GEOLOGIC ATLAS

OF THE

UNITMD STANES

INDEPENDENCE FOLIO
KANSAS

WASHINGTON. D. C

GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES

The Geological Survey is making a geologic map of the United States, which is being issued in parts, called folios. Each folio includes a topographic map and geologic maps of a small area of country
together with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP.
The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hills, and mountains; (2) distribution of streams, lakes, and swamps; (3) the drainage, as streams, lakes, and swamps; (3) the boundaries, villages, and cities.
Relief-All elevations are measured from mean sea level. The heights of many points are accurately determined, and those which are most important are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form of all slopes, and to indicate their grade or steepness. This is done by lines each of which is drawn through points of equal elevation above mean sea
level, the altitudinal interval represented by the level, the altitudinal interval represented by the space between lines being the same throughout each
map. These lines are called contours, and the map. These lines are called contours, and the
uniform altitudinal space between each two conuniform altitudinal space between each two con-
tours is called the contour interval. Contours and tours is called the contour inter
elevations are printed in brown
elevations are printed in brown.
The manner in which contours express elevation, form, and grade is shown in the following sketch
and corresponding contour map (fig. 1). and corresponding contour map (fig. 1).

FIg. 1.-Ideal view and corresponding contour map.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On
each side of the valley is a terrace. From the each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that ois the left the ground ascends steeply, forming a precipice. Contrasted with this precipice is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above sea level. In this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 ,
100,150 , and 200 feet, and so on, above mean se 100,150 , and 200 feet, and so on, above mean sea level. Along the contour at 250 feet lie all points
of the surface that are 250 feet above sea: along of the surface that are 250 feet above sea; along
the contour at 200 feet, all points that are 200 feet the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any and below the higher contour. Thus the contow at 150 feet falls just below the edge of the terro while that at 200 feet lies above the terrace; therewhile that at 200 feet lies above the terrace; there-
fore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at 650 feet surrounds it. In this illustration all the contours are numbered, and those for 250 and 500 feet are accentuated by being made heavier. Usually it is not desirable to number all the contours, and then the accentuating and numbering of certain of them-say, every fifth one-suffice, for the heights of others may be ascertained by counting up or down from a numbered contour.
2. Contours define the forms of slopes. Since contours are continuous horizontal lines, they wind smoothly about smooth surfaces, recede into all about prominences. These relations of contou curves and angles to forms of the landscape can be traced in the map and sketch.
3. Contours show the approximate grade of any lope. The altitudinal space between two contours is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle
slope one must go farther than on a steep slope, and therefore contours are far apart on gentle slopes nd near together on steep ones
For a flat or gently undulating country a small ontour interval is used; for a steep or mountainous country a large interval is necessary. The
smallest interval used on the atlas sheets of the Geological Survey is 5 feet. This is serviceable for regions like the Mississippi delta and the Dismal Swamp. In mapping great mountain masses, like those in Colorado, the interval may be 250 feet.
For intermediate relief contour intervals of 10,20 25,50 , and 100 feet are used.
Drainage.-Watercourses are indicated by blue lines. If a stream flows the entire year the line is drawn unbroken, but if the channel is dry a part of the year the line is broken or dotted. Where a stream sinks and reappears at the surface, the supposed underground course is shown by a broke bue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate con-
ventional signs. ventional signs.
ons, - he works of man, such as roads, rail roads, and counties, and States, are printed in black ships, counties, and States, are printed in black. Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn square miles. A map represente
to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map This relation between distance in nature and corresponding distance on the map is called the scale
of the map. In this case it is " 1 mile to an inch." of the map. In this case it is " 1 mile to an inch."
The scale may be expressed also by a fraction, The scale may be expressed also by a fraction, of
which the numerator is a length on the map and the denominator the corresponding length in nature expressed in the same unit. Thus, as there are in,360 inches in a mile,
inch" is expressed by $\frac{1}{6,3500}$.
are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{2 x, m o m}$, the inter-
 mile on the ground to an inch on the map. On the scale $\frac{1}{6.2000}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale $\frac{1}{5}$, about 4 square miles; and on the scale $\frac{1}{2 \times 20,000}$, atlas sheet the scale is. At the bottom of each by a graduated line representing miles and parts
of miles in English inches, by a similar line ind of miles in English inches, by a similar line indi-
cating distance in the metric system, and by cating dis
fraction.
Atlas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, whic represent areas bounded by parallels and meridians. These areas are called quad rangles. Lach sheet on degree of latitude by a degree of egree-i. degree of latitude by a degree of longitude, each sheet on the scale of is,w, contains one-fourth of tains onesixteenth of a square degree. The of the corresponding quadrangles are about 4000 1000 , and 250 square miles.
The atlas sheets, being only parts of one map of the United States, disregard political boundary lines, such as those of States, counties, and townrepresents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjaent sheets, if published, are printed.
Uses of the topographic map.-On the topographic
map are delineated the relief, drainage, and culture of the quadrangle represented. It should portray
to the observer every characteristic feature of the landscape. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property; save the engineer preliminary surveys in locating roads,
railways, and irrigation reservoirs and ditches railways, and irrigation reservoirs and ditches;
provide educational material for schools and homes; provide educational material for schools and
and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and on the surface of the land, and the structure ections show their underground relations, as far known and in such detail as the scale permits.

kinds of rocks.

