DEPARTMENT OF THE INTERIOR

GEOLOGIC ATLAS
 OT THE

 UNITED STATES

 UNITED STATES}

NUECES FOLIO
TEXAS

LIST OF SHEETS
description
TOPOGRAPHY
historical geology
columnar section
special illustrations

The Geological Survey is making a geologic map of the United States, which nec preparation of a topographic base map. The two are being issued together in the form of an atlas, the parts of which are called folios. Each folio consists of a topographic base map and geologic maps of a small area of country, together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.

The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainage, as streams, lakes, and swamps (3) the works of man, called culture, as roads railroads, boundaries, villages, and cities.
Relief.-All elevations are measured from mean sea-level. The heights of many points are accu rately determined, and those which are most
important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the horizontal outline, or contour, of all slopes, and to indicate their grade or degree of steepness. Thi is done by lines connecting points of equal elevation above mean sea-level, the lines being drawn at regular vertical intervals. These lines are called contours, and the uniform vertical spac between each two contours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contours express eleva tion, form, and grade is shown in the following sketch and corresponding contour map:

The sketch represents a river valley betwee two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand-bar. On each side of the valley is a terrace. From the terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply from that on the left the ground ascends steeply
in a precipice. Contrasted with this precipice is in a precipice. Contrasted with this precipice is
the gentle descent of the left-hand slope. In the the gentle descent of the left-hand slope. In the
map each of these features is indicated, directly map each of these features is indicated, directly
beneath its position in the sketch, by contours. beneath its position in the sketch, by contours
The following explanation may make clearer the manner in which contours delineate elevation form, and grade :

1. A contour indicates approximately a certain height above sea-level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at $50,100,150,200$ feet, and so on, above sea-level. Along the contour at 250 feet lie all points of the surface 250 feet above sea; and similarly with any other contour. In the space between any two contours are found all elerations above the lower and below the higher contour Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet 'lies above the terrace; therefore all points on the terrace are shown to be more than 150 but les than 200 feet above sea. The summit of the
higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. accordingly the contour at 650 feet surrounds it.
In this illustration nearly all the contours are In this illustration nearly all the contours are
numbered. Where this is not possible, certain contours-say every fifth one-are accentuated and numbered; the heights of others may then be ascertained by counting up or down from
numbered contour.
2. Contours define the forms of slopes. Since contours are continuous horizontal lines conform-
ing to the surface of the ground, they wind ing to the surface of the ground, they wind
moothly about smooth surfaces, recede into all smoothly about smooth surfaces, recede into all
reentrant angles of ravines, and project in passing reentrant angles of ravines, and project in passing curves and angles to forms of the landscape ca be traced in the map and sketch.
3. Contours show the approximate grade of any slope. The vertical space between two con tours is the same, whether they lo a cive n a gentle slope one must go farther than on teep slope and therefore contours are far apart on gentle slopes and near together on steep ones. For a flat or gently undulating country a smal ontour interval is used; for a steep or mountain ous country a large interval is necessary. The mallest interval used on the atlas sheets of th Geological Survey is 5 feet. This is used fo egions like the Mississippi delta and the Disma Swamp. In mapping great mountain masses, like hose in Colorado, the interval may be 250 feet For intermediate relief contour intervals of 10 $20,25,50$, and 100 feet are used.
Drainage.-Watercourses are indicated by blue nes. If the stream flows the year round the ine is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted Where a stream sinks and reappears at the sur face, the supposed underground course is shown by a broken blue line. Lakes, marshes, and othe priate conventional also sign
Conventional signs.
Culture.-The works of man, such as roads, ailroads, and towns, together with boundaries of ownships, counties, and States, and artificia details, are printed in black.
Scales.-The area of the United States (exclud ing Alaska) is about $3,025,000$ square miles. On a map with the scale of 1 mile to the inch thi would cover $3,025,000$ square inches, and to accommodate it the paper dimensions would need to be about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground ${ }^{\prime}$ would be represented by a linea inch on the map. This relation between distance in nature and corresponding distance on the mal is called the scale of the map. In this case it is " mile to an inch." The scale may be expressed als by a fraction, of which the numerator is a lengt on the map and the denominator the corespond Thus, as there are 63,360 inches in a mile, the Thus, as there are 1 mile to an inch" is expressed by $\frac{1}{6,3,300}$ Both of these methods are used on the maps o the Geological Survey
Three scales are used on the atlas sheets of he Geological Survey; the smallest is $\frac{1}{250,000}$, th intermediate $\frac{1}{15,000,}$ and the largest $\frac{1}{2,5000}$. These correspond approximately to 4 miles, 2 miles and 1 mile on the ground to an inch on the map On the scale $\frac{1}{\text { c.s.500 }}$ a square inch of map surface represents and corresponds nearly to 1 square mile; on the scale $\frac{1}{12 \pi, 000}$, to about 4 square miles and on the scale $\frac{1}{2 s, 0,00}$, to about 16 square miles At the bottom of each atlas sheet the scale expressed in three different ways, one being raduated line representing miles and parts miles in English inches, another indicating di tance in the metric system, and a third giving th ractional scale.
Atlas sheets and quadrangles. - The map is being published in atlas sheets of convenient size which are bounded by parallels and meridians. The corresponding four-cornered portions of ter itory are called quadrangles. Each sheet on the scale of $\frac{1}{20,000}$ contains one square degree, i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{125,000}$ contains one quarter of a square degree; each sheet on the scale of $\frac{1}{6,500}$ contains one-sixteenth of a square degree. The reas of the corresponding quadrangles are abou The atlo, and 250 square The atlas sheets, being only parts of one map of
the United States, are laid out without regard to the United States, are laid out without regard to
the boundary lines of the States, counties, or townships. To each sheet, and to the quadrangle it represents, is given the name of some well-known
town or natural feature within its limits, and at
the sides and corners of each sheet the names of the sides and corners of each sheet the na
adjacent sheets, if published, are printed.
Uses of the topographic sheet.- Within the limits of scale the topographic sheet is an accurate and characteristic delineation of the relief, drain age, and culture of the district represented. View ing the landscape, map in hand, every character istic feature of. sufficient magnitude should be recognizable. It should guide the traveler; serv the investor or owner who desires to ascertain the position and surroundings of property to be bought or sold; save the engineer preliminary surveys in locating roads, railways, and irrigation ditches; provide educational material for schools and homes; and serve many of the purposes of a map for local reference.

THE GEOLOGIC MAP.
The maps representing areal geology show by colors and conventional signs, on the topographic base map, the distribution of rock formations on the surface of the earth, and the structure-section map shows their underground relations, as far
known, and in such detail as the scale permits.

kINDS OF ROCKS.

