an idea of its true character must be sought for in
the hills west of Raton Creek and outside of the the hills we.
Nussbaum formation.-A very fine section of Nussbaum formation.-A very fine section of
the beds of this formation is revealed by the long the beds of this formation is revealed by the long
side cut where the Trinidad-Engle wagon road climbs the hill midway between the two places.

igneous rocks.

Age of eruption.-The eruptive rocks are assignable to two epochs of eruption, (1) an earlier one related to the late Eocene eruptions of the Spa Neocene eruptions of southern Colorado and north-
ern New Mexico. There is also a probability that |illustrations.) The occurrences are simply outliers the district did not entirely escape the effects of more recent volcanic activity (Pleistocene) repre sented by cinder cones situated on the north and south flanks of the eastern extension of the Raton Mountains. One of these appears in the Trinchera Creek embayment, east of the creek and immediately south of the margin, though none occurs in the quadrangle itself. The late Eocene rocks consist of early lamprophyres and later lamprophyres, both of minor importance. The Neocene rocks were nearly all erupted during the early part of that period, and are deeply scored by erosion They consist entirely of intrusive and extrusive basalt.

Occurrence and distribution.-The intrusive ocks, including those of Eocene age, occur as dikes, sheets, stocks, and irregula
bodies. The majority outcrop at dif
ferent horizons in the marine Cretaceous, but a ew appear in the Laramie area. The dikes cut the strata nearly perpendicularly to the bedding. They diverge more or less from an east-west course, most of them trending a few degrees north of east, only two being known that trend south o east. The thickness varies greatly. The big dike north of the Apishapa, and also the one south of Van Bremer Arroyo, are from 20 to 50 feet thick, and in places may exceed 100 feet, as the true hickness is usually masked by talus. Both are double dikes - that is, after one dike was formed the fissure opened a second time and was again filled with lava. The smallest dike in the quadrangle the one near the northern boundary, is only about foot thick. The sheets are the dikes. They are generally, though not always, intruded conformably with shise.ts. the bedding of the sedimentary rocks. The most prominent, typical examples of the mode of occur rence are to be seen in the Black Hills, near the western margin, and on Trinchera Creek near the southern margin. They have a thickness, in places, of about 20 feet. A smaller sheet outcrops in Ferris Canyon south of Trinidad. It is appar ntly an offshoot from the dike in the same ocality. A similar sheet appears in the mine workings, at a lower level, in connection with the ame dike, and extends a distance of about 300 feet along the bed of coal. Another occurrence which is probably part of a sheet, appears a shor distance east of San Francisco Creek.
The volcanic plugs are the cores of basaltic material that choked up and consolidated in the lava conduits of extinct volcanoes. They $\begin{aligned} & \text { Extinct } \\ & \text { volcanoes. }\end{aligned}$ are a noticeable feature of the southern voicanoes. portion of the quadrangle. The cores, being harder and more resistant than the inclosing shale, tand out above the general level of the surface rom 50 to 200 feet, and are, in consequence, easily recognized. Fig. 3 on the sheet of illustrations is reproduction of a photograph of the volcanic plug near Adair. Seven of these plugs are situated within the quadrangle, all of them in the southern third of it. Several others appear just beyond the limits, near the southeast corner. They vary in size from 50 to 150 feet in diameter. The basal portion is invariably surrounded and masked by an accumulation of talus from the breaking off
of the peripheral portions of the protruding of the peripheral portions of the protruding column, so that the full diameter is seldom evealed.
In the southwest corner of the quadrangle there is an unconformable mass of gray basalt too irregula in mode of occurrence to be assigned to
 ace has been exposed by erosion and its southern side deeply scored by the same action; but the base is not shown, and whether the vertical or horizontal diameter is the greater is uncertain. The earlier dikes of the region are not always of regular vein-like form where they ut through the soft beds of the Cretaceous Occasionally one appears as a row of protrusions of considerable prominence. One of these occurs in the north-central portion of the quadrangle. It consists of four prominent bodies of lava, apparently connected with one another along a line of fissuring by a thin filling of the same material See fig. 4, sheet of illustrations.)