Rocks are of many kinds. On the geologic map hey are distinguished as igneous, sedimentary, and metamorphic.
Igneous rocks.-These are rocks which have cooled and consolidated from a state of fusion Through rocks of all ages molten material has from time to time been forced upward in fissures or channels of various shapes and sizes, to or nearly to the surface. Rocks formed by the consolidation of the moiten mass within these channels-that is, below the surface-are called
intrusive. When the rock occupies a fisure intrusive. When the rock occupies a fissure with pproximately parallel walls the mass is called the mass is trmed a large and irregular conduit molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thin, and laccotiths when occupying larger chambers produced by rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the sur ace the molten material poured out thru them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidly in the air, and acquire a glassy or, more often, a partially crystalline condition in their outer parts, but are more fully crystalline in their inner por-
tions. The outer parts of lava flows are tions. The outer parts of lava flows are usually pane or less porous. Explosive action often accom ash, and larger fragments. These materials, when agglomerates, and uffs. Volcanic ejecta may fall in bodies of wate sedimentary rocks.
Sedimentary rocks.-These rocks are composed of the materials of older rocks which have been carried to a different place and deposited.
The chief agent of transportation of rock débris is water in motion, including rain, streams, and the water of lakes and of the sea. The materials are large part carried as solid particles, and the re gravel are then said to be mechanical. Such dated into sand, and clay, which are later consolimaller portion the materials are carried in solution, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rock fhemical and organc orgin are limestone, chert gypsum, salt, iron ore, peat, lignite, and coal. Any the different materials may bo intingled many ways, producing a great variety of rocks many ways, producing a great variety of rocks.
Another transporting a agent is air in motion, or
wind; and a third is ice in motion, or glaciers The most characteristic of the wind-borne or eolian deposits is loess, a fine-grained earth; the most characteristic of glacial deposits is till, a heterogeneous mixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are aid to be stratified.
The surface of the earth is not fixed, as it seems , it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
subsides the shore lines of the ocean are changed. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and
extensive land areas are in fact occupied by such rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble rial down the and it ines residual material down the sopes, ar it is eventally carried y rivers to the ocean or other bodies of standing it is temporaily built into river bars and flood plains where it is alled allwium. Alluvil depos its, glacial deposits (collectively known as drost) iss, glacial deposits (collectively known as drift),
and eolian deposits belong to the surficial class and eolian deposits belong to the surficial class,
and the residual layer is commonly included with them. Their upper parts, occupied by the roots of plants, constitute soils and subsoils, the soils being usually distinguished by a notable admixture of organic matter.
Metamorphic rocks.-In the course of time, and by a variety of processes, rocks may become greatly hanged in composition and in texture. When he newly acquired characteristics are more proounced than the old ones such rocks are called netamorphic. In the process of metamorphism he substances of which a rock is composed may nter into new combinations, certain substances There is lost, or new substances may be added. here to the a prirary to the medan within a single puartite limestone into mable al lify int rocks in various way
From various way
From time to time in geologic history igneous nd later have beenas have been deeply buried process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes long which the rocks split easily, and these planes nay cross the strata at any angle. This structure is called cleavage. Sometimes crystals of mica or ther foliaceous minerals are developed with their aminæ approximately parallel; in such cases the ructure is said to be schistose, or characterized by schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metanorphism, but to this rule there are important xceptions.

formations.

For purposes of geologic mapping rocks of all the kinds above described are divided into formaions. A sedimentary formation contains between its upper and lower limits either rocks of uniform haracter or rocks more or less uniformly varied in haracter, as, for example, a rapid alternation of hale and limestone. When the passage from one Find of rocks to another is gradual it is sometimes ecessary to separate two contiguous formations by n arbitrary line, and in some cases the distinction nends almost entirely on the contained fossils. Ig igneous formation is constituted of one or more ock or having the same mode of occurrence netamorphic formation may consist of rock of uniform character or of several rocks having common haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or mor secialy developed parts of a varied formation, appropriate term, as lentils.

Ages of rocks.
Geologic time.-The time during which the rocks vere made is divided into several periods. Smaller fime divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the t
The sedimentary formations deposited during a period are grouped together into a system. The principal divisions of a system are called series. Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela tive ages of the deposits may be determined by observing their positions. This relationship hold xcept in regions of intense disturbance; in such it is often difficult to beds have been relative age from their positions; then fossils, or the remain and imprints of plants and animals, indicate which of two or more formations is the eldest.
Stratified rocks often contain the imprints of plants and animals which, at the time the strata were deposited, lived in the sea or wer washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are calied fossiliferous. By studying fossils t has been found that the life of each period of the earth's history was to a great extent different from hat of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferou rocks were deposited. From time to time more complex kinds developed, and as the simpler one But during each period there lived peculiar forms But during each period there lived peculiar forms, existed since. these are charocteristic types, no they define the age of any bed of rock in which they are found. Other types passed on from period to period, and thus linked the systems together, forming a chain of life from the time of the oldest fossiliferous rocks to the present. When two sedimentary formations are remote from each other and it is impossible to observe their relative positions, the characteristic fossil types found in them may determine which was deposited first. Fossil remains found in the strata of different areas provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age such a formation can sometimes be ascertained y observing whether an associated sedimentary mass or is deposited upon it.
Similarly the time at whi
Similary, the time at which metamorphic rocks shown by their relations to adjacent formations of known age; but the age recorded on the map is hat of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown n the map by a distinctive combination of colo symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles Patesent alluvial, glacial, and eolian formations. ous formations, Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations
The pete ligueous orig
The patterns of each class are printed in various are used to indicate age a particular lines, colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols re composed of small letters. The names of the sstems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.
surface forms.

Hills and valleys and all other surface forms have been produced by geologic processes. For example, most valleys are the result of erosion by the streams hat flow thru them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding hetion f, ses cins an wits by the eroding waves Tonographic forms thes contitup by of the record of the history of the earth. Some forms are produced in the making
its and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava treams, drumlins (smooth oval hills composed of till), and moraines (ridges of drift made at the edges of glaciers). Other forms are produced by erosion, and these are, in origin, independent
of the associated material. The sea cliff is an illustration it matera. from any rock To this class belong abandoned river channels, glacial furrows, and peneplains. In the making of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the
action of air, water, and ice, which slowly wear action of air, water, and ice, which slowly wear
them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level evel, and the sea is therefore called the base-level
of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is called a peneplain. 'If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level.
the various geologic sheets.

Areal geology map.-This map shows the areas occupied by the various formations. On the mar-
gin is a legend, which is the key to the map. To gin is a legend, which is the key to the map. To its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he will find the name and description of the fortion, its name should be sought in the legend and its color and pattern noted, when the areas on the map corresponding in color and pattern may be map correspondin. traced out.
The legel
The legend is also a partial statement of the in columnar form, grouped primarily according to origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued backround upou which the areas of productive formations may be emphasized by strong colors. A mine panied by the name of the principal mineral ined or stone quarried. For regions where there are important mining industries or where artesian these additional economic features.

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In clifts, canyons, shafts, and other natural and artifianother may be seen. Any cutting which exhibit those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth i the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the manner of formation of rocks, and having traced out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections repre senting the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in
the following figure he following figure

The figure represents a landscape which is cut fr sharply in the foreground on a vertical plane, ors to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following are generally used in
commoner kinds of rock:

scuists.

Fig. 3.-Symbols used in seetions to represent different kinds
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up
of sandstones, forming the cliffs, and shales, constior sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of
the section. The broad belt of lower land is traversed by several ridges, which are seen in the see tion to correspond to the outcrops of a bed of sand stone that rises to the surface. The upturned edges of this bed form the ridges, and the intermediate valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the urface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horiontal plane, measured at right angles to the strike, is called the $d i p$.
Strata are fre
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are
called anticlines and the troughs synclines called anticlines and the troughs synclines. But
the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have are now bent and folded is proof that forces hav
from time to time caused the earth's surface to wrinkle along certain zones. In places the strata are broken across and the parts have slipped past each other. Such breaks are termed faults. Two kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is composed of schists which are traversed by masses and igneous rock. The schists are much contortel
 ons of strata, showing
and (b) a thrusust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formarions, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strata are now high above the sea, forming a plateau, and
their change of elevation shows that a portion their change of elevation shows that a portion of the earth's mass has been rassed from a lower parallel, a relation which is called of this set are The seood set of form which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable.
The horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying han the , from their pormations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds and the accumulation of the younger. When younger rocks thus rest upon an eroded surface of older rocks the relation between the two is an unconformable one, and their surface of contact
is an unconformity is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and
traversed by eruptions of molten rock But the traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no
affected the overlying strata of the second set affected the overlying strata of the second set,
Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is anothe unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds to the actual slopes of the
ground along the section line, and the depth from ground along the section line, and the depth from
the surface of any mineral-producing or water the surface of any mineral-producing or water-
bearing stratum which appears in the section may be measured by using the scale of the map. Co measured by using the scale of the map.
concise description of the sedimentary formation which occur in the quadrangle. It presents a which occur in the quadrangle. It presents a of the rocks, the thickness of the formations, and he order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram. The thicknesses of formations are given in figures nd the sate the least and greatest measurement column, whiche thickness of each is shown in the feet to 1 inch. The order of accumulation of th ediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The in
The intervals of time which correspond to events ions of and degradation and constitute interrup he word " the word "unconformity.

