DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
george otis smith, director

GEOLOGIC ATLAS
 $O^{\prime \prime} \mathrm{F}^{\prime} \mathrm{I}^{\prime} \mathrm{E}^{\prime}$
 UNITED STAAT'ES

ABERDEEN - REDFIELD FOLIO
NORTHVILLE, ABERDEEN, REDFIELD, AND BYRON QUADRANGLES
SOUTH DAKOTA

WASHINGTON. D. C.

GEOLOGIC ATLAS OF THE UNITED STATES.

The Geological Survey is making a geologic atlas of the United States, which is being issued in parts, called folios. Each folio includes topographic and geologic maps of a certain area, together with descriptive text.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of hree distinct kinds-(1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, called drainage, as streams, lakes, and swamps (3) the works of man, called culture, as roads, railroads, boundaries, villages, and cities.
Relief.-All elevations are measured from mean sea level. The heights of many points are accurately determined, and those of the most important ones are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form of all slopes, and to indicate their grade or steepness. This is done by lines each of which is drawn through points of equal elevation above mean sea level, the vertical interval represented by each space between lines being the same throughout each map. These lines are called contour lines or, more briefly, contours, called the contour interval Contour lines and elevations are printed in brow. The manner in whith contour line express printed in brown. The manner in which cont.
altitude, form, and grade is shown in figure 1.

Figure 1.-Ideal view and corresponding contour map
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay that is partly closed by The terrace on the ibl into contle hill slope; that The terrace on the right merges into a gentle hill slope; that contrasts with the gradual slope away from its crest. In the map each of these features is indicated, directly beneath its position in the sketch, by contour lines. The map does not include the distant portion of the view. The following notes may help to explain the use of contour lines:

1. A contour line represents a certain height above sea level. In this illustration the contour interval is 50 feet; therefore the contour lines are drawn at $50,100,150$, and 200 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points of the surface that are 250 feet above the sea-that is, this contour would be the shore line if the sea were to rise 250 feet; along the contour at 200 feet are all points that are 200 feet above the sea; and so on. In the space between any two contours are all points whose elevations are above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, and that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above the sea. The summit of the higher hir is marked 600 (feet above sea heve), accordingly the contour at 650 feet surrounds it. In his illust 500 fore these and Usually it is not desirable to number all the contour lines Usually it is not desirable to number all the contour lines. fifth one-suffices and the heights of the others may be every tained by counting up or down from these.

$$
\begin{aligned}
& \text { tained by counting up or down from these. } \\
& \text { 2. Contour lines show or express the fo }
\end{aligned}
$$

2. Contour limes show or express the forms of slopes. As about smooth surfaces, recede into all reentrant smoothly ravines, and project in passing around spurs or prominences. These relations of contour curves and angles to forms of the landscape can be seen from the map and sketch.
3. Contour lines show the approximate grade of any slope. The vertical interval between two centours is the same, whether they lie along a cliff or on a gentle slope; but to attain a given height on a gentle slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes and near together on steep ones.
A small contour interval is necessary to express the relief of a flat or gently undulating country; a steep or mountainous country can, as a rule, be adequately represented on the same scale by the use of a larger interval. The smallest interval used on the atlas sheets of the Geological Survey is 5 feet.

This is in regions like the Mississippi Delta and the Dismal Swamp. For great mountain masses, like those in Colorado, the interval may be 250 feet and for less rugred country con tour intervals of $10,20,25,50$, and 100 feet are used.
Drainage.-Watercourses are indicated by blue lines. For a perennial stream the line is unbroken, but for an intermitten stream it is broken or dotted. Where a stream sinks and reappears the probable underground course is shown by a broken blue line. Lakes, marshes, and other bodies of
are represented by appropriate conventional signs in blue
Culture.-The symbols for the works of man and all lettering are printed in black.
Scales.-The area of the United States (exclusive of Alaska and island possessions) is about $3,027,000$ square miles. A map of this area, drawn to the scale of 1 mile to the inch would cover $3,027,000$ square inches of paper and measure about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and a linear mile on the ground by a linear inch on the map. The scale may be expressed also by a fraction, of which the numerator is a length on the map and the denominator the corresponding leggh in

Thee scales are $\frac{1}{3,36}$
Surver; they 1_{1} and 1 sheets of the Geological Survey; they are $\frac{1}{20.000}, \frac{1}{1250.000}$, and $\frac{1}{20.200}$, corresponding approxi inch on the map. On the scale of 1 inch on the map. On the scale of
surface repo a square inch of map surface represents about 1 square mile of earth surface; on the scale of iss,00, about 4 square miles; and on the scale of each atlas sheet the scale is expressed in three ways-by a graduated line representing miles and parts of miles, by a similar line indicating distance in the metrie system, and by a fraction.

Atlas sheets and quadrangles.-The map of the United State is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. Thes areas are called quadrangles. Each sheet on the scale of wown represents one square degree-that is, a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { rex, wou }}$ represent one-fourth of a square degree, and each sheet on the scale o ${ }_{\text {quan }}^{12,50} 0$ one-sixteenth of a square degree. The areas of the corre sponding quadrangles are about 4000,1000 , and 250 square miles, though they vary with the latitude.
The atlas sheets, being only parts of one map of the United States, are not limited by political boundary lines, such a those of States, counties, and townships. Many of the maps represent areas lying in two or even three states. To each sheet, and to the quadrangle ithral feature within its limitse of at the sides and corners of each sheet are printed the names of adjacent quadrangles, if the maps are published.

THE GEOLOGIC MAPS
The maps representing the geology show, by colors and conventional signs printed on the topographic base map, the distribution of rock masses on the surface of the land and, by as known and in such detail as the scale permits.
kinds of rocks.
Rocks are of many kinds. On the geologic map they are distinguished as igneous, sedimentary, and metamorphic.
Igneous rocks.-Rocks that have cooled and consolidated from a state of fusion are known as igneous. Molten material has from time to time been forced upward in fissures or chan nels of various shapes and sizes through rocks of all ages to or nearly to the surface. Rocks formed by the consolidation of molten material, or magma, within these channels-that is below the surface-are called intrusive. Where the intrusive rock occupies a fissure with approximately parallel walls it is called a dike; where it ils a large and irregular conduit the ified rocks it may be intruded along bedding planes: such ified rocks it may be intruded along bedding planes; suc liths if they occupy larger chambers produced by the pressure of the of the magm. Where that intrusive rocks are matenerally crystalline texture. Where the channels reach the surface crystaline texture. Where the channels reach the surface the molten material poured out through them is called lava,
and lavas often build up volcanic mountains. Igneous rocks and lavas often build up volcanic mountains. Igneous rock
that have solidified at the surface are called extrusive or effusive Lavas generally cool more rapidly than intrusive rocks and as a rule contain, especially in their superticial parts, more or less volcanic glass, produced by rapid chilling. The outer parts of lava flows also are usually porous, owing to the expansion of the gases originally present in the magma. Explosive action, due to these gases, often accompanies volcanic eruptions, causing ejections of dust, ash, lapilli, and larger fragments. These materials, when consolidated, constitute breccias, agglom erates, and tuffs.
Sedimentary rooks.-Rocks composed of the transported fragments or particles of older rocks that have undergon disintegration, of volcanic ejecta deposited in lakes and seas, or
f materials deposited in such water bodies by chemical precipi ation are termed sedimentary.
The chief agent in the transportation of rock débris is wate in motion, including rain, streams, and the water of lakes an of the sea. The materials are in large part carried as solid particles, and the deposits are then said to be mechanical Such are gravel, sand, and clay, which are later consolidated into conglomerate, sandstone, and shale. Some of the mate rials are carried in solution, and deposits of these are called rganic if formed with the aid of life, or chemical if forme without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron or peat, lignite, and coal. Any one of the kinds of deposit name may be separately formed, or the different materials may be intermingled in many ways, producing a great variety of rocks Another transporting agent is air in motion, or wind, and hird is ice in motion, or glaciers. The most characteristic of he wind-borne or eolian deposits is loess, a fine-grained earth; he most characteristic of glacial deposits is till, a heterogeneou mixture of bowlders and pebbles with clay or sand.
Sedimentary rocks are usually made up of layers, or beds which can be easily separated. These layers are called stratu The surface of the earth is not immovable; over wide regi very slowly rises or sinks, with reference to the seg , hore lines are thereby changed As a result of upward movement marine sedinentary rocks may become part of the movement marine sediurentary, rocks may become part of the originally deposited as sediments in the sea
Rocks exposed at the surface of the land are acted on by air, vater, ice, animals, and plants, especially the low organism known as bacteria. They gradually disintegrate and the more oluble parts are leached out, the less soluble material bein left as a residual layer. Water washes this material down he slopes, and it is eventually carried by rivers to the.ocean or ther bodies of water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it forms alluvium. Alluvial deposits, glacial deposit collectively known as $d r i f t$), and colian deposits belong to the surficial class, and the residual layer is commonly included with them. Their upper parts, occupied by the roots of plants, constitute soils and subsoils, the soils being usually istinguished by a notable admixture of organic matter.
Metamorphic rocks.--In the course of time, and by various processes, rocks may become greatly changed in composition and in lexture. If the new characteristics are more pronounced than the old such rocks are called metamorphic. In
 may be lost or new ones added A complete prodation fro erimary to the hic form may githin ingle rock mass Such changes transform sandstone int urtzite limestone into marble and modify other rock in various ways.
From time to time during geologic ages rocks that have een deeply buried and have been subjected to enormous pressures, to slow movement, and to igneous intrusion have been afterward raised and later exposed by erosion. In such rocks the original structures may have been lost entirely and new ones substituted. A system of planes of division, along which the rock splits most readily, may have been developed. This structure is called cleavage and may cross the original bedding planes at any angle. The rocks characterized by it are slates. Crystals of mica or other minerals may have grow in the rock in such a way as to produce a laminated or foliate structure known as schistosity. The rocks characterized by this tructure are schists.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are many important exceptions, especially in regions of igneous activity and complex structure.

formations.

For purposes of geologic mapping rocks of all the kinds formation coutains between its upper and lower limits eith rocks of uniform character or rocks more or less unitorm rocks of uncorm character or rocks more or less uniformly limestone Where the passage from one kind of rocks to nother is adual it may be necessary to separate two contio us formations by an arbitrary line, and in some cases the distinction depends almost entirely on the contained fossils, An igneous formation contains one or more bodies of one kind, of similar occurrence, or of like origin. A metamorphic for mation may consist of rock of uniform character or of several rocks having common characteristics or origin.
When for scientific or economic reasons it is desirable to recognize and map one or more specially developed parts of a varied formation, such parts are called members, or bv com other appropriate term, as lentils.

ges of rocks.

Geologic time.-The time during which rocks were made is divided into peripds. Smaller time divisions are called epochs,
and still smaller ones stages. The age of a rock is expressed by the name of the time interval in which it was formed. The sedimentary formations deposited during a period are rouped too alled a han a series is called a group. Inasmuch as sedimentary
he younger rest on those that are successively ages may be determined by observing their theitions. In ages may be determined by observing their positions. In
many regions of intense disturbance, however, the beds have been overturned by folding or superposed by faulting, so that it may be difficult to determine their relative ages from their present positions; under such conditions fossils, if present, may indicate which of two or more formations is the oldest.
Many stratified rocks contain fossils, the remains or imprints of plants and animals which, at the time the strata were deposited, lived in bodies of water or were washed into hem, or were buried in surficial deposits on the land. Such rocks: are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest ossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in nodified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since, these are characteristic types, and they defne the age of any bed of rock in which they are inked the systems totether, forming a chain of life from the ime of the oldest fossiliferous rocks to the present Wher wo sedimentary formations are rems to the present. Whe is impossible to observe their relative positions, the character istic fossil types found in them may determine which was deposited first. Fossil remains in the strata of different areas, deposited first. Fossil remains in the strata of diferent areas, combining local histories into a general earth history.
It is many places difficult or impossible to determine the age of an igneous formation, but the relative age of such a formaion can in general be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it. Similarly, the time at which metamorphic rocks were formed from the original masses may be shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the riginal masses and not that of their metamorphism.
Symbols, colors, and patterns.- Each formation is shown on the map by a distinctive combination of color and pattern and labeled by a special letter symbo
Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea, in lakes, re in other bodies of standing water. Patterns of dots and ircles represent alluvial, glacial, and eolian formations. Pat Tetanomio of unknown arin reped by her , iacolary place, if the is ach the hay be arranced in wavy lines parallel to the structure planes Suitable combination patterns are used for metamorphic forma tions known to be of sedimentary or of igneous origin. The patterns of each class are printed in various colors, With the patterns of parallel lines, colors are used to indicate age, a particular color being assigned to each system.
The symbols consist each of two or more letters. If the age f a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters.
The names of the systems and of series that have been given distinctive names, in order from youngest to oldest, with the color and symbol assigned to each system, are given in the subjoined table

durface forms.
Hills, valleys, and all other surface forms have been produced by geologic processes. Fpr example, most valleys are the result of erosion by the streams that flow through them (see fig. 1) and the alluvial plains bordering many streams were built u y the streams; waves cut sea oliffs and, in cooperation wit thus constitute part of the record of the history of the earth. Some forms are inseparably connected with deposition. The hooked spit shown in figure 1 is an illustration. To this clas belong beaches, alluvial plains, lava streams, drumlins (smooth oval hills composed of till), and moraines (ridges of drift mad at the edges of glaciers). Other forms are produced by erosion.

The sea cliff is an illustration; it may be carved from any rock To this class belong abandoned river channels, glacial furrows and peneplains. In the making of a stream terrace an alluvial plain is first built and afterward partly eroded away. The process, hills being worn away (degraded) and valleys being process, hills being
filled up (aggraded).

All parts of the land surface are subject to the action of air, All parts of the land surface are subject to the action of air
water, and ice, which slowly wear them down, and streams carry the waste material to the sear them down, and stream the low of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. Lakes or large rivers may determine local base-levels for certain regions. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the fairly even surface thus produced is called a peneplain. If the tract is afterward uplifted, the elevated peneplain becomes record of the former close-relation of the tract to base-level.

the various geologic sheets.

Areal geology map.-The map showing the areas occupied by the various formations is called an areal geology map. On the margin is a legend, which is the key to the map. To ascertain the meaning of any color or pattern and its letter symbo the reader should look for that color, pattern, and symbol in the legend, where he will find the name and description of the formation. If it is desired to find any particular formation, its name should be sought in the legend and its color and pattern noted; then the areas on the map corresponding in color and part and be are arranged in columnar form, srouped primarily aceording to origin sedimentary imeous, and crystalline of unknow origin-and within each group they are placed in the order of age, so far as known, the youngest at the topEconomic geology map. -The map representing
tion of useful minerals and rocks and showing their relation to the topographic features and to the geologic formations is to the topographic features and to the geologic formations is
termed the economic geology map. The formations that appear on the areal geology map are usually shown on this map by fainter color patterns and the areas of productive formations are emphasized by strong colors. A mine symbol shows the location of each mine or quarry and is accompanied by the name of the principal mineral mined or stone quarried. I there are important mining industries or artesian basins in the area special maps to show these additional economic feature are included in the folio.
Structure-section sheet.-In cliffs, canyons, shafts, and other natural and artificial cuttings the relations of different beds to one another may be seen. Any cutting that exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth earlis structure, and a seco his arrangement is called a she section
The geologist is not antificlal catture K shaving traced out the relations among the beds on the surface he can infer their relative positions after they pass beneath the surface and can draw sections representing the structure to considerable depth. Such a section is illustrated in figure 2.

Ftgure 2.-Sketch showing a vertical section $\begin{gathered}\text { beyond. }\end{gathered}$
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate patterns of lines, dots, and dashes. figure 3 are used to represent the commoner kinds of rock

Massive and bedded igneous rocks.
The plateau shown at the left of figure 2 presents toward the lower land an escarpment, or front, which is made up of
andstones, forming the cliffs, and shales, constituting th lopes. The broad belt of lower land is traversed by severa ridges, which are seen in the section to correspond to the out apse of a sand the the the pturned edges of this bed form the ridges, and the inter mediate valleys follow the outcrops of limestone and calcareon Whale.
Where the edges of the strata appear at the surface thei hickness can be measured and the angles at which they dip below the surface can be observed. Thus their position nderground can be inferred. The direction of the interse ion of a bed with a horizontal plane is called the strike. Th
 right angles to the strike, is called the dip.
In many regions the strata are bent into troughs and arche uch as are seen in figure 2. The arehes are called anticline and the troughs synclines. As the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheet he fact that they are now bent and folded is proof that force have from time to time caused the earth's surface to wrink are the strata are broken across and the parts have slipped past each other. Such breaks ar termed faults. Two kinds of faults are shown in figure 4.

Figure 4.-Ideal seetions of strata, showing (a) normal faults and (b) a
thrust or reverse fault.
At the right of figure 2 the section shows schists that ar traversed by igneous rocks: The schists are much contorted and their arrangement underground can not be inferred Hence that portion of the section delineates what is probably ue but is not known by observation or by well-founded inference
The section also shows three sets of formations, distinguished their underground relations. The uppermost set, seen a解 horizontal position. These strata were laid down under wate at are now high above the sea, forming a plateau, and thei ar elevation shows that a portion of the earth's mass ha been uplifted. The strata of this set are parallel, a relatio which is called conformable.
The second set of formations consists of strata that have been folded into arches and troughs. These strata were once con nnuous, but the crests of the arches have been removed by osion. The beds, like those of the first set, are conformable
The horizontal strata of the plateau rest upon the upturned coded edges of the beds of the second set shown at the left of the section. The overlying deposits are, from their position, and yodig or 1 .
 el The younger rocks are unconform The third set of forma
heous rocks. At some period of of crystalline schists and were folded or plicated by pressure and traversed by eruptions f molten rock. But the pressure and intrusion of igneous rocks have not affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed betwee he formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists were metamorphosed, they were disturbed by eruptive activity, and they were deeply eroded. The contact between the second d third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in figure 2 are ideal, but they linstrate actual relations. The sections on the structure section sheet are related to the maps as the section in the figure is related to the landscape. The protile of the surface in the section corresponds to the actual slopes of the ground along the section line, and the depth from the surface of any mineral-producing or water-bearing stratum that appears in the section may be measured by using the scale of the map.
Columnar section.-The geologic maps are usually accompanied by a columnar section, which contains a concis Girame. It preserto sumury of the facts rating to the anarge the procks the thickness of the formations, and the der of der of accumul
The rocks are briefly described, and their characters ar ndicated in the columnar diagram. The thicknesses of formations are given in figures that state the least and greates measurements, and the average thickness of each formation is
shown in the column, which is drawn to scale. The order of shown in the column, which is drawn to scale. The order of
accumulation of the sediments is shown in the columnar arrangement-the oldest being at the bottom, the youngest at the top.

The intervals of time that correspond to events of uplift and degradation and constitute interruptions of deposition are indicated graphically and by the word "unconformity."

GEORGE OTIS SMITH,
May, 1909

DESCRIPTION OF ABERDEEN-REDFIELD DISTRICT.

By J. E. Todd.

GEOGRAPHY.
general relations
Eastern South Dakota forms a part of the Great Plains prov nce, lying in the broad, indefinite zone in which these plain merge into the prairies of the Mississippi Valley. It is withi he glaciated area and most of its surface features show th haracteristics of a drift-covered region. The country is largely evel, but also presents long rolling slopes rising 300 to 800 feet above the broad valleys. The principal elements of relief are massive ridges, or mesas, which are due to preglacial erosion. Many of these mesas are crowned or skirted by long ranges of low hills made up of morainal accumulations left by the ice long lines marking pauses of glacial advance and retreat. Faw of the wismer piver which has out a trench several hundred feet deep for the most art with steeply sloping sides, Between the moraines there ar plling plains of till and level plains due to the filling of glacial lakes. The upper James River presents a notable example of his lake-bed topography. East of the Missouri, James River is the principal stream. It drains the broad James Valley and he adjacent coteau slope. The altitude of the region ranges rom 1100 feet on Missouri River to 2000 feet on the summit of the eastern coteau.

location.

The Northville, Aberdeen, Redfield, and Byron quadrangles, which make up the area considered in this folio, are locate between meridians 98° and 99° west longitude and parallel $44^{\circ} 30^{\prime}$ and $45^{\circ} 30^{\prime}$ north latitude, the different quadrangles in he order named occupying respectively the north west, northeast outhwest, and southeast quarters of the whole area. Each of hem is a little less than 243 miles in width and about 34.6 miles in length from north to south, the southern two covering about 850 square miles each, and the northern two 842 square miles each. They comprise nearly all of Spink County an ortions of Faulk, Hand, Edmund, and Beadle counties.
This area is of especial interest because it extends across the with another ancient valley entering from the west near the south line of Brown County, and because it includes a portion f the area once flooded by the remarkable ancient Iake Dakota It contains also a notable irregularity or reentrant angle of the Antelope moraine, with its network of channels dating from the lacial period. Partly for the purpose of bringing out thes nusual features with greater clearness, the four quadrangles are described together in a single folio.

kelief.

The region is in general flat and its features are those of abdued glacial topography. It is, however, more modified by luvial and lacustrine action thau some other portions of easter South Dakota. Some moderately rough topography is shown in the moraine areas.

alditudes.