The extrusive rocks greatly overshadow the others in geologic importance. They are all confined to the southwestern part of the district, where a succession of outflows rests, with apparent unconformity, on the Laramie, and forms the cap-
ping rock of Raton Mesa. (See fig. 2, sheet of
of a broad eruptive area, deeply indented by erosion, lying to the south and east, which at the time of eruption was much more extensive than it is at present. The western or principal mass has a length of 8 miles, a maximum width of 4 miles, and covers an area of 20 square miles. It has been entirely detached by erosion from a similar area to the south and from the main lava field to the east. The portion of the latter that enters the quadrangle has a length of 5 miles, is less than 1 mile wide at its narrowest part, and has an area of 7 square miles This mass continues eastward south of the bound ary, but eventually curves northward and appears
in the Mesa de Maya quadrangle. Around the peripheral portion the aggregate thickness of the flows is from 250 to 300 feet, increasing to 500 feet toward the central part of the western mass. As many as eight distinct beds of lava, probably representing nearly the same number of independ ent eruptions, can be distinguished in the cliff exposures of Fishers Peak, with several other beds account of talus made out with certaing beds are 30 or more feet in thickness, but vary greatly from place to place. They are grayish or dark colored, occasionally reddish brown, though when seen from a distance the weathered surface of the cliffs is usually of a dark-brown tint.
Early lamprophyre.-This rock is common in he Walsenburg quadrangle, but in the Elmoro the occurrences are confined to the Black Hills high mesa north of the Chicosa, which owes it frm to the presence of thick sheets of this rock I wo of these sheets, about 100 feet apart, appe in the basal exposures at the eastern extremity of the mesa. The thickness varies from 6 to 20 feet, there being a noticeable thinning of the upper sheet toward the west, while the lower sheet soo thins out and disappears in the same direction They are not strictly conformable with the bed ding of the shale, and at times jump from on level to another. Thin sheets of brown, decon posed basalt are present in the same exposure The early lamprophyre of the region includes group of rocks of the same habit, and apparently derived from the same magma, in which the proportion of alkali feldspars to lime feldspar may incline one way or the other. It is a grayish rock of medium grain and even, crystalline tex ture. Brown, lath-shaped hornblende crystals ar generally abundant; augite is often present in considerable amount, and more rarely plates of biotite.
Late lamprophyre. - This is a very commo rock in the Spanish Peaks quadrangle, but is rep resented here by only one occurrence, previously mentioned as an irregular dike-like intrasion the north-central part of the quadrangle. It is greenish-gray, fine-grained rock, containing crys tals of augite embedded in a groundmass which consists of feldspars and interstitial augite and Iorite with some biotite.
Intrusive basalt.-The intrusive basalts vary much in color and appearance. As a rule, the dike rocks and thicker sheets have undergone little alteration, but the thin sheets are invariably decomposed, as are those that occur in conta with coal or carbonaceous shale. The frest unaltered rock is rarely grayish, more often neary black; but various shades of green, resulting from the alteration of the dark silicates to serpentine and chlorite, are common. Relatively large cry tals (phenocrysts) of augite and olivine are embed ded in a groundmass of microscopic crystals of lime-soda feldspar, augite, and magnetite. Some times augite predominates over the other con
stituents of the groundmass. Biotite is occasionally stituents of the groundmass. Biotite is occasionally present, and serpentine, chlorite, and calcite are Extrusive sary products.
Extrusive basalt.- The extrusive basalts are grayish or dark colored, occasionally reddis brown. All are at times vesicular. Notwith standing that the rocks of the individual flow differ from one another in outward appearance they are much alike in texture and mineral con stitution. The groundmass is usually a fin grained aggregation of minute crystals of lime-sod feldspar, augite, and magnetite, and rarely some glass. Of the porphyritic crystals (phenocrysts) olivine largely predominates over augite. Chlorite, serpentine, and biotite appear as products of the
alteration of olivine and augite, and calcite is alteration of olivine and augite, and calcite is often abundant in the cavities.