GEORGE OTIS SMITH,

May, 1908.

DESCRIPTION OF THE INDEPENDENCE QUADRANGLE.

By F. C. Schrader.

GEOGRAPHY.

aeneral relations
Location and area.-The Independence quadrangle is a rectangular area in southeastern Kansas lying between meridians $95^{\circ} 30^{\prime}$ and 96° and paral-
lels 37° and $37^{\circ} 30^{\prime}$ Its southern border coincides lels 37° and $37^{\circ} 30^{\prime}$. Its southern border coincides with the Kansas-Oklahoma boundary and its east-
ern border is about 47 miles west of the Kansasern border is about 47 miles west of the KansasMissouri boundary. Its length is nearly 35 miles, its width about 28 miles, and its area about 950 square miles. It is located near the middle of the whll-known Kasas-Oklahoma on as which of Mon an son, Neosho Labette Elk , nd Chatauqua countis Outline of the , M, ahy--Kansas is situated near the middle of the belt of the Great Plains and Prairie Plains, which in this latitude have a width of about 800 miles and incline gently eastward of about 800 miles and incline gently eastward
from the base of the Rocky Mountains toward Mississippi River. The elevation of this belt on the west is about 6000 feet and on the east, near the Mississippi, about 700 feet; the mean rate of inclination is about 10 feet per mile. The Kansas portion of the belt has an average elevation of about 4000 feet at its western border and about 900 feet at its eastern border, with a mean inclination of
about 8 feet per mile. about 8 feet per mile.
In Kansas the Great Plains, occupying the western two-thirds of the State, are sharply marked off from the Prairie Plains by the Flint Hills escarpment, which extends in a north-south line across the State from Marshall County to Cowley County.
The eastern third of the State including the IndeThe eastern third of the State includig the Inde Each of these grand divisions comprises a Pamber of smaller geographic divisions, separated in genoral by eastward- or southeastward-facing escarpments and rising gently in successive steps to the northwest. The Osage Prairie forms the western part of the Prairie Plains division and extends westward 25 miles beyond the Independence quadrangle to the Flint Hills escarpment, in the longitude of Grenola, and to the western part of Greenwood Elk, and Chautauqua counties.
topography of the quadrangle.
Relief.-The Independence quadrangle lies wholly within the Osage Prairie and its distinguishing surface features are eastward-sloping terraces and a few outlying or isolated hills and mounds. The region is essentially treeless except for fringes of forest along the larger streams and some areas occupied by black-jack oak in the sandstone hills. Its average elevation is about 900 feet. Viewed as a whole,
it inclines, at the rate of about 10 feet per mile, it inclines, at the rate of about 10 feet per mile,
gently east of south, which is likewise the general gently east of south, which is likewise the general
direction followed by the streams. The vertical range between the tops of the highest hills vertical the floors of the lowest valleys is about 440 feat The lowest point in the quadrangle, 690 feet in altitude, is near its southeast corner, where Verdigris River crosses the State line. This is also the lowest point in the State. The highest part of the quadrangle is in its northwest corner, on the Dunham ranch, where the sandstone hills rise to the elevation of 1130 feet.
The topography is the result of dissection and
erosion, and in a broad way the surface is gently undulatory or rolling way the surface is gently of denudation suffered it varies with the dege a nearly flat plain in some localities to hilly or even rugged surfaces in others. The hilly or more rugged forms are found in the sandstone areas and along the western sides of the main valleys. Many of the hills along the valleys present steep-faced scarps 200 feet or more in height and are nearly
flat topped. Locally they are known as mounds, flat topped. Locally they are known as mounds,
especially where they rise as outliers separated especially where they rise as outliers separated
from the main wall of the valley. Good examples of these outliers are Table Mound and Walker

Mound, near the center of the quadrangle, and the mounds about Cherry vale.
More closely considered, the topography is of the terrace type, a series of nearly eastward-facing terraces of varying height and width rising successively northwestward. These terraces have been developed by erosion in the Pennsylvanian series,
which here consists principally of heavy beds of which here consists principally of heavy beds of soft shale and sandstone, alternating with thinner beds of hard limestone.
The interval between any two terraces ranges from a few feet to 200 feet or more. Both the height and the width of the terraces depend mainly on the thickness and softness of the intervening shales and sandstones, as compared with the scarp-
forming limestone. The slopes follow the soft layers; the hard layers form the cliffs, scarps, and crests ers; the hard lay
of the terraces.
Owing to the lateral migration of the drainage down the dip slope of the rocks, particularly the limestones, the larger valleys are bordered on the west and northwest by steep-faced bluffs or scarps, look flat lowlands feet high. These bluffs overrivers, where the confining banks are insignifi cantly low or absent, as along the Verdigris, miles north of Coffeyville. Here the controlling agents in the development of this feature were the dip slopes of the Drum and other limestones which now outcrop a mile or more east of the river. Where the limestone is heavy and much more resistant than the overlying shale, its dip slope
after the erosion of the shale may form a structural after the erosion of the shale may form a structural
dip plain of considerable extent. Thus the Piqua dip plain of considerable extent. Thus the Piqua
limestone, about 40 feet thick, forms such a plain limestone, about 40 feet thick, forms such a plain
between Neodesha and Sycamore on the east, and Elk, Duck Creek, and Plum Creek on the west. This plain is 9 or 10 miles wide and slopes ant This plain is 9 or 10 miles wide and slopes gently
westward to the base of the scarp formed by th westlying Buxton formation. From Elk River it overlying Buxton formation. From Elk River quadrangle, beyond which it is still more perfectly and extensively developed in the country east and northeast of Fredonia.
The scarp formed by the strike edge of the Piqua limestone, from the point where it enters the quadrangle near Verdigris River on the north to the region beyond Elk River on the south, where the limestone thins, is so prominent as to be readily legible on the map. It extends northwestward up Fall River, with a gradual decrease in height beyond the edge of the quadrangle, and similarly westward up Elk River, as the dip plain gradually decends to the city of Elk. An outlier of this plain is Table Mound, the small limestone-capped
butte south of Elk River, near the middle of the butte south of Elk River, near the middle of the quadrangle.
The most
The most rugged surface and the most important departure from the terrace type of topography is
the hilly upland near the northwest corner of the quadrangle known farther southwest as the Chauquaqua Hills. The features of this upland have been carved out of the heavy-bedded sandstones of the Buxton formation and present considerable diversity. In the main they consist of irregular, generally steep or scarp-faced hills and trenche drainage ways. The hills of the upland rise from a few feet to nearly 200 feet above the main valleys, and the unreduced tops have a height of about 1060 feet. They are portions of a dissected plain or plateau with a gentle southwestward slope. The southeastward-facing escarpment of this plain is excellently shown northwest of Lafontaine and at other localities, as represented on the topographic map. Similar but smaller and less rugged areas occur in the Wilson formation between Jefferson and Verdigris River and along the southern border of t
ville.
Drainage--Kansas is drained essentially by
the divide between the two drain their tributaries,
ing about east and west through the middle of the State. The Independence quadrangle lies south of this divide and its master stream, Verdigris River, flows slightly east of south across the quadrangle. Like most other rivers of eastern Kansas, the Verdigris is essentially a graded stream almost to
its source. Throughout its course its channel is its source. Throughout its course its channel is
well defined and its valley partly infilled, with well defined and its valley partly infilled, with
banks from 20 to 50 feet high. This statement is banks from 20 to 50 feet high. This statement is also true of the lower portions of its larger tributaries. It has a fall of about 2 feet per mile in its course across this quadrangle. It is essentially stream fed by surface run-off; the flood flow ations in height are extreme and rapid.