The lowest point in the region, about 1230 feet above sea level, is on James River at the southern boundary of the Byron quadrangle. The highest points in that quadrangle, altitude 425 feet, are in the north-central part of sec. $25, \mathrm{~T} .115 \mathrm{~N} ., \mathrm{R}$ 1 W . (Harrison Township), and the average quadrangle is about 1300 feet.
In the Redfield quadrangle the lowest points are near its northeast corner in the valleys of Snake and Turtle creeks, outh of Miller, where an altitude of about 1595 feet is reached Garfield Peak, in northern Howell Township, close to the west rn boundary of the quadrangle, rises to slightly above 1560 eet, and other peaks a few miles farther north are of the sam eneral height. The most conspicuous prominence is Bald Mountain, which rises to an altitude of 1480 feet, or 180 fee above the surrounding lowland. The highest peak of this mountain is on the north side of sec. 21, T. 116 N., R. 65 W . The Aberdeen quadrangle is much the flattest of all. Its owest point, about 1250 feet above sea level, is on James River in the $\mathrm{SW} . \frac{1}{4}$ sec. 25, T. 118 N., R. 64 W . Its highest point, with an altitude of about 1405 feet, is a sharp peak just south of he north line of Spink County, in the NW. $\frac{1}{4} \mathrm{sec}$. 2, T. 120 N., R. 160 W . The average altitude of the quadrangle is not far from 1300 feet, possibly 1310 feet.
The lowest point of the Northville quadrangle, elevation about 1255 feet, is where Snake Creek crosses its southern boundary
near the southeast corner, in the SE. $\frac{1}{4}$ sec. 28, T. 118 N., R. 64 W . The highest point, about 1525 feet above sea level, is altitude is not far from 1400 feet.

The surface of the four quadrangles presents several toporaphic divisions closely related to the geologic formation The most extensive of these divisions is the nearly level plain of the James River valley, which has an average width of 19 miles. Its trend corresponds to the course of James River, being first to the south-south west and then turning to the southsoutheast near Redfield. Its width is about 20 miles north of rapidly and then more pradually, until it is less ons at 6 rapidly and then more gradualy, until it is less than 6 aid largely raries less than 15 fet in altitude exeept where the ancient a modern streams have excavated their shallow valleys, Th general plain, which for many square miles is as level as a floor slopes slightly downward near James River and toward a few other prominent channels. There are 733 square miles of this plain in the Aberdeen quadrangle, 400 in the Byron, 153 in the Northville, and 25 in the Redfield
Another but less even plain, covering about 50 square miles, lies in the southwest-central part of the Redfield quadrangle. It extends from the central part of Linn Township (T. 116 N R. 67 W.) to the northwest corner of Nance Township (T. 118 N., R. 65 W.) and in its widest portion is about 6 miles wide This may be called the Wolf Creek plain.
In a few places the bottom and banks of James River are covered with gravel and bowlders. Below the mouth of Turtle Creek much of the river trough is lined with bowlders, but above that point the stream has in only a few places cut throug the fine yellow silt deposited by Lake Dakota, and consequently owlders and even pebbles are rare
Along the southern portion of the valley appear numerous terraces, the highest of which is about 50 feet above the stream other hies about 40 feet above. These two are usually cove
 East and southeast of therdeen a few high italed like masses rise out of the wide bottom lands. Most of the masses are connected with one side of the valley by terraces; some, however, are surrounded by the alluvial flood plain. One of these outliers is eas Warmer, another southeot Mellette, and a third in the southwest corner of T. 119 N R. 63 W .

upland

The east side of the James Valley plain terminates in a slop which rises along a line trending slightly east of north. A short distance southwest of Doland this slope is comparatively abrupt, rising to a sharp ridge with peaks attaining altitudes of over 1400 feet in the northern half of the Byron quadrangle but it is less marked toward the south, where its steepnes diminishes and it trends somewhat more to the east. In gener this slope rises to the crest of a ridge whose surface is gentl undulating and lies at an altitude 50 to 60 feet higher than th plain on the west. : In the Aberdeen quadrangle the slope more regular and its surface is nearly even except that it is covered more or less with scattered knolls and low ridges from to 15 or 20 feet in height.
On the west side of the James Valley plain there is a gentle upward slope which about midway in the Redfield quadrangle os the sloping surface is nearly smooth but it presents man low knolls rising in reneral from 5 to 10 feet and rarely attain ing 20 feet above the surrounding slope except in the Redfield Hills described farther on. There are also numerous basin and lake beds, most of them being of small extent, though some cover several square miles. Most of them are very shallow, some being scarcely noticeable except for the larger grasse occupying them. Others are 20 to 40 feet deep, with sharp outlines and steep banks. Few contain water much of the time, except those that receive drainage from unusually extensive catchment areas. These basins are further described under the heading "Lakes." There are also numerous well-deinned chan nels, some of which are shallow and wide while others hav abrupt banks and are 15 to 25 feet in depth. These channel asually lead southward.
The features above described have a rudely parallel arrange ment corresponding to that of the moraines shown on the areal
geology map, but the relief is so slight that only the channels are readily recognized
South and southeast of Redfield there is an irregular area of little more than 18 square miles, extending about 7 miles from north to south, with peaks rising 50 or 60 feet above the surrounding plain. This area is known as the Redfield Hills. Two or three hilly areas also extend southward from this group of hills along the line between the Byron and Redfield quadrangles, and another lies 3 to 5 miles farther west. About 7 miles west of the north end of the Redfield Hills is a short isolated ridge known as Bald Mountain.
Another small area of exceptional topography is on the slope north and northeast of Miranda. It presents numerous shallow, flat-bottomed channels, depressed 10 to 20 feet below he general surface, that are nearly dried up.

drainage.

The principal drainage features of the area treated in this folio are James River, various creeks, springs, and lakes, and overflows at times of unusually great precipitation.

striam

The general drainage is southward to Missouri River, but in the Redfield quadrangle most of the streams flow to the east and northeast. The three most important streans are James River and Snake and Turtle creeks. These are the only streams having running water all the year; the last two flow for only a few miles above their mouths. Timber Creek flows for 10 miles or more and Dry Run and Foster Creek for 2 or 3 miles near their mouths. Many of the intermittent streams have water holes along their courses which afford fairly good water for James River is the main if kept free from contamination. James River is the main stream and follows a somewhat irregular course from north to south with a notable delfection
to the southeast between the mouth of Turtle Creek and Frankfort. Its fall is less than 35 feet in the whole distance of about 80 miles, and its most rapid descent is in its easterly course, where in places it is considerably obstructed by bowldery bars. The trough in which the river flows is about 30 feet deep east of Aberdeen and about 65 feet deep south of Byron Lake. In the northern portion of the Aberdeen quadrangle the river bottom or flood plain is in some places more than 2 miles wide in width. The greater width of the valley at the north seems to be due partly to the ease with which the stream erodes the lo be due partly to the ease with which the stream erodes the
lacustrine silt. Fresh exposures of this silt rise in numerous lacustrine silt. Fresh exposures of this silt rise in numerous stream. The James is sluggish and at ordinary stages is from 50 to 100 feet wide and from 2 to 6 feet deep. Its bed is usually muddy, and there are abrupt banks 8 to 10 feet high, so that generally it is difficult to ford.
Moccasin Creek enters the Aberdeen quadrangle along the western edge of the James Valley plain and follows a very irregular hook-shaped course, reaching James River at a point about 10 miles southeast of Aberdeen. The whole course of this stream is upon the James Valley plain ; its channel is wide and shallow and the stream very miry
Snake Creek carries water from two forks rising in ravines along the southwest slope of the highlands in McPherson and northern Edmunds counties, flows southward through the till region to a point near Northrile and along the west side of the ames it and ine West Branch River 3 miles south of Ashton. West Branch of Snake Cretk
 County, It en the North ville quadrangle in T 118 N , R 68 W After flowing enstward a few miles it turns sharply 68 W . After flowing eastward a few miles it turns sharply north and 3 miles east of Devoe meets Nixon Creek coming
from an opposite direction. Thence it flows southeast for 7 or 8 rom an opposite direction. Thence it flows southeast for 7 or Preachers Run and the old channel from Scatterwood Lake at Wesley. Thence it takes a southeast course to the boundary of the Redfield quadrangle, a short distance south of which it receives Dove Creek, Howing in another north-south channel. West Branch follows the continuation of this channel to the and north as far as a point opposite Athol, where it turns eastward within a few miles joins Snake Creek. The troughs of Snake Creek and West Branch present the usual features of well-worn stream valleys crossing the till or glacial clay. The valleys are not of uniform width nor their sides of uniform height. They pass through lake beds and old shallow channels, as well as through moderately narrow gorges with bluffs of yellow bowlder
clay in places 25 or 30 feet in height. These bluffs ar specially noticeable in the lower course before the James Valley plain is reached. Near Cortlandt the stream has cut throug he drift and 25 feet or more into the underlying shale, and it valley has a little more rugged appearance than elsewhere in it course. After reaching the James Valley plain the trough is hallower and wider, with many sluggish, marshy portions. The prongs of West Branch of Snake Creek present some notable peculiarities, mostly in following the irregular cours the old channels. They are all intermittent streams.
Turtle Creek flows through St. Lawrence and thence northastard has rut ar. 1 rows in depth from 20 to 30 and even 50 feet. It receives no tributaries from the southeast, but does eet. It receives no tributaries from the southeast, but does able size, from the northwest. An interesting modification of drainage in Turtle Creek occurred in the spring of 1897 fter an unusually snowy winter. The resulting floods were ffter an unusually snowy winter. The resulting floods were fowed into an old channel running eastward into Twin Lakes. The flow was so copious that it raised the surface of the lakes several feet.
Wolf Creek is the most important branch of Turtle Creek, wich it joins in the northwestern part of Buffalo Township. The stream has two principal tributaries. North Wolf Cree ises in ravines on the southeastern slope of a highland a fe miles east of the western boundary of the Redfield quadrangle and enters the main stream near Burdette post-office, 8 mile above Turtle Creek. The southern tributary, which is some what larger than North Wolf Creek, flows along the south line of Florence Township and thence to the main stream at Odessa, The peculiar drainage of Wolf Creek deserves special mention. Is upper watercourses Townhip (T. 114 N R. 67 W.), 10 . 16 . alley leading south towa Odessa oot flow down this valley exeept in time flod but tern harply northward into a narrow ravine cut in another broad ld valley and flows to North Wolf Creek which it jois , R. 67 W.).

Another important tributary of Turtle Creek is Medicine reek, which rises southwest of Miranda, receives contribution from some springs near the Hand County line, and flow southeastward to the south line of Plato Township, 2 mile north of Helmick post-office. Here it is joined by the northern branch, which has a hook-shaped course west and outh of Miranda and then flows southeastward to the mai tream. From the junction the stream continues southeastwar with two curious splits, by which large islands are surrounded, the southeast corner of sec. 19, I. 110 N., R. 65 W., when it takes a direct northerly course to Cottonwood Lake. A explained under "Overflow drainage," Turtle Creek receive the water of Medicine Creek only in early spring or after heavy ains.
Pearl Creek passes across the southern part of the Redfield quadrangle in eastern St. Lawrence and Grand townships. I sintermittent and flows in a trough having low, irregular sides.
Two or three long watercourses which have no names enter James River on the west in the Byron quadrangle. They are Jamer kiver on the west in the Byron quadra
generally and grassy except in the spring.
enerally dry and grassy except in the spring.
the Aberdeen quadrangle is Mud Creek Thi James Rive east of the Aberdeen quadrangle and flows northwestward for few miles to a point a short distance south of Groton, but ha for the most part a nearly straight southwest course across the James River plain and a wide valley similar to an ancien channel of the glacial period, evidently inherited from an older and larger stream. Near the point where it changes its direc tion it receives a branch from the northeast. Mud Creek has rassy channel and frequently has extensive reedy water hole No sand or gravel occur along it except near the confluence of its northeast branch.
Dry Run is a sluggish stream resembling Mud Creek and also lying mostly on the James Valley plain. It heads nort and east of Ferney and Verden and flows toward the south an southeast, in greater part parallel to Mud Creek and Jame River, joining the latter a short distance west of Frankfort. It is an intermittent stream, but, except in the dryest seasons, its ower course has many welt-filed water holes. In the norther part of its channel comparatively little water is found Timber Creek receives wame River valley from the vicinity of Verdon to a part about: until they join a long north-south channel which lies on the James Valley plain. This channel begins south of Verdon near the eastern edre of the plain. It broadens northwest Conde, but does not have continuous well-defined banks north of Turton. The stream joins James River about 6 miles belo Frankfort. It differs from most other small creeks in the Jame River valley because of its larger amount of water and therefore
its more vigorous action. Although its upper course is marsh nd shows little sand and gravel, its lower course is deeply eroded, rivaling the trough of James River in this respect. Moreover, it has cut through the lake deposits to the underlying ill, so that its lower course is very stony. The great number of trees along the stream account for its name.
Foster Creek is a running stream which drains the southeastern part of the Byron quadrangle, including the Byron Lake basin, and flows into James River.
Shue Creek is an intermittent watercourse draining the extreme southeast corner of the Byron quadrangle

overflow drainage.

Parts of the old channels are often reoccupied by drainage in times of flood. Pearl Creek, in the Redfield quadrangle, is connected with a small tributary of Turtle Creek in sec. 31 Gilbert Township, by a shallow, very winding channel that begins 3 or 4 feet above the bottom of the regular channel of Pearl Creek and makes its way across the plain toward Turtle Creek. A channel connects Dove Creek and Medicine Creek orth of Bald Mountain, but no clear evidence of rece rainage between the two has been noticed. There has bee drainage at no very distant day between Medicine Creek an and ar Miranda. Ordinarily Cottonwood Lake holds all water that is collected by Medicine Creek, but occasionally, as in 1897, the lake overflows at its north end through a welldefined channel which skirts the west, north, and northeast sides of Bald Mountain and joins Turtle Creek in sec. 26,
Exline Township. Little or no water runs in this outlet xcept in early spring or after severe rains, and there are but few water holes. The trough of the stream is nowhere very deep. The highest banks, rising 30 or 40 feet, are east and west of Bald Mountain. As already stated, only in times of lood does the water flow from the sharp south bend of Nort Odessa Hold branch of that creek norbwer from the noth bravh of Turtle Cre in the rothent f Yok Townip nothward into the of York Township northward into the
Creek, across sec. 2 of that township.
In the Northville quadrangle no definite instances of this sort have been reported, but a flood of 15 feet in West Branch of Snake Creek would cause an overflow south of Devoe into one of the head branches of Dove Creek. Similarly, a flood in Moccasin Creek might cause an overflow down a ong, shallow valley which leaves that stream near Rudol and by another at its sharp bend southwest of Warner. Thes verflows if of sufficient vo

In the Aberdeen quadrangle the drainage is sluggish along the east side of the James Valley plain from the vicinity of Groton to Conde, so that local loods may produce flows in various directions at different times. It is probable that a flood in Mud Creek would overflow south of Groton into Dry Run.
In the Byron quadrangle similar changes in drainage may sometimes take place between the different branches of Timber Creek and also between the south branch and Foster Creek. In the autumn of 1897 Foster Creek and James River rose so hat their back water rabo by The natural outlet of Byron Lake but north of the abrupt hill north of that lake. It Lake but north of the abrupt hill north of that lake. It ong been dry, as was also the whole lake basin in 1893 . Since that time not only has the lake been replenished by since that time not only has the lake been replenished by
the flood mentioned above, but Foster Creek has been dammed so that in time of flood it contributes considerable water to the lake.
The streams of the region do not afford much reliable water power, for two reasons. Those with considerable fall have little or no perennial flow, and those having perennial flow have very little fall. The most available mill site on James River probably is the one near old Ashton, where the river bed is filled with bowlders and the fall is considerable.

Lakes.

Most of the lakes of this area receive their waters directly from the rainfall and their endurance depends on the extent of their drainage basins, their depths, and the amount of rain. The rainfall of this region varies greatly in different years, but averages a litte less than 20 inches annually. Atter a succeson of wed the the the are sometimes filled in the spring if there has been much snow he ponds become dry and the lakes diminish sreatly in extent Within the last twenty-five years some of the lakes have Within the last twenty-five years some of the lakes have few years later have dried up entirely. A few deeper lakes receive small quantities of water from springs on their shores. Many small ponds are now sustained from artesian wells, but few of these deserve mention as lakes.

The only lakes of importance in the Byron quadrangle are Byron and Connors lakes. The former usually covers about 2 square miles, though it varies much in area according to the dryness of the season, for it is very shallow. It receives water not only from the numerous short ravines on the east, but when Foster Creek and James River are high, receives and stores their overflows. In 1897 the current entering the lake from these streams was sufficient to wash out the bridge over the lake outlet. The considerable wâter from springs along its shores, seeping from the sands underneath the till.
Connors Lake at its greatest extent covers about 60 acres, but it is frequently dry except in the south west corner, where There is water from a large spring or pond called Mud Lake. the coldest weather. Gravel along its southwest side furnishes water, apparently from an old channel coming from the southwater, apparently from an old channel coming from the south-
east. This is probably the main source of the water, but the depth of the pond, said to be about 30 feet throughout, and the reported softness of the water have led to the belief that Mud Lake is an outlet from the stratum yielding soft artesian water, which in this region lies at a depth of 200 or 300 feet.
Wall Lake, in the SW. $\frac{1}{4} \mathrm{sec} .21$, T. 113 N., R. 62 W., is a grassy lake containing usually very little water, but in 1897 it filled to a depth of 10 to 12 feet.
In the Redfield quadrangle the principal lake is Cottonwood Lake, which covers about 2 square miles. It is very shallow and has low shores, except in an angle in the northwest portion and on its south end, where there are wave-cut banks 30 to 40 feet high. It is supplied by Medicine Creek and varies in depth in different years.
Twin Lakes, in T. 115 N., R. 64 W., are connected by a strait, and the west lake is the larger and deeper, being 8 or 10 feet deep at ordinary stages. Much of the southeast lake is sually dry.
Other basins shown as ponds on the map of the Redfield quadrangle are commonly dry. There is a small pond in the southwest corner of sec. 19, T. 117 N., R. 65 W., which covers a few acres and always shows open water. This pond is an
exposed portion of a body of water contained in a mass of exposed portion of a body of water contained in a mass of
quicksand that underlies much of the region and is frequently found in wells.
In the Aberdeen quadrangle there are no natural lakes except a marsh on the east side of the James River bottom west of Chedi which shows some open water and which is sometimes spoken of as Lake Chedi. It is, however, simply a marshy depression in the bottom lands and is replenished by the river in times of high floods. It therefore varies greatly in depth and extent from time to time.
In the Northville quadrangle there are three or four notable lakes. The largest are the Scatterwood Lakes, two deep depressions in one of the old stream channels. These lakes were named by the Indians from the trees scattered along their shores. The northern one has an area of less than 1 square mile and lies mostly in Edmunds County. The southern one is about $2 \frac{1}{2}$ miles long and covers $1 \frac{1}{2}$ square miles, in the northeast corner of Faulk County. Their water comes mostly from metting snows and consequently its volume varies considerably with different years. Rains do not generally affect the water They wer with fish which thives for together. They were then stocked which fhich thrived for period of 1902 . The northern lake is about half open water and there is much less water in the southern lake, though it is said to have shown more open water before 1897 than the other The banks on the west and east rise like river bluffs, with a height of 30 or 40 feet.
Salt Lake, in the southwest corner of Brown County, lies in a deep, channel-like depression and is about a mile in length. Its bottom is as flat and bare as a floor and in dry weather is partly covered with a frostlike crust of salt. The southern half is covered with a few inches of water. Springs of good fresh water occur at the east end and near its northwest angle.
Lords Lake, about 3 miles northwest of Rudolph, showed open water a few years ago, but is now all grown up with weed and it is doubtful whether it contains surface water. Its basin is a deeper and broader portion of an old stream channel, as represented on the areal geology map. Its bottom lies only about 15 feet below the surrounding level.
About 5 miles west of Northville is a nameless lake with open water covering nearly a quarter of a section and in its
vicinity are a few other smaller ponds. Half a mile of the south sed Lake is a small y an unfailing spring. Its surface is several feet lower than the level of the Scatterwood Lakes.

springs.