Rocks are of many kinds. The original crus of the earth was probably composed of igneou rocks, and all other rocks have been derived from hem in one way or another.
Atmospheric agencies gradually break up igne ous rocks, forming superficial, or surficial, deposits of clay, sand, and gravel. Deposits of this class ave been formed on land surfaces since the ear liest geologic time. Through the transporting agencies of streams the surficial materials of all ges and origins are carried to the sea, where along with material derived from the land by the action of the waves on the coast, they form sedi mentary rocks. These are usually hardened int onglomerate, sandstone, sbale, and limestone, bu they may remain unconsolidated and still be
called "rocks" by the geologist, though popularly called "rocks" by the geologist,
known as gravel, sand, and clay.
From time to time in geologic history igne ous and sedimentary rocks have been deeply buried, consolidated, and raised again above th surface of the water. In these processes, through the agencies of pressure, movement, and chemica action, they are often greatly altered, and in this ondition they are called metamorphic rocks.
Igneous rocks.-These are rocks which ha cooled and consolidated from a liquid state. As has been explained, sedimentary rocks were deposited on the original igneous rocks. Through the igneous and sedimentary rocks of all ages molten material has from time to time been forced upward to or near the surface, and there con olidated. When the channels or vents into which this molten material is forced do not each the surface, it either consolidates in crack or fissures crossing the bedding planes, thus form ing dikes, or else spreads out between the strat in large bodies, called sills or laccoliths. Such rocks are called intrusive. Within their rock enclosures they cool slowly, and hence are gener ally of crystalline texture. When the channel each the surface the lavas often flow out and build up volcanoes. These lavas cool rapidly in the air acquiring a glassy or, more often, a partially crys talline condition. They are usually more or les porous. The igneous rocks thus formed upon the surface are called extrusive. Explosive action often accompanies volcanic eruptions, causin jections of dust or ash and larger fragments. These materials when consolidated constitut breccias, agglomerates, and tuffs. The ash when arried into lakes or seas may become stratified as to have the structure of sedimentary rock The age of an igneous rock is often difficult or mpossible to determine. When it cuts across edimentary rock, it is younger than that rock it, the igneous rock is the older.
Under the influence of dyn
ic and chemica orces an igneous rock may be metamorphosed The alteration may involve only a rearrangemen of its minute particles or it may be accompanied
by a change in chemical and mineralogic composition. Further, the structure of the rock may be
changed by the development of planes of division, so that it splits in one direction more easily than in others. Thus a granite may pass into a gneiss, and from that into a mica-schist.
Sedimentary rocks.-These comprise all rocks which have been deposited under water, whether in sea, lake, or stream. They form a very large part of the dry land.
When the materials of which sedimentary rocks are composed are carried as solid particles by water and deposited as gravel, sand, or mud, the deposit is called a mechanical sediment. These may become hardened into conglomerate, sandstone, or shale. When the material is carried in solution by the water and is deposited without the aid of life, it is called a chemical sediment; if deposited with the aid of life, it is called an organic sediment. The more important rocks formed from chemical and organic deposits are imestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the above sedimentary deposits may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks. Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in successive layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks over wide expanses, and as it rises or subsides the shore-lines of the ocean are changed: areas of deposition may rise above the water and become land areas, and land areas may sink below the water and become areas of deposition. If North America were gradually to sink a thousand feet the sea would flow over the Atlantic coast and the Mississippi and Ohio valleys from the Gulf of Mexico to the Great Lakes; the Appalachian Mountains would become an archipelago, and the ocean's shore would traverse Wisconsin, Iowa, and Kansas, and extend thence to Texas. More extensive changes than this have repeatedly occurred in the past.
The character of the original sediments may be changed by chemical and dynamic action so as to produce metamorphic rocks. In the metamorphism of a sedimentary rock, just as in the metamorphism of an igneous rock, the substances of which it is composed may enter into new combinations, or new substances may be added. When these processes are complete the sedimentary rock becomes crystalline. Such changes ransform sandstone to quarzite, limestone to marble, and modify other rocks according to their composition. A system of parallel division planes is often produced, which may cross the original beds or strata at any angle. Rocks divided by such planes are called slates or schists. Rocks of any period of the earth's history may be more or less altered, but the younger formations have generally escaped marked metamor. phism, and the oldest sediments known, though generally the most altered, in some localities emain essentially unchanged
Surficial rocks.-These embrace the soils, clays, ands, gravels, and bowlders that cover the surface, whether derived from the breaking up or disintegration of the underlying rocks by atmospheric agencies or from glacial action. Surficial rocks
that are due to disintegration are produced chiefly that are due to disintegration are produced chiefly by the action of air, water, frost, animals, and plants. They consist mainly of the least soluble parts of the rocks, which remain after the more soluble parts have been leached out, and hence are known as residual products. Soils and subsoils are the most important. Residual accumulations are often washed or blown into valleys or other depressions, where they lodge and form deposits that grade into the sedimentary class. Surficial rocks that are due to glacial action are formed of the products of disintegration, together with bowlders and fragments of rock rubbed from the surface and ground together. These are spread irregularly over the territory occupied by the ice, and form a mixture of clay, pebbles, and bowlders which is known as till. It may occur as a sheet or be bunched into hills and ridges, forming moraines, drumlins, and other special corms. Much of this mixed material was washed away from the ice, assorted by water, and rede-
posited as beds or trains of sand and clay, thu
forming another gradation into sedimentary deposits. Some of this glacial wash was deposited in tunnels and channels in the ice, and forms char acteristic ridges and mounds of sand and gravel, known as osars, or eskers, and kames. The material deposited by the ice is called glacial drift; that washed from the ice onto the adjacent land is called modified drift. It is usual also to class as surficial rocks the deposits of the sea and of lakes and rivers that were made at the same time as the ice deposit.

ors or rocks

Rucks are further distinguished according to their relative ages, for they were not formed all at one time, but from age to age in the earth's history. Classification by age is independent o origin; igneous, sedimentary, and surficial rocks may be of the same age.
When the predominant material of a rock mass is essentially the same, and it is bounded by rocks of different materials, it is convenient to call the mass throughout its extent a formation, and such a formation is the unit of geologic mapping
Several formations considered together are designated a system. The time taken for the deposition of a formation is called an epoch, and the time taken for that of a system, or some larger fraction of a system, a period. The rocks are mapped by formations, and the formations are classified into systems. The rocks composing a system and the time taken for its deposition are given the same name, as, for instance, Cambrian system, Cambrian period.
As sedimentary deposits or strata accumulate the younger rest on those that are older, and the relative ages of the deposits may be discovered tionship holds except in regions of intense dis turbance; sometimes in such regions the disturb ance of the beds has been so great that their position is reversed, and it is often difficult to position is reversa, ane the relative a positions, then fossils, or the heds from thei positions; then fossils, or the remains of plant and animals, are guides to show
or more formations is the oldest.
or more formations is the oldest.
Strata often contain the remains of plants and Strata often contain the remains of plants and
animals which lived in the sea or were washed from the land into lakes or seas or were buried in surficial deposits on the land. Rocks that con tain the remains of life are called fossiliferous. By studying these remains, or fossils, it has been found that the species of each period of the earth's history have to a great extent differed from those of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are character istic types, and they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked the time of thether, for. if present.

When two formations are remote one from the other and it is impossible to observe their relative positions, the characteristic fossil types found in them may determine which was deposited first.
Fossil remains found in the rocks of different areas, provinces, and continents, afford the most
important means for combining local histories important means for comb
into a general earth history.
Colors and patterns.-To show the relative ages of strata, the history of the sedimentary rocks is divided into periods. The names of the periods in proper order (from new to old), with the color or colors and symbol assigned to each, are given in the table in the next column. The names of certain subdivisions of the periods, frequently used in geologic writings, are bracketed agains the appropriate period name
To distinguish the sedimentary formations of any one period from those of another the patterns for the formations of each period are printed in the appropriate period-col the last (Archean) The formations of any one period, excepting
the Pleistocene and the Archean, are distin guished from one another by different patterns, made of parallel straight lines. Two tints of th period-color are used: a pale tint (the underprint) is printed evenly over the whole surface represent ing the period; a dark tint (the overprint) bring out the different patterns representing formations.

Pratos.	\|sxumoL	Cooror
Pleistocene	P	Any colors.
Neocene $\left\{\begin{array}{l}\text { Pliocene } \\ \text { Miocene }\end{array}\right\}$	N	Buffs.
Eocene (including Oligocene)	E.	Olive browns.
Cretaceous.	k	Olive-greens.
Juratrias $\left\{\begin{array}{l}\text { Jurassie } \\ \text { Triassic }\end{array}\right\}$	J	Blue-greens.
Carboniferous (including Permian)		Blues.
Devonian.	D	Blue-parples.
Silurian (including Ordovician)	s	Red-purples.
Cambrian	¢	Pinks.
Algonkian	A	Orange-brow
Archean	a	Any colors

Each formation is furthermore given a letter symbol of the period. In the case of a sedimen tary formation of uncertain age the pattern i printed on white ground in the color of the period to which the formation is supposed to belong the letter-symbol of the period being omitted.

The number and extent of surficial formation of the Pleistocene render them so important that o distinguish them from those of other period and from the igneous rocks, patterns of dots and circles, printed in any colors, are used.
The origin of the Archean rocks is not fully settled. Many of them are certainly igneous. Whether sedimentary rocks are also included is not determined. The Archean rocks, and all meta morphic rocks of unknown origin, of whatever age re represented on the maps by patterns consisting of short dashes irregularly placed. These are printed in any color, and may be darker or lighter than the background. If the rock is a schist the dashes or hachures may be arranged in wavy par allel lines. If the rock is known to be of sedimentary origin the hachure patterns may be combined with the parallel-line patterns of sedimentary formations. If the metamorphic rock i recognized as having been originally igneous, the hachures may be combined with the igneous pattern.
Known igneous formations are represented by patterns of triangles or rhombs printed in any rilliant color. If the formation is of known ag he letter-symbol of the formation is preceded by the capital letter-symbol of the proper period If the age of the formation is unknown the letter symbol consists of small letters which suggest the
,

THE VARIOUS GEOLOGIC SHEET
Historical geology sheet.-This sheet shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map To ascertain the meaning of any particular colored pattern and its letter-symbol on the map the reader should look for that color, pattern, and symbol in the legend, where he will find the name and description of the formation. If it is desired to find any given formation, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be traced out.