DESCRIPTIVE GEOLOGY.

general relations.

The consolidated rocks of the Independence quadrangle are a part of the Carboniferous beds, cross eastern Kansas in a broad, nearly north-south belt and dip gently westward under younger formations. The rocks exposed in the quadrangle lie near the middle of this belt and are a part of th Pennsylvanian series. They are about 1000 feet in thickness and consist mostly of thick beds of soft shales and sandstones and thin beds of hard limestones, conformably alternating many time with one another. They include also a few beds of coal and locally some conglomerates, and are in
the main of marine orisin. Their distribution is the main of marine origin. Their distribution is shown on the areal geology map and a generalized section
sheet.
The rocks lying stratigraphically between those of the Independence quadrangle and those of the described in the Cottonwood Falls folio, are sim ilar to those of the Independence quadrangle, and like them consist of alternating shales, sandstones and limestones. These rocks also are of Pennsyl vanian age and have an aggregate thickness of about 630 feet. The formations are likewise of similar character for a distance of 25 miles east
of the quadrangle, but beyond this strip the alternate at wider intervals, and the eastern po tion of the Carboniferous belt is occupied by lons broad subbelts, one being that of the Cheroke shale and the other that of the Mississippian or "Lower Carboniferous" limestones, including the Boone formation.
The rock formations exposed in the quadrangle are conformable and have an aggregate thickness of about 1000 feet, or approximately one-third of that of the "Coal Measues in this region. As shown in the generalized columnar section, con is made up of shale and sandstone, and less than one-fourth of limestone.
The limestones stro
throughout the section and can be one another only by a detailed study of their characteristic They usually occur in beds of 1 to 5 feet in thick ness, but the largest are 40 or 50 feet thick. Most of them are fine grained, crystalline, or semicrystalline. Those in the upper part of the section are more crystalline than those in the lower part. They are best developed in the northern part of the quadrangle and they thin or die out toward the south, as shown in fig. 1. They contain many cherty segregations in thin layers or nodules of various sizes and shapes. On account of their reater resistance to erosion the limestones usually cap the mounds and form the crests of the terrace and the scarps. Most of the terraces are composed of a hard lime
by soft shale.
The shales are in the main thin bedded and vary in degree of purity, ranging from clay shale to
so firm as to require blasting where quarried for ommercial purposes.
The sandstones are fine grained, some of them slightly micaceous, and occur in beds from 1 to 40 nches thick.
The coal seams are as a rule associated with the renaceous shale or sandstone, and like the latter denote littoral conditions when the raw material of he coal was deposited.
Marine fossils are locally abundant in some of the limestones, but occur rather sparingly in the shales and are rare in the ssndstones. Here and plants that crew on the chas plants that grew on the shore along which the diagnostic and characteristic fossils collected in the quadrangle are given in the discussion of the several formations.
As shown by the drill records and represented on the columnar section sheet, the portion of the Pennsylvanian series that underlies the Independence quadrangle, and extends downward with hickness of 770 feet to the Mississippian lime the surface of the sere. By reason of the nortwermation out crops farther east than the one next above it. The Boone formation, which lies at the depth of 1560 feet below the surface at Caney in the southwest ern part of the quadrangle, forms the surface of he country at Carthage, Mo., and at Bentonville and Rogers, Ark., as shown in the Joplin and
Fayetteville folios.
rocks exposed at the surface.
carboniferous system.
The rocks exposed at the surface in the quadangle are here considered in ascending tions or certain of their members have received formation names in the Iola quadrangle, to the northeast, a and these names are here employed so far as practicable. The general thinning and final disappearance of the limestone members from northeast to southwest, across the Iola, Fredonia, Parsons, and Independence quadrangles, are shown in fig. 1.

Ire. 1.-Sketech map of Fredonia, Iola, Independence, an
Parsons quadrangles, showing the distribution of the for mations and members and the thinning ont of the limeston toward the south west
 parsons formation.
The Parsons is the lowest formation exposed in the Independence quadrangle. Counted from the base upward, it is nation in the Pennsylvanian seric. It has ${ }^{\text {abill. U. S. Geol. Survey No. } 238,1904, \text { Pl. I. }}$
hickness of about 80 feet and extends from the Bandera sha, which appears just sowtheast of the The Parsons outcrops in a belt about 8 miles in width, trending northeast and southwest across the southeast corner of the quadrangle, and extend outheast corner of the quadrangle, and extend
laterally from Coffeyville southeastward to Snow Creek, in Oklahoma. It is exposed in the bank of the Verdigris and its tributaries and in the surrounding hills.
The formation consists of three members, a lowe imestone 15 feet thick, a shale member about 45 feet thick, and an upper limestone about 20 feet thick. In the shale member are excavated the brick pits in Coffeyville, on the banks of the Verdigris. At this locality the following partial section is exposed:
artial section of the Parsons formation exposed in the
Coffeyville brick pits and immediate vicinity.
Limestone (apper)
Shale, olive green.