Permanent springs are rare in this region, though there are a few of importance. The largest one is described in the foregoing section in connection with Connors Lake. All others
and underneath the till, or from porous strata higher up The springs noted in the Byron quadrangle are as follows: In xcellent water from gravel underneath the till; in the SE sec. 19, T. 116 N., R. 63 W. ., a bitter spring, not very copious, on the side of a deep southeast channel; near the southwest on the side of a deep southeast channel; near the southwest
corner of T. $117 \mathrm{~N} ., \mathrm{R} .62 \mathrm{~W}$. , a bitter spring reported in the side of Dry Creek; in the east side of sec. 2, T. 116 N., R. 63 W., a line of springs at the base of the bluffs on the west side of James River, evidently supplied from sands below the till in the NW. $\frac{1}{4} \mathrm{sec} .22$, also in the southeast corner of the same ection, T. 115 N., R. 63 W., meager springs from gravel below ill; in the NE. $\frac{1}{4}$ sec. 8, T. 113 N., R. 61 W., the springs near Connors Lake already mentioned.
There are several notable springs in the Redfield quadrangle All derive their water from the sands below the till, except on hear the northeast corner of sec. 26, T. 116 N., R. 68 W and another near the northeast corner of sec. 17 , T. 115 N . R. 67 W . These are weak and supplied from gravel deposits connected with terraces. There is a spring near the north west corner of sec. 9, T. $116 \mathrm{~N} ., \mathrm{h}$.67 W ., and another near the southwest corner of sec. S3, T. 18 N., R. 67 W., where the ice mound occurred in the winter of 1003 . This phenomenon extensively formed in British America and named sphenocrysts by Canadian geologists. The water from the spring as it ooze ouder the frozen crust of earth and sand froze by successive dditions of ice at the bottom, lifting the superincumbent mas into a dome-shaped mound. This grew to be 8 feet high and few rods in diameter and contained clear ice until the follow June. A cluster of springs from one source occurs in sec , T. 116 N., R. 68 W., and there is a remarkable cluster of opious springs near the center of sec. 11, T. 112 N., R. 67 W in short, deep ravines on the south side of Pearl Creek. The mperature of one was found to be $50.7^{\circ} \mathrm{F}$. The water palatable and wholesome for stock and house use, though some what injurious to vegetation. It gives an abundant white and yellow efflorescence, evidently due mainly to sulphates of soda and iron.
Another spring or cluster of springs in the northeastern par of sec. 1, T. 116 N., R. 65 W ., presents some peculiar features When the country was first settled this spring issued on a gentle westerly hill slope toward a mud flat or lake basin covering many acres and containing much fine sand. It is stated tha in whe 16 gallons a minute at inst, but its owner, hopig
 sink tubing but at a depth of 54 feet this was stopped by o sink tubing, but at a depth of 54 feet this was stopped by a fred, but instead of opening up the source the spring soon fred, but instead of opening up the source the spring soon hale was struck. In April four years later a circular sink ole about 2 rods across and with perpendicular sides appeare on the flat a few rods west of the spring. It was at on time over 15 feet deep and the water stood 3 feet below the op. In August following a similar hole suddenly appeared on he slope several rods to the east. When first seen this hole was several rods across, and its floor, which sloped down from orth to south, was 37 feet below the original surface at it south side. In a few days a great mass of surface dirt about its margins disappeared in a seething mass of water and quick and in which chunks of lignite and bubbles of gas appeared When visited in August, 1904, the hole was about 70 feet i diameter and partly filled with water from an artesian well near by. The banks were perpendicular and about 5 feet high on the east side and half as much on the west. The water was pparently at least 10 feet deep. Evidently a large body of the pond in suickand north of Roy extend northwestwar the pond in quicksand north of Rockham, but how a cavity an what influence started the process described remain mys eries. Possibly the explosion of dynamite or the diversion of cries. How Turtle Creek a mile way may have had something to do with it
In the Aberdeen quadrangle a few weak springs' occur in In the Aberdeen quadrangle a few weak springs occur i
anines draining the eastern slopes of the James River valley In the North ville quadrangle springs are also rare. In the orthern portion the shale lies so near the surface and so little and is found between it and the till that very little water cir culates. There is a spring of some importance on the west sid of Foot Creek, in the NE. $\frac{i}{4}$ sec. 9, T. 123 N., R. 64 W., which is supplied from the gravel deposits capping a low terrace. The pring region northeast of Miranda extends into the southwest orner of this quadrangle and in sec. 29, T. 118 N., R. 67 W. there are about 22 springs, mostly in the southwest quarter o the section. There are a few also in sec. 20 and in the W. sec. 19 of the same township. In the latter section the spring ater forms a pond of several acres
The water holes along the intermittent streams have a slow circulation and for this reason the water in the upper ends of he holes is the purest. For this reason also they may be con
idered as a kind of spring. sidered as a kind of spring.

DESCRIPTIVE GEOLOGY

general statement
The surface of eastern South Dakota is in large part covered with a mantle of glacial deposits consisting of gravel, sand, silt, and clay of varying thin below, under the heading "Pleistocene deposits."
The underlying formations of the region are as a rule not exposed east of Missouri River, though they outcrop in some of the hills where the drift is thin, and a few of the streams affor natural exposures. The numerous deep wells throughout the region have, however, furnished much information as to the anderground structure. There are extensive sheets of Cret cous clays and sandstones lying on an irregular floor of sup posed Archean grante and quartite of Algonkian age. Under most of the region these form a floor of "bed rock" which more than a thousand feet below the surface but rises gradually to the surface toward the east. There is also an underground ridge of sioux quartzite of considerable promimence, whic extends southwes.w. from ond ops in sounwestern hime sota to the vicinity of Nitchell, s. Dak. No traces or Paleozic
Ths have been found in any of the borings of this region.
uly a suces above the quartzite is usu be Dand fionshe lare volume for thousands of wells. It reachès thickness of 300 feet or mor in portions of the recion, but thins out and does not contin over the underground ridge above referred to. It is overlai y several hundred feet of Benton shale, with thin sandstone and limestone layers, and a widely extended sheet of the Niobrara formation, ill defined toward the northwest, consistin argely of chalkstone to the south, and merging into limy clay o the north. Where these formations appear at the surface hey rise in an anticlinal arch of considerable prominence along he underground ridge of quartzite, but they dip away to the north and west and lie several hundred feet deep in the north entral portion of the State. In the Missouri Valley they rise radually to the southeast and reach the surace io successio he Dakota sandstone finally outcropping in the vicinity sioux City and southward, The Pierre shale extends in a thic mantle into eastern South Dakota, lying under the drift in the greater portion of the region, except in the vicinity of the highe portions of the anticinal uplift above wioned. It was no oubt once continuous over the entire area, but was extensivel removed by erosion prior to the glacial epoch or the Quaternary
 are wide fow he extrie northen portion of the Stete Tertiay denosi
 shown by cmall remants still existing in the Bijou Hill and other higher ridge
The area treated in this folio is covered with glacial drift, xcept for small alluvial flats alog the strems and a few scat ered exposures of Pierre shale. The thick mass of underlyin tratified rocks has been penetrated by numerous deep well borngs, and by this means many of their relations have been asce ained. The ${ }_{7}$ rocks have a nearly horizontal attitude, as shown in figs. \#and and include representatives of the Cretaceo ystem lying on a floor of old crystalline rocks at depths of 1000 to 1200 feet.

pre-cambrian rocks.

The pre-Cambrian crystalline rocks, popularly called "bed rock," underlie the Cretaceous throughout the area treated i y the lines on the atese were by the red lines on the artesian water maps. These rocks wer thed by some of he ear ho bor er Hitco May of the dep well, hower, bere recent ones do not reach "bed rock" The pre Cambrian rocks, so far as known in this region, consist of the Sioux quartzite, granites, and mica schists. They are considere reuc qubrian because they are similar to rocks that underl the older Paleozoic sediments in adjoining regions
The most definite knowledge of the older rocks in this are been gained from the Budlong well, 5 or 6 miles northea of Hitchcock, and additional light has been obtained from th Glidden well, less than a mile from Hitchcock, and from the Motley well, 12 miles northeast of the Bualong well. Sample were obtained from the Budlong well at intervals of 10 feet fron 800 to 1000 feet in depth. These samples were saadstone to depth of 960 feet, or 335 feet above the sea, where a rusty san as pentruted when tragments of quart possibly indicating weathered "bed rock." For the next 25 feet the drillings consisted mostly of freshly broken quartz, evidently from quartzite. At 995 feet flakes of black mica and a tew grains of a white feldspar were mingled with white quartz, These were all freshly broken and are interpreted to indicate ight-colored granite. This rock was penetrated for $3 \frac{1}{2}$ feet particles of a light-colored granite mingled with fragments of a
dark rock apparently composed of chorite, black mica, and particles of kaolin and rounded quartz. Samples from the Glidden well indicated that quartzite was passed through from 1083 to 1142 feet and granite from 1142 to 1150 feet
At A. A. Kleinsasser's well, in the NE. $\frac{1}{4}$ sec. 4, T. 113 N., R. 60 W ., about 20 miles east of 1 Hitchcock, a gray mica schist was entered at a depth of 940 feet and penetrated for several feet. The character of the roc
At the hospital for the up. granite was taken from a depth of 1090 feet, the rock having then been penetrated for about 10 feet
It is claimed that city well No. 4 at Aberdeen passed through quartzite from 1221 to 1267 feet and then 33 feet of granite to the bottom at 1300 feet. Two samples from the lower portion of the well, examined in the United States Geological Survey at Washington, were clearly of a granitic nature. The upper samples contained fragments of quartz, feldspar, and mica, together with rounded grains of quartzite, sand, and shale. A few of the fragments of quartz were sharply crystalline with some feldspar adhering to them, and one or two showed mica also. The sand grains that were mixed with this material were by the jar atritio the dilling up in the boring by the jar or atrition of and from the greater depth the rock was somewhat harder but of very
similar character. The angular feldspar was unmistakable, and similar character. The angular feldspar was unmistakable, and this sort could be derived only from the bed rock itself unless, as has been surgested, a bowlder from the surface drift had got into the well.
If, as is possible, there is an approximate cors between the upper surface of the Dakota sandstone and that of the old crystalline rock surface below, it would appear that near the southeast corner of the Byron quadrangle the top of the "bed rock" probably rises to about the same altitude as in the Budlong well, and thence slopes down very slowly toward the northwest with irregular undulations which may in places have a slope of more than 50 feet to the mile. If this inference is justified, there are traces of a shallow valley in the bed-rock surface running westward from Hitchcock, and of another heading near Doland and extending to the west and southwest past Crandon. However, the irregularities of the "bed rock" floor may reasonably be considered to be greater than those of the upper surface of the Dakota sandstone, for this sandstone probably filled up many of the earlier inequalities of surface. Consequently the contours of the bed rock as shown on the geologic maps are largely conjectural, especially as to details.
 which is a sandstone firmly cemented with quartz is not easily which is a sandstone irmly cemented with quartz, is not easily a much later age. The latter, however, is more commonly cemented with carbonate of iron or lime, which may be readily detected by effervescence which follows the application of an acid.
It is probable that the Sioux quartzite lies in irregular areas on the granite, especially toward the south. The abrupt drop in the upper surface of the Dakota sandstone in the Byron quadrangle between the 800 -foot and 850 -foot depth lines, shown on the artesian water map, appears to correspond to a similar feature in the surface of the "bed rock" below, which may be an old escarpment of the Sioux quartzite. This inference is corroborated by a comparison of the records of the Budlong and Motley wells.

cretaceous system.

Of the younger sedimentary rocks only the Upper Cretaceous have been certainly found in the area, but it is possible that and overlying bates of the Black Hils resion, which are of and overlying shales of the Black Hills region, which are of Lewer Cretaceous age. Cos rocks or fossils of that age have never been found here, and the known area of their distribution is farther west. The Dakota, Benton, Niobrara, and Pierre have all been recognized in drilling, and the Pierre is exposed at several points.

```
dakota sandstone.
```

The Dakota sandstone is the chief water-bearing formation of the region, and supplies the more important artesian wells of North Dakota and South Dakota. In this area it nowhere comes nearer the surface than 700 feet. The formation is named from the town of Dakota, Nebr
Character.-As exhibited in the rim of the Black Hills and along Missouri River near and below Sioux City this formation is generally a brown sandstone, hard and massive below but thinner bedded and interstratified with much shale above. Its grain varies from fine to coarse, and as a rule the rock is only moderately compact. In eastern South Dakota the formation usually lies on the sioux quartate, but in the vicinity of Mitchell it abuts against the higher portions of a ridge of this quartzite terminates at this overlap along an old shore line, which has
considerable irregularity in outline. From this shore line along the quartzite ridge the Dakota slopes to the north, west, and outh. It is believed that there was little, if any, erosion of the Dakota before the deposition of the Benton. The dip of the Dakota sandstone is steeper near the quartzite ridge, and gradually diminishes away from it, so that the strata become nearly horizontal. In the quadrangles of this folio the formation is mainly
Thickness.-The Dakota is variable in thickness and, except from a few borings which have reached its bottom, precise figures are not available. In the Andrew Kleinsasser well, in sec. 4, T. 113 N., R. 60 W., it is 125 feet thick; in the Budlong well it is 185 feet thick, which is less than usual because of the presence of a ridge of the pre-Cambrian rocks below. A similar ridge under Ashton and Redfield is indicated by a thickness near Redfield of only 125 feet. At the Glidden well it is more than 200 feet in thickness, and at Frankfort it was penetrated for more than 200 feet without reaching the bottom. Drillings at Aberdeen show that its thickness is certainly more than 300 feet there and it is doubtless thicker in the northwest corner and toward the west in these quadrangles. The well sections on pages 12-13 exhibit the character and thickness of the formation in detail.
Fossils.--The Dakota sandstone contains fossils of various kinds indicative of the earlier part of Upper Cretaceous time, and it is believed to be mainly of fresh-water origin. In this region a few fossils have been obtained from the deep wells. In
the Budlong well casts of leaves resembling those of elms and ther deciduous trees were found in concretions in the sandstone at a depth of about 810 feet, or a little below the main flow. At the Hill well, in the NW. $\frac{1}{4}$ sec. 18 , T. 115 N., R. 60 W., At the Hill well, in the NW. $\frac{1}{4}$ sec. $18,1.115$ N., R. 60 W. ., the water brought up numerous shells, mostly when the casing
was at the main flow at 800 feet. Some of the shells were possibly from higher strata, but those believed to have come from the main flow were stated by T. W. Stanton to comprise Corbula resembling C. crassimarginata, Natica sp., and Cerithium (?). From this well there were also obtained numerous teleost vertebre and shark teeth which C. R. Eastman identified as belonging to Lamnidæ, Otodus (probably 0 . obliquus), and Odontaspis; dermal tubercles and teeth of a small ray; and one ganoid scale, apparently referable to Lepidosteus.
From the King well, in the SW. $\frac{1}{4}$ see. 23, T. 113 N., R. 61 W., numerous spiral shells (Goniobasis) were thrown up when the well was cased to 825 feet.

bentox shale.

The Colorado group includes two distinct formations, the ower of which is the Benton shale, named from its prominent development near Fort Benton, Mont., on the upper Missouri. In the southeast corner of South Dakota it consists of leadcolored or dark-gray shales containing calcareous and ferrugi300 feet at its exposure to the south along Missouri River, but it thins toward the east. In the vicinity of the Black but it thins toward the east. In the vicinity of the Black
Hills the thickness is much greater. It is divided into three formations, the Graneros, Greenhorn, and Carlile, named in the order of deposition. The Graneros and Carlile are mostly dark-colored shale, though the former is sandy below and the latter usually has several feet of sandstone near its top. The Greenhorn consists of 20 to 40 feet of chalky, shaly limestone abounding in Inoceramus labiatus. These divisions are also prominent in southeastern South Dakota.
The presence of the Benton in this area is indicated mainly by the existence of certain minor water-bearing strata which clearly belong to this formation in adjacent regions. Further evidence is afforded by the fossils sometimes thrown out of wells, notably Prionocyclus woolyari from the Hassell \& Myers well near Redfield. This fossil is characteristic of the upper portion of the Carlile shale. Fossils which may belong to the Benton formation have been obtained in the Hill well near Doland.

The upper formation of the Colorado group is the Niobrara, aamed from its prominence near the mouth of Niobrara River It is generally of a drab color, but where it has been weathered it presents a snowy whiteness or more commonly a light straw
color. It varies considerably in composition, carrying in many places a large proportion of clay. Owing to its variable complacesion it is not everywhere clearly distinguishable from the Benton shale below. The purer chalk appears to occur in lenses or spheroidal masses grading into the clay. In some exposures chalk may be found at one point and a few rods away its place is taken by a gray clay.
The most characteristic feature of this formation is the chalkstone, but no doubt theré are also extensive deposits of limy clay, especially in its northern extension. As the formations both above and below consist mainly of shale, the position of the Niobrara beds is in few places sharply defined in this driftcovered region. It is especially difficult to recognize the for-
mation in boring wells, for much of the chalk that has not been exposed to atmospheric action has a leaden color closely resembling that of the gray shale of the Benton. Well drillers seldom recognize the chalkstone in northern South Dakota, so there is considerable uncertainty as to its position in the records of borings. In many of the well sections the sandstone in the upper part of the Benton is succeeded by dark shale which is overlain by a considerable thickness of lighter-colored shale probably representing the Niobrara formation. In a few places beds, which is confirmatory evidence. The thickness of the Niobrara is probably about 100 feet.
montana grour.

The Montana group comprises two formations, the lower being the Pierre, so named because it constitutes the Missouri River bluffs at Fort Pierre, and the upper the Fox Hills, which occurs in Fox Ridge north of Big Cheyenne River. Only the Pierre shale is present in this region.
pierre shale.
General statement.--The Pierre underlies the drift in the region, attaining a thickness of several hundred feet and outcropregion, attaining a thickness of several hundred feet and outcrop-
ping at a few points along the streams. Here as elsewhere it is ping at a few points along the streams. Here as elsewhere it is
composed mostly of dark lead-colored clayey shale, easily reduced by weathering to a black, waxy clay, but at certain horizons there are harder layers.

At several points a layer of white clay 2 or 3 inches thick appears in the Pierre shale. It resembles strata in the Benton formation which have been supposed to be deposits of volcanic ash decomposed into clay called bentonite. Material of this sort outcrops near the mouth of Turtle Creek a few feet above the stream and at several points on Snake Creek, in secs. 18 and 19, T. 122 N., R. 65 W . These localities are 900 and 940 feet, respectively, above the top of the Dakota sandstone. Similar exposures were found also in the Wessington Hills, which are estimated to be fully 1100 feet above the Dakota sandstone.
Pierre shale outcrops.-The Pierre shale outcrops at numerous points in the Byron quadrangle, where it is mostly a black plastic clay, in banks rising 5 to 20 feet above the streams. One series of exposures extends from a point on Turtle Creek about 1 mile above its mouth to James River and along that stream nearly to the mouth of Dry Run. In one place the clay rises about 18 feet above James hiver and presents the same black, deeply eroded rough surface as in exposures in this series are a short distance from the stream exposures in the of Timber Creek north of Doland and less numerous along the north branch of Foster Creek. The soutbernmost exposure noted in this area is an obscure one near the south line of Capitola Township, on the south bank of Foster Creek. The outcrops noted are all natural exposures. In many the places the cutting of streams and the occurrence of landslides may reveal the formation at any time.
The only exposure noted in the Aberdeen quadrangle is near the southwest corner of sec. 35 , T. 121 N., R. 60 W., where a few square feet of flaky shale appears in the side of a shallow ravine.
Numerous exposures occur in the Northville quadrangle, mostly in the northern portion, where for many square miles the drift is so thin that the Pierre shale is cut into by nearly every watercourse. It appears mostly along Snake Creek, but is exhibited also along a stream heading southwest of Cortlandt and along shallow watercourses east of Suake Creek in Mercier and New Hope townships. An isolated outcrop is reported in the bottom of Nixon Creek in the northwest corner of sec. 18, T. 119 N., R. 67 W. Clifs of shate 25 to 30 feet in height appear at some points near Cortlandt. Wherever
 the shale thrown out of exavations in the northwestern part of the Redfeld quadrangle Probably these harder beds are of the Rear hor han the shale at lower altitudes about Ashton and Redfield. This suggestion receives some confirmation from a report that near Conde a soft clay was found underneath "slate." However, the plastic character of the black clay along James River may be due to the former presence of iron pyrites which, by its decomposition, has dissolved the cementing material, leaving the residue plastic, whereas in other localities the absence of pyrites has permitted the formation to retain its original firmness.
Pierre shale surface.-The position of the surface of the Pierre shale has been ascertained in some parts of the area where it does not outcrop, but in others it is very uncertain, especially in the central and northwestern portions of the Redfield quadrangle, and under much of the James Valley plain, where it is overlain and obscured by an unusual depth of Quaternary deposits. The surface of the Pierre in these quadrangles reaches an altitude of about 1400 feet at several points
remote from one another. One of these points is near Miller remote from one another. One of these points is near Miller
and St. Lawrence, and the formation rises even higher in the hills a few miles farther south. It attains an altitude of nearly 1420 feet near Cortlandt and is somewhat higher west of that place, but slopes gently down toward the east nearly to Aberdeen. It rises to about 1375 feet 4 miles east of Verdon, and this may be taken as the average altitude along the eastern margin of the are to the vicinity of Dolanda. It is probably rises to 1300 in altitude in the vicimity of Byron Lak. It nearly 1350 feet around Rockham. It is still higher to the northwest, where it comes at many places within a few feet of the surface. West of Devoe it is found in wells at an altitude of about 1380 feet, and it is reported to outcrop at that altitude in the bed of Nixon Creek about 5 miles above Devoe. These points constitute the principal elevated areas.
On the other hand, there are two or three marked depressions or troughs in the Pierre surface, the principal one being along the James Valley. The greater portion of this subdrift valley is wide like the present valley, but a short distance south of Melle it appens to be dided by a low ridge of shale which ef 1250 fet of this undergromd riage east of Ashton is about in the Pierre rus southward from the latitude of Mcllette in the Pierre mhen ary between the valleys of Dry Run and Timber Creek. It is Byron quadrangle, but east of Frankfort it appears to be narrower. East of Hitchcock it becomes wider and its sides are not so abrupt. Its course is southward in the main, though it deflects somewhat to the east opposite Frankfort and near Byron Lake. The bottom of this valley in the Pierre lies about 1200 feet above sea level, at least in the southern part of the area. It may be deeper in its wide portion east of Aberdeen. The western portion of the valley near Mellette presumably continues to the south-southwest and corresponds approximately to the course of Turtle Creek. Near Twin Lakes the surface of the Pierre is apparently lower than 1200 feet above sea level. Between Miller and Rockham the Pierre surface is lower and in some places it may not rise over 1200 feet above sea level. This would favor the view that an old valley in the Pierre follows approximately the course of Turtle Creek.
Another deep valley in the Pierre, now filled with till and drift deposits, extends from the James Valley near the north line of Spink County westward past Salt Lake and St. Herbert towar Pow. Th ber St Herbert is lis of about 1200 feet on the east, but near St. Herbert it lies about 1300 feet above the sea.

quaternary system.

pleistocene

The formations thus far described are all sedimentary and, with the exception of the Dakota, are of marine origin. The Pleistocene deposits, however, present a marked contrast, not are the products of glacial action and overlie almost all the earlier formations without respect to altitude, forming a blanket over the whole surface with the exception of a few square miles which are covered by alluvium or occupied by outcrops of the older rocks. The deposits include till or bowlder clay, morainic material, and certain stratified or partly stratified clays, loams, sands, and gravels formed along abandoned river channels and lakes. The bowlder clay constitutes a great sheet spreading over nearly the entire area. The morainic material occurs in a series of rough, knobby hills and ridges crossing the quadrangles mostly from north to south. The channel and terrace deposits fill valleys and cover flat areas mainly lying in close proximity to the morainic ridges.

alacial till.