The legend is also a partial statement of the reologic history. In it the symbols and names are arranged, in columnar form, according to the origin of the formations-surficial, sedimentary, and gneous-and within each group they are placed in the order of age, so far as known, the younges the top.
Economic geology sheet.--This sheet represents the distribution of useful minerals, the occurrence of artesian water, or other facts of economic interest, showing their relations to the features of topography and to the geologic formations. All the formations which appear on the historical geology sheet are shown on this sheet by fainter color-patterns. The areal, geology, thus printed, affords a subdued background upon which the areas of productive formations may be emphasized by strong colors. A symbol for mines is introduced at each occurrence, accompanied by the name of the principal mineral mined or of the one quarried.
structure-section sheet.-This sheet exhibits th relations of the formations beneath the surface.

In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different bed to one another may be seen. Any cutting which exhibits those relations is called a section, and the same name is applied to a diagram representing the relations. The arrangement of rocks in th earth is the earth's structure, and a section exhibit ing this arrangement is called a structure section The geologist is not limited, however, to th natural and artificial cuttings for his informatio concerning the earth's structure. Knowing the manner of the formation of rocks, and havin raced out the relations among beds on the sur face, he can infer their relative positions afte they pass beneath the surface, draw section which represent the structure of the earth to onsiderable depth, and construct a diagra whibiting what would be seen in the side of exhibiting what would be seen in the side of deep. This is illustrated in the following figure

Fig. 2.- Sketch showing a vertica
The figure represents a landscape which is cut off sharply in the foreground by a vertical plan that cuts a section so as to show the underground elations of the rocks.
The kinds of rock are indicated in the section by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but th following are generally used in sections to repre sent the commoner kinds of rock:

shales

of rock.
The plateau in fig. 2 presents toward the lowe and an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section.
The broad belt of lower land is traversed by several ridges, which are seen in the section to correspond to beds of sandstone that rise to the arface. The upturned edges of these beds for he outcrops of limestone and calcareous shales Where the edges of the strata appear at th whe thir on the arface the the dip below the and the ongles at which they dip below the surface cand can observed.
be inferred.
When strata which are thus inclined are trace underground in mining, or by inference, it is fre quently observed that they form troughs or arche such as the section shows. But these sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets. That they are now ben and folded is regarded as proof that forces exist which have from time to time caused the earth's surface to wrinkle along certain zones
On the right of the sketch the section is com posed of schists which are traversed by masses of gneous rock. The schists are much contorted and their arrangement underground can not be inferred. Hence that portion of the sectio delineates what is probably true but is not known by observation or well-founded inference.

In fig. 2 there are three sets of formations, dis inguished by their underground relations. The first of these, seen at the left of the section, is the set of sandstones and shales which lie in a horizontal position. These sedimentary strata are now high above the sedimentary a plateau, and their change of elevation shows that a portion of the earth's mass has swelled upward from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable.
The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable.
The horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying deposits are, from their positions, evidently younger than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds and the accumulation of the younger. When younger strata thus rest upon an eroded surface of older strata the relation between the two is an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystal line schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But this pressure and intrusion of igneous rocks have not affected the overlying strata of the second set. Thus it is evident that an interval of considerable duration elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the seene of eruptive activity; and they were deeply eroded. The contact between the second and third sets, marking a time interval between two periods of rock formation is another uncon formity.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections in the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profiles of the surface in the section correspond to the actual slopes of the ground along the section line, and the depth of any mineral-producing or water-bearing stratum which appears in the section may be measured from the surface by using the scale of the map.
Columnar-section sheet.-This sheet contains a concise description of the rock formations which occur in the quadrangle. The diagrams and verbal statements form a summary of the facts relating to the character of the rocks, to the thicknesses of the formations, and to the order of accumulation of successive deposits.
The rocks are described under the corresponding heading, and their characters are indicated in the columnar diagrams by appropriate symbols. the heading "Thickness in feet," in figures which tate the least and greatest measurements. The tate the least and greatest measion is shown in he column, which is drawn to a scale - usully the coll 1 inch The order f the edime i hown in the columarang ont: the oldest formation is placed at the ment: the oldest formation is placed at the bottom of the column, the youngest at the top, and igneous rocks or other formations, when
present, are indicated in their proper relations. present, are indicated in their proper relations.
The formations are combined into systems The formations are combined into systems
which correspond with the periods of geologic which correspond with the periods of geologic
history. Thus the ages of the rocks are shown, history. Thus the ages of the rocks are sho and also the total thickness of each system.
The intervals of time which correspond to events of uplift and degradation and constitute interruptions of deposition of sediments may be indicated graphically or by the word "unconformity," printed in the columnar section.
Each formation shown in the columnar section is accompanied by its name, a description of its character, and its letter-symbol as used in the maps and their legends.

CHARLES D. WALCOTT,
Revised June, 1897.

DESCRIPTION OF THE NUECES QUADRANGLE．

GEOGRAPHY．
Geographic position．－The Nueces quadrangle s bounded by parallels of latitude $29^{\circ} 30^{\prime}$ and 30° and meridians 100° and $100^{\circ} 30^{\prime}$ ．Its dimensions are approximately 34.44 miles from north to south and 30.05 miles from east to west；it embraces herefore，about $103 \overline{5}$ square miles，countteo including portions of Edwards，Kinney，Combratece． nd Uvalde counties，Texas．Only two adjacen quadrangles have been surveyed－the Rock Springs on the north and the Brackett on the south．
General relations．－This quadrangle lies along he southern margin of the Great Plains region of the United States，which in Texas is composed of the Llano Estacado and the Edwards Plateau． The Edwards Platean is the continuation of the Llano Estacado south of the thirty－ second parallel，extending from the Pecos River eastward to the western margin of the Central Province of Texas and the Rio Grande Plain．The rather abrupt southern margin of this plateau is the Balcones escarpment．
all the Great Plains region to the northward． At the south margin of the quadrangle，especially At the Gors to 75 feet to the mile，leading．rapidly down to the lower－lying Rio Grande Plain，which has an average altitude in this portion of its extent of 1000 feet．This increased slope of the surface is 100 ceet．This increased slope of the old，which characterizes the Balcones carp line in this immediate region．sidefiter ditit Its margins，especially toward the east，
are intensely dissected by the head－water drain age of the numerous minor laterals of the Nueces River and are carved into many rounded，steeply loping hills．The southern and eastern balf of the quadrangle is a notable example of the manner in which the scarped edge of a nearly horizontal ele－ ated plain may be dissected，by the interlocking head－water drainage which rises against it，into innumerable circular buttes and mesas．
Owing to alternation of hard and soft layers constituting the succession of strata，the marginal opography of the slopes leading down to the stream ways produced by this erosion is of the
tic pyramids，as may b
Drainage．－The drainage from this plateau Drainage．－The drainage from this plateau
finds its outlet to the sea in several directions． The little caletas at the center of the northern edge of the quadrangle lead northward into the Llano River and thence into the Gulf of Mexico by the Colorado of Texas．In the extreme south by the Colorado of Texas．In the extr
a few drainage heads lead off to Pinto $\begin{gathered}\text { Three direc．} \\ \text { draimage．}\end{gathered}$ Creek and finally reach the sea through
the Rio Grande．The remainder of the drainage gathers into the Nueces system，the principal river of the quadrangle．Owing to the diverse distribution of water from the plateau，the sum－ mit region（all of which is not included in this quadrangle，however）is locally called by the inhabitants＂the Divide．＂
The two forks of the Nueces，which flow from north to south across the quadrangle，although apparently coeval，are dissimilar in
history and importance，as will pres． $\begin{gathered}\text { The Nueces } \\ \text { system．}\end{gathered}$ ently be shown．They traverse wide，flat－bottomed， canyoned valleys indenting the plateau，and are
indent the marginal canyon wall with thousands of reentrant angles and curves．The secondary drainage of the remainder of the area is of quit different character，as exemplified by Griffin Creek at the southwest corner：This consists o a number of palmately ramifying head－water lat erals（caletas），which begin in short，steep，rocky arroyos of the hills surrounding large nearly level，amphitheater－like，grass－ $\begin{gathered}\text { arassy } \\ \text { thenter－like }\end{gathered}$ covered valleys．These amphitheater．valieys． like valleys，covered with the transported soi and rock débris of the adjacent hillsides，are locally known as＂grass valleys．＂Water occu pies the head－water arroyos only at rare and brie intervals succeeding each cloudburst，and is usu ally only sufficient to gather and carry the hillside debris down into the grass valleys，where the moisture is evaporated or imbibed before reachin the main stream ways．Upon reaching the val leys the torrential streams spread out a flood of débris which so nearly obliterates all previously defined drainage that the latter can be but faintly traced across the valleys．Thus it is that the stream ways are always strongly etched upon th