The lower limestone is exposed at intervals in the bed of Pumpkin Creek northeast of Coffey Creek and other small creeks tributary to the Ver digris in the southeast corner of the quadrangle and contiguous territory. It consists of two subnembers with a parting of 2 or 3 feet of dark slaty shale. The lower submember is the harder and more crystalline of the two, and is the more casily identified by reason of the massive and per sistent beds of large corals (Chetetes) which it contains in abundance. Good exposures of these corals occur at the highway crossing of Pumpkin Creek 4 miles east and one-fourth mile north of Coffey ville and on the small creek that enters the Verdigris at the State boundary. The upper submembe is compact, bluish gray, and semicrystalline and con tains numerous fossiliferous chert nodules, mostl in a light-colored layer near its top.
The upper limestone member of the Parsons for-
mation is more crystalline and less compactly bed ded than the lower limestone. It is pink or reddish, medium grained, and tough. Its basal portion medium grained, and tough. Its basal portion haly, nodular, and impure; the upper part is incised by streams. It weathers into thin slabs or small angular and rounded fragments and furnishes a dark soil. It is exposed on sever streams tributary to the Verdigris north of Coffeyville, in the banks of the river south and eas of that town, and over a considerable area of country extending thence southeastward beyond the quadrangle into Oklahoma. It underlies Coffey ville and is the limestone so frequently encountered there in shallow excavations made for wells, cisterns, and other domestic purposes.
The middle or shale member of the Parsons formation is dark slate-colored and usually thin layered, but at Coffeyville it occurs in beds from 2 to 3 feet thick, containing nodules of impure, noncrystalline limestone, and is so hard and slaty that
blasting is employed in excavating it for commercial use. Northeast of the Independ force commeral use. Nortieast of the Independence quadra Its dark color at Coffey ville seems to be due to iron arbonate.
In its northeastward extension across the north ern part of the Parsons quadrangle the Parson formation is composed of a heavy, massive basal limestone member about 14 feet thick and several thin limestones separated by thin beds of shale. It forms a considerable escarpment, extending
from Parsons southeastward to Altamont, and just north of Parsons the lower member is extensively quarried for building purposes. Farthe north, however, the formation gradually thins to a total thickness of but 10 or 15 feet and finally loses its complexity, so that in the Iola quadrangle it is reduced to a single member and becomes regular in character
A list of the more important and characteristic
fossils of the Parsons limestone foll fossils of the Parsons limestone follows. In connection with this list and others which appear
under their respective formations, notes on the range and peculiarities of certain forms are quoted from the report made on the fossils by George H Girty, who has collected the most of them and made the determinations. most of them and

The easily recognized coral Chetetes milleporaceus iagnostic of the lower horizons of the section, occur-
ring at many places in large masses and in great abun dance. This is particularly true of the formations lowe than those of the Independence quadrangle section, such
as the Fort Scott and Pawnee limestones, but the same as the Fort Scott and Pawnee limestones, but the same
form is also abundant in the lower Parsons. Only a ingle and a doubtful instance of its occurrence at higher horizon is furnished. This is in the Piqua imestone. Chonetes mesolobus, a strongly characterized secies of the genus, and a type which is alnost pure

Lophophyllum profundum, Chatetess milleporacen
 Chetetes milleporaceus. Derbya crassa. Meekela striaticostata. Chonetes flemingi. Pronta
 Chonetes flemingi. Produetus punctatus.

Productus nebraskensis.

Productus cora. Marginifera wab Spirififr erana wabatushensic. squamularia perplexa.
Conposita a subtilita. Hustedia mormoni.
$\underset{\text { Hrepospira sphorulata }}{\text { Hastedia normoni. }}$

coffeyviles formation.

The Coffeyville formation, named after the town which stands upon it near the middle of its outcro bell, comprises all of the geologic section betwee and the bese the Drum limestone. It outerep belt trends in a northeast-southwest direction and has a width of about 6 miles. The formation ha a thickness of 250 feet, and comprises five members, four of which in the Iola quadrangle, to the hortheast, have received distinct formation names These members, named in the order of their position in the section, beginning at the top, are the Cherryvale shale, Dennis limestone, Galesbur shale, Mound Valley limestone, and LadoreDudley shale.
On the south, where the limestones are absent, he Coffeyville formation consists of alternating beds of argillaceous to arenaceous shale and sand tone, in many places without distinguishing char acteristics between adjacent members; toward the northeast the Dennis and Mound Valley limestone lentils are present, representing the thinning or yying out of these formations to the southwes rom their wide belts in the Iola and Parsons
quadrangles. quadrangles.
Ladore-Dudley shate member.-The Ladore Dudley shale extends from the top of the Parson
formation upward to the Mound Valley limestone lentil, and has a thickness of about 90 feet. The term Ladore-Dudley is here used to designate the beds that are the equivalent of the Ladore shale he "Hertha limestone," and the Dudley shale southwest of the point where the "Hertha limestone" dies out, in the northern part of the Par sons quadrangle, as shown in fig. 1. This member consists essentially of soft, compact, argillaceous or arenaceous, thin-layered brown shale, with a little interstratified sandstone. It presents essentially the same lithologie characteristics and maintains about the same thickness wherever it is exposed It is easily eroded so that its upper limit is usually defined by a scarp capped by the overlying limestone lentil, as on Big Hill Creek. It outcrops in a belt that has a maximum width of about 6 miles outheast of Liberty, but narrows to the southwest,
toward Oklahoma. The town of Coffeyville, sit oward Oklahoma. The town of Coffeyville, sit asal layers and the brick and tile pits an mil orthwest of Coffeyville are excavated in it

$$
\begin{aligned}
& \text { horthwest of Coffeyville are excavated in it. } \\
& \text { Mound Valley limestone lentil. The. }
\end{aligned}
$$

Mound Valley limestone lenti.-The Mound anley limestone overlies the tadore-Dudley the Independence quadrangle only in the area ying northeast of Liberty. Near Big Hill Creek to whose valley it is mainly confined, its outerops form a belt several miles in width. It extends thence 13 or 14 miles northeastward to the head of the creek. It dies out about a mile north of Liberty and also near the eastern edge of Libert Township, about a mile west of Potato Creek. is from 8 to 15 feet thick, compact or fine grained, semicrystalline, and fossiliferous, and ranges from thin bedded to massive. Owing to its hardnes and the softness of the underlying Ladore-Dudley hale, it is a prominent scarp former, especiall where cut into by streams.
The following is a list of the more importan nd characteristic fossils of the Mound Valley limestone:
Productus sem
roductus semireticulatu,
Productus nebraskensis.
Productus puncta
Productus sp.
Marginiferat wabashen
Squamularia perplex
Squamularia perple
Composita subtilita.
Composita subtilita.
Acanthopecten carbonifert

Galesburg shale member.-The Galesburg shale lies between the Mound Valley and Dennis lime and its maximum width of Cherryvale, is less than a mile. It consists in th main of red arenaceous shale, but contains also ome heavy beds of micaceous sandstone and thin seams of coal. Much of it weathers to a pronounced rusty brown, denoting the presence o considerable irou. The softer shales occur in the sal part of the section
In the south bank of Drum Creek, $1 \frac{1}{2}$ miles wes Cherryvale, its upper part is exposed as follows

Vection of upper part ofqulesburg shale on Drum Creel near Cherryrale.