There is no evidence that the measures of the hey have suffered but little disturbance, so that the effects of past eruptions must be considered responsible for the bituminous character and coking property of the coal. Taking the Raton field as a whole, the intrusive ruptive rocks produced the alteration. Nor i he coking property more pronounced in the icinity of the Raton Mesa overflows than in the body of the field to the west, though this does not mean that the eruption failed to influence the character of the coal, since there are fewer intru ive occurrences than in the body of the field, and he measures probably exerted a compensating effect.
The change that takes place in the transforma tion of lignite into coking coal is not well under stood. But in a general way it may be said that weight; indeed, if anything, the specific gravity decreases, while the capacity to absorb moisture reduced to at least one-tenth of what it wa riginally. At the same time there is a decided decrease in the amount and increase in the density of the tarry matter.
Faults and displacemenis.-The conspicuous absence of faults of any considerable amount of dis placement has already received attention in connec tion with the general structure of the quadrangle. The mere passage of a dike through the measures does not, as a rule, cause a vertical displacement of the strata, and mine workings can be extended through them without change of grade. Faults of limited amount are met with near the western boundary, but less frequently than in other quadrangles in the same field. The most serious displace ments are those that accompany lateral $\begin{aligned} & \text { Rolling } \\ & \text { injections of } \\ & \text { ground. }\end{aligned}$ injections of lava. Such occurrences sround. are invariably associated with rolling, "troubled" ground, through which it is always difficult and expensive to continue the workings. Even dis placements of this kind are not common, and, on the whole, the quadrangle is remarkably free from these sources of annoyance and expense to the perator.
Area of the coal field.- The total area of the Laramie is about 89 square miles, of which an area of 27 square miles lies beneath the Rator Mesa lava cap. Up to the present time explora tion has failed to demonstrate the existence of workable seams in any portion of the area lying east of a line running south from the village of San Miguel. The absence of workable coal in this part of the field is evidently related to the thinning out of the formation eastward, only a imited amount of the thinning being attributable to erosion preceding the eruption. Exclusive of he barren eastern portion of the measures, there emains an area of 64 square miles, of which 16 square miles is capped by lava. What proportion should be excluded on account of the coal being destroyed by the upward passage of lava through he strata, or the more serious lateral injection of it, can hardly be conjectured. It is only possible o bear in mind that the coal of a considerable area of the lower zone, far removed from the outcrop and from observation, may have been destroyed. Aside from this probability the reserve reas on the respective groups will be about as follows: Engle group, 63 square miles; Sopris group, 59 square miles; Morley group, 40 square miles; Wootton group, 32 square miles. What por tion of these areas will be rendered available will epend largely on future requirements. At pres rise coal can be work successumy a distance of 3 miles from the outcrop, and eventualy 3 -foot coal will probably be worked to the ame limit. But when the depth of shaft mining sewhere is why any part of the coal-bearing formation should e regarded as inaccessible.
Dependent industries.-Elmoro district in conjunction with the region around Trinidad, collec ively known as Trinidad district, is the chief producer of coke for the metallurgic estabish ments of Colorado, New Mexico, and Arizona, and he mining of coal and th
The mines most extensively operated are situ ated at Engle and Gray Creek; though the presne whing of is situated in the Spanish Peaks quadrangle, extend a