Fig．1．－Profile and

Defined more specifically，the Nueces quadrangle lies along the southern margin of the Edwards Plateau，immediately north of the Rio Grande Plain．The latter is a low，level plain，extending from the Balcones escarpment southward to the eastern front of the Mexican Cordilleras．

TOPOGRAPHY．

The topography of the Brackett quadrangle， south of the Nueces，should be considered in con nection with the latter in order to gain a proper understanding of the geography of this region． Together they exhibit the contrast between the high，grass－covered plateau of the Great Plains， of which the Nueces quadrangle is a type，and the lower－lying chaparral desert of the Rio Grande Plain．They differ accordingly in geologic and cultural conditions．
Relief．－The general relief of the Nueces quad rangle is that of a nearly horizontal upland plain standing 2250 feet above the sea，divided by canyons into numerous summits．The valleys are cut upon and through horizontal strata of lime－ stone of varying thickness and hardness．The
bench－and－terrace type，marked by steep scarps ing with gentler slopes on softer layers． Near the summit of the plateau，where $\begin{aligned} & \text { Terraced } \\ & \text { valoeses．} \\ & \text { val }\end{aligned}$ flaggy layers of the Edwards limestone are present，the first noticeable descent into a can－ yon is a gentle slope，interrupted by slight vertical steps of from 2 inches to 2 feet．This slope ends， in descending，on a thick stratum which weathers into vertical bluffs，constituting the cornice layer of the plateau．This，in turn，is succeeded by other slopes and scarps until the basal canyon rock is reached，beneath which the Comanche Peak bed weathers out in concave profile．The accompanying figures（figs． 1 and 2）illustrate hese features．
Where extensive summit areas are preserved the soil is usually fairly deep，but the bordering breaks and slopes are in general rocky，and often marked by extensive areas of naked limestone surfaces，with occasional patches of soil and loose débris．
Where the strata exposed are limestone rocks of homogeneous texture the surfaces weather into
inclosed by scarped and terraced slopes from 200 to 500 feet in height．The depth of the valley of the East Nueces is 500 feet below the summit of the plateau；that of the West Fork averages 300 feet below．The bottoms of the wide，flat valleys between the canyon walls are ancient flood plains， standing about 50 feet above the present stream beds，which are trivial in comparison with them， The canyon walls are nearly always steep，and frequently perpendicular，but usually consist of an alternation of steep scarps and slopes，as shown in the profiles．These canyons are types of those accompanying all the drainage ways indenting the eastern and southern borders of the Plateau of the Plains．
The water in these stream ways is intermittent， the beds of most of them being usually either smooth horizontal limestone strata or clean－washed flints and limestone bowlders bleached in the glaring sun－ shine to a chalky white color；in fact，they are streams of gravel rather than of water．Here and there，however，stretches of the stream way are filled with flowing water，which bursts out in
slopes and but faintly discernible in the flats． Usually，but not always，a gap has been worn through the lower portion of the hills surround ing the valleys，through which all the drainage in time of excessive rainfall may escape to the main drainage of the Nueces by rocky arroyos． The drainage system，from the head－water caletas through principal laterals to permanent water，is seldom if ever occupied by water contin uously from head to mouth．A sudden cloudburst upon the dry，rocky，and $\begin{aligned} & \text { Eftect of } \\ & \text { cooutsusts．}\end{aligned}$ precipitous slopes fills the dry stream ways with gigantic and ephemeral torrents of mud and gravel，which deposit débris irregularly，accord ing to circumstances of quantity，slope，evapora－ tion，and sinking of the water．The general result of each cloudburst，however，is another onward push of the débris toward the lower country of the Rio Grande Plain．Thus it is that an intermittent stream of gravel is and has been for a long time flowing away from the Edwards Plateau and spreading over the lower－lying Rio Grande Plain，developing what is herein called the Uvalde formation－a phenomenon which is

relief presents three conspicuous elements－sum． mit areas，valley slopes，and stream ways． The summit areas，more or less extensive patches of level land，are the remnants of the plain which formerly constituted the surface of the quadrangle．This plain corresponded aureas． in level with the thick strata of Edwards lime stone，which retarded erosion throughout the plateau region of Texas．It is only in the north－ central portion of the area mapped，along the high divides between the streams，that fragments of the original plateau level are still preserved．The most extensive remnant is found between the two forks of the Nueces River．This is the southern continuation of the extensive grass－covered summit region of the main area of the Edwards Plateau．
The summit region of the northern half of the quadrangle，having an elevation of approximately 2400 feet，is nearly horizontal，sloping southward at a gradient of less than 16 feet to the mile．It will be noted that feet to the mil．It will be noted that the chief drainage，that of the two Nueces rivers， conforms in direction with this general regiona quadrangle．This low slope is characteristic of
little ridges，crests，and drainage 2．－Cross section of the to the eye in miniature the whole pro－ This miniature erosion of the limestor． surfaces is technically known by the Germans as ＂Karrenfelder，＂the furrows being formed by the solvent effect of rain upon limestone which has been heated by the sun．
Some of the outcropping strata make bold，per－ sistent cliffs nearly 50 feet in height．These are composed of hard，subcrystalline limestone． Although apparently of homogeneous texture，the faces of these cliffs weather into small open cav－ erns，which sometimes show thin laminæ coated with white efflorescence．The bottoms of caverns of this character are filled with a layer of white pulverulent earth．Still other massive ledges weather into caverns where the residual products are brilliant vermilion mixtures of clay and iron， accompanied by beautiful fossils，sometimes com－ posed of crystallized calcite．The slopes result from the weathering of the softer beds of chalky or argillaceous texture．Where there are great thicknesses of beds of homogeneous texture the rocks weather into conical hills resembling gigan－