Shale, dark, earthy, altered, la	
Shale, light drab and yellow	
Shale, coarse, pale bluish and	
Sandstone, light brown. fineSandstone, slaty, shelly	
Sandstone,	

Near the middle of the north edge of the Parson quadrangle, about $4 \frac{1}{2}$ miles east-northeast of Galesburg, on a small creek that drains northeastward Neosho River, between the top of the neighbor ing ridge and the bed of the creek, the Gal
hale exposes the following vertical section :

tion of Galesburg shale 41 miles east-northeastGalesburg.	
$\underset{\text { Limestone (Dennis). }}{\text { Shale, light yellow, very sand }}$	
Sandstone, soft, incoherent..	
Shale, light yellow.......	
Limes	

From this point northeastward the Galesburg nember decreases in thickness and at Porterville in the Iola quadrangle, becomes merely a member of the Bronson limestone.
Denal It has a thickness of 10 to 50 feet and a liment utcrop of about 4 miles extending southeastward from Drum Creel between Cherryvale and More head. It is named from the town of Dennis in the Parsons quadrangle, which stands upon it. Its outhernmost recognized outerop is on Drum Creek, at a point about 4 miles north of Liberty and 5 miles east of Independence. It forms the ream bed and low bluffis along Drum Creek where in its north westerly dip it disappears beneath the Cherryvale shale member. It is medium grained, ard, bluish gray, semicrystaline, fossiliferous, and usually massive, but because of the hardness of the nderlying shale it does not form prominent scarps. It contains considerable chert and weathers to a black, fertile soil. Its thickness on Drum Creek $1 \frac{1}{2}$ miles west of Cherryvale is approximately 10
feet; at Morehead, Galeshury and the head of reet; at Morehead, Galesburg, and the head of Big Hill Creek 25 feet; and at Shaw 50 feet, showing The following is list of northeas. maracteristic fossil from the mportant

Productus cora: Productus semii
 | $\begin{array}{l}\text { Productus cora. } \\ \text { Productuss semireticulatus. } \\ \text { Productus punctatus. }\end{array}$ | $\begin{array}{l}\text { Dielasma bovidens. } \\ \text { Spirififer cameratus. } \\ \text { Squamularia perplex }\end{array}$ |
| :--- | :--- |
 Productus punctatus, Productus nebraskensis.

Cherryvale shate member.-The Cherryvale shale which is equivalent to the lower part of the Chanut hale of the Iola quadrangle, has a thickness of outhwestward along Drum Creek in a comparaively narrow belt, which widens toward the east owever, below the mouth of Cherry Creek. Th town of Cherryvale stands upon the shale and the pits of the Cherryvale pressed-brick plant are xcavated in it about a mile south of the town. It is exposed in the prominent chain of hill and mounds extending from Morehead to Liberty where it is capped by the Drum limestone. Nor ed or yellowish. It is very fragile and paces it is or youl dich fragile ad easiy dsslogre the sear and are In the main it is an eollent brik shale but locally it contains a variable amount of fravil sandstone and some thin beds of coal.

The Drum limestone lies next above the Coffeyville formation and for the most part caps the mounds and their associated scarps that extend from Morehead southwestward into Oklahoma ow miles southwest of Coffeyville. It is adh of outcrop of the formation is about 7 miles and is fund east of Independence, whence it narrows ortheastward and southwestward. In the northern part of its area, from Morehead nearly to Liberty, the formation consists of a single limestone member, which ranges in thickness from 4 to 12 feet Cherryvale and Morehead to nearly 100 feet ear Independence, at the mouth of Rock Creek, where it is manufactured into Portland cement. The limestone is here strongly marked by crossching. At the highway bridge crossing the is exposed It is medium to fine grained解 is exposed. It is medium to fine grained, bundant inverthrate fossils West of Drum Creek on the divide between Cherryvale and rede, it ecepies extensive areas and is weathered into large bowlders.
Toward the south the formation loses its simplicity and becomes subdivided so that between Liberty and the Oklahoma line, on the west side of the Verdigris, it consists of three or more members, These are a lower heavy-bedded or massive limetone 12 feet thick, an intervening shale member 10 to 25 feet thick, and an upper thin-bedded faggy limestone 2 to 10 feet thick. The upper mestone is usually hard, blue, and in many place linty, and is important economically in being the surce of the excellent flag, curb, and building tone supplied from the various quarries in the region between Coffeyville and Dearing. Three niles southeast of Liberty, just west of the house the Copeland farm, the section exposed is as on the
follows:

utheast of Liberty
 Sandstone (Chanute member of Wilson formation). ${ }^{\text {Fee }}$

 Shane containing flaggy limestone toward top-...... Limestone, persistent, heavy bedded or massive,
 semimeny, persistent, heavy bedded or massive, Debris slope dinesend and fossiliferous Ded

About 5 miles north-northwest of Coffeyville, in ravine cut in the surface of the upland, the formation shows the following beds

On the west side of Verdigris River, 5 mile north-northeast of Independence, the following ection is exposed:

In its extension northeastward in the Parsons quadrangle the Drum consists of a single massive mestone which becomes very arenaceous and hard, It thins to 18 inches east of Thayer, near the north dies out in the Chanute shale.
The following is a list of the more important and haracteristic fossils of the Drum limestone. "The nteresting genus Pseudomonoths, which has some times been cited as a peculiarly Permian type, first ppears in this formation and is rather abundant."

ella	ecten car
Septopora biserialis var.	ipecten seulptilis.
nervata.	Pseudomonotis
nop	var. equistri
Dielas	Myali
Spirifer cameratus.	Myalina kansasensis.
Squamularia perplexa.	Myalina subquadrata.
Spiriferina kentuckyen. sis.	Edmondia aspinwallensis. Cypricardinia carbonaria
Composita subtilita.	Plen
Hustedia mormoni.	Ple

The Wilson formation, named after Wilson County, in whose southeast corner the rocks are extensively exposed, occupies the portion of the section included between the top of the Drum limestone and the base of the Buxton formation It comprises six members, which, like those of the Coffeyville, have received formation names in the Iola quadrangle, to the northeast. These members, named in ascending order, are the Chanute shate Iola limestone, Concreto shale, Allen limestone, ilas shate, and Piqua limestone. They have ceount of the discoutinuity of some of the mem ers and the irregularity of others, particularly the imestones. (See fig. 1.) This characteristic renlers the Wilson, especially toward the south, lane formation, like the Coffeyville. The formation contains also loca limestone lentils, which are represented by a seprate symbol on the geologic map.
The formation has a thickness of 280 feet, as hown in the sections. It outcrops in a belt about 6 miles in width, trending diagonally across th guadrangle in a northeast-southwest direction, an xtending laterally from the vicinity of Morehead Liberty, Dearing, and Coffeyville on the east to Fredonia and beyond Lafontaine, Elk, Havana and Caney on the west. Its occurrence in the Caney-Wayside region, however, is principally in he valleys, the uplands being formed of the overling Burtor fors. Thobably Mound. (See fig. 2.) It is as follows:

-

Limestone, massive, coarse, crystalline, weathering Feet,
to rough blocks (Piqua) -...................-.
Shate, ,light yellow, argillaceous, water bearing
(Vilas

Chanute shale member.-The Chanute member of the Wilson formation is equivalen to the upper part of the Chanute shale as mapped in the Iola quadrangle. It overlies the Drum limestone and extends upward to the horizon of the Iola limestone, its thickness being 75 feet. It occupies a broad belt with an average width of bout 5 miles, extending from the northeast corner of the quadrangle southwestward into Okla oma, but near Independence the belt narrow reatly and the member thins to about one-hal its normal thickness, the underlying Drum limetone becoming thicker, seemingly at its expense.
It consists of shale and sandstone in about equal nounts, and contains he expansive upland that slopes gently westward from Thayer in the Parsons quadrangle, to Neo esha and Verdigris Biver, and contains in it pper part the Chetopa Creek, Thayer, and other orkable coals. Toward the south it contains uch sandstone, which forms, among other areas, the hilly sandstone country extending from Jefferson and Dearing northeastward to the Verdigris his rock is locally used for building purposes in he Jefferson-Dearing and Thayer regions. The hale also contains limestone lentils, of which those the schoolhouse 2 miles north and half a mile est of Liberty differ from the other limestones found in the quadrangle, the rock composing hem being profusely and irregularly veined with alcite. This limestone is dull pinkish gray assive, compact, dense to semicrystaline, and ery fossiliferous, and is separated from the Drum y an interval of 30 to 40 feet of sandstone, upon
Iola limestone
Iola imestone member.-From the northeast corRock Creek, southwest of Independence, extend of eries of thin limestone beds and lentils, rarely xceeding 2 or 3 feet in thickness. The principal xposures are at Independence and on Choteau and Chetopa creeks and other small streams tributary to the Verdigris on the east, between Sycamore and the northern boundary of the quadrangle rom their lithologic resemblance to the Iola mestone at various points and their occurrence at or near its horizon, these limestones are believed be the southward extension of the Iola, which disconnected lentils. Hence these beds are mapped
ndependence
as lola, and the underlying and overlying shales are regarded, respectively, as the Chanute (upper part) and Concreto. The limestone ranges from rystalline to argillaceous. It is medium graine Th fossiliferons, with crinoids locally plentiful. The following is a list of the most important an haracteristic fossils of the Iola limestone:

-The Concreto
Concreto shale member- Thencreto shal upward to the Allen limestone member, with hich its contact is well shown in the scarps west of Fall and Verdigris rivers, extending southward to Table Mound, near the center of the quadrangle. It has a thickness of about 60 feet. Though it is essentially a clay shale and contains shale of good quality, particularly in its upper part, in which the pits of the brick and cement plants at Neodesha ycamore, and Table Mound are excavated, it also ontains much heavy-bedded brown and greenish andstone. Useful stone from these beds is obtained various localities, the most extensively operated quarries being near Independence and Neodesha.
The portion directly underlying the Allen limeThe portion directly underlying the Allen lime-
tone consists of 5 feet of calcareous shale, containing abundant crinoidal remains, and is definitely marked off from the underlying shale by an 8 -to 10 -inch layer of shaly limestone. It is well exposed in the eastern base of the scarp at the schoolhous ne-half mile south of the north edge of the quadangle, $5 \frac{1}{2}$ miles north-northwest of Neodesha; in and in the base of Little Bear Mound, near Neodes and in the north-south road just north of Dun.
Allen limestone member.-The Allen limestone ccurs next above the Concreto shale and extend iddle part of thas shale. It is exposed in the and Verdigris river bluffs, extending from the orthern border of the quadrangle southward to Ek River. Its southernmost recognized outcrops ire at Crane and Table Mound, where it dies out in the shale. It occurs also as a small outlier capping Buff Mound, 4 miles north of Neodesha. As rule only its edges are shown, but on Fall River, here the northwesterly dip carries it down nearly the river flats and the bluffs above it are cut ide of the rivered in an irregular belt on either ile in width. It is well shown in the his acending the hill 2 miles west of Vergris and half a mile south of the northern border of the quadrangle. It ranges from 4 to 70 feet or more in thickness, the average being about 30 feet, and thins both southward and northward from the locality of its maximum development. It is about 4 feet thick at Table Mound, and 55 to 70 feet at Neodesha, where it is used in making Portland ment. It is massive, semicrystalline, compact to coarse grained, fossiliferous, and in many places ark blue in color. Its extreme basal portion conains a persistent calcareous bed in which fossil ponges are abundant. At Neodesha it is much broken up, and has no definite bedding or layers, that its topography resembles that of shale.
Dr. Girty in his report on the fossils gives the ollowing notes:
The Allen limestone is generally characterized by the he genera abundance of fossil sponges belonging to he genera Maundrostia, Ieterococia, Celocladia, and
Heliospongia. These have been noted in almost every collection from the Allen and are known at no other horizon within the area, save a few occurrences in the Piqna limestone. The brachiopod Enteletes, another
striking genus, occurs first in the tiking genus, occurs first in the Allen limestone and and Oread beds. In the Allen again the Producti, so haracteristic of the other faunas, are very searee except or Marginifera wabashensis and Productus symmetricus. portant and characteristic fossils:

Heterocalia beedei.
Meandrostia kansas
Heliospongia ramosa
Heliospongia ramos.
Lophophyllumu wes
Fistalipora sp.
Fistalipora sp.
Deroya benneti.
Productus symme
Productus symmetrien
Marginifera wabashen
Pugnax osagensis.

Dielasma bovidens
Spirifer cameratus
Squamularia perprex Squamularia perplexa
Spiriferina kentuck ensis. Composita subtilita.
Hustedia uormoni.
Hestedia wormoni.
Aenanthopecten carboniferus.
Edmondia
Edmondiace aten nebrba
Platyceras paryun