General statement.-The till, or bowlder clay, presents features that are found in similar regions elsewhere, as in central Minnesota, Iowa, and Illinois. It is an unstratified
mixture of clay, sand, and worn pebbles and bowlders, the mixture of clay, sand, and worn pebbles and bowlders, the developments of stratified sand, in part merely pockets, elsewhere portions of channels of considerable length, and still elsewhere portions of channels of considerable length, and still elsewhere
sheets that locally separate the bowlder clay into two or more sheets that locally separate ne bowlder clay into two or more
members. The till of this region is much more clayey than that occurring at points farther east, because for a long distance the ice moved over and deeply eroded the dark-colored clays of the Cretaceous. For this reason the erratic bowlders are perhaps less commonly striated and planed.
The till here, as elsewhere, exhibits an upper division, known as yellow clay, and a lower blue clay. The yellow clay is produced by the oxidation or weathering of the blue clay, and the separation between the two is not very sharp. In some sections they may be distinguished, but not in all. The blue clay, moreover, is likely to be confused by well drillers with the underlying Cretaceous clay of similar color, so that in their reports part of this clay may be included with the Pleistocene.

No distinct traces have been found here of a general subdi－ sion of the till into two different members，as occurs in som ther localities．It should be noted，however，that even i here is a division there is little likelihood of its being reported by well drillers，for the Pleistocene is in few places the source of water supply，and hence the drillers are less critical in their observations on it than on the underlying rocks．Occasionally fragments of wood have been reported from it，but in vestigation of such reports has invariably shown that the fragments were Charater．The till ware ar arest
Charaler．The tir was considealy in chaacler at dif rent poins ace shale it is much blacker than elsewhere and in fact locally it is distinguishable from the Pierre only by the presence of sand mixed with it and by scattered pebbles
In much of the eastern and southeastern portions of the Byron quadrangle the unweathered till presents similar characters to those just mentioned，but in less degree．On the other hand the upper or thoroughly weathered portion in the same area is of a lighter color than the ordinary weathered or yellow till，havin a creamy tint similar to that of the Lake Dakota silt，described below．In the three other quadrangles the till does not differ much from the ordinary till of other regions．In the Jame Valley and Woff Creek plains it is largely obscured by othe deposits，particularly in the area covered by the loesslike Lak Dakota silt and the wash from the adjacent slopes．In the southern part of the James Valley the till is usually stony This may be the result of floods that have washed away the finer material．

Subdivisions of till．－From the glacial history of the region andicated by the moraines，one mish．expect to find traces of

Figure 1．－Plan of striated＂bowlder pavement，＂near son
see． 9, T． 113 N．，R． 60 W．，Beadle County．
ice advance．The only clear indications of such subdivisions， however，appear in a comparatively narrow area north of Byron Lake，in Lake Byron and Milford townships，where at several ints thene are traces serms to be a rather extensive

T． 113 N．，R． 60 W．（Milford），and in the northwest and south west corners of sec．9，T． 113 N．，R． 61 W．（Lake Byron）， many bowlders are embedded in the upper surface of a typical brownish till，with their upper surfaces planed and striated with approximately parallel scratches．The directions of the strix at the locality in Milford Township were S． 20° to $33^{\circ} \mathrm{E}$ ． mostly S． 29° E．，magnetic．In Lake Byron Township the

FIGURE 3．－Section of glacial till near northwest corner of see．9，T． 113 N ． Vertical joints． blackisish chay．

directions were S． 15° to $34^{\circ} \mathrm{E}$ ．，magnetic．These localities are about 6 miles apart，and the pavement has been struck in shallow wells at several places between them．These striated bowlder seem to correspond closely to bowlders that have been noted in the vicinity of alpine glaciers which were undoubtedly the result of glacial action．It seems，therefore，that in this area the ice， uring a later stage perhaps corresponding to that of th eposition of the second and third members of the Antelop moraine，overrode and wore down the surface of the till pre－ aberdeen－Redifiel
iously deposited．The large number of bowlders at this hori on corresponds with the bowldery surfaces farther west，whic ppear to be the result of unusual water erosion along the axi f the James River valley
These bowlder－veneered areas of till，from their relations to ancient channels and the fact that they are generally much more abundant on the surface of the till than below，are believed have been produced by strong currents，which washed awa o fom the shore，or croud ice which brought them ip fro the ottom，as in rivers conada the present time These ice arne bowlders were stranded in the shallows of rapids or wide portions of the river．
In the southwestern portion of the Redfield quadrangle ther many facts which may possibly indicate the existence of two ill deposits of an earlier stage．Between the Gary and Ante ope moraines the till is thicker than elsewhere，and in digging wells there seems to be not only the water－bearing sand at epth of 70 to 150 feet，but also in many places water at depth f 30 to 50 feet after penetrating blue clay．This may possibl indicate the division between two till sheets，but the facts ar indecisive，as local sand lenses and channels are apt to be found in the till at various levels．

horannes．

Moraines are more conspicuous in the Redfield and Byro quadrangles than in the remainder of the area，being especiall prominent in the ridge southeast of Doland，the Redield Hills nd Bald Monntain，the last－named rising over 100 feet above
 ise more than 10 or 15 feet above the adjoining ares rarely oraines of these pudrangles are members of Gary and Antelope moraines．The former is prominently developed nea Gary in Deuel County，and the latter is named from the Ante ope Hills，in the Minnesota Valley．The Gary moraine operesented only in the southwestern and western portions of the Redfield quadrangle．All other moraines represented on the areal geology maps are subordinate members of the Antelope oraine．
Composition．－The material in all the moraines differs little fom the till，except that it is generally more stony．This haracter is casily traced to greater exposure to water action， oth while the ice sheet was present and during the later erosion． As the Dakota ice lobe traversed hard rock nowhere south of Manitoba or northern Minnesota on its way to the area unde consideration，but only the shaly clays of the Pierre and possi－ bly some soft sandstone of the Fox Hills or Laramie，it follow hat the bowldery constituent is small and fairly uniform． Probably over 80 per cent of the material in moraines rising别再 larger number of boulders throughot the are cosider er lium arained grante，mostly light gray eo reddich and darker varieties are，mostly light gray aps 10 to 15 per cent of the total number of bowlders are ne－prained sedimentary rocks，many of these are magnesian nd show some Devonian or Silurian fossils．Both snow－white dight－yellow sedimentary rocks occur，the former mon umerous．About 5 per cent are greenstones of various sorts， iorites，and diabases．Here and there white quartz bowlder of small size may be found，and possibly others，also small，of very fine grained gray sandstone，showing many casts of lant stems．Such bowlders are numerous west of Missou River and outside of the first or Altamont moraine．They have been found in the James Valley inside of the Gary noraine，though not surely in this area．They occur in place in the Tertiary．In some places concretions from the Creta eous have escaped destruction and persist as bowlders．N ed quartzite bowlders，such as abound south of the Sioux quartzite ledges in the latitude of Mitchell，are found north of at line in the James Valley
Gary moraine．－The Gary moraine consists of a belt of解dery hills 3 or 4 miles north of Miller，so low as to be a range of scattered hills along the north side of the shallow valley which extends across the tributaries of Turtle Creek astward to the valley of Pearl Creek．This zone of bills con－ nues along the north side of Pearl Creek and to some extent long its south side turning with the stream toward the south ast in T． 112 N ．The scattering morainic knolls in the Pearl Creek valley and to the south may owe their origin to a late age of advancement of the ice into and perhaps over this valley fter its formation．It is possible，however，that these knoll may have been formed at a still earlier stage．The small development of the moraine may be accounted for by supposing hat much of the material dropped by the ice sheet during it formation was swept away by a stream running close to its edge hat such a strem formery occupied the valley is indicate y the extensive gravel deposits．In Howell and Park town
hips a few scattered peaks rise above the surrounding nearly level surface．One of them is known as Gartield Peak．Their relations are not clearly enough exposed to decide whether they are a part of a reentrant angle of the Gary moraine comin from the west，or whether they are local and unusual deposit he ice sheet．
Antelope moraine．－The Antelope moraine is unusually irregular and complex in this area，and it has not been prac The designations on the real cons map are ery it i believel that the trary，yet it
This unusual complexity probably is due to the following ircumstances．As the ice receded from the Gary moraine doubtless became much thinner，as well as less extensive，so that morainic dibris began to accumulate under the thinner portion south of the location of Redfield．This tended to split the broad ice sheet at that time extending across both the James River and Turtle Creek valleys into two subdivisions corre ponding to those valleys．The eastern lobe，on lower groun and therefore more vigorous，still reached beyond Cain and Pearl creeks south of Huron，but the western lobe，being gh ground an mong wan and shortened．At that time，that is during the formation of he first member of the Antelope moraine，the ice extended beyond Miranda on the west and nearly to Burdette on the outh west．
There is much difficulty in identifying the members of this moraine because the knolls at first glance appear to be scat tered uniformly over much of the surface of the western slope Consequently it has bee found bornve quadrif and seattered levations，either knolls or low swells．The ancient channel lso cive an important clue to the successive stages in the reces son of the ice：especially in correlating the different members on he east and west sides of the ice sheet．Attention is als called to the fact that the ice lobe was more active in its wester half than in its eastern．Apparently its velocity was greater it melted faster and more material was deposited，while more also was washed away．Moreover，the recession was probably bout three times as fast on the western side as on the eastern． The first member of the moraine includes a belt of scatterin kolls entering the Redfield quadrangle north and south West Branch of Snake Creek northwest of Miranda，and sweep ng in a gentle sorh and solloast are to the southeast cor ner of Wheaton Township，where it joins the correspondin portion formed along the western edge of the eastern or Jame River valley lobe．It must be supposed that much of the mate rial comprising the hills of the reentrant portion to the north and northeast had atready accumulated underneath the ice，and it is not unlikely that the higher hills were at least half formed hat the hills north and enst of Cottonwod Lake，most of Bal Mountain and the range of hill conecting with the Redfed Hills were already in existence．This fist member include e prominen bill extending along the east side of the coupi mous valley that runs south－southenstward into the southea corner of the Redfield quadrangle and joins the hills west．of Wolsey．This member enters the east side of the Byron quad angle in T． 115 N．，R． 60 W．，in a belt of scattering knolls and ridges that continue to the northwest and north outside（east）of the later members，which combine into a well－defined ridge little farther west．It leaves the quadrangle north of Doland． The second member of the Antelope moraine in the nort west corner of the Northville quadrangle lies on the east sid of a broad，shallow old stream channel running toward the south． At the north it is clearly defined，but near the south line of dmunds County it becones less prominent，probably because f numerous old streams which may have carried away much of the original deposit．It enters the Redfield quadrangle just east of the west branch of Dove Creek，and trends south war and southeastward along a curved course nearly parallel to that of the first member，with which it is connected at a few point arin but further south it consists of knols few of which
 zone 1 to a mile wide．Norhwest of Cottonwod Lake curves to the east and northeast and connects with the nort nd of Puld Mountain．Fast of that point the second memb is scarcely separable from the first and lies on its inner or borthern side．Together they swing to the north in the mod erately high ridge known as the Redfield Hills．Near Tulare tation the moraine appears to be lacking for some distance o to be covered by old stream deposits，but from Tulare south war the second member is a conspicuous feature to and beyond Huron．It is about $1 \frac{1}{2}$ miles wide in this region and is distinct in topography．East of the James River valley this membe reappears in a ine of ridges extending through Union Tow ship and southward past Doland．According to present inter pretation it merges into the third member near the southwe corner of Capitola Township，and after crossing Foster Creek
forms a high continuous ridge running toward the north. Its further course will be traced in connection with that of the third member.
The third member is less easily traced than the second, especially on the west side of the James River valley, becaus of its unusual breadth. It appears in the plain just west of the est fork of Snake Creek northwest of Cortlandt, where it is represented by low knolls interspersed with wide shallow basins. Its course, like that of the second member, is due south nearly to the south line of the Northville quadrangle In T. 119 N. it appears to divide into two parts, one swinging Snake Creek and extending to the north branch of Dove Creek, which it follows to its southeast bend, and the othe Cressing east of Preachers Run and extending to the southeast end of Dove Creek, where it unites with the other branch The member then turns eastward toward Redfield and finally The member then turns eastward toward Redield and finally southern part of these hills west of Crandon this member again separates as an irregular ridge that rises at intervals toward the south, past Hitchcock, on the east side of a prominent old channel. East of the James River valley the third member may be represented by the few osar-like knolls in eastern Iowa Township, but at the northeast corner of Lake Byron Township rises in a fairly developed ridge which extends to Foste Creek. North of that creek, near the southwest corner of Capitola Township, it joins the second member, and thence northward the two form Doland Ridge, which in places rises from 60 to 75 feet above the adjoining plains. Near Doland and farther north the ridges are low and broken but form a well marked morainic belt 1 to 2 miles in width. The areas are less continuous near the north line of the Byron quadrangle and trend somewhat to the east. In the Aberdeen quadrangle the
 little east of north till they pass out of the quadrangle in th outheast corner of Hanson Township. The fouth mer the Antelope
The fore considerable width massiane occupies a northouth zone of considerable width, passing along the western
ides of Brown and Spink counties and ending a short distance north of Zell. This zone includes the rough country east of he Scatterwood Lakes and the still rougher region west and southwest of Northville. The member may reappear in a few cattered knolls in Lodi Township and in a cluster of osar-like knolls in the northeastern part of Cornwall Township (T. 11 ., R. 62 W.). It may be recognized further in a few (Iorainic nolls scattered along the west side of Doland Ridge. Its last epresentative toward the north is a cluster of knolls just south of the railroad about 4 miles east of Groton, which may b considered meager representatives of the outer portion of this member. The later deposits were lost in the early waters of ake Dakota.
The knolls scattered on the summits of the divides near the line between Zell and Groveland townships and along the north edge of Exline Township may be considered an intermediat porhaine formed between the may be classed with the fourth The promis, perapsic ridges just northwest of A berdeen may be regarded as fifth member of the Antelope moraine, the rest of which was lost in Lake Dakota, as in the case of the preceding member.

skirs or osarg

As has already been mentioned the melting of the ice on the west side of the James River ice lobe was more rapid and the rainage on that side was more free than on the east side, partly because of the gentler slope. On the east side the melting pparently was slow and the slope so steep that the water draining from the eastern highlands, instead of cutting channels toward the south, ran toward the ice. In some places the water ran upon the ice for some distance, and elsewhere underneath it The latter conditions naturally prevailed at the south, towar he end of the glacier, while to the north the surface flow wa more common and several interesting and well-developed line of osars were formed. The northernmost of these osar group in this area is a line of ridges about $1 \frac{1}{2}$ miles long in secs. 21 and 22, T. 122 N., R. 60 W., rising 20 feet above the surrounding land and sloping down toward the west. Another system hrough the town of Conde. Another east-west system lying just south of Turton has a length of more than a mile. Two mall osar-like knolls lie in an east-west direction about 9 mil outh-southeast of Conde. All these groups seem to have beer ormed by streams flowing westward upon and toward the middle of the ice sheet.
There are also one or two lines of ridges running nearly due outh in the southeastern portion of the Aberdeen quadrangle The most conspicuous comprises a series of long, sharp, gravell Sumner Township, a distance of over 7 miles. In one part the ridge is unbroken for 3 miles. Another system, much less per ectly developed, lies about a mile farther east, including a ridgo about half a mile long in sec. 12, Benton Township, and a short
ridge in the southeast corner of sec. 13, Sumner Township The latter coincides in direction with the west end of the Turto ridge. All these ridges consist of gravel and sand irregular bedded and cross-bedded. A series of knolls in sec. 22, Ath ownship, suggested a possibly similar origin, but closer exam nation failed to reveal any distinct stream deposit, hence the are mapped as a morainic ridge.
ancient channels and trrrages
Scattered throughout these quadrangles are numerous abandoned channels and terraces, the locations of which are show on the geologic maps. Most of these channels are clearly sepaable geose maps. Mrainase lines and are evidently much lder. In some of the shallower channels the older deposit can not be clearly distinguished from those of recent origin and all are mapped as old deposits. The ancient channels corr spond generally with the present waterways, for the latter ar the puny successors of the former, though in some the direction of drainage has been so changed that the course of the water ha been actually reversed.
These channels vary from shallow, flat-bottomed depression through which streams passed for a comparatively short time, troughs nearly 100 feet deep that contain an abundance oarse material, showing that they were long occupied by tigo ous streams. In all of them the coaser deposits are as a rul largely covered with finer material. Where the channel deposit has been cut through by the deeper trenching of a later stream, imilar differences in the character of the material also occur In some places the old channel deposit is at a height of 50 60 feet above the present streams. Many of the old deposit ave been but slightly trenched, however, as the later draina has passed off in another direction.
These ancient channels were developed during the presenc The arrangement of the channels is the strongest evidence of the former presence of glaciers in the region. The size and direction of some of the channels and the amount of coars material found in them can be explained in no other way.
The oldest channel in the area treated in this folio doubt is the one which runs eastward outside or south of the Gary moraine north of Miller and St. Lawrence and which towar the east is now occupied by Pearl Creek. It is less regular tha most old channels, because the knolls of the Gary moraine are cattered in the bottom of it as well as on both sides. In gen ral the channels were occupied in succession from the southwe oo the northeast throughout the Redfield quadrangle and a part of the Byron quadrangle, but in the east half of the latter the uccession was from the southeast and east toward the west.
Many of the larger channels have sandy or gravelly bottoms though most of them are covered with clay or loam. Some of the localities where the till remains sandy are along Pearl Creek, in the channel running southward from Turtle Creek past Wolsey, in the channel west of Hitchcock, and in a small are southwest of Redield. A considerable part of the sand appean or have been blown at some time from the betoms of some wins. Such transprted and is berpous, athough ottom the channels to the west are now well cored wit oil and clay, The rel
Telations of these channels to adjoining moraines and to the recession of the ice sheet is further discussed under the during the recession of the ice were partly refilled during th existence of Lake Dakota, and, though some of the resulting deposits were thoroughly washed out afterward, many of them still remain, nearly buried in lacustrine silt.
On the areal geology map the channels are numbered in the order of their occupation so far as possible, but this plan has not been feasible for'some channels that were occupied at different times, a few of hem with the direction of the stream reversed. The numbers assigned to channels within the limits of Lak Dakota indicate the order of occupation during the recession of he ice sheet, before there was a continuous lake. During the falling and draining of the lake many of the channels were simultaneously occupied by currents or streams.

lake dakota siet.

The deposits of the glacial Lake Dakota occupy an extensive area in the bottom of the James Valley at an altitude of about 1500 feet. The area is about 16 miles wide opposite Redfiel resembles a flot area of till, with bowlders and pebbles but thi southern portion consists largely of delta deposits , North of in irreoular line passing south of the latitude of Crandon, the surface is remarkably level, though crossed here and there by channels which very commonly trend toward the southeast The most characteristic feature of this portion is that it is covered on the uplands for a depth of 5 to 35 feet with a fine yellowish or cream-colored silt or loam in which bowlders and pebbles are very rarely found except toward the base. In the deeper channels crossing this silt area bowlders appear at many places on the bottoms and lower slopes, but the
shallower channels are covered throughout with the fine lake
Composition.-The Lake Dakota silt closely resembles the loess that covers wide areas in the southeastern part of South Dakota and in Iowa and Nebraska, and is apparently of the same composition. It consists mainly of very fine quartz sand, of which the grains are mostly clear quartz, though yellowish ones are found. The grains are perfectly rounded and vary in size from less than 0.008 to 0.04 millimeter, the average size being not far from 0.01 millimeter. Like the loess, the silt effervesces
 cracked interiors, very like the "loess kindchen." Some of These concretions are composed largely of sulphate of lime. The silt shows very little trace of stratification except in the material are locally imbedded. It has vertical cleavage, like the loess, and is found also at varying levels in much the same way. It differs from the loess in being less coherent and of a lighter shade, with its lower portion usually of gray color, and in having a well-defined upper limit on the sides of the valley. Toward the base of the deposit in some places the silt passes more or less abruptly into fine sand several feet in thickness.

These deposits usually have a massive structure from top to bottom, but in many places they exhibit thin layers of a darker and more clayey nature. In some locations where the conditions of deposition may have been more tranquil than usual there are numerous alternations of clay and loam in somewhat regular series, suggesting that the successive layers might be the result of an annual or seasonal variation of conditions. This character was noted in Lager's brickyard near Aberdeen,
where the section is as follows:

```
Section at Lager's brickyard near Aberdeen.
```

 Light.gray loam-
Yellow massive loa assive massive loanu, weathering with rounded cornareds.-.......-. 1.4 inches thick, alternating 13 times with dark- gray clay one-
sixteenth to three fourths inch thick Similar to foregoing. but
Banded drab clayey silt
Clay blotehed below wit
cotched buish and ru
lying on blue till.
The relations of this deposit clearly show it to be of flood origin and indicate that for some time the James River valley was occupied by a lake. In general, the deposit is thicker toward the center of the district covered by it, but in a few places remote from the edge morainic hills or patches of till bly not all. Here and there the silt rests almost directly on Cretaceous clays, with only a few inches of drift between.

```
recent depostrs.
```

 aluuvium.
 All the streams that traverse this region are subject to sudden floods, caused not only by occasional excessive rainfall but by the rapid melting of abundant snows during certain seasons. The gravels of ancient channels and lake basins are thickly covered with fine silt, which is in part dust deposited from the air. The alluvial plains of James River a verage about half a
mile in width. Some portions of it are dry and are well adapted mile in width. Some portions of it are dry and are well adapted
to cultivation; others are marshy, and all of it is more or less to cultivation; others are marshy, and all of it is more or less
subject to occasional floods. The alluvial deposits are from 10 subject to occasional floods. The alluvial deposits are from 10
to 20 feet thick, the upper 3 to 5 feet being usually fine black loam and the lower portion sand or gravel.