Valley south of Barksdale
large running streams，having the peculiar light sea－green color characteristic of all the spring rivers breaking from the Cretaceous limestone of
southwestern Texas．The traveler unaware of the habit of these streams，standing on the banks of one of them，would believe that it was a large and continuous river；but upon following its course he would find that this running water usually disappears within a very short distance downstream，either by absorption into the gravel－ filled stream way or through fissures in the bed rock．Still farther down it may reappear at the surface．This running water is constant．Although supplied by rain，it does not rise and fall in sympathy with local showers， $\begin{gathered}\text { Permaneat } \\ \text { water．} \\ \text { wat．}\end{gathered}$ but represents the steady flow from
the rocks underlying the Edwards Plateau．It appears at the surface in springs，which invari－ ably occur where the rivers in their descending course first
ing strata．
The smaller side canyons，with a few exceptions， are dry arroyos．These in turn are of two types．解 steep gradients and are rocky canyons．They
of widespread occurrence throughout the whole of the great arid regions of southwest Texas and the gre
Mexico．
The history of this drainage presents a most interesting scientific study，which can not here be amplified in full．The portion of the East Nueces
Canyon in this area is undoubtedly the older Canyon in this area is undoubtedly the olde stream way，as is testified by the greater depth to which it has cut into the $\begin{gathered}\text { Relatite ages } \\ \text { rivers．}\end{gathered}$ underlying rock and by the great extent of the Uvalde formation within its valley On the northeast margin of the quadrangle the East Fork has an elevation of 1900 feet；on the southern margin its altitude is less than 1250 feet The West Fork of the Nueces has an elevation of 2100 feet at the northern margin of the quadran gle；on the south margin its bed has an elevation of 1300 feet．Thus it will be seen that the East Nueces has a cut 200 feet lower into the rocks upon which it is imposed．
All the drainage courses have adjusted them－ selves to fundamental lines of structure，such as dips，faults，and folds．The main drainage of the two Nueces flows southward across the uniforml inclined portion of the quadrangle until the flex－
ares and faultings at its southern margin are ncountered. Between Whistler and Swantne the West Fork deflects eastward alon the strike of the Griffin monocline, and ourse of the axis of the Little Pinto fault. Aft ollowing this for a few miles it deflects sout loward along the approximately east west strik of the Whistler fold to the Brackett quadrange, the Whistler fold to the Brackett quadrange hen it again lin the
 en the form he northern scarp line of the Turkey fold, which t crosses southward by a rocky canyon, until it neets and follows the east-west scarps of Shoa Creek limestone from Mustang Water Hole onward to its mouth. These diverse courses of the West Fork do not represent the life work of one coninuous stream, but are the result of the union of several streams through a complex system of cap ture, by which the West Fork was deflected from its original course into the Rio Grande.
There can be little doubt that the West For of the Nueces once continued due southwar across the quadrangle instead of deflecting to the eastward, as it now does, $\begin{aligned} & \text { Former } \\ & \text { coustof the } \\ & \text { West } \\ & \text { Refeces }\end{aligned}$ and then found an outlet through now abandoned course into the Rio Grande debouching on the plain in the vicinity of the southwest quarter of the Brackett quadrangle where immense deposits of ancient gravel attest the former presence of some such stream. Thi former course, however, was changed by the cap turing head waters of another large stream which now forms the great eastward bend of the West Nueces.
The southern margin of the district mapped as been the scene of a continuous warfa etween the courses of the minor headwater drainage, whereby the channels sapeam streams have been deflected from one cours into another. The numerous inverted laterals throughout this area testify to the extent of this process of capture and lead to the conclusion, ummit of the Edwa Plance stood much higher than now, and during the long interval of ime since the close of the Cretaceous period has been horizontally and progressively worn down from one plain to another.

meteorology

The temperature of the region is marked by reat diurnal changes - warm days and cool nights-causing excessive rock disintegratio through expansion and contrace Numerou edges exhibit at the surd to no other cause than his, and in this manner much débris is accumu red during the intervals between the heary ated during the intervals between the
The rainfall is sporadic, local, and
The rainfall is sporadic, local, and irregula time of fall. It is normally of the clou burst type, falling in sudden and fierce howers upon limited areas. T onthly and annual precipitation also show great irregularity, varying at Fort Clark, 21 miles south of the quadrangle, from 0 to 23 nches a month and from 13.76 to 40.54 inches year, and averaging 24.02 inches annually for a period of twenty years. No statistics have been kept within the limits of the quadrangle, but here are reasons for believing that its precipita ion is slightly greater than that of the lower-lying Rio Grande Plain. This conclusion is based upon personal observation, and studies of statistics of
orvation stations of the surrounding area.
The region is constantly swept by strong winds, sually from the north and southeast. Thes winds are undoubtedly an important geologic agent in removing and distributing rock débris

vegetation.

Within this quadrangle we see the meeting of everal floral provinces. The summit of the plateau is covered by a dense growth of nutritiou grasses, without trees or shrubs, except that at nay be patches of scrub oaks, locally known as shin pas." This is the flora of the plains In low, alluvium-filled valleys, especially Fiora of the here springs seep out of the rock avorable conditions are presented for the growth frees; hence narrow ribbons of forest are found around the water-holes: These embrace many
pecies, such as elm, chestnut oak, walnut, syca ing great size and beauty. The cecan, the trees attain cypress along some of these streams is a peculia anomaly. These groves of the wet valleys are solated outliers of the great Atlantic timber belt from which they are now separated by miles reeless country Along the vertical slopes of the acarps the for the Cretaceous prait carps the flora of the Cretaceous prairie regio juniper and Teras laurel (Sophor), wid, uniper and Texas laurel (Sophora), which, fol owing certain strata, encircle the yellow hill with bands of evergreen. The piñon, or edibl pine, also sparingly occurs along these slopes ear Whistler, which, so far as we are aware, its eastermost occurrence in the United States The chaparral flora of the Rio Grande Plain, cha acterized by thorny deciduous trees, chaparral mostly acacias (mesquite, guaxillo, growth. ttc.), beneath which is an undergrowth of the Mexican nopal (Opuntia), makes tongue-like extensions up the canyons of the drier stream valleys of the southern margin of the area below Camp Wood. On the almost barren limestone lopes of the numerous buttes along the souther dge of the quadrangle, still a fourth flora ncountered This is the remarkable resurrectio flora of the arid region-thick-skinned, coriaceous plants, such as yucca, sotol, $\begin{aligned} & \text { Resurrection } \\ & \text { paratso } \\ & \text { ard region }\end{aligned}$ xtle, etc., and mamillary cacti. Fern
and club mosses of this character (Selaginella lepidophylla) grow in crevices and along the stratification planes of the rocks. These ar adapted by nature to withstand long periods of drought and reveal a wonderful recuperative itality immediately after the rare and eccentric ainfall, suddenly unfolding from dry, brown, an ifeless-looking objects into vigorous green plants.

population.

The Nueces quadrangle is but sparsely popu ated, and mostly in the valley of the Nuece River. Only three villages - Barksdale, Vance and Montell-occur in it, and these aggregate less than a thousand people. In the lower valley of the Nueces settlements are comparatively frequent, but the remainder of the quadrangle is occupied only by ranchmen living at remote distances from one another. In 1890 the total popu ation exclusive of the Nueces Valley was about one person to each two square miles of are The people are mostly engaged in pastoral pu suits.

GENERAL GEOLOGY

The geology of this quadrangle is of a simple ype. It is an area of evenly bedded rocks which have been greatly uplifted without serious defor mation; it is an example of uniform and persistent orizontal stratification, and illustrates the rela ion of topography to structure. It also exhibit he elementary principles of the occurrence of ock water
Classification.-The rocks found within thi quadrangle belong to two great classes: (1) sediments deposited in the sea and subsequently el deposits locally accumulated on the land. Th ea-deposited sediments, now consisting of evenly sea-deposited sediments, now consisting of evenly beddel horin of clay, constitute the substructure of the country and are exposed in summits and scarps; the residual and transported deposits of the second
class, such as soil, gravel, and alluvium, are class, such as soil, gravel, and alluvium, are derived from the former through the work of the atmosphere in the process of erosion, and ar

SEDIMENTARY ROCKs

cretaceous period

The massive limestones with occasional alter ting beds of marls which constitute the rock of the country from the summits of the plateau to far beneath the deepest stream ways are all composed of material which was originally deposited in the waters of the ocean, and embedded in hem are found the remains of the marine animals which inhabited those waters. These rocks repesent the three divisions of the Comanche serie of the lower Cretaceous period. On the highest ummits at the northern margin of the uadrangle a small portion of the basal trata of the Washita division is preexception of the lowe slos of
alley, nearly all the rest of the country, consist the Edwards limestone of the Fredericksburg division. In that portion of the valley of the east Nueces lying lower than the 1750 -foot condivision is exposed.