Engle, the two mines being almost connected with each other. Two other mines, known as th Bloom and the Butler, lie between the Engle and Starkville openings respectively. They are oper ated merely to supply part of the local demand Mining is conducted on the ordinary room-and pillar system-that is, from a main $\begin{aligned} & \text { minng } \\ & \text { methods }\end{aligned}$ entry and parallel air course cross methods. entries, with parallel back entries for ventilation, are driven at intervals of about 600 feet, and from these, rooms are turned off to the right and the left at intervals of from 40 to 50 feet. The rooms are then driven forward until they encounter those coming from the opposite direction. About onehalf the coal is thus extracted, the other half being left as a supporting pillar on the side. The greate part of what remains is extracted subsequently
and all except the necessary roadways allowed to fall in. Tail-rope haulage is usually employed in transporting the "trips" to and from the work ings. On arriving at the tipple the coal is dumped over screens and passes at once to the railway car as "lump" and "slack," the former being largely used for locomotive purposes and the latter for the manufacture of coke. Occasionally the coal as it comes from the mine is loaded without screen from 1000 to 1200 tons daily
In the manufacture of coke, ovens of the bee hive pattern are employed. The slack coal, in charges of from 4 to 5 tons per 12 -foot
standard oven, is "leveled off," bricked up a 1 oven, 1 "lover seventy-two hours, according to the size of the charge. The latter is subsequently quenched wit water and withdrawn, the heat remaining in the oven being sufficient to ignite the next charge The resulting coke possesses great hardness and density and a silvery luster, properties which ar due to the large amount of dissociated carbo deposited while burning. Coke made from ordi nary slack coal contains from 80 to 82 per cent of carbon, from 17 to 18 per the coserer of cent of ash, with small quantities of volatile sub stances, moisture, and sulphur. Repeated exhaus tion under water to one-half inch barometri pressure shows a cell space of from 30 to 31 pe cent only. While this extreme density is no desirable in ordinary metallurgic work, it is pre ferred for certain kinds of foundry work, suc as the manufacture of car wheels.
sandstone.
The Dakota sandstone forms extensive expo ures near the eastern border, but up to the pres ent time little use has been made of it owing to the greater availability of the $\begin{gathered}\text { Dakota sand } \\ \text { stone. }\end{gathered}$ other sandstone, in most respects equally desirable Except in the canyons of the Purgatory, Trinchera, and their tributaries, only the upper portion of the formation is accessible. The rock is light gray almost white away from the weathered surface, of medium hardness, and has a fine-grained, even texture. The lower portion of the formation is somewhat darker colored and of a coarser, more
porous texture, in places conglomeratic. Dakota porous texture, in places conglomeratic. Dakota sandstone is well adapted to structural pur
and the supply is practically inexhaustible. and the supply is practically inexhaustible. The Trinidad sandstone represents the upper half of the Trinidad formation. It outcrops almost continuously beneath the Laramie in the vicinity of Trinidad, usually appear- $\begin{gathered}\text { Trinidad or or } \\ \text { besimen en } \\ \text { stones. } \\ \text { sand }\end{gathered}$ ing as an irregular line of cliff-like,
deeply indented exposures. It is also more or les conspicuous eastward along the base of Rato Mesa. The rock is of medium hardness, fine Trained, greenish gray in color, and of even texture The only objection to it as a building stone is the presence of Halymenites, which slightly impairs ths homogeneity. This sandstone is extensively employed for structural purposes in the city of Trimida, where it has been used in the erection of many fine buildings. The retaining walls of As yet ovens at Elmoro are built of this stone As yet there are no regular quarries in operation, the practice being to obtain the rock from the
nearest accessible point nearest accessible point.
Faramie includes thic The color is light avalab for structural purpose The color is light gray and the tint Laramie
even. The grain and texture vary sandstone. even. The grain and texture vary sanstone.
slightly in different beds, the average stone being somewhat coarser and more porous than Trinidad somewhat coarser and more porous than Trinidad
sandstone. It has been used to some extent for
the retaining walls of coke ovens, for foundations, rushed ralway culverts. Lately it has been the Atchison, Topeka and Santa Fe track. The supply is practically unlimited.

mestone.