GEOLOGIC HISTORY.

algonkian time.
Prior to the formation of the Sioux quartzite a land surface composed of granite and slate occupied central Minnesota, and possibly extended south and east of these quadrangles. From that land area material was derived, both by the action of streams and by wave erosion along the shore, and was laid down over the region now occupied by the Sioux quartzite, a broad area that now extends southwestward rom the vicinity of Pipestone, Minn., and Sioux Falls, S. Dak. The deposits were thicker toward the center of the area and consisted mainly of stratified sands, but locally comprised thin beds of clay. The materil of he que may th ater remain
After this period of deposition there seems to have been an by the occurrence of a dike of olivine diabase near Corson and in borings at Yankton and Alexandria, S. Dak., and of quartz porphyry near Hull, Iowa.
Through silicification the sands thus deposited were changed into an intensely hard and vitreous quartzite, and the clay beds were formed into pipestone and more siliceous red slate, as at Palisade. Microscopic examination shows that this silieification was effected by the crystalization of quartz around the separate grains of sand until the intervening spaces were entirely filled.

paleozoic time.

In time the region was lifted above the sea, and during some part or all of the long Paleozoic era it was a peninsula. It may at times have been submerged and have received other deposits, but if so, they have been eroded. That it was not far from the ocean, at least during a portion of the time, is attested by the occurrence of Carboniferous rocks under Ponca, Nebr.; and inasmuch as rocks of several of the different systems of the Paleozoic and of the Jurassic and Crassic are present in the

cretaceous time

With the beginning of the Cretaceous period the sea began to advance over the land; in other words, this quartzite area began to subside relatively. As the waters gradually advanced waves and currents carried away finer material and left well-washed sands spread as more or less regular sheets extending across the shallow sea from its eastern shore to the Rocky Mours and finer material, or mud, was deposited, or possibly in part sand and mud were laid down contemporaneously in different areas. It is not unlikely also that strong tidal currents sweeping up and down the shallow sea over the area mentioned may have played an important part in distributing so uniformly the sands and clays. Where the currents were vigorous, sands mainly would be laid down; where they were absent or very gentle, clay would accumulate; and not improbably these tidal currents would shift from time to time by the variable warping of the sea bottom and the shore. At any rate, it is known that several nearly continuous sheets of sand extend over this region and are more or less perfectly separated by intervening sheets of shale. The product is the Dakota sandstone.
The fossils found in the Dakota sandstone
fire some freshwater shells and leaves of deciduous trees, like the sassafras, the Throughout Colorado the eacalyptus.
Throughout Colorado and Montana time marine conditions prevailed and the region was further submerged until the shore
line was probably as far east as central Minnesota and Iowa During most of this time only clay was deposited in these quadrangles, but calcareous deposits accumulated in the form of chalk during the Niobrara ene when the in the form brought less mud into the region. The sea then abounded in swimming reptiles, some of gigantic size, whose remains have been found at several points; also sharks and a great variety of other fish, although the remains of these are not abundant.
In the latter part of the Cretaceous period, in the Laramie stage, the sea seems to have receded rapidly toward the northwest, and all eastern Dakota again became dry land.
tertiary time.
During early Tertiary time, when, according to the prevalent view, large rivers deposited widespread sediments in the region toward the west and southwest, this area received but little material and probably abounded in vegetation and animal life. Apparently the climate was then much warmer and moister. Later the streams, which had already become located, cut deeper chands and as at present. At that time the James Valley was occupied by a larger river which received from the west the various streams depth at which James River lies ${ }_{0}$-day, though the valley had depth at which James River lies
been so long oceupied that its breadth was much greater than that of Missouri River
quaternary time.
Advance of ice.-During the Pleistocene epoch a great ice sheet moved down the James Valley, entering it probably from the north and northeast. It slowly advanced, preceded by waters from the melting ice, which gradually spread a mantle of sand and gravel over much of the preglacial surface. This moving lowed according to the slope of the preglacial sumace moving more rapidly on the lower and more open portions of the valley, and becoming almost stranded on the higher elevations. It certainly reached as far as the outer, or Altamont moraine. Some geologists are confident that it extended down flowing down the Minnesota and Des Moines valleys, the combined glaciers extending into Kansas and central Missouri. However that may be, during the formation of the Altamont moraine the ice filled the whole James Valley and extended westward at different points to the present channel of Missouri River near Andes Lake, Bonhomme, and Gayville, so that the Altamont moraine forms an almost continuous ridge or system of stony hills around the edge of except where it was removed or rearranged by escaping waters (See fig. 4.)
causes the ice began to recede ankn cause or combiration of considered part of the Altamont moraine, morainic material was again laid down in the higher part of James Ridge east of was again laid down in

Lesterville and near Tripp. After this stage came a period of still more extensive recession, which carried the edge of the ice an indefinite distance to the north. It is not unikely that it retreated considerably within the line of the Gary moraine.
In the district treated in this folio the first area that became free from ice was the portion outside of the Gary moraine near Miller, on the north slope of the Wessington Hills. During the formation or occupation of the Gary moraine the remainder found in ar ar now found in Greenland and in parts of Alaska. This was prob y several hunded feet hick
Will Lound it Vermilion Piver, On the west side the drainage from nearly the whole of the lobe of ice which pushed westward up the Red Valley found its way to the James Valley past the edge of the ice, a little north of the location of Miller. The fact that this stream kept close to the edge of the ice brought about two results-first, the moraine was feebly developed because much of the material was washed away; and second, many of the moraine knolls are in the bottom of the channel. The latter fact apparently indicates either that the ice had advanced into the channel after the channel had been formed or that part of the water flowed under the ice
Beyond the southern border of these quadrangles the water found its way through the upper branches of Sand, Firesteel, and Enemy creeks to James River, at first near Olivet, in Hutchinson County, and later near Mitchell.
Garfield Peak and other hills north of it in Howell Town ship may be glacial deposits accumulated by superglacial or subglacial streams on the eastern slope of the higher lands to the west. It is also possible that they are imperfect drumlins, irregular in form because of less vigorous action of the ice. It colld not be decided whether they are of such origin, or por reentrant angle of the Gary moraine, as shown on the map.

FiguRe 4.-Sketch map showing the sootherr limit of the Pleistocene ice
sheet and the distribution of moraines of the Dakota glacial lobe in
South Dakota.
As the ice receded to the Antelope moraine it disappeared most rapidly in the valleys of Turtle and Wolf creeks, and rather slowly around the base of the Wessington Hills, wher the two moraines are only a few miles apart. Mingen Letcher nearly to Huron. Very likely the recession was to a point some distance within (north of) the first member of the Antelope moraine, and some of the material of the Redfield Hills probably had been accumulated before that time
The recession was so slow that the drainage from the west side of the ice, because of the uncovering of lower ground possibly came from the edge as far north as Bowdle. Thes waters cut two or three more or less distinct channels on the wide flat Wolf Creek plain. The first passed through Holden Township and another through Burdette, but both discharged into Sand Creek. The upper part of that stream in Allen Township was at such altitude, about 1400 feet, that the til plain of Wolf Creek was an undrained, level, mud flat.
Readvance of ice.-The next stage saw an arrest in the retreat
of the ice, followed by a readvance but the ire sheet was thinner of the ice, followed by a readvance, but the ice sheet was thinner and Redfield split its and Redfield split its southwestern portion into two lobes but it was reduced by formar y onsiderable promis and south of the Redfield Hills by numerous creeks, The eastern lobe of the glacier in the advance was more vigorous because it was on lower ground and was moving down a gentle slope The western lobe which pushed up the Turtle Creek valley to
he southwest, moved less rapidly because it had to force its way up a slope and because its flow was less concentrated There was, in fact, all along the western side of the lobe more or less westerly motion, which diminished the southerl movemen
First Antelope stage.-At its farthest advance the ice formed he first member of the Antelope moraine. The water from he north still flowed through the channel (marked 3 on the map) which passes west of Miranda and through Burdette Doubtless it was augmented by copious drainage from the irregular interlobular portion of the moraine south of Redfield ever from supergla sterns lobes. Severa P B 1 d 1 e ber this 1 water from this arex flowed down Redstone Creek Second Antelope stage.-As the ice receded to the position
now occupied by the second member of the Antelope moraine he small streams on the east side of the valley shifted a little arther to the west at several points. Possibly subglacial drain ge began in the later part of this stage and portions of olacial ice extending considerably below the present surface became detached and buried in debbris during the recession of the ice heet. The formation of the many basins now occupied by kes may perhaps be accounted for by the subsequent meltin of such blocks of ice
On the west side of the James Valley the changes were much more marked because the edge of the ice receded eastward for veral miles. As the ice lay on an even slope, the water from he uncovered surface farther west and the much greater amount furnished from the ice sheet on the east easily found its way round the edge of the ice toward the south. It flowed in vell-defined, wide, and shallow channel, which entered the Northville quadrangle just east of its northwest corner and followed the western edge of the moraine southward along a portion of the upper portion of Preachers Run east of Ipswich flowed West Branch of Snate Creets southward and prob ly West Bronch of snake Creek southward and prob bly passed over he low divide betw stram and Dove Creek by a shallow channel leading outside of the second ember the moraine and into the headwaters of Medicine Creek, which it followed to the charp bend south of Cottonwood Lake. Here it was joined by an important tribuary, supplied from the melting of the great ice block of Cottonwood Lake (which was probably buried at the time the first member was formed) and also from the moraines on the nort and northeast.
One unusual phenomenon attended the recession of the ice from the first member of the moraine on the slope east of Miranda. The till was so thin and the pressure of the wate the fine sand under the till so great that numerous spring roke forth and washed out many winding channels bot oward the ice and away from it. From these the fine sand me out in large amount.
Third Antelope stage.-As the ice retreated to the position of the third member of the Antelope moraine the main western rainage channel naturally shifted first around the curve north east and east of Miranda. Four or five different channels wer ccupied successively during this change. At one time during he interval a long drainage channel was developed from the large basin near St. Herbert, extending southward to Wes Bran Creek and across it into Dove Creek, enter R. 67 W . The beins iear St Herbert apper to 11 , R. 6 and covered up in the deep till that filled the old channel pass nd that point Later in this stage a channel was develope fom the central part of Fountain Township (T. 123 N from the central part of rountain Township (1. 123 N hip. This eastern channel extended southeastward and south ward down Preachers Run to West Branch of Snake Creek, but instead of following the present course of the West Branch alley, which was then blocked with ice, it continued southward Dove Creek and followed that stream to its sharp southeast rn bend. Thence it extended down a wide channel to the wer course of Medicine Creek east of Bald Mountain int Turtle Creek, and thence west of the Redfield Hills past Tular and down the channel west of Broadland to the vicinity of Huron
On the east side of the James River valley there was less change, but it is to be inferred that the presence of subglacial reams which had been flowing for some time along the lin of Foster Creek together with the narrow form of the ice shee here, may account for the detachment and burial of an extenive mass of ice from the main glacier. Around this detached mass till and subaqueons clays and gravels accumuated unt fod the Byron ber bands ber fom it to James River. The depth of the lake bin ored to be nearly cequal to the earlier thickness of the till in that vicinity. One difficulty in this hypothesis is the existence of the glacial pavement at a higher level to the north, and nother is the fact that the alluvial fan or delta of Foster Cree
appears to pass across the western half of the lake basin with－ out clearly modifying the sides of the basin．The first－men－ tioned fact would appear to indicate that the ice was buried during an earlier stage，but that it should remain unmelted during these lat
scarcely credible
During the recession from the third to the fourth member of the Antelope moraine，a remarkable channel was developed on the west side of the James River valley．It enters the area treated in the folio with the west prong of the main Snake Creek in Cortlandt Township，leaves the present creek at Cortlandt，and passing over a low divide follows a straight course nearly due south for more than 25 miles to West Branch of Snake Creek at Wesley．At first the water may have flowed from that point south－southwestward to Dove Creek，but soon its main course was down the valley of West Branch．Another remarkable feature of this channel is the series of basins now occupied by the Scatterwood Lakes，which doubtless mark the burial place of large ice blocks in the deep till filling the old chann．There arer basins east and west of these， some of them considerably deeper though of less extent．Four or five more oress perfect chass chancls conned chisnel and the Lake township．Two or three of them appear to origi－ nate east of Snake Creek and to cross the present channel of that stream．These facts presumably indicate that the cross chan－ nels were formed by subglacial streams，probably beginning at nels were formed by subglacial streams，probably beginning at
the east end with＂moulins，＂or glacial cataracts，where the the east end with moulins，or glacial cataracts，where the
water plunged from the surface of the ice to the bottom．The origin of these cross channels may also be connected with the abrupt descent into the preglacial valley before mentioned，from the preglacial highland just to the north．As the ice moved toward the west－southwest in that locality，there would have been a tendency to form crevasses near the edge of the high－ land．Moreover，as the ice sheet thinned by ablation the surface may have become concave where it overlapped the preglacial upland，so that superglacial streams may have formed upon it．These streams would have found their way to the crevasses and by them to the bottom of the ice，under which they would flow westward toward the edge of the ice and into the main drainage channel．The cross valleys may have been formed，not contemporaneously，but successively，accord－ ing to the shifting of the crevasses．This explanation finds additional strength in the fact that a number of these valleys are incomplete－that is，are not on the same level－a fact which suggests that some of the streams may have taken a On the other hand，at least two of them are cut completely On the other hand，at least two of them are cut completely through from Snake Creek to the main channel whell onsider－ by the slipping of till or the burying of ice blocks．
Fy the slipping of Aith ortope stage．－When the ice had fully retreated to
Forring of ice blocks． the position occupied by the fourth member of the Antelope the position occupied by the fourth member of the Antelope
moraine the principal drainage passed just west of the western marain of the moraine，down a portion of the valley of Snake Creek to the largest one of the cross valleys just mentioned， which it followed to the main Scatterwood Lake channel． Thence the water flowed down this channel to West Branch of Snake Creek，along that stream to its sharp bend，and thence southward to the southeast angle of Dove Creek．From that point it may have at first followed the former course already described west of the Redfield Hills，but later it flowed down the Turtle Creek valley to Redfield and east of the Redfield Hills．Meanwhile west of Hitchcock the recession of the ice from the third member of the moraine uncovered still lower ground and the streams flowing south ward found access，at first by former outlet gaps through that member，to the lower chan－ nel east of Crandon and thence southeastward by the shallow irregular courses east of Hitchcock．These channels a
ally ill defined because of their temporary occupation．
ally ill defined because of their temporary occupation． pened Some of them very likely were first abglach All had sufficient hed to sour fairly deep channelo and to cury mueh débris to the plains farther south a foct there may have been that time a shallow lake northwest of this recion．In later stages the stream following the channel of Snake Creek crossed the southwestern bend of the present James River and kept a remarkably straight course to the present mouth of Timber Creek．Perhaps the position of the edge of the ice had much to do with the straightness of this course．The thickness of the drift deposits along that line suggests that a preglacial channel may also have been an influential cause．
During the later stages in the formation of the fourth member of the Autelope moraine the drainage followed the edge of the ice southward in the western part of Aberdeen and Warner townships through Lords Lake and reached the level of the glacial Lake Dakota about 4 miles north of the south line of Brown County．From that point it followed the channel just inside the western margin of Lake Dakota to West Branch of Snake Creek and for a time probably flowed on into the northwest corner of Three Rivers Township．Here it turned
due south and followed to the southwest corner of the same township，thence in part turning east and flowing to Redfield， finally finding its way through the channel southeast of Red－ field now occupied by the railroads．This stream was a rapid one，for the channels were cut deeply and their bottoms and sides were in many places stony．

Meanwhile on the east side of the James River valley the action of the ice was less vigorous，the water less copious，and the deposits less voluminous．During the formation of the second and third members of the Antelope moraine a well defined channel was cut，at first outside of the moraine and later perhaps under the edge of the ice inside of the moraine to Foster Creek．This channel is particularly noticeable in the Byron quadrangle．In the Aberdeen quadrangle，where the slope was steeper，the channels are not clearly defined，apparently having been occupied for only a short time at any one point．Since the ice left the surface the more recent channels have had a westerly trend down the slopes，and hence the older channels are very inconspicuous．Moreover，as the edge of the ice was much more stationary on this side，the chanmels ass merous．Fo example，when the ice stood at the position of the ficith member southward to Foser Creet，bing for a portion of the way to the edre of the ice．This ame peneral course had been occupied during the formation of the third member，with th difference that in the Aberdeen quadrangle much of the water had rum upon or under the ice；at that time the eskers or osar described in a previous section were formed．This same channe appears to have been the main drainage outlet until the ice had receded some distance within the fourth member of the moraine so that the waters could find their way into the lower part of Timber Creek．

Fifth Antelope stage．－During the formation of the knolls that have been designated the fifth member of the Antelope moraine，the edge of the ice throughout this region rested in broad sluggish marginal streams and most of the morainic material．was swept away or flattened out by the waters．Thes streams began this work first toward the south in an earlie stage．Channels marked 8，9，and 10 on the map show the successive courses of the waters as the ice lobe filling the valley gradually dwindled away．Probably two or three of them were occupied at the same time，especially when the wasting of the ice became great．When the melting was slow，as in the winter， probably the channels next the ice were the ones mainly occu－ pied and the opportunity for escape of the waters toward the els to 1 de de or der bly flooded and had a more or les summer they were probably flooded and had a more or les Glacial Lake D
Glacial Lake Dakota．－Later，when the ice had receded possibly beyond the limits of South Dakota，the melting of th ice was so rapid that a high flood stage was reached and sus tained for some time．The somewhat spoonlike or concav surface of the till of the whole valley due to the recession of the ice above the last member of the Antelope moraine and to the constriction in the valley of James River near the south line of Spink County caused the water level to rise to the north flooding a wide area to an altitude which is now a little more than 1300 feet above the sea．To this condition is ascribed Lake Dakota，with its deposit of cream－colored silt．In th earlier stages of the flood the various channels were probably violently eroded，especially toward the south，but when the flood reached its height a lacustrine stage was established in which sediment was deposited throughout the valley，much as along the Missouri River in the great flood of 1881 ．The channels received the sediment no less than the upland．Some channel remain to－day so nearly filled that they are only slight winding depressions on the level plain．Others，from their greater size by out by the subsiding wats，so hat lod exept that they are deeper in proption the bouk have been raised by the accumulation of the silt．The basin of Lake Dakota reaches as far north as the fourth member of the Lake Dakota reaches as far north as the fourth member of the supposed that the edge of the ice during its formation was at least that far north
At that ti
t：and doubtlesse was open from the head waters of Jame the dark Cretaceous clays which form the main mass of the till and underlie this region generally，was derived from the Lara－ mie loams and sands on the highlands northwest of Ellendal and west of Jamestown，N．Dak．
As the rate of melting of the ice diminished and the outlet of the lake was lowered by erosion the lake finally disap peared，though the deeper prelacustrine channels continued fo some time as watercourses，many of them with currents of considerable strength which cleared out most of the silt which had clogged them
Final retreat of ice．－Finally the ice sheet receded until its waters no longer had influence on this area．The streams by
that time had become fixed in their present courses and，though probably somewhat larger than at present，had little effect on the surface of the country except to deepen channels which were permanently occupied by water．It is believed that James River had cut nearly to its present depth before the ice dis appeared from South Dakota．
Postglacial history．－The principal geologic event since the disappearance of the ice sheet has been the deposition of the thin mantle constituting the soil．This has accumulated by the for－ mation of alluvium along the principal streams，by wash from he hillsides，and by the settling of dust from the atmosphere To these soil－making agencies may be added the burrowing of animals，by which the soil is loosened and deepened，and the deposition and intermingling of vegetable remains．The water ourses have deepened their channels somewhat，especially Jame River，which has cut a narrow trench in the alluvium．

ECONOMIC GEOLOGY

There are no workable deposits of metalliferous minerals in these quadrangles．Nodules of iron pyrites occur in the clays， but the mineral has no value unless found in very large quan tities，and such should not be expected in this region．A fe nonmetallic deposits，such as clay，sand，and gravels，occur i onsiderable quantities；others，such as lignite，salt，and gas have been somewhat exploited．

ignite

It has been stated that deposits of lignite occur in this area， but the lignite is found only in fragments and not in minable beds．These fragments are present in both the glacial till and ravel and some of them are remarkably clean and bright and burn readily with a flame．
In the drilling of wells pieces of lignite are sometimes encoun tered in the till or underlying gravel and give the idea that ayer of coal of considerable thickness has been penetrated． ase of this kind was reported in 1903 in sec．19，T． 121 N ．， R． 64 W ．Numerous holes were drilled in that section and the one north of it with a jet drill，and the lignite fragments appeared in such number as to give the impression that a layer of coal about 8 feet thick underlay several acres in that vicinity An effort was made to sink a shaft to the deposit but it wa abandoned at a depth of 60 feet on account of water．The pur or the brom was estimated to be about 2 reet below the foc．Them examaion of the materal throw of the shaft and a comparison of the reports from different he lignite was not below the olacial drift and that very prob ly the whole of the coal was in the drift itself wother he underlying shale
There was a simila
There was a similar experience in sec．19，T． 122 N．，R． 64 W．，and lignite was reported in the SE．$\frac{1}{4}$ sec． 7, T． 123 N ． ． 64 ．，about 35 feet below the surface．This was abov保culty What had bee and a shaft was sunk to it withou coal 3 or 4 feet hid been thought by the driller to be a laye ively small block of coal which had worked downward befor he drill for 2 or 3 feet．Similar deposits of lignite in som places in blocks weighing nearly a on and in others an accumu lation of several pieces close to each other，have been reported rom localities outside of this area．The region is underlain by he Pierre shale，which was deposited in the sea；the material of coal and lignite accumulate in swamps where there is luxu－ riant vegetation．It is，therefore，highly improbable that any lignite deposits of value were formed in this region．Th probable explanation of all the facts thus far reported is tha he lignite fragments have been brought hither by preglacial treams or by the glaciers from the lignite beds of the Larami ormation，which are so prominent in North Dakota and in South Dakota west of Missouri River．It is suggested that the accumulation of lignite northwest of Manstield was probabl er wher passes through the lignite region west of the Missouri．

clay．

Although the till is composed largely of clay，it is so mixed with gravel and calcareous matter that it has not been found useful for economic purposes，even in the manufacture of brick號 of the alluvium near James River and the gumbo in the郎 basins may prove to be of local value in brick making． utilized for tiles or brick，especially if mixed with the loam that in some places is found not far away
The cream－colored loam deposited in glacial Lake Dakota furnishes an inexhaustible supply of good material for making handsome and durable brick．This loam was tested at Red seld several years ago，The bricks if burned moderately wer of light－red color and soft，but if burned hard they took on pleasing shade of light greenish gray．If overburned，the shade became dark，although the interior of the brick was still
light colored．Valuable bricks have been made from this for－
mation at Aberdeen for several years, and doubtless similar results could be obtained throughout the area of old Lake Dakota. The main difficulty is the absence of convenient fuel. Sand and gravel.
Sand and gravel suitable for plastering and other ordinary arposes are present at many points, especially along the ancient channels and terraces and in the morainic knolls, also on the shores of Byron Lake. Many of the localities where sand and gravel pits have been opened are marked upon the areal geology maps. One of the most notable, though it is not marked, is at Twin Lakes, where a large quantity is easily accessible not far from the Chicago, Milwaukee and St. Paul Railway. Similar material occurs near Scatterwood Lakes, and the osars near Ferneyं, Conde, and Turton all furnish gravel and sand. The watercourses on the east slope of the James Valley, especially in the Aberdeen quadrangle east of Conde and Verdon, abound in gravel deposits. Near Aberdeen the old delta of Foot Creek furnishes large quantities of gravel and sand. Where the railFountain Fountain Township there is an important gravel pit, and similar nels. The quality of the gravel and sand is depreciated in some places by the abundance of shale pebbles.

salt.