Glen Rose formation.-These beds consist of faggy, argillaceous limestone, of white or yellow agggy, argillaceous limestone, of white
ish color, alternating with thin strata of marly clay. When transected by
 of hard and soft layers produce a of hard and soft layers produce a
striking topography, the harder beds weathering into precipitous benches, and the softer marls into slopes.
The characteristics of these beds, both lithologic and paleontologic, are very constant from Austin, Texas, to the Nueces quadrangle, the variations being chiefly in thickness. The rocks of the middle of the Glen Rose formation are the oldest exposed in this quadrangle, but the thickness estimated from the nearest exploration of the entire division, in the vicinity of Kerrville, 50 miles to the east, is approximately 500 feet. These beds are exposed only in the lower slopes of the valley of the East Nueces and its tribuaries between Vance and Montell and in two places on the West Nueces. The lowest channel of the West Nueces has cut down barely to the top of the Glen Rose formation in places, and it - posed along the stin Kickapoo Springs and in the north bend of river along the southern margin of the quad
rangle. angle.
Comanche Peak formation.-This is a bed of yellow, argillaceous limestone presenting a nodular, reticulated, chalky appearance. It is partly characterized by a peculiar fauna containing large number of the oyster Exogyra texana Roemer, which is especially abundant in its basal portion. This formation is always from 40 to 50 feet thick, and although it is insignificant as regards thickness, it is one of $\begin{aligned} & \text { Persistent } \\ & \text { bimeston } \\ & \text { limestone }\end{aligned}$ the most persistent beds, both in paleontologic and in lithologic characters, of the Texas Cretaceous section, and is economically importan in locating the position of underground water. This formation occurs along portions of the East and West Nueces, as shown on the map. The clays (Walnut formation) so rich in Exogyra texana, which are usually found just below the Comanche Peak limestone in Hood, Comanche, Travis, Gillespie, and other counties, are absent in the Nueces quadrangle.
Edwards formation. - Under this name ncluded what has
This formation is the chief one in importance, constituting all the rocks of the quadrangle except those in the lower slopes of margin of the quadrangle at the very margin of the quadrangle at the very $\begin{gathered}\text { The saratp } \\ \text { region. }\end{gathered}$ ummit of the plateau. Its strata give Its thickness within this quadrangle is abous 68 Its th
feet.
Not only in the Nueces quadrangle, but through out all the Texas and Moxican regions inland beyond the Coastal Plain, this is the most con picuous and extensive sedimentary formation This formation is likewise topographically the most important, inasmuch as its harder strata resist erosion more than do other fonations, and hence it is the chief component of the scarps and mesas of the Grand Prairie, the Edwards Plateau, and the Callahan Divide of the central portion of the State. To its hardness is also largely due the topography of the limestone mountains of Mexico
This formation shows nearly every variation in color, composition, texture, alteration, and weathering that limestones may display. In general the rocks are of whitish colors, but on weathering they show layers of buff, sition most of them are as nearly pur of lime as can be found in nature but some bed have slight admixtures of epsomite, chloride of sodium, and perhaps other salts. Clay is usually absent except as a constituent of the few marly layers rarely found intercalated between the beds f limestone. Excedingly fine siliceous particles are found mixed with the lime in a few beds, which are popularly known as "magnesian." Whether these are the finest of the land-derived
sands which were carried out to the area of cal careous deposition, or whether they are the silipus skeletons of marine organisms, such as make up the flints, we can not at present say. No peb ble, bowlder, lignite, or other undoubted piece of land débris has ever been found in these rocks. As is generally the case with limestones, iron is present in the form of pyrites, as is shown by the deep-red color of the residual clays formed from a few of the beds.
These limestones vary in texture from hard, ringing, durable strata to soft, pulverulent chalk that crumbles in the fingers. Some of the pure white beds are of coarsely $\begin{gathered}\text { Texture } \\ \text { sto } \\ \text { stones. }\end{gathered}$ crystalline texture, with calcitized fos sils; others are of the homogeneous texture and color of lithographic stone. Still others are "spotty" in texture, having hard and soft lumps, the latter dissolving away by the percolation of underground water, thus producing what is popularly termed "honeycombed" rocks. The harder spots in some of the beds are indurations, and uggest a process by which flints may be formed. These limestone beds can nearly always be distinguished by the immense quantity of flint nodules embedded in them and scattered everywhere over the surface. The Edwards limestone is the only flint-bearing formation of the American Cretaceous. These flint $\begin{aligned} & \text { Numporsus } \\ & \text { lins sormsi- } \\ & \text { lus }\end{aligned}$ nodules occur in the center of the mas. sive ledges along the separation planes. They are of many shapes. Some are flattened oblong oval, others are discoidal; some are fusiform, like elongated roots; others are knotty, like warty potatoes; others are parts of extensive sheets or very flat lenses. In size they vary from that of a hen's egg to a foot or more in diameter. They also vary greatly in color upon fresh fracture; some are almost jet black; others are light blue, gray, or opalescent; still others are delicate pink in color. The fints occur throughout the lime stone except in the upper 100 feet, and there is some evidence that each particular kind occupies a definite horizon, but this can not be stated as a fact.
Another distinguishing feature of the Edwards limestone is the presence of the peculiar aberrant mollusks of the genera Monopleura, Requienia, and Radiolites-bivalve fossils which have the cornute form of the horns of domestic animals.
The upper 100 feet of the beds consist of flaggy layers of hard white limestone devoid of flints. Below this are thick ledges of yellowish limestone. The central portion, marked by numerous black flints, contains a Details on great thickness of white limestone of homogeneous texture. The lower portions consist of thick ledges and flos containing considerable numbers of flint nodules, or strata of flint.
These deposits apparently are the deepest of the Comanche sea, and this is probably the reason that they are more purely calcareous than the ther extensive beds It is true that in the Glen Pose formation of the Trinity division Rose formation of the Trinity division there are occasional thin beds of chalk, some of which are composed almost entirely of foraminifera, but even the foraminifera themselves are clays.
bed containing a large percentage of clay bed containing a large percentage of clays. Since both the Edwards limestone and the Comanche Peak formation are composed chiefly of carbonate of lime, originally deposited as a marine chalk, which, under the influence of
atmospheric and chemical action, has been for the atmospheric and chemical action, has been for the most part consolidated, they are not always distinguishable. The Comanche Peak, however, is less consolidated and of a more marly texture than the Edwards. Usually the Edwards limestone is harder, of subcrystalline texture, and weathers into cliffs, while the Comanche Peak beds are softer, of chalky texture, and occur at the base of the slopes. In most exposures reli ance must be placed upon paleontologic determinations to differentiate the two formations.
Fort Worth limestone and Del Rio clay.-It is very probable that the upper 50 or 100 feet of the highest summit of the plateau may represent beds which we regard as the basal portion of the Washita division. On the high summits of the Rock Springs quadrangle, immediately northeast of the area shown on the Nueces sheet, little knolls of brownish clay and impure ferruginous limestone were found containing Exogyra arietina and other fossils characteristic of the Del Rio clay and the Fort Worth limestone. The clays and limestones
of the northern portion of the Nueces quadrangle present such poor paleontologic criteria that these eds are not positively identifiable or separable from the underlying Edwards limestone, into which they grade without break, although it is division. A mile and a half south of Whistler division. A mile and a half south of Whistler
the Del Rio clay is exposed in a limited area in the Del Rio clay is exposed in a limited area in
the bluffs on the east side of the Nueces Canyon, the bluffs on the east side of the Nueces

surficial rocks.

neocrene and pleistocene periods.
The formations belonging to these periods are all udicated on the map by one color, for the reason that, although in places they may be distinguished one from another, the lines of demarcation between them can not usually be drawn. They are composed of the same material, the product of processes similar but slightly varied, and are similar in lithologic aspect. They represent the products of upland degradation, and when transported are usually carried but a moderate distance ported are usually
to a lower level.
Uvalde formation.-The wide valleys of the wo Nueces rivers are entirely disproportionate to the present streams and are filled with an ancient alluvial deposit which has been termed the Uvalde formation.
The Uvalde formation is composed of flint and limestone bowlders and gravel derived from the adjacent country, and is sometimes consolidated into a massive conglomerate. It constitutes a sheet of material filling from side to side the old valleys, through the center of which the present tream ways meander at a depth aver-
aging 50 feet below the surface of the $\begin{gathered}\text { Graval } \\ \text { terraces. }\end{gathered}$ formation, so that the remnants of this older for mation form a terrace on either side.
This formation increases in width and importance in descending the stream, to the southward. As the stream ways pass out of the Edwards Plateau into the lower Rio Grande Plain the formation spreads out so as to cover the present divides and constitutes one of the most widely pread and important geologic features of Texa
Leona formation.-Below the level of the plane alluvium, there is a formation of pecul. alluvium, there is a formation of pecul-
iar, light.yellow, fluviatile marl, coniar, light-yellow, fluviatile marl, con-
taining occasional finely worn, yellow,
positite.
pos. taining occasional finely worn, yellow, calcareous pebbles. It is named from its typica development on the Leona River in Uvalde County. It is probably identical with the Onion Creek formation of Travis County (see Austin folio). This formation has wide occurrence in the stream valleys of the Central and East Central provinces of Texas. It may be the equivalent of the San Diego formation of the Coast Prairie From fossils found in it in Travis County, it is considered to be the equivalent of the Equus beds stage of the early Pleistocene. This marl is traceable below the Uvalde terrace in all the stream of the border of the Edwards Plateau, in the Cretaceous region of Texas, and undoubtedly repesents a distinct period and event in the Pleisto cene history of the region.
The wash.-The observant traveler through the country will see that the edges of the outcropping edges of hard limestone rocks forming the scarp and crests are being shattered into fragments by he alternate expansion and contraction due to variations of temperature. These loosened piece may remain in place until a sudden loudburst occurs, when they are gathered by the torrents and washed \qquad down the slopes. A peculiarity of this rainfall, however, is that, although it comes in great tor rents and gathers in rills and sheet floods upon the upper slopes, it is either imbibed or evap rated before reaching an outlet into anothe stream, and thus this débris is scattered in great sheets over local lower-lying slopes or levels, Sedimentary material of this kind constitutes fo mations of vast areal extent in the arid and semiarid regions, and may appropriately be known as the "wash." It occupies a considerable portion of the surface of the Nueces quadrangle, especially in the wide hemispherical drainage basins of the minor stream ways, such as those of Griffin, D_{1} Sycamore, Sycamore, and Hackberry creeks.
In addition to the wash, one other distinct sur ficial deposit is recognizable - i. e., the recent or resent river alluvium, which is composed almost entirely of rolled pebbles of flint and limestone

ous mud.

structure.