The Timpas limestone is a bed of grayish-white mestone from 40 to 50 feet thick. The outcrop is a prominent feature of the eastern por-
Timas
ion of the quadrangle, where it appears
Himstone. tion of the quadrangle, where it appears "imestone. nd south the entire length of the quadrangle. Near the northern border the outcrop is in places equally prominent and is practically continuous aross the district from east to west. The Atchion, Topeka and Santa Fe and the Colorado and outhern railroads cross accessible portions of the bed. Elsewhere this limestone is much used as a fux in smelting lead and iron ores, but at present here is no demand for it here.
The Greenhorn limestone forms a narrow, irreg war outcrop in the eastern and northern portions of the quadrangle. It occurs in layers sually less than a foot thick, separated $\begin{aligned} & \text { Greentorn } \\ & \text { Umestone }\end{aligned}$ by thinner layers of shaly material. The lime tone is dove colored and is harder and apparently more impure than the Timpas limestone, and, on ccount of the abundance of the latter, can have very little value for fluxing purposes.

fire clay.

There is usually present beneath the workable beds of coal a layer of soft shale, of varying thick. ness, from which the iron has been removed by he reducing action of carbonaceous matter and moval the iron tends to render the shale refractory, for which reason it is often termed fire clay. But the absence of ron is not the only requisite, and as the other bases vary considerably, such deposits are rarely of economic value. These coal-measure clays, while probably not suited for the manufacture of he better grades of refractory ware, may be found of more or less value in connection with local requirements.
The shale employed in Colorado for the manuacture of bricks, crucibles, muffles, and other ighly refractory articles is obtained from the pper part of the Dakota group. This shale eparates the upper and lower sandstones and is variably present about 100 feet below the top of the formation. It is exposed in Purgatory and Trinchera canyons, near the eastern border of the quadrangle. The outcrop is usually covered by alus, but its position is often marked y a terrace or narrow ledge immedi- calag. tely below it, or by cavernous recesses parallel with the bedding. The comparative refractory value of the Dakota fire clay on the Purgatory has not been determined; such determination is neces ary before any statement can be made as to the eal importance of the occurrence, it being known that the composition varies widely from place to place in other localities.
other minerals of fconomic value.
An attempt that was not a financial success was made to manufacture Portland cement from the impure limestone concretions of the cement ume-
Pierre shales. It is questionable, from stome. Pierre shales. It is questionable, from stone.
the nature of their occurrence, if these concretions the nature of their occurrence, if these concretions could be made a cheap source of raw material for
this purpose. On the other hand, the calcareothis purpose. On the other hand, the calcareo-
arenaceous shales of the Apishapa formation may be regarded as more than a possible source of n unlimited supply of material for the manufac ture of cement clinker. These shales vary in composition and texture at different levels and in different localities, and bodies containing almost any desired lime-silica-alumina combination may ot be difficult to find
Thin bands of impure limonite and concretions ontaining iron carbonate are sometimes present in the shaly portions of the Laramie But aside from the fact that important
eposits of iron ore have not been discovered, the onditions under wich such depositorer are ntirely wanting
Petroleum has been reported as of occasional appearance along the base of Raton Mesa, by rustworthy residents, and it must be dmitted that the conditions closely
mpertant particular. This part of the quadrangle oil field.
artesian water.
The Dakota formation is the chief water-bearing bed of the country, and is the source of artesian water at Pueblo, La Junta, and elsewhere. Lying as it does beneath the impervious Benton shales, it constitutes a rock reservoir which, owing to th siderable space for water, and is thus a source of supply nearly coextensive with the quadrangle While it is only at a few points in the easter part of the district that erosion has cut deep enough into the formation to reach this source there are at all of these points strong springs of pure, clear water, and it is to be expected that wherever the lower zone of the Dakota is pene trated by boring, a supply of artesian water will be found. This zone extends from the base of the formation to the uppermost band of
 the fine-grained sandstone and 100 feet or more from the top. Hence, a bore must pene trate the sandstone from 100 to 150 feet before a supply of water will be obtained. The approxi mate thickness of the zone is from 200 to 250 feet The depth of the uppermost water-bearing bed at any point is indicated by the contours on the artesian-water sheet. These contours are based on the ascertained thickness of the respective overlying formations, which are
fairly uniform thathat
eothe
ent with the exception of the Greenhorn and Timpas, which thicken materially toward the south. In the eastern and northern portions of the quadran gle, and up to a depth of 1200 feet, these contours may be accepted with considerable confidence but uncertainty increases with the increasin thickness of the Pierre shale to the southwest, and the 2000 -foot contour may be as much as 200 feet in error
It is doubtful if the conditions are anywhere such as to insure a strong artesian flow,
but there is good reason for the belief but there is good reason for the belief
that a limited area in Purgatory Valley will affor flowing wells.