Salt is not found in workable quantities anywhere in this region, but it appears as "alkali" in certain areas. Its source is originally from the Pierre shale or from the till, which is largely composed of that formation. Some wells contain salty water supplied from sands in the till or under the till, or from the Pierre shale, especially in places where the circulation is slow. Draws and ravines, particularly those in shale, usually show scattered salt patches; there are also basins, some of considerable extent, in which large areas are covered with an incrustation of salt. Salt Lake is one of these basins, and there is another of similar character in the section east of Lords Lake. There appears to have been considerable deposition of salt in shallow lagoons along the west side of old Lake
Dakota, for in a strip a mile or two wide running northward Dakota, for in a strip a mile or two wide running northwarn
from Northville shallow wells usually contain waters too saline for ordinary uses

gas.

Gas has been reported in wells at many widely distributed localities in this area. The largest volume was struck at Ashton in 1881 , at a depth of 66 feet, just below the till, where it had evidently accumulated by leakage from below. Another supply, struck at 89 reet, had a pressure of 46 pounds and was piped through the winter of $1885-86$. Similar supplies were found throunthe depth of 75 feet on a form 21 miles south and ate a depth of 160 feet 2 miles southeast of Ashton. Gas was reported at a depth of 66 feet about 7 miles southeast of Ashton, but it proved not to be inflammable. In several wells 3 to 5 miles north of Ashton gas was struck at depths of 180 to 200 feet. In sinkthe deep artesian wells at Ashton additional supplies of gas were found at a depth of 650 feet.
Several years ago gas was obtained at a depth of 320 feet in sec. 29, T. 121 N., R. 66 W., and was for a short time utilized for cooking. In 1905 gas was found in drilling a well in the NE. $\frac{1}{4}$ sec. 32 , T. 122 N., R. 65 W . The depth was uncertain, for the gas was not observed until the drill had been put down to 540 feet and then drawn back to about 280 feet. The gas flowed vigorously for several hours, but further drilling did not develop additional supplies. Gas in notable quantities was found in sinking artesian wells in the SE. $\frac{1}{4} \mathrm{sec} .33$, T. 122 N ., R. 67 W., in the SW. $\frac{1}{4}$ sec. 25, T. 122 N., R. 68 W., and in a few other localities near by, but the depths from which it came were not determined.
It would appear from these occurrences that gas exists in thin lenses of sand in the Pierre shale, usually in association with
salt water but not in amounts likely to prove valuable. Only salt water but not in amounts likely to prove valuable. Only that horizon. The fact that it has been found higher up at few other localities may be expleined by the leaking of the a upward to the bottom of the till.
It is possible that gas may be found in the Benton shale and in some of the lignite strata which have been found in the Dakota sandstone. It is probable, however, that there is no basis for expecting any considerable supply in the area under consideration. It is very doubtful whether any supply would be found by going below the Dakota sandstone, for 'in the greater part of the area that formation is known to be underlain by crystalline rocks which never contain gas or oil.

water resolirces.

Water is the most important natural resource of these quadrangles. It may be divided into surface and underground waters. The former include lakes, springs, and streams, which are described under the heading "Drainage;" the latter are derived from wells of various kinds.

Aberdeen-Redifield.

underground witer

shallow welds.
Shallow wells are those supplied by water which has recently fallen on the surface, and which can be reached without perforating an impervious layer. The most common source of supply for these wells is the water that lies near the surface and seeps through the upper portion of the till, or through silt and sand, toward a watercourse, wherever there are accumulations of coarse material that form conduits for it. It is to such subterranean streams that the water holes already mentioned owe their permanent supply. In many parts of this area the Cretaceous shales are so near the strrace that but little water accumulates in the surface gravels and sands, and the wells yield but a meager supply. This condition prevails in an extensive area east of the moraine running north of Byron Lake. Along the James River valley shallow wells usually yield satisfactory water supplies both from the silt and from sand under the till. In many places, especially near old watercourses, practically inexhaustible supplies are fan. Localy, howerer, the water is so contaminated with mineral salts from the till or from Cretaceous the silt-covered area many wells from domestic purposes. In the sil-coverer and many 10 feet in depth. The supply in these wells is geerally not large unless they lie at a low level in some large basin or are connected with some important old channel. In the latter case it is usually inexhaustible.
The waters of the shallow wells vary greatly in composition In many wells deriving their supply from the lower portion of the loam in Lake Dakota or from the thicker strata of sand and gravel, especially near the ancient channels or underneath the till, the water is very good. If, however, the water-bearing stratum is close to the underlying till or to the black shale of the Pierre below, the water may be highly charged with various soluble salts-in some wells sulphate of lime, in others sulphate of magnesia, sulphate of iron, sulphate of soda, and carbonate of soda-even to the extent of being not only unpalatable but injurious to health. Some waters are so strong as to injure stock.

Under this head will be included the deeper wells in which a "tubular" or force pump is usually necessary to raise the water Most of them are the cors form of these wells is in the sand below the till, but this sand is not

Figurn 5.-Map of Northville, Aberdeen, Redfield, and Byron quadrangles
showing approximate depth to base of the clacial till. Water can fre quently be had from sands at the base of the till, and generally rises any feet in wells
a common source of supply, especially to the south, at a distance from the broad deep preglacial channels. The reason for thi is that in that area sand is less generally present between the till and the underying Cretaceous shale and in some localitie lies so high that the water has drained out of it. In some places at low levels the sand is so fine that it is very difficult to
eparate it from the water; in others, the water is so contaminated with soluble salts from the underlying shales that it is of no value. Another reason why the water from this horizon is ot utilized, particularly in the Byron quadrangle, is becaus much more desirable water is found a little deeper in sandy beds in the Pierre shale. The sketch map, figure 5, shows approx nately the depth to the base of the till in these quadrangles. There are at least two water horizons in the Pierre shale. One in the southeastern part of the area lies at an altitude of bout 1100 feet above the sea, except southeast of Hitchcock, were it rises to 1175 feet. It has been traced nearly to Mellette. The water is soft and has a slight salty taste whic ppears to become stronger farther north. This water stratum cems to be irregular, in many places being too thin to afford a useful supply. In a zone 4 to 6 miles wide, running north ward and including Scatterwood, Salt, and Lords lakes, fine and causes much trouble in the drilling of tubular wells. This sand may be partly due to a deep deposit of drift, but the depth of 200 to 300 feet to water sometimes reported suggests a loca on has been found at a depth of about 125 feet ate. This horipoints near Ashton, probably at 225 feet in the SE, sec 11 T. 117 N., R. 67 W., at 156 feet in the NW . N. R 64 W. 1 .., ., T. 121 N P 66 W . It greater dopth the
 may be
In the southeast corner of the Byron quadrangle, anothe an similar horizon lies about 100 feet lower, with sufficien head to raise the water nearly 1260 feet above the sea. This tratum will afford flowing wells near Byron Lake and in the vicinity of the James River valley
The waters from most tubular wells are soft but have a salt aste, which in some wells is so strong that the water is no iitable for drinking purposes. The flows from the Bento orizons are soft and slightly saline, those from the upper bed more so than those from the lower.

artestan wells.

In drilling wells a water-bearing stratum in which the wate under pressure is frequently spoken of as a "flow," and the ell is classed as artesian even if the pressure is not sufficien raise the water to the surface. Artesian wells are numerous hroughout these quadrangles and derive their supply mainly from the Dakota sandstone. (See figs. 6 and 7.) Some wells
 few from the Pierre and the olacial drift.

now hom

Flowing wells supplied from the drift, though numerous in some portions of the James River valley, are very scarce in the rea treated in this folio-in fact, only two have been reported One, in the SE. $\frac{1}{4} \mathrm{sec} .2$, T. 117 N., R. 60 W., Byron quadrangle, is only 20 feet deep and though barely overflowing it furnishes a copious supply. In sec. 9, T. 116 N., R. 67 W., in he Redfield quadrangle, a weak flow wa
The pressure exhibited in the springs near Miranda strongly suggests that at lower levels in that region flows might be btained from shallow wells in the sand underneath the till, or in the till itself.

Lows from the pikrre

Water-bearing beds in the Pierre shale have already been nentioned under the heading "Tubular wells." One well on he east side of Byron Lake is reported as flowing from this source, and no doubt other flowing wells could be obtaned from it in the basin of Byron Lake and along the valley of James
 lowing wells reported from the Northvile quadrangle appea be exceptional. Two or then are in suffient quantiti . 121 ., R. 64 W., were good wath 300 fet The water hard, like that from mos of the pumped wells in the vicinity, nd has a temperature of $52^{\circ} \mathrm{F}$ A considerable flow was truck at a depth of 129 feet in the SE. + sec. 24, T. 118 N 68 W but it was ased off and a deep flowing well made nother light flow was found in the southwest corner of sec. 4, T. 118 N., R. 67 W.
OWS from the bentos
ws from the bento
There are at least two horizons in the Benton formation which pply flowing wells of considerable importance. (See figs. and 7.) These flows are weak and in consequence are often overlooked under present methods of drilling. Nevertheless they have high pressures which indicate their durability, and here and there they may be copious enough for stock well Their water is sol, so that they are desirable for supplementing he stronger hard-water wells. Moreover, the stronger flow re now greatly taxed and they may eventually become so diminished that the higher flows will be valuable. The upper flow is believed to be afforded by the sandstone near top of the

Benton which appears along Firesteel and Enemy creeks a little below the Niobrara chalkstone in Davidson county. The variable volume of the flow in different localities corresponds to the variable thickness of this upper sandstone member of the Benton in its outcrops. This flow has been conspicuous in an area 2 or 3 miles wide and 20 miles long, extending from the center of Doland Township to the corner of Antelope Township, in the Byron quadrangle. Some wells, such as the Krantz well, 450 feet deep, and the Morris well, 500 feet deep, are supplied wholly from this source. The former flows 7 gallons a minute. The water is soft and although slightly salty, is not unpalatable. The temperature is $56 \frac{1}{4}^{\circ} \mathrm{F}$., and that of the water from the Morral degrees warmer. Some evidences of this horizon a ispear as far northwest as the vicinity of Mellette and Northyille On the James River plain the top of the Benton formation usually lies at a depth of 450 to 500 feet. At the Budlong well it is 360 feet above the main flow, at Ashton and Doland 395 feet, and a few miles northeast of Ashton 421 feet. Toward the southeast it is believed to lie about 300 feet below the surface, or 420 feet above the main flow.
E. $\frac{1}{4}$ sec. 31, T. 122 N., R. 61 W. That this water horizon should often be disregarded or overlooked in the hydraulic method of drilling is easily explained by the small volume of water it yields and the great depth at which it lies.
flows from the dakota

General statement.-The main supply of artesian water in his region is undoubtedly derived from the porous sandston beds of the Dakota. (See figs. 6 and 7.) This formation is so the source of artesian water not only under much Its productiveness is due to five factors - (1) Its areat extent underlying most of the Great Plains from the Rocky Moun ains eastward to about the ninety-fith meridian: (2) it porosity ; (3) its hishly eleyated western border, located in the moist region of the mountains and crossed by numerou mountain streams; (4) its exteusive sealing along part of its eastern margin by the overlapping clays of the Benton, or where these clays are absent, by the till sheet of the glacial epoch; and (5) the cutting of wide valleys, especially in South Dakota, by preglacial streams, so as to bring the land surface
they seemed to fall into two fairly distinct groups, a fact which may indicate that two sandstones are the main sources of supply in that portion of the James Valley. These water-bearing sandstones vary much in thickness and prominence in different localities. The upper one is usually from 2 to 6 feet thick and the lower from 2 to 18 feet and they are from 30 to 50 feet apart. The practice is to stop drilling in the upper stratum if sufficient water is obtained; if not, to go on to the second. The first flow is preferred because it is softer, cooler, and more palatable. A third flow has been reached in many wells, especially where a large supply of water or high pressure to be will well, the Gliden well, desira. Such are the Ashton mill weral yers ago formation and power hat were sunk several years ago for irrigation and power pur Toses. The city wells have usually gone to the third stratum. considerable thickness, but the shale is less prominent between the second and third. In the Aberdeen city well No. 4 a fourth thick stratum of sand was penetrated, which at a depth of 1200 feet yielded a large volume of water under a pressure of 240 pounds to the square inch. This deep stratum probably

At another horizon in the Benton formation is obtained the water popularly known as the "mud flow" because of the difficulty of separating the water from the very fine sand or mud mingled with it. It seems likely that this difficulty arises partly because the stratum is so thin that it is hard to prevent the adjoining shale from working with the water through the perforations in the pipe. This flow corresponds to what is sometimes called the "trickling" flow farther south. The water is soft and of excellent quality but is usually cased off because of its small volume. It appears to have high pressure and some day it may be more utilized. It lies at a depth of about 600 feet-that is about 700 feet above the sea, or 150 to 200 feet above the main flow in the Dakota sandstone. Traces of this flow are almost universal over this area, although only a few wells draw from it. In McFarland's well, in the NE. $\frac{1}{4}$ sec. 14, T. 112
N., R. 63 W.,it is the main supply the water being soft and very N., R. 63 W., it is the main supply, the water being soft and very F., and flowing 9 gallons a minute from a $1 \frac{1}{4}$-inch pipe. ., ander well in the NW 15 T 120 N .
Another well in the NW. $\frac{1}{4}$ sec. 15 , T. 123 N., R. 64 W. , has a depth of 800 feet and a good flow with temperature of 60°
F. About 3 or 4 miles west of Manstield this flow is struck at 800 feet; 3 or 4 miles northwest of Miranda it was found at depth of 850 feet; and at. Mina or Cortlandt it is 875 feet below the surface. In the vicinity of Ashton, where there seems to be a low anticline running north and south, it is less deep, being struck at a depth of 750 feet about 3 miles northeast of Ashton and at 650 feet in Ashton. At Redfield it lies
below the pressure height or "head" generated by the elevated western border of the formation. From this sandstone also is derived a copious pumping supply over wide areas where the pressure is not sufficient to produce flowing wells. The Dakot sandstone underlies the whole area treated in this folio, and rests on quartzite or granite, the "bed rock"" of well drillers. See figs. 6 and 7.)
The artesian water maps show depths to the top of the Dakota sandstone, but in many areas the first strong flow lie somewhat deeper. In general the formation lies nearly hori zontal but in the Byron quadrangle and the northeastern part of the Redfield quadrangle it is somewhat less regular in structure than elsewhere in the area. Its top is about 550 feet above the sea at the southeast corner of the Byron quadrangle, and decines to about 475 feet in the northwest corner, or to a
 Ititude of 370 fee urface
The thickness and character of the Dakota sandstone have been described on a previous page. The flow usually comes when from 5 to 25 feet of the upper part of the first sandstone have been penetrated. In a few places it appears in the top beds; in others it is from 50 to 100 feet lower if the uppe beds contain much clay or are very compact. The flow is generally so strong that it appears promptly, but where the pressure is low or the rock especially fine grained the first Dakota flow may be so feeble that it is overlooked. Usually
xtends widely underneath the western and northern parts of he area treated in this folio and corresponds to the deepest wate.
Volume of flow.-The largest flows are usually from the deepest wells. The amount of flow from a well depends on several conditions-the porosity of the rock yielding the water, the thickness of this rock, and the pressure. Most wells in these quadrangles have a diameter of $1 \frac{1}{4}$ inches and the flow from them is from 10 to 80 gallons a minute; the average flow for the whole area is probably about 25 gallons. Many $\frac{3}{4}$-inch wells furnish from 5 to 15 gallons a minute. Two-inch wells, which are usually sunk to a deeper sandstone, flow from 80 to 150 gallons a minute, with an average of about 100 gallons. 300 callons , winute a 300 gallons a minute. Λ fow oflo The tesur in low
The pressure in lathe below. and the flow from most of them has greatly diminished; in ome wells it has ceased entirely. There may be several easons for diminution in flow, but they fall into three cate ories-(1) the development of leakage, (2) clogging, (3) to great a draft on the supply.
Subterranean leakage is especially common in old wells, mainly through perforation of the casing caused by rusting, so that water escapes into higher porous strata. In new wells it
at a depth of 750 feet. At Miller a thin layer of sandstone at a depth of 947 feet probably corresponds to the source of this flow. In a well in the SW. $\frac{1}{4}$ sec. 9, T. 113 N., R. 60 W., a small flow from sandstone in the Benton is reported at 665 feet, but the main flow is from the Dakota sandstone at 810 feet. In the Doland well a Benton flow was reported at 500 feet, and similar flows were found at the same depth in a well in sec. 28, T. 117 N., R. 60 W., 3 miles northeast of Doland, and in sec. 1, T. 115 N., R. 61 W. Other Benton flows reported are as follows: At 600 feet in the NW. $\frac{1}{4}$ sec. 28, T. 115 N., R. 62 W.; at 680 feet in the NE. $\frac{1}{4}$ sec. 11, T. 114 N., R. 60 W ; at 830 feet 2 miles east of Rockham; at 750 feet in a well 2 miles southwest of Randolph; at 930 feet in the NE. $\frac{1}{4}$ sec. 24 , T. 120 N., R. $68 \mathrm{~W} . ;$ at 800 feet in two wells in the northwest corner of T. 120 N., R. 65 W.; at 675 feet at Northville; at 750 and 820 feet in an 886-foot well 2 miles Werner; at 750 feet in the SW. isec. 19, T. 121 N., R 62 W at 750 and 850 feet in the SE at 850 feet in the SW. at 850 feet in the SW. $\frac{1}{4}$ sec. 20 , T. 121 N., R. 61 W.; at 820 feet 2 miles east-southeast of Ferney; at 500 feet in the SE. $\frac{1}{4}$ sec.
22 , T. 119 N., R. 63 W.; at 400 feet in the Baker well, in the NE. $\frac{1}{4}$ sec. 32 , T. 119 N., R. 63 W.; at 800 -feet in the Day well, in the SE. $\frac{1}{4}$ sec. 21, T. 119 N., R. 64 W .; and at 820 feet in the
the farther into the water-bearing sandstone the drill is carried the stronger the flow becomes. In some places many feet of sandstone may be penetrated and the flow increases regularly but more commonly there are sheets of "hardpan" (harde sandstone) or shale separating the beds yielding the flows. Under such conditions the suceessive lower flows are distinctly marked by sudden increase of pressure. In the comple arrangement of these lenses or sheets of shale and of "hard pan," probably there is at many localities a maze of slow water currents and counter-currents, lying one above another.
As above stated, the number of water-bearing sandstone yielding flows varies considerably in different places, but in nost of the notably deep wells three or four distinct flows have been recognized. Three were noted in the Glidden well and three or four in the Frankfort well, but in the Budlong wel here are only two because the lower ones are cut off by a the lower limit of or crystalme rock. As the bed rock, or - west and from thi ridge the Dakota sand to
 nore level and uniform, and probons more uniform in those directions.
Aberdeen quadrangle it was noticed that if wells in allowance was made for the time the wells had been flowing
may be caused by imperfect construction, such as bursting the casing, or imperfect connections, so that the water may rise outside of the casing from a stronger lower flow to a higher stratum. Such a leak may wash a channel of considerable size unless it is clogged by caving.