In the northern two thirds of the quadrangle he rock strata are either horizontal or so nearly horizontal that no dips can be measured. These conditions are those of all the rocks constituting the floor of the plains for 200 miles or more to the northward. In the southern third of the quadrangle, however, the rock sheets begin to flex southward, marking the | Monoclinal |
| :---: |
| toontothat |
| southed | commencement of a monoclinal fold,

which soon carries them far beneath the Rio Grande Plain, not to rise again until they are upturned in the mountains of northern Mexico. Accompanying this fold are numerous small faults generally running in northwest-southeast directions, cutting the strike of the fold and accompanied by much jointing. These faults are difficult to trace, and they are not continuous over great distances. Often blocks of strata are faulted down, without affecting the continuous horizontal condition of the stratification of the rocks on ither side of the block. They will be more fully discussed in the Brackett folio.

underground caverns.

In the great thickness of limestone constituting he most extensive formation of this area are many interesting caverns. One of these, just west of the McKenzie trail, about 6 miles due northwest of Hillcoat's ranch, may be taken as a type. The entrance to this cave is near the summit
of an oval conical butte. The recesses cave. of an oval conical butte. The recesses cave. of the cavern apparently undermine the whole hill, and are elongated chambers having cross sections shaped like Norman arches. The total depth from the entrance to the bottom, as far as explored, is over 140 feet. The many chambers are lined with stalactites and stalagmites of great beauty and a variety of forms. Views of the cave are shown on the sheet of illustrations. The at its lowest depths. Although apparently not well known to the people of Texas, this cave is a natural object of great interest.

GEOLOGIC HISTORY.

The Cretaceous rocks were laid down as sedi ents in the ocean. Previous to their deposition ments in the ocean. Previous to their
a land area had existed to the north of
a land area had existed to the north of
the region since Paleozoic time, but
sower creta-
sidencecti-the region since Paleozoic time, but was slowly covered by the sea during the subsidence of earlier Cretaceous time, as is recorded in the character of the rocks. The basal beds of the Trinity division are coarse, landderived débris, with occasional beds of lignite. As we ascend to higher and higher strata the rocks are found to be more uniform in composition and more evenly sorted. Strata of chalky limestone appear, alternating with very fine calcareous clays, as seen in the lowest beds exposed in the Nueces quadrangle, and the land-derived débris becomes finer and finer. Finally the clays cease, in the ascending series, and chalky limestones representing chemically and organically derived deposits on the off-shore bottom prevail. This deepening of the sea culminated in the Edwards formation of the Fredericksburg division. These sediments were deposited so far from the shore that they are entirely free from the coarser débris of the land, which is cast down first by land aters on reaching the se
The less pure sediments of the Washita division how that after the lower Cretaceous subsidence which culminated in the Fredericksburg epoch the land began to rise again.
During upper Cretaceous time there was another great subsidence and emergence, another migration of the shore line of the ocean back and forth across the Texas region; but Upper cretathe record of events of this period is
not preserved in the Nueces quadrangle, for the upper Cretaceous sediments which no doubt once added their thickness to the former height of the plateau were all removed by processes subsequently active.
At or immediately after the close of the Cretaeous period sediments now constituting the surface, with thousands of feet $\begin{aligned} & \text { Later emer- } \\ & \text { gers and } \\ & \text { erin. }\end{aligned}$ overd into permant dry land

It is probable t
that during Eocene time the summit of the plateau was much higher than it is
now. This additional height equaled the thickness of the upper Cretaceous formations now washed away (over 3000 feet), less the amount of the subsidence of Eocene time. During this period the interior margin of the ocean extended from near San Antonio toward Eagle Pass, making a slight indentation up what is now the valley of the Rio Grande. The plateau region at this time was undergoing great erosion, and was probably then stripped of much of its former upper Cretaceous capping.
The tremendous loading down of the coast by sediments during the Eocene period was probably accompanied near its close by the fold-
ing and faulting of the Balcones scarp of foulds.ion line, of which the monocline at the sou

of this quadrangle is a part.

In Miocene time the land was rising; great erosion continued, the summit of the plateau was degraded, and the present canyons of the main forks of the Nueces were outlined. During this period the progressive erosion which had been stripping away layer after layer of the beds of the Cretaceous formation reached the Edwards limestone, which forms the hard cap or resistance plane of the Edwards Plateau, and in the Pliocene epoch had cut completely through it
The main Nues, bast Fork, existed prior to the Lafayette epoch (late Pliocene). Its great canyon through the Edwards limestone was cut principally during the early $\begin{gathered}\text { The erorosion } \\ \text { cont } \\ \text { canyons.s.s. }\end{gathered}$ part of that epoch. At the close of this epoch the canyons were short, deep estuaries. During the Lafayette epoch the land was subsiding, as is attested by the manner in which canyons were partially refilled by the deposits of the Uvalde formation. The West Fork of the Nueces was a feebler stream at this period of its history, and it probably had its outlet directly into the Rio Grande.
Succeeding the Lafayette sub-periods of canyoncutting and canyon-filling, there were slight oscillations of the land. The most marked of these was in early Pleistocene time, the epoch of the deposition of the marly alluvium of the Leona formation, which is equivalent with what is known as the Equus beds epoch.
Since the early Pleistocene, erosion has continued, and is going on to-day at a rapid rate. But the great sculpturing of the quadrangle was accomplished in the Lafayette and Pleistocene
epochs. The events of later Pleistocene time are epochs. The events of later Pleistocene time are
not so clearly recorded in the rocks of the Nueces not so clearly recorded in the rocks of the Nueces
quadrangle as in the coastal region. It is probable, however, that during the Columbian epoch erosion continued in this particular region with great activity, and that then much of the stream capture along the monoclinal folds took place. The recent erosion has been of irregular character. The rocks, disintegrated through the alternations of temperature and the desiccation and evaporation due to winds, have rolled down the hills or have been carried by the cloudburst rainfall to lower levels, usually being deposited on the slope before reaching the level of the principal drainage. They constitute the formation, so extensive throughout arid
America, which we have herein termed the "wash." the "wash." The outer borders of the old plain of the Uvalde formation in the ancient Lafayette valleys are thus being covered. The length of time which has elapsed since this method of degradation began is, as yet, purely conjectural. It has probably continued intermittently since the end of the Cretaceous.

ECONOMIC GEOLOGY.