N 1

Fig. 1.-Ideal section illustrating the general tions along the plains border.

In the above diagram the broken line $\mathrm{P} P$ rep resents the plane of head-an inclined plane between the point of inflow, I, and the point of outflow, O. Theoretically, if $\begin{gathered}\text { conditions } \\ \text { sher filiong } \\ \text { will }\end{gathered}$ the resistance to the passage of water through the Dakota sandstone, Kd , is uniforn throughout, and the inflow is equal to the capacity of the rock for transmission, the water whe tapped at any point will rise to this plane, and wherever the latter lies above the surface a bor hole to the water zone will afford a flowing well. In reality the texture of the sandstone varies more or less, so that the resistance is not uniform Moreover, the inflow may not equal the capacity of the rock for transmission, while faults and eruptive bodies will operate to lessen this capacity or to obstruct the flow. If the obstruction i between the bore and the point of outflow the water may be capable of rising above the plane o head; if the reverse is the case it may fall consid erably below that plane. Accordingly, it is no to be expected that the available head will coin cide with the theoretic head, and to be on the safe Under the conditions then much less.
Under the conditions that exist in Purgatory Valley, the point I in the diagram is situated a the great Dakota sandstone reef of Stonewall Park, which at an elevation of about 8000 feet is crossed by the several branches of Purgatory
River. The point O is situated at the outcrop of River. The point O is situated at the outcrop of the water-bearing zone along the eastern border of the quadrangle, with an
elevation of about 5000 feet. The plane of head, P P , will be about 450 feet highe than the city of Trinidad and 300 feet higher than Hoehne. For one of the reasons above given, i is not at all cal flow wells will be hot plane, or that flowing wells will be had not far
that the head will decrease with the number of zone will yield pumping wells over the greater several miles beyond the western boundary; and It may be well to add that the life of a well passwells bored, the area that will yield flowing wells part of the quadrangle. The north- pamping as the land surface rises gradually in the same ing through such soft, shaly beds will be very
 must be considerably less than that covered by south flexure which crosses the Purga-
the theoretic head. But any attempt to represent
tory just above the canyon separates the territory the theoretic head. But any attempt to represent tory just above the canyon separates the territory
this area on the map would be out of the questhis area on the map would be out of the ques- on the east that may be expected to yield but tion, as the boundaries are necessarily arbitrary.
Accordingly, the area colored blue on the sheet is

be expected to yield a more abundant supply	$\begin{array}{l}\text { Accordingly, the area colored blue on the sheet is } \\ \text { merely intended to indicate the territory most }\end{array}$	$\begin{array}{l}\text { expected to yield a more abundant supply. } \\ \text { From the line of this flexure the water-bearing }\end{array}$
likely to yield flowing wells.	zone dips gradually in a southwestern direction	direction, the depth of the zone increases, as shown

by the contours on the sheet. But the supply of
to the top of the Dakota sandstone. by the contours on the sheet. But the supply of
water must also increase as the heart of the reservoir is approached. It is not to be supposed that voir is approached. It is not to be supposed that
the water will have to be pumped from the depth

There to yield flowing wells.
eight that will admit of pumping by wind power. July, 1898

Nore.-The above analyses were made by the writer in the Denver laboratory of the Colorado Fuel and Iron Company