Diameter and flow of some large wells in Aberdeen-Redfeld district.

Probably the most common cause of decline of flow is the choking of the well in some way, especially by fine, tightly packed sand gradually filling the water-receiving cavity. Most wells the thickness of the water-bearing stratum, so that the water is delivered to the well from the whole thickness of that stratum. Accordingly when sand accumulates in this perforated casing it diminishes the surface of inflow. Under such conditions relief
may be sometimes obtained by letting down an iron rod by means of a wire and stirring up the sand so that it can be brought out by the flow.
Clogging of the well may also occur when the lower end of the pipe is fixed in the cap rock and the flows comes from a cavity in the water-bearing rock just below. In time the cavity may become filled with clay and the flow thus become checked or stopped. By this method of construction, also, stone or masses of clay may be washed into the end of the casing in such a way as to check or shut off the stream of water. This method has been so generally unsatisfactory that it is now arely used.
Another way in which wells cased with perforated pipe may be clogged is by the entanglement of pebbles in the openings of the pipe, and diminution of flow may result from the washing bearing rock adjacent to the casing. In some localities relief from these two conditions of clogring has been obtained either by quickening the flow so as to wash the particles out or, more ffectively, by placing a powerful pump on the mouth of the well and reversing the flow of the water strongly, so as to force back the clogging material. Sometimes the flow can be quick ened by the attachment of a siphon so as to lower the outlet.
Ordinarily a well may be nearly or quite closed without njury, but sudden opening is dangerous if the sand is easily started. When sand is rumning it is dangerous to close the well completely except perhaps by gradual stages occupying several days.
The exhaustion of supply by allowing large wells to run freely is clearly apparent at most localities, and the multiplication of wells must also deplete the supply.
Variation in flow.-The flow of wells varies somewhat with the pressure of the air--that is, according as the barometer is high or low-but this variation is noticeable only in the weaker wells, in which the flow diminishes or ceases when the barometric pressure is high. Sometimes changes in pressure also ace varation in the amount of sand in the water. This may be due to the row hased by dor f the well. In general it has been found that when and ising its flow may be stopped by checking the velocity of the tream the valve. These fluctuations are frequently associ ated with the direction of the wind and the approach of a storm.
In some wells the flow gradually increases for a time after the well is first opened; this may be due either to the sand washing out, so that the resulting larger cavity gives an increased surface from which water is delivered to the well, or to the sudden breaking of an impervious stratum that separates the first flow from a deeper and stronger one.
Artesian pressure.-The "closed pressure" of artesian wells much more variable than would be expected and there are problems connected with the variation which have not yet been satisfactorily solved. In general in eastern South Dakota the pressure declines to the southeast, toward the outcrop zone of the water-bearing strata. This is due to the fact that the water is moving toward outlets in the Dakota sandstone outcrops along Missouri and Big Sioux rivers. All the flows show this decline of pressure toward the southeast. Owing to the varying thickness of the water-bearing rock and to the irregular and incomplete separation of the strata by local impervious beds, so nt flows, the real course of the waters may be very or the difer ent lows, he real course of the waters may be very crooked and differences of pressure. The lower flows have the highest pes differences 1 ir los The blue contours on the artecin water
ude of head as indicated by the artesian maps show the altitude of head as indicated by the artesian pressure. As they
have a down ward slope to the southeast, they define a "hydraulic gradient." They are based on the strongest pressures noted of the upper flows from the Dakota sandstone. The hydraulic gradient in this area is not great because the pressures do not vary much after reasonable allowance has been made for leaks and clogging as already discussed. There is some discrepancy between the contours showing the "head" and the recorded pressures of wells in which the flow is from a lower sandstone where the pressure is higher. Moreover, these contours are drawn to represent present conditions rather than early ones. The original and present pressures in a number of wells in this area are given in the table in the next column.
Variations in pressure from place to place are indicated by the following facts: At Hitchcock the first town well is reported to have had a pressure of 150 pounds and the Glidden well, less than a mile away, of only 50 pounds. In the first well at Ashton the pressure was 60 pounds but in the mill well it is mill well the lower flow is completely separated from the uper The Budlong well has a pressure of 125 pounds; the Everett well, a mile and a half away and no deeper, showed 150 pounds. The two township wells near Bonilla though much alike in size and depth, had pressures of 50 pounds and 150 pounds. Decline of pressure.-Decrease of flow attends diminution of pressure in any particular well, but great flow may attend slight
pressure and vice versa, for pressure is only one factor of the flow of a well.
Marked decline of pressure is the experience of many artesian wells, as shown in the table. For example, the Ashton mill well showed a pressure in 1895 of 150 pounds and in 1903 of 87 pounds, or perhaps, if surface leaks were stopped, 90 pounds. The first Redfield well showed 177 pounds in 1886, but in 1903 it had diminished to 75 or perhaps 100 pounds. The second well showed 87 pounds in 1903 and the same in 1904. The third well, sunk in 1903, showed 106 pounds the following year. The asylum well at Redfield, drilled in 1901, had at that time a pressure of 125 pound leld, diled in 100, had at 75 pund well opened is believed to have had a presure of 180 pounds, well opened is believed to have had a pressure of 180 pounds, fell considerably. The relation between different wells is shown by the fact that when the Aberdeen city well was opened the railroad well lost 15 pounds in pressure. But indications of perrailroad well lost 15 pounds in pressure. But indications of per-
manent decline are also afforded by the railroad well. In 1901 the closed pressure of this well was 75 pounds; in 1903 it was about 65 pounds; and in 1905 it did not rise above 55 pounds. The pressure of the second town well at Ipswich was 105 pounds in 1903; in 1905 it was 75 pounds. In Von Wald's well, in the NW. $\frac{1}{4}$ sec. 8, T. 122 N., R. 61 W., southwest of Groton, the pressure was at first 90 pounds; about a week later it was 95 pounds, and two years later 105 pounds; then, after the well flowed for a few months, it dropped to 90 pounds. The first increase of pressure may have been due to the enlarging of the receiving basin at the bottom of the well, so as to admit a stronger flow. A still more striking illustration is given by well No. 3 at Redfield. At first this well was allowed to run freely for two or three weeks with a $2 \frac{1}{2}$-inch opening. When it was closed for five minutes a pressure of 65 pounds was ndicated. Then the flow was shut off except through a small eft the prsare noe to 102 powds and in the days she pressure ruse to 102 pounds, and in three days more to 108 pounds.

(Townstip T Lication Range W .).			
		Origina	
NE. $\frac{1}{\text { see. 32, }}$, 17. 118. R. 64.	960		1377
NW. $\frac{1}{4} \mathrm{sec}$. 22, T. T 116, R. 64	964		110
Redifild (reeent) --	920	83) 110	106
Redield (old) -	750-1030	(1886) 177	${ }^{75+}$
Redfield, 1 mile northwest of	956	(1901) 125	75
Redifild, west of	${ }_{967}$	${ }^{87}$	87
SW. $\frac{1}{4}$ see. 10, T. 115, R. 64	935		${ }^{93}$
NW. ${ }^{\text {a }}$ see. 9, T. 115, R. 64	930		1024
SE. $\frac{1}{1}$ see. 28, T. 114, R. 66	956		132
SE. $\frac{1}{\text { f ece. 2, T, T. 114, R. } 66 . .}$	1050		165
NE. \ddagger see. 11, T. 114, R. 66	$1000 \pm$		109
SE. 1 fee. 14, T. 114 , R. 66	${ }^{945}$		125
NE. $\frac{1}{4} \mathrm{sec}$. 26, T. 144, R. 65	940		42
NE. $\frac{1}{\text { a }}$ sec. 5, T. 113, R. 67	1070		53
SE. $\frac{1}{\text { f }}$ see. 25, T. 113, R. 67.	1100-1129	128	
NE. $\frac{1}{\text { b }}$ sec. 17, T. 113, R. 65.	949		110
SW. $\frac{1}{4}$ see. 14, T. 113, R. 65	$955(\%)$		101
NW. ¢ see. 15, T. 113, R. 64	1068	(1897) 53	
NE. $\frac{1}{\text { sec. 29, T. 113, R. } 64 .}$	1118	(1896) 175	
Miller-	1105	(1886) 120	${ }^{63}$
st. Lawrence	1070	40	
NE. $\frac{1}{} \mathrm{sec}$. 2, T. 112 , K. 66.	892		135
NE. \ddagger see. 17, T. 112, R. 64	900		84
NW. $\frac{1}{}$ sec. 4, T. 12, R. 64	$875 \pm$	150	
Aberdeen (second or third flow; odd)--		(1882) 155	${ }^{5}$
Aberdeen (fourth flow; recent)	${ }^{1200+}$	(1994) 240	240
Aberdeen -		(1890) 138	
	$900 \pm$		vos
NE. $\frac{1}{4}$ see. 9, T. 123, R. $62 \ldots$	$890+$		${ }^{57}$
NE. $\frac{1}{4}$ sec. 11, 'T. 193, R. 62	875		${ }^{135}$
Chedi, T. 123, R. 61-	1022		${ }^{150}$
Ne. $\frac{1}{\text { ¢ }}$ sec. 33, T. 123 , K. 61	850		73
SW. f see. 7, T. 123, R. 60	904	(1891) 80	
Groton	$951 ?$	(1889) 135	
	910	130	
NW. $\frac{1}{} \mathrm{sec} .1$ 1, T. 123, R. 62.	920		104
SE. $\frac{1}{\text { see. }}$ 21, T. 122, R. 62	900-950		102
NW. $\frac{1}{4}$ see. 8, T. 122. R. 61	910	98	${ }^{90}$
NE. $\frac{1}{4}$ see. 4, T. 122, R. 61 --	930		117
SW. + see. 11, T. 122, R. 61	900-953		42
SE. $\frac{1}{\text { see. 2, } 2, ~ T . ~} 122$, R. 60.	1025		88
	983		${ }_{96}$
SE. $\frac{1}{4}$ sec. 35, T. 122, R. 64	${ }^{905}$		80
Warner, T. 121, R. 64	956		80
NE. $\frac{1}{\text { see. 2, }}$, T. 121, R. 63 -	940		136
Ne. $\frac{1}{\text { d eec. 10, T. 121, R. } 63}$	$900+$		134
NW. ${ }^{\text {b }}$ sec. 7, T. 121, R. 62	$900+$		140
NE. $\frac{7}{\text { f }}$ sec. 19, T. 121, R. 62	$990+$		137
NW. f see. 8, T. 121, R. 61	875		82
SW. $\frac{1}{4}$ see. 33, T. 121, R. 61	900		${ }^{75}$
SW. $\frac{1}{4}$ sec. 9, T. 121, R. 61	930		82
SW. $\frac{1}{4} \mathrm{sec}$ 13, T. 121, R. $61-$	897		91
SE. $\frac{1}{\text { s. }}$ see. 15, T. 121. R. 61	912		${ }^{76}$
	935		140
SE. \ddagger see. 2, T. 121, R. 60 -	1064		${ }^{56}$
East central part see. 25, T. 12t, K. ov -	1032		120
SW. if see. 5, T. 120, R. 60	950		100

\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{} \& \multirow{2}{*}{(iepth} \& \multicolumn{2}{|l|}{(pounds Pothesese aquare inch).} \\
\hline \& \& Origima. \& \\
\hline NW. \(\frac{1}{\text { seec } 28, ~ T . ~ 120, ~ R . ~} 60\) \& \multirow[t]{11}{*}{\[
\begin{gathered}
1000-1025 \\
989 \\
890 \\
880 \\
940 \\
920 \\
941 \\
969 \\
970 \\
900+
\end{gathered}
\]} \& \multirow[b]{3}{*}{(1890) 130} \& \multirow[t]{2}{*}{\({ }_{60}\)} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Conde \\
SE. \(\frac{1}{4}\) sec. 4, T. 120 , R. 61
\end{tabular}} \& \& \& \\
\hline \& \& \& 120 \\
\hline SW. \(\frac{1}{4} \mathrm{sec}\). 15, T. 120, R. 61 \& \& \& 100 \\
\hline \& \& \& 135 \\
\hline SW. \(\ddagger\) bec. 14, T. 120, R. 63. \& \& \& \(6^{68}\) \\
\hline SW. \(\frac{1}{4} \mathrm{sec}\). 20, T. 120, R. 63 \& \& \& 126 \\
\hline NW. 1 see. 33, T. 120, R. 63 \& \& \& 107 \\
\hline NW. f sec. 34, T. 120, R. 63 \& \& \& 126 \\
\hline SW. 4 see. 28, T. 120. R. 63 \& \& \& \multirow[t]{2}{*}{} \\
\hline Mellette \& \& 165 \& \\
\hline NW. \(\frac{1}{4}\) see. 7 , T. 119, R. 63 \& \& \& 136 \\
\hline SE. \(\frac{1}{1} \mathrm{sec} .3\) 3, T. 119, R. 62 \& 880
870 \& \& 137 \\
\hline SE. \(\frac{1}{4}\) sec. 7 7. T. 119, R. 62. \& \(875+\) \& \& 133 \\
\hline NW. \(\frac{1}{\text { f ece. 18, T. 119, R. } 62 .}\) \& \multirow[t]{2}{*}{\({ }_{9}^{925}\)} \& \& 107 \\
\hline NW. \(\frac{1}{4}\) sec. 10, T. 119, R. 63 \& \& \& 135 \\
\hline Ne. \(\frac{1}{\text { d }}\) sec. 16, T. 119, R. 63 \& \begin{tabular}{l}
955 \\
930 \\
\hline 90
\end{tabular} \& \multirow[b]{2}{*}{(1891) 153} \& 135 \\
\hline SW. f see. 19, T. 119, R. 63 \& 930 \& \& \\
\hline SW. f sec . 20, T. 119, R. 63 \& \multirow[t]{2}{*}{\({ }_{958}^{930+}\)} \& \multirow[b]{2}{*}{(1890) 141} \& 182 \\
\hline SE. \(\frac{1}{\text { a }}\) sec. 22, T. 119, R. 63 \& \& \& \\
\hline SE. \(\frac{1}{\text { s eec. 30, T. 119, R. } 63 .}\) \& \multirow[t]{2}{*}{\({ }_{992}^{995}\)} \& \& 130 \\
\hline SE. \(\frac{1}{}\) sec. 28, T. 119, R. 63 \& \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& (1891) 135 \\
\& (1903) 105
\end{aligned}
\]} \& 133 \\
\hline SE. \(\frac{4}{\text { s eec. 23, T. }} 119\), R. 64. \& \multirow[t]{2}{*}{993
919} \& \& \\
\hline Cortlandt \& \& \& 40 \\
\hline NE. \(\frac{1}{4}\) sec. 1, T. 123, R. 66 \& (9) \& \& 100 \\
\hline NE. \(\frac{1}{4}\) sec. 31, T. 122, R. 66 \& \multirow[t]{2}{*}{1050
1060} \& \& \({ }^{93}\) \\
\hline SE. \(\frac{1}{4}\) sec. 32, T. 123, R. 66 \& \& \& \({ }^{66}\) \\
\hline SE. \(\frac{1}{4}\) see. 33, T. 122, R. 66 \& 1030 \& \& \({ }_{95}\) \\
\hline SW. f fee. 22, T. 122, R. 66 \& \multirow[t]{2}{*}{1000
1020} \& \& 40 \\
\hline NE. \(\frac{1}{6} \mathrm{sec}\). \(32, \mathrm{~T}\) T. 122, R. 65. \& \& \& 91 \\
\hline NE. \(\ddagger\) see. 2, T. 122, R.66 \& \multirow[t]{2}{*}{1070

931} \& \& 72

\hline Center see. 19, T. 123, R. 64 \& \& \& 132

\hline SE. 7 feec. 8, T. 121, R. 67 \& 931
1050
108 \& \& 93

\hline NW. $\frac{1}{\text { s }}$ see. 32, T. 121, R. 67. \& \multirow[t]{2}{*}{$\begin{array}{r}1125 \\ 967 \\ \hline\end{array}$} \& 115 \& 89

\hline NE. $\frac{1}{}$ sec. 32, T. 131, R. 66 \& \& \& 76

\hline NW. $\frac{1}{\text { f ec. 6, T, T. 120, R. } 66 .}$ \& 1066 \& \& 53

\hline NE. $\frac{1}{\text { f }}$ sec. 13, T. 120, R. 65. \& \multirow[t]{2}{*}{920
1000} \& \& 84

\hline NE. \ddagger see. 3, T. 119, R. 67 \& \& \& 4

\hline SW. $\frac{1}{4}$ sec. 1. T. T. 119, R. 67 \& \multirow[t]{2}{*}{980
1040} \& \& 70

\hline SE. $\frac{1}{4} \mathrm{sec}$ 25, T. 119, R.67 6 - \& \& \& 101

\hline NW. \ddagger see. 17, T. 119, R. 66 \& \multirow[t]{2}{*}{| 984 |
| :---: |
| 1053 |} \& \& 131

\hline Northville \& \& (1893\%) 156 \& ${ }^{93}$

\hline SW. \ddagger see. 9, T. 119, R. 64 \& (\%) \& \& ${ }^{114}$

\hline \& \multirow[t]{2}{*}{1003
890} \& (1895) 150 \& 87

\hline Center see. 10, T. 114, R. 63 - \& \& \& 116

\hline \& \multirow[t]{2}{*}{899
900} \& \& 120

\hline SE. 4 sec. 27, T. 117, R. 61 \& \& \& 124

\hline Doland (\%) \& \multirow[b]{2}{*}{968} \& (1889) 122 \& 110

\hline NW. $\frac{1}{4}$ sec. 3 , T. 1116 , R. 62. \& \& 140 \& 123

\hline SW. ${ }^{\text {f }}$ sec. 31, T. 115, R. 62 \& \multirow[t]{2}{*}{$$
\begin{gathered}
891-936 \\
\hline(9)
\end{gathered}
$$} \& \& 137

\hline NW. $\frac{1}{\text { seec. } 28, \text { T. } 1155, \mathrm{R} .62}$ \& \& \& 130

\hline \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 840 \\
& 450
\end{aligned}
$$} \& 87 \&

\hline NW. $\frac{1}{4}$ sec. 27, T. 115 , R. 61 Hitchcock \& \& (1885) 154 \& 7

\hline NW. $\frac{+}{4}$ sec. 11, T. 113, R. 64. \& 953 \& \& 118

\hline SW. $\frac{1}{4}$ sec. ${ }^{\text {23, T. T. 113, R. } 63 .}$ \& $\stackrel{(7)}{912}$ \& \& 105

\hline NW. 古 sec . 23, T. 113, R. 63 \& ${ }^{988}$ \& \& 125

\hline NE. $\frac{1}{4}$ see. 10, T. 113, R. 61. \& \multirow[t]{2}{*}{725
788} \& \& ${ }^{60}$

\hline NW. $\frac{1}{4}$ see. 2, T. 112 , R. 83. \& \& \& ${ }_{65}$

\hline SW. \# sec. 2, T. 112, R. 63 \& 880 \& \& 87

\hline NE. $\frac{1}{4}$ sec. 14, T. 12, R. 63. \& \multirow[t]{2}{*}{$\begin{array}{r}800 \\ 895 \\ \hline\end{array}$} \& \& 10

\hline NE. $\frac{1}{\text { see. }}$ 11, T. 114, R. 60 \& \& \multirow[t]{2}{*}{50} \& 75

\hline SE. $\frac{1}{4}$ see. 32, T. 114, R. 63 (Glidden) -- \& \multirow[t]{2}{*}{1035
820} \& \&

\hline \& \& \& ${ }^{125}$

\hline \& 840 \& 150 \&

\hline \& 800 \& \& 117
109

\hline NW. 4 see. 18, T. 114, R. 60 \& \multirow[t]{2}{*}{860} \& \& ${ }_{8}^{189}$

\hline \& \& \&

\hline
\end{tabular}

The table given above shows changes in pressure of wells so far as recorded. These changes have considerably affected sian water maps. For instance, the 1600 -foot contour, based on the present pressures in the first Dakota flow, shows a marked bend"to the north up James River, whereas a line based on the former pressures would run straight across the valley. This local decline of pressure appears most marked in the vicinity of the older and larger wells, or where wells have been unusually multiplied.
Decine of pressure may be due to various accidents, such as the rusting of pipes and the consequent increase of leakage below the surface. Sometimes it is only apparent owing to an overestimate of the original amount or to the interference of neighboring wells, so that the real closed pressure may not now be obtained unless all the wells are closed at the same time.
The most important cause of decline however, is local exhaustion of the water supply. This is shown by the following facts 1. A large well sure than a small one. In certain city wells where water is used feely ine in the no no retly lowed temporaily when very large amout of water is used for a fire. 2. The decline
ars, with diminished velocity of flow due to lower pressure an equilibrium of pressure may be reached. Such a point will be first reached by a small well.
3. The larger the well the more rapid and far-reaching will be its influence on surrounding wells.
4. The less numerous and the farther apart these wells are the less rapid will be the decline of pressure and the larger wil be their ultimate discharge.