The materials of economic value found in this area are: stone of excellent quality for building and making lime, ornamental marbles, flints of the kind so extensively used in pottery and glass manufacture, and limestones and gravels for road material. Occasional segregations of limonite are found in the limestone rocks, but not
Agriculturally the country is not well adapted for any industry except stock raising. The more fertile soils lie upon the highest summits of the plateau, but these are not Agricentural available for agriculture owing to the impossibility of irrigating them. The bottom lands of the East Fork of the Nueces are in general too stony for agriculture, but in places, especially where the Leona marl prevails, from Barksdale southward, particularly in the vicinity of Montell, some land
is cultivated. More land could be brought under cultivation by the scientific utilization of the waters of that river

UNDERGROUND WATER

The barren limestones of the Edwards forma tion, composing the hilly topography, might not be supposed to contain underground water, ye in this geologic series there are several horizontal layers of water-bearing rock which afford an abundant and pure supply when penetrated by the well digger or cut by ravines. In addition to these it is probable that in the Trinity division, below the lowest rocks exposed in the quadrangle by the cutting of streams, there are still other strata containing a large amount of water.
There are two series of noteworthy springs in southern Texas which occur along lines extending in a southwestern direction from the Colorado River to the Pecos, both of which demonstrate the existence of immense quantities of water in the rocky structure of the Edwards Plateau. One of these, approximately following the line of the railroad from Austin to Del Rio, consists of fault springs-i. e., springs which rise under hydrostatic pressure through fissures in the rock. These li south of this quadrangle, and will not be further mentioned here. The other $\begin{aligned} & \text { Natural } \\ & \text { springs. }\end{aligned}$ line of springs occurs near the head waters of the principal streams draining the Edwards Plateau These are gravity springs. The springs of the latter class drain from cavernous and arenaceou layers intercalated in the more massive limestones of the Edwards beds.
The horizontal distribution of water in the Edwards limestone is facilitated by the occurrence in the series of certain strata which, through solu tion, become cavernous and honeycombed. This limestone in a cliff may appear hard, durable, and of homogeneous texture, but some portions of its interior ar more soluble than others. These portions may represent fossils, or very small particles of pyrites or certain tubular molds suggestive of fucoids. Near Austin the cavernous decomposition of the Edwards limestone is well shown in the peculiar red blotches which appear in the otherwise mas sive limestone bluffs. There are also so-called "fucoidal" layers which weather into honeycombed rock.
Whatever may be the origin of the honey. combed texture, strata possessing it transmit water in immense quantities, and it is from these and the occasional thin arenaceous layers in the general mass of limestone that the gravity headwater springs of the rivers of the Edwards Plateau above mentioned and the artesian wells of the San Antonio system obtain their water.

There can be little doubt that certain beds of the Edwards limestone in the series of strata underlying the main Edwards Plateau are thoroughly impregnated with water.
 first crosses these water-bearing beds in descending from the plateau to the lower canyons, the gravity springs suddenly break forth, producing gravity springs sudaty break forth, producing Of this character are the so-called head-wate holes of the forks of the Llano, Guadalupe Medina, Frio, Nueces, and Devils rivers. The constant water of the stream ways of the Nuece quadrangle is derived from springs of this charquadrangle is derived from springs of this char-
acter. This is also attested by the fact that the ranchmen of the high plateau region bore wells down to these strata. This was proved by a series of studies made by the writers along an east-
west line from the head of the Llano to Rock Springs approximately following the thirtieth parallel. At widely separated intervals along this line the deep wells all penetrated the waterbearing strata presently to be described, thei depths checking almost to a foot with the measurements of the rock sections.
These water-impregnated strata of the Edwards limestone are of wide extent and great uniformity being more or less productive from the head of the Colorado to the Pecos. The bold head-water springs of the Hackberry, Nueces, Frio, and Guadalupe derive their waters from the waterbearing beds of the Edwards limestone. They bearing beds of the Edwards limestone. They are also the source of supply for the town wells
at Rock Springs, just north of this quadrangle, at Rock Springs, just north of thi
and at Ford and Holliday's ranch.
and at Ford and Holliday's ranch.
bearing layers occur at the known water

Edwards limestone. In ascending series, the first may be called the Kickapoo water-bed; the second, the Black Water Hole beds; and the third, the Justice Spring horizon. The supply from the last mentioned layer is trivial and uncertain in character; the other two are of great economic importance Kickapoo water-bed.-At Kickapoo Springs, on the West Nueces, where the erosion of the West Fork of the Nueces and of Kickapoo Creek cut down to the level of the Comanche Peak lime stone, enormous springs break forth, creating a bold and beautiful running stream, which con tinues for 4 miles, abounding in fish and aqueous vegetation, and disappearing, as suddenly as it appeared, into a fissure in the Edwards limestone This water is derived from near the contact of the Edwards limestone and the Comanche Peak beds. Observations elsewhere in the quadrangle tend to show that this geologic horizon is saturated with water. From it the springs along the East Fork of the Nueces and its principal tributaries, where they cut down to this formation, derive their water. Nearly all the abundant living waters in this quadrangle, except the Black Water Hole of the West Fork of the Nueces, come from this water-bearing horizon.
In the northern half of the quadrangle, where the rocks are horizontal, this water-bearing stratum lies about 650 feet below the summit of the plateau, at a level of about 1750 feet above the sea, and (except in the lower valley of the East Nueces, which has cut below its level) is available for wells. Along the southern monocline it is
reached in the well at Hillcoat's ranch at an underground altitude of 1447 feet above sea, and at two wells in the area of Griffin Creek, west of Hi
Black Water Hole bed.-This occurs about 150 feet above the base of the Edwards limestone, and occupies a horizontal position of 1900 feet above sea level in the northern half of the quadrangle, or in that portion where the rock layers are horizontal, and from 1900 feet to $\begin{gathered}\text { Other water- } \\ \text { bearing beds }\end{gathered}$ 1450 feet along the monocline at the southern margin, as indicated by the contours.
Justice Spring horizon.-Justice Spring, Cedar Spring, and Cherry Spring, on the western border of the quadrangle, probably derive their waters from a third and still higher water-bearing horizon of the Edwards beds. The waters in the vicinity of Seep Springs Mountain may also be derived from this source. These springs are feeble, however, and the horizon has not been sufficiently studied to justify at present any conclusion tending to show continuous horizontal distribution or availability. Yet there are strong reasons for believing that in the region lying to the east of the Nueces quadrangle this water-bearing stratun becomes more productive, especially in the heads of the Frio. This water in the plateau region lies at an altitude of from 2000 to 2100 feet above sea level, or from 300 to 350 feet above the base of the Edwards limestone. Its altitude decreases along the monocline at a gradient parallel with that of the other water-bearing strata.
The depth at which any one of the water-bear-
ing strata can be reached from the surface can be determined by subtracting its altitude above sea level from the altitude of the surface location at the place where the well is desired, as indicated on the contour map.
It is probable that, in the greatly eroded portion of the area lying between the two forks of the Nueces and south of an east-west line almost across the center of the quadrangle, connecting the head waters of Cedar and Kickapoo creeks, much of this water has been drained by the erosion cutting, and hence wells can not be always relied upon in this portion of the area.
The water-bearing beds of the Edwards limetone in the Nueces quadrangle are non-artesian and will not rise in wells, but on the downthrown side of the Balcones scarp line, as is proved at Manor and San Antonio
bundant artesian supply
In the valley of the East Nueces shallow wells are successful in many places in the alluvial deposits of the river valley, as at Vance, Barks, and Montell.
The Trinity (Travis Peak) water.-Although no artesian borings or other experiments have thade, there is every reason to believe that in the rocks lying below all those exposed in the deepest canyons there exists an abundant supply of water which can, in places at least,
be made available. This water, if it it aprobebebe exists, will be found in the basement beds of the Trinity division, which lie at least 500 feet below the Comanche Peak limestone.

Our reasons for believing that the Travis Peak sands are to be found beneath these valleys and that they are water bearing are as follows: Where last exposed (at Fredericksburg) and where pene trated by drills (at Kerrville), 60 miles distant the structure showed that the strike of these beds extends in the direction of the Nueces quadrangle, and that they consist of porous water-bearing sands. Wherever these sands have been exploited in Texas they have yielded abundant water. Artesian wells sunk into them in the valleys lying immediately to the east of the East Fork of the Nueces yield supplies of flowing water. The artesian wells at Kerrville are instances. As the topographic and geologic conditions in the Kerrville artesian-well district are the same as those in the valleys of the East Fork of the Nueces, we see no reason why artesian water should not be en in the later. Further Camp procured in the latter. Furthermore, at Camp ood, on the Nueces, there is a lage spring lower than the Glen Rose formation, here exposed at the surface, and there is every reason to believe that the Travis Peak sands are the source of this supply.

ROBERT T. HILL,
T. WAYLAND VAUGHAN,

Geologists.
April, 1898.

TOPOGRAPHIC SHEET

1

 $)^{2} \cdot 5^{10}$

fia. 1.-VIEW IN LOWER PORTION OF THE CAVE.

Fig. 2.-branching stalactites and botryoidal stalagites.

FIG. 4.-GIANT PILLAR AND ARCH OF ROOF.