Preriod.	Names And Sxxmoos disd is mus Fohe.					
囄	Nussbaum formation.	Nn	Nussbaum.		Upland sands.	
	Laramie formation.	ki	Laramie.			Laramie (post-Cretaceous).
	Trinidad formation.	ktd	Fox Hills.	Montana.		Fox Hills (including Pierre).
	Pierre shale.	K_{p}	Pierre.		Pierre shale.	
	Apishapa formation.	${ }_{\text {Ka }}$	Niobrara.	Colorado.	Apishapa formation.	Colorado (comprising Benton and Niobrara).
	Timpas formation.	Kt			Timpas formation.	
	Carilie shale.	Kcr	Benton.		Carilie shale.	
	Greenhorn limestone.	Kgn			Greenhorn limestone.	
	Graneros shale.	Kgs			Graneros shale.	
	Dakota sandstone.	kd	Dakota.		Dakota sandstone.	Dakota.

l

generalized section of the rocks of the elmoro quadrangle. SCALE: 1000 FEET $=1$ INCH.					
Pratos.	Formation Name.	sxumot.	Coldmatar SECTION:		Character of Rocks.
山U0UZ	Nussbaum formation.	Nn		10-50	Sand and gravel, cemented into conglomerate at the base.
	Extrusive basalt.	Nb		500	Gray to brown basalt, often vesicular. Separate flows are 30 feet or more thick.
	Laramie formation.	kı		800-2500	Heavy-bedded gray sandstone, alternating with thick bands of shaly sandstone and shale containing workable coal beds.
	Trinidad formation 140°	$\overline{\text { ktd }}$	- - Wiviulu	155	Massive sandstone with fucoids, thin bedded at the base.
	Pierre shale.	Kp		1200-1300	Gray and dark-colored shale, containing ferruginous limestone concretions seamed with carbonates of lime and iron.
	Apishapa formation.	Ka		450-500	Thin bed of limestone. Calcareous, arenaceous shale, somewhat bituminous.
	Timpas formation.	Kt	Fix	200-250	Gray calcareous shale. Thin limestone beds at top and base.
	Carilie shale.	Kcr	Wex	180-200	Massive sandstone and dark shale.
	Greenhorn limestone.	Kgn		${ }^{30-50}$	Thin-bedded limestone and shale.
	Graneros shale.	Kgs	araveun	200-210	Gray and dark shale, containing coneretions.
	Dakota sandstone.	Kd	,, ,	300+	Gray sandstone with gray, greenish, and dark colored shales.

generalized section of the Laramie formation in the trinidad district.scale: 200 feet 1 inch.				
	Nane of Coal Bads.	$\underset{\substack{\text { Columinar } \\ \text { Sction. }}}{\text { ander }}$		Charactrr of rocks.
	.		3000 	Eruptive flows of gray, drab, brown, and darkbrown basalt, often vesicular.
	Raton Pass group (small seams, not workable). Wootton seam, 5 feet (not yet worked). Morley seam, 6 feet (not yet worked). Sopris group. Engle group.		1500 1000 750 220 140 100	Heavy-bedded gray sandstone, alternating with thin-bedded, greenish-gray, micaceous stone predominates. Heavy-bedded gray sandstone, alternating with bands of shaly sandstone and shale, coking coal. the workable beds of coking coal.
				Massive sandstone, containing Halymenites. Thin bedded, fine-grained sandstone with shale partings.
				RICHARD CHARLES HILLS, Geologist.

Fio. 2.- Fishers peak and raton mesa.
This view is taken from near the Engle mine. It shows the flattopped character of the mesa, which rises 3,000 feet above, and the vertical cliffs of basalt forming its summit. The slopes of the mountain are composed of the coal-bearing
Laramie, a hard stratum of which has produced the terrace in the middleground. The rock exposed in the foreground is the Trinidad formation

Fio. 3.-Conical buttes of igneous rock.
This represents one of the most typical of the volcanic plugs of the district. It consists of a cylindrical mass of basalt occupying the vent of
an extinct volcano, and is surrounded by an accumulation of basalt talus. The butte is situated one mile north of Adair station, on the an extinct volcano, and is surrou
Colorado and Southern Railroad.

Fio. 4.-Igneous buttes of irregular form.
ike.like bodies of the same material. The occur in the nothern part of the quadrangle.