Well notes.--The numerous wells in and about Aberdeen have furnished large volumes of water, mostly for domestic use, and have afforded power for mills and other machinery. In the firs or railroad well the main flow was in sandstone extending from 940 to 955 feet. This was overlain by alternating limestones, sandstones, and shales from 895 to 940 feet, with a small flow at 925 feet. The great mass of shale from 100 to 895 feet was parted by limestone extending from 515 to 530 feet. In city well No. 1 a 330 -gallon flow was found at 904 to 918 feet and a small flow at the top of the Dakota at 879 feet. The second city well, which was far south of the other, passed through 6 feet of hard cap rock from 940 to 946 feet, and then penetrated 46 feet into sandstone yielding an 820 -gallon flow from a 4 -inch casing. feet and although hard at the top afforded flows at 901 and 920 feet. The main flow is from a sandstone extending from 1016 to 1066 feet, the bottom of the well. Shale was found from 941 to 966 feet and from 984 to 1018 feet. A fourth city well, sunk in 1893, is reported to have penetrated quartzite from 1211 to 1257 feet and granite from 1257 to 1290 feet. It did not develop a satisfactory water supply below the horizons at which water had been found in the former wells. The \log is given in figure 8

In 1904 a boring was made at Loyd street and Twelfth avenue and at a depth of 1200 feet obtained a 500 -gallon flow with the unprecedented pressure of 240 pounds and a temperature of 71° No 4 is diffeult to In the Beard well, 2 mile
well No. 4 , the Dakota sandstone was encountered Aberdeen city 940 feet, extending for 20 feet and yielding a light flow. Depth of 940 feet, extending for 20 feet and yielding a light flow. Below
this were 37 feet of shale and, under 3 feet of cap rock, 50 feet of this were 37 feet of shale and, under 3 feet of cap rock, 50 feet of
sandstone which yielded a 1060 -gallon flow to a 5 -inch casing probably corresponding to the second flow at Aberdeen.
At Groton the first town well had a large flow from sandstone at 925 to 960 feet. In the second well the sandstone was penetrated from 889 to 922 feet. At the Adams well, in sec. $8, \mathrm{~T}$. 123 N., R. 60 W., the first flow was obtained at 906 feet, and a 100-gallon flow was found in sandstone extending from 917 to 977 feet
There are several deep wells in the vicinity of Redfield. The first city well is $4 \frac{1}{2}$ inches in diameter and has a flow of 1260 gallons from sandstone extending from 941 to 964 feet. The small flow at 750 feet was in a 1 -foot layer of sandstone in the Benton. In the new well in the southern part of town the main flow comes from a depth of 920 to 930 feet. At the was found at about the same level northwest, a strong flow drilling der a dat med 1080 feet d ped for 10 feet
In the Hassell \& Myers well, 1
good flow was found at 860 feet and an
well was deepened to 1030 feet. East of Redfield good flows have been obtained at depths of 858 and 895 feet.
The record of the Northville mill well is given in figure 9.

The main flow is from the sand rock at 958 to 980 feet Weak flows were reported in the overlying beds at 675 and 875 feet, and a strong flow of gas at a depth of 135 feet. The 675 -foot flow probably is from the Upper Benton and the 875 foot flow from the top of the Dakota. In the Hunter well, $2 \frac{1}{4}$ miles east-southeast of the mill well, the first and main flow was obtained at a depth of 904 feet.
here is a group ollette and Ashton. 10. Thi figure 10 . This is a $4 \frac{1}{2}$-inch well with a 1300 -gallon flow from a

sandstone extending from 915 to 993 feet, overlain by 7 feet of hard cap rock. The fird well 953 fee, overing 1) 7 feet of of the Day well.' It is 915 feet deep; from 902 feet to the bottom it passed through sandstone which yielded a flow of 670 gallons a minute. The sandstone was overlain by 2 feet of conglomerate, above which was an 8 -foot layer of limy rock of considerable hardness. The Baker well, in sec. 32 of the same township, reached a 7 -foot bed of cap rock at 864 feet and penetrated 49 feet of sandstone to a depth of 920 feet. The how was 1000 gallons from a 3 -inch casing and began at 87 feet. The first Brunn well, in sec. 22, I. 119 N., R. 63 W reached sandstone at 925 feet, under a 2 -foot cap rock, and was bored to a depth of 958 feet. It is a $3 \frac{1}{2}$-inch well and yields a 60 -gallon flow. Small flows were reported at 500 and 880 feet in the shale. The $4 \frac{1}{2}$-inch well at the mill a Mellette had a \log similar to those above described, with sandstone from 877 to 920 feet that yielded a small flow at 884 feet nd a 1215 -gallon flow at 910 feet. A 10 -foot bed of sandy from 841 to 844 feet The railroad well at Ashton has
 900 to 915 feet The "y yellow limestone" repoted from 830 to 860 feet may be a compact sandstone. A sandy shale a

650 to 660 feet yielded a small flow, and another small flow was found at 795 feet. Apparently in this well the Dakot begins with the sandy shale at 796 feet, and this changes to water-bearing sandstone in wells a short distance farther north The well at the mill in Ashton is 1003 feet deep and yields larger flow than the railroad well.
The record of the first Frankfort well is given in figure 11.

Figure 11.-Log of Frankfort well No. 1, Ne. 子 see. 7, T. 116 N., R. 62 W
This well yields a large flow from thick sandstone beds occur ring at intervals from 803 feet to the bottom, at 1000 feet 370 -gallon flow in sandstone extending from 880 to 895 feet -mall in Belan depth of 550 feet.
A group of deep wells about Hitchcock presents considerable variation in records and results. The Hitcheock well pene rated sandstone from 920 feet to the bottom at 953 feet. Th frst 4 feet of this sandstone was hard cap rock and this w ucceeded by several feet of shaly sandstone before the stron flow began at a depth of 950 feet. The Glidden well, half a mile northwest of Hitchcock, had the record given in figure 12.

Figure 12. -Log of Glidden well, SE. \& see. 32, T. 114 N., R. 63 W.
It entered the Dakota sandstone at a depth of 851 feet and although the bed was 30 feet thick only a small flow wa obtained. A strong flow was found at 970 to 990 feet and another at 1035 to 1045 feet which amounted to 650 gallons minute from a $4 \frac{1}{2}$-inch casing. In the Everett or Cavanaugh ell, in the N. $\frac{1}{4}$ sec. $30,1.114$ N., R. 62 W., the Dakota sand 876 feet amounting to 1200 callons oper Benton bed was found at 468 feet. The Budlong well, in SW 18 , T. 114 N, P .62 W , had the log siven i figure 13. It afforded a 75 -gallon flow from a $4 \frac{1}{2}$-inch casing a

790 feet and a 100 -gallon flow at 810 to 815 feet; this flow was much less than expected. A 10 -gallon flow in a sandstone bed of the Benton was found at 408 feet.

Figure 13.-Log of Budong well, SW. \ddagger sec. 18, T. 114 N., R. 62 W.
The record of the second city well at Miller is given in figur 14. The record of the first well differs somewhat in showing

hard sandstone and pyrites from 930 to 975 feet and then 130 feet of shale, under which, below 3 feet of cap rock, was 40 feet ond 100 -gallon 10 . In bow the the rests on the cap rock at a depth of 1105 feet.
QUALity of watre.

The water from the Dakota sandstone is usually soft in the upper flows but increases in hardness in the lower flows. In some wells the uppermost flow yields moderately soft water at Aberdeen-Redifield.
irst but the hardness increases as draft is made on the supply. The water from the deepest flow at Aberdeen in the Twelf venue well was very hard, in strong contrast with that of the higher flows. According to an analysis by F. A. Norton, it contains 570 parts per million of hardness calculated as CaCO_{3} and 500 parts of this, or nearly all, is present as permanent hardness. The total salts compare closely in amount with those the Aberdeen city well No. 4, 1290 feet deep, sunk in 1898 but as the llows in that well were not kept separate the compolow water. The analyes in the following table show the eost , f The rells. The unif position of waters from representative wells. The uniformity in total solids is a notable feature.

Analyses of artesian water in Aberdeen-Rediald
[rans per mion

Constituents.	1.	2.	s.	4.
Silica (SiO_{2})	30	9.8	37	11
Oxides of iron and aluminum ($\mathrm{Fe}_{8} \mathrm{O}_{3}+$	10	9.4	15	8.8
Calcium (Ca)	178	35	288	34
Magnesium (Mg)	${ }_{2}^{26}$	${ }^{23}$	81	19
Sodium and potassium ($\mathrm{Na+K}$)	140	835	304	635
Lithium (Li)	Trace	Trace	Trace.	Trace.
Carbonate radicle (CO_{3})		117	337	126
Sulphate radicle ($\mathrm{SO}_{\mathbf{t}}$)	1,285	1,118	589	1,061
Chlorine (Cl)..	72	144	${ }^{388}$	159
Total solids by evaporation	078	2,090	2,036	2,054
Constituents.	5.	${ }^{8}$	\%.	
Silica ($\mathrm{SiO}_{\mathrm{z}}$)	10	8.8	9.2	
		16		3.8
Calceium (Ca)	9.2	267	${ }^{135}$	8.4
Magnesium (Mg)	15	58	54	3.4
Sodium and potassium ($\mathrm{Na}+\mathrm{K}$)	716	261	456	671
Lithium (Li)	Trace	Trace.	Trace.	
Carbonate radicle (CO_{3}).	166	92	127	166
Sulphate radicle (SO_{4})	1,020	1,257	1,159	${ }^{748}$
Chlorine (Cl)	210	97	91	310
Total solids by evaporation	2,153	2,089	2,039	1.910

4. Redfield. 5. Doland.
5. Hitchcock.
r ville. . 4.
Mellette.
 by Ga. N.
Railway Co. soils.
The soils of these quadrangles have not been studied in detail and only the more prominent features are noted here They may be divided into stony soils, sandy soils, clayey soils or "gumbo," and loam.
Stony soils.-Stony soils are present only in small areas, mainly on the rougher surfaces of the moraines and along the edges of terraces bordering the principal streams. Th morainic areas usually carry bowlders on the surface, most of which are removed in preparing the land for cultivation.
Bowlders and pebbles are thickly strewn along the terraces and in some places form thick bowlder beds which offer a serious hindrance to cultivation. The slopes of many of the eeper bluffs along the strems are covered wih bown that have either slipped down from the stratum capping the terrace have strad hore which strata have ored suct the close of the olacial epoch, that they have been cut away from the adjacent upland so as to form idges of which surest osars. An example of this sort ary be foud on the east side of James River for 1 or 2 miles on each side of the Beadle-Spink county line
There are some nearly level bowldery areas a few square miles in extent on the plain southeast of Crandon, and smalle cattered areas occur a few miles northwest and west of La Delle. Some rougher areas lie along James River and the deeper ancient channels at many points in the Byron quad rangle.

Extensive bowlder areas constitute the surface of much of the eastern part of T. 113 N., R. 62 W. (Pleasant View Town-
ship), on the bottoms and sides of old shallow channels and particularly in low ridges, some of which are thickly covered with bowlders. In places the bowlders have been gathered into numerous heaps which reach the size of haystacks. Most of the higher portions of the osars have gravelly surfaces. There are also extensive gravelly surfaces on the old delta of Foot Creek southwest of Aberdeen.
Sandy soils.--Sandy soils are of comparatively meager extent in the Byron quadrangle, being confined to the broad channels cst aner in theock and to In the Redfield quadrancase sandy Cottonwood Lake and Twin Lakes, in portions of the Pearl Creek valley, and particularly on the plain north west of Tulare In the Aberdeen quadrangle a few small sandy areas lie along the east side of the region occupied by glacial Lake Dakota, and more extensive low dunes occur about 4 miles south of Aberdeen in secs. 1 and 2, T. 122 N., R. 64 W. Similar sandy areas lie near Athol. In the Northville quadrangle there are small sandy areas in the vicinity of the Scatterwood Lakes and in the channel farther south.
In all these localities the sand is at present so largely mixed with organic matter as to form a fertile soil, and but little of it is affected by the wind.
Clayey soils.-The most common clayey soil in this region is in the main a dense, fine, drab-colored clay, usually of a dark tint though in some places light. It is soft and very sticky when wet, and intensely hard and seamed with cracks when dry. It almost completely prevents the sinking of rain water into the ground and the rising of moisture from the subsoil in time of drought. While it is damp grasses may flourish on it, but they wither when the dry season comes. As a rule it con sists mostly or clay, but has nore or less ine sand niged
 ancient channels where the drainage is poor, and in ame leme in the of the silt depos Lake Dakota. In exposures of the Pierre shale there are alo some rather small areas of a nearly pure black clay, which has the appearance and character of the extensive gumbo deposits west of Missouri River. The term "gumbo" is popularly applied to all distinctly clayey soils.
Loamy soils.-Loamy soil occupies the wide area shown as lacustrine silt on the areal geology maps. It is of great fertility and has the further good quality of an even surface. It possesses a medium degree of porosity, which affords good natural underdrainage in wet seasons and a ready rise of round water toward the surface in times of drought. This advantage is diminished on some of the higher lands by the occurrence of a thin hardpan or clayey layer a little below he surface, but this feature is not general, and is lacking in the vicinity of the broad channels that traverse the area. Ther are also, in some of the basins where water stands, patches of clayey soils which are commonly called gumbo. The soils on the till and morainic areas that are not stony are usually made up of yellow loam with a few small pebbles intermixed.
"Alkali."-In morainic strips, to a less degree on the till, and still less commonly on the loamy plain, the various soluble of the surface When moisture is abundant they are invisible ad do not seriously interfere with the growth of vecetation fact, they even render it more rank in places this effect
 owever, the salts appear on the ground in great abundance in he form of white, efflorescent incrustations which kill vegetation or prevent its growth altogether. Many such barren or poisone pots, however, are so small that ordinary cultivation is sufficien o mingle the salts with the surrounding soil so that the produce no injurious results. In some areas where the sol mble salts are so abundant that this treatment is not effective rainage will aid greatly, and if this is not practicable th incrustations may be scraped off from time to time and eithe dumped into a well or pit or stored as fertilizer for looser or more sandy soils.
March, 1906.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. ${ }^{\text {t }}$	No.*	Name of folio.	State.	Price. \dagger
			Cen				nts.
$\ddagger 1$	Livingston	Montana	25	84	Ditney	Indiana	25
$\ddagger 2$	Ringgold	Georgia-Tennessee	25	85	Oelrichs	South Dakota-Nebra.ska	25
$\ddagger 3$	Placerville	California	25	86	Ellensburg	Washington	25
$\ddagger 4$	Kingston	Tennessee	25	87	Camp Clarke	Nebraska	25
5	Sacramento	California	25	88	Scotts Bluff	Nebraska	25
$\ddagger 6$	Chattanooga	Tennessee	25	89	Port Orford	Oregon	25
$\ddagger \downarrow$	Pikes Peak	Colorado	25	90	Cranberry	North Carolina-Tennessee.	25
8	Sewanee	Tennessee	25	91	Hartville	Wyoming	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	92	Gaines	Pennsylvania-New York	25
10	Harpers Ferry	Va.-Md.-W.Va.	25	93	Elkland-Tioga	Pennsylvania	25
$\ddagger 11$	Jackson	California	25	94	Brownsville-Connellsville	Pennsylvania	25
$\ddagger 12$	Estillville	Ky.-Va.-Tenn.	25	95	Columbia	Tennessee	25
13	Fredericksburg	Virginia-Maryland	25	96	Olivet.	South Dakota	25
14	Staunton	Virginia-West Virginia	25	97	Parker	South Dakota	25
$\ddagger 15$	Lassen Peak	Californa	25	98	Tishomingo	Indian Territory	25
16	Knoxville	Tennessee-North Carolina	25	99	Mitchell	South Dakota	25
17	Marysville	California	25	100	Alexandria	South Dakota	25
18	Smartsville	California	25	101	San Luis	California	25
19	Stevenson	Ala.-Ga.-Tenn.	25	102	Indiana	Pennsylvania	25
20	Cleveland	Tennessee	25	103	Nampa	Idaho-Oregon	25
21	Pikeville	Tennessee	25	104	Silver City	Idaho	25
22	McMinnville	Tennessee	25	105	Patoka	Indiana-llinois	25
23	Nomini	Maryland-Virginia	25	106	Mount Stuart	Washington	25
24	Three Forks	Montana	25	107	Newcastle	Wyoming-South-Dakota	25
25	Loudon	Tennessee	25	108	Edgemont	South Dakota-Nebraska	25
26	Pocahontas	Virginia-West Virginia	25	109	Cottonwood Falls	Kansas	25
27	Morristown	Tennessee	25	110	Latrobe	Pennsylvania	25
28	Piedmont	West Virginia-Maryland	25	111	Globe	Arizona	25
29	Nevada City Special	California	50	112	Bisbee	Arizona	25
30	Yellowstone National Park	Wyoming	50	113	Huron	South Dakota	25
31	Pyramid Peak	California	25	114	De Smet	South Dakota	25
32	Franklin	West Virginia-Virginia	25	115	Kittanning	Pennsylvania	25
33	Briceville	Tennessee	25	116	Asheville	North Carolina-Tennessee	25
34	Buckhannon	West Virginia	25	117	Casselton-Fargo	North Dakota-Minnesota	25
35	Gadsden	Alabama	25	118	Greeneville	Tennessee-North Carolina .	25
36	Pueblo	Colorado	25	119	Fayetteville	Arkansas-Missouri	25
37	Downieville	California	25	120	Silverton	Colorado	25
38	Butte Special	Montana	25	121	Waynesburg	Pennsylvania	25
39	Truckee	California	25	122	Tahlequah	Indian Territory-Arkansas .	25
40	Wartburg	Tennessee	25	123	Elders Ridge	Pennsylvania	25
41	Sonora	California	25	124	Mount Mitchell	North Carolina-Tennessee.	25
42	Nueces	Texas	25	125	Rural Valley	Pennsylvania	25
43	Bidwell Bar	California	25	126	Bradshaw Mountains	Arizona .	25
44	Tazewell	Virginia-West Virginia	25	127	Sundance	Wyoming-South Dakota	25
45	Boise	Idaho	25	128	Aladdin	Wyo.-S. Dak.-Mont.	25
46	Richmond	Kentucky	25	129	Clifton	Arizona.	25
47	London	Kentucky	25	130	Rico	Colorado	25
48	Tenmile District Special	Colorado	25	131	Needle Mountains	Colorado	25
49	Roseburg	Oregon	25	132	Muscogee	Indian Territory	25
50	Holyoke	Massachusetts-Connecticut	25	133	Ebensburg	Pennsylvania	25
51	Big Trees	California	25	134	Beaver	Pennsylvania	25
52	Absaroka.	Wyoming	25	135	Nepesta	Colorado	25
53	Standingstone	Tennessee	25	136	St. Marys	Maryland-Virginia	25
54	Tacoma	Washington	25	137	Dover	Del.-Md.-N. J.	25
55	Fort Benton.	Montana	25	138	Redding	California	25
56	Little Belt Mountains	Montana	25	139	Snoqualmie	Washington	25
57	Telluride	Colorado	25	140	Milwaukee Special	Wisconsin	25
58	Elmoro	Colorado	25	141	Bald Mountain-Dayton	Wyoming	25
59	Bristol	Virginia-Tennessee	25	142	Cloud Peak-Fort McKinney	Wyoming	25
60	La Plata	Colorado	25	143	Nantahala	North Carolina-Tennessee .	25
61	Monterey	Virginia-West Virginia	25	144	Amity	Pennsylvania	25
62	Menominee Special	Michigan .	25	145	Lancaster-Mineral Point	Wisconsin-Iowa-Illinois	25
63	Mother Lode District	California	50	146	Rogersville	Pennsylvania	25
64	Uvalde	Texas	25	147	Pisgah	N. Carolina-S. Carolina	25
65	Tintic Special	Utah	25	148	Joplin District	Missouri-Kansas	50
66	Golfax	California	25	149	Penobscot Bay	Maine	25
67	Danville	Hllinois-Indiana	25	150	Devils Tower	Wyoming	25
68	Walsenburg	Colorado	25	151	Roan Mountain	Tennessee-North Carolina	25
69	Huntington	West Virginia-Ohio	25	152	Patuxent	Md.-D. C.	25
70	Washington	D. C.-Va.-Md.	50	153	Ouray	Colorado	25
71	Spanish Peaks	Colorado	25	154	Winslow	Arkansas-Indian Territory	25
72	Charleston	West Virginia	25	155	Ann Arbor	Michigan	25
73	Coos Bay	Oregon	25	156	Elk Point	S. Dak.-Nebr.-lowa	25
74	Coalgate	Indian Territory	25	157	Passaic	New Jersey-New York	25
75	Maynardville	Tennessee . .	25	158	Rockland	Maine	25^{-}
76	Austin	Texas	25	159	Independence	Kansas	25
77	Raleigh.	West Virginia	25	160	Accident-Grantsville	Md.-Pa.-W. Va.	25
78	Rome.	Georgia-Alabama	25	161	Franklin Furnace	New Jersey	25
79	Atoka	Indian Territory	25	162	Philadelphia	Pa.-N. J.-Del.	50
80	Norfolk	Virginia-North Carolina	25	163	Santa Cruz	California	25
81	Chicago	Illinois-Indiana	50	164	Belle Fourche	South Dakota	25
82 83	Masontown-Uniontown New York City . . .	Pennsylvania New York-New Jersey	25 50	165	Aberdeen-Redfield	South Dakota	25

* Order by number.
+ Payment must be made by money order or in cash.
\ddagger These folios are out of stock,
Circulars showing the location of the area covered by any of the above folios,
on application to the Director, United States Geological Survey. Washington, D. C.