Vilas shale member.-The Vilas shale overlies the郎 the searps Lhe the Allen, it is exposed many in Verdigris rivers. It varies more in thickness than any other member in the quadrangle. At Table Mound it is 80 feet thick and at Dun 15 feet, while $2 \frac{1}{2}$ miles west of Neodesha it is absent, the underlying Allen and the overlying Piqua limestones being in contact. At Little Bear Mound it is 10 feet thick, at the north edge of the quadrangle Vilas the type loatity, we of Che 75 f Vilas, the type locally. Its average thickness in the Inde
rangle is estimated at about 70 feet.
The Vilas member is a clay sh
orthern part of the quadrangle and liga in the to pale yellowish at Table Mound and farther to pale
south.
Piqua limestone member.-The Piqua limestone the top member of the Wilson formation, is one of the most important and prominent limestones of wide extengle. It outcrops in a belt 1 to 8 miles quad extending from north to south through th ranges in shickness west of its median line. only a few feet the south, where the north to Oklahoma, its occurrence here being in the form of lentils. Its average thickness is about 40 feet It caps the scarps and mounds along the west side of Fall and Verdigris rivers from Table Mound to dip plain having a width of 9 miles, slopes eroded dip plain having a width of 9 miles, slopes gently and Table Mound to the foot of the scarp formed by the ovelying Puxton formation bean form taine and Elk. This dip plain is well shown along Elk River, where it contrasts strongly with the nearly level flood plain. In this plain the Piqua consists essentially of a massive bed 45 to 50 feet thick, and is whitish or light gray in color, medium to coarse grained, relatively pure, and the most completely crystalline of all the limestones encountered in the quadrangle, probably more than half of its mass consisting of crystalline calcite. It weathers to coarse, rough blocks. Farther south it loses its purity, becoming locally shaly, arenacous, or conglomeratic, with pebbles of limestone and sandstone, and splits up into two or more thin limestones with intercalated shale or sandstone. The conglomeratic and arenaceous character marks the upper of two such separated limestones 6 miles west of Independence and 3 miles west of Walke tively pure suggests that the upper bed probably tively pure suggests that the upper
represents an erosional unconformity
A mile and a half nothenst of
whe Wayside, just Fe Railway the Piqua presents the following section

At Tyro, however, as shown in the scarp 1 to miles northeast of the village, it consists of a single limestone member 9 feet in thickness and is over ain and underlain by sandstone.
Outside of the quadrangle its dip plain extends northward and continues well developed beyond Fredonia, which is situated at the western edge the outcrop belt, at the foot of the dip slope. haracteristic of the fossils of the Piqua limes Hecording to Dr Gity, F He Lriking f th B formation.

Enteletes hemiplica Productus cora. Productus semiretic
 Productus semireticula Proucuctus punctatus. Pron
 ${ }^{\text {Productus punc }}$
 Marginifera waba Spirifer cameratu duamularia per
 Squamulariaratuarp. Composita Composita subtilita.
 Composita subtilita. Hystedia mormoni. Myalina subuluadrata. buxton formation

The Buxton formation overlies the Wilson formation and extends upward to the Oread limestone, its thickness being 320 feet. It is believed to be the equivalent of the formations named Lawrence shale and Leroy shale by the University Geological

Survey of Kansas ${ }^{a}$ and described as extending across the State from Leavenworth to Sedan, in a
broad belt in which the valleys of Kansas and Wakarusa rivers are excavated.
The formation occupies the western part of the quadrangle, within whose limits its breadth of outcrop narrows from 8 miles at the north to about 2 miles at the south. In the northern part, except for a few small outhiers occurring near the upper edge of the Piqua dip plain, it is limited on the 100 feet in height whose base the \mathbf{P}. branch of the Missouri Pacifie Raper reur branch of the Missouri Pacific Railway roughly
The Buxton formation consists esseltialy
The Buxton formation consists essentially of shale and shaly sandstone in about equal amounts,
and contains some seams of coal and thin beds or lentils of limestone. It is notable for the commercial coal it contains farther northeast in Franklin, Douglas, and Atchison counties. It is the heaviest shale-bearing formation, except the Cherokee, in the Kansas "Coal Measures." Some of its shales are hard and perfectly laminated. The sandstone is usually soft and friable and contains considerable iron. The proportion of sandstone increases materially toward the south to the State boundary. To the sandstone beds of this formation is due the rugged hilly upland in the western part of the quadrangle. The southeastward extension of this upland forms the Chautauqua Hills, a feature in the topography of southeastern Kansas almost as prominent as the Fint Hills.
The valleys of the Buxton upland in this quadrangle are deep and bordered by many high, sandthe bluff on the south side of Elk Biver i chat 200 feet hioh and exposes 180 feet principally of shale, capped by 10 to 20 feet of massive sandstone. A similar section at Twin Mounds, near Fredonia, 2 miles north of the quadrangle, consists of 135 feet of shale, covered by a cap of heavybedded sandstone 15 feet thick.
The most important of the thin limestones are those outcropping on Duck Creek and near Elk. They are exposed in the Elk River bluff about 5 miles northwest of Elk, the upper bed at the elevation of 915 feet, near the top of the bluff, and the lower at 880 feet. The lower limestone has a thickness of 3 feet, is impure, soft, and fissile, and seems to represent the limestone which occurs in the river bed at Oak Valley, just west of the quadrangle. The upper limestone is 2 feet thick, bluish, hard, and crystalline, contains abundant fossils, and is on Willow Creek and about Buxton on Willow Creek and about Buxton. A limestone it a higher horion in the Buxton those just described has been mapped as lentils those just its connection has not been traced to localities where its relations are known. It is exposed near the divide between the head of Rainbow Creek and the east fork of Painterhood Creek, at about 50 feet below the top of the Buxton formation, the interval being occupied by a drab to olive-colored argillaceous to arenaceous shale. It is about 2 feet thick, light leaden gray in color, semicrystalline, medium grained, and fossiliferous.

The Oread limestone occurs only in the north west corner of the quadrangle, at the head of the east fork of Painternood Creek, where it overlies the Buxton formation just described and occupies an area of less than a square mile. Stratigraphically it is one of the well-marked formations of the Kansas "Coal Measures and gives rise to a outcrop, which is persistent across the State It has a thick of 12 fet, is reddish thinl flagoy semicrystalline fine grained and very fossil ferous, small brachiopods and various other forms being plentifully present. It weathers to a light chocolate-brown. This occurrence probably repreents only the upper part of the formation as shown at Mount Oread, Douglas County.
A list of the more important and characteristic fossils of the Oread limestone is given on the next page. Dr. Girty states that, as in the Allen and Piqua limestones, Enteletes, a striking brachiopod, is reasonably abundant in the Oread.

Tritieites seeali	Prod
Fistulipora sp	Productus cora.
Derbya crassa.	Marginifera wabashen
Meekella striaticostata.	Spirifer cameratu
Enteletes hemiplicatus.	Squa
Chonetes flemingi.	Spiriferina kentucky
roductus punctat	Com
oductus semireticu	Husted

blgin sandstone.
Overlying the Oread limestone, in the extreme northwest corner of the quadrangle, is a body of hard, brown, medium-grained sandstone, which is
believed to represent the Elgin sandstone, a member of the Kanwaka shale. ${ }^{a}$ Only its edges, however, reduced by erosion to a thickuess of but 10 or 15 feet, occur in this quadrangle, but farther northwest its thickness increases. It forms the highest ground of the quadrangle, reaching an
elevation of 1130 feet above tide. It contain considerable iron and weathers rough.

Quaternary system.

chirt gravil.
At various localities throughout the quadrangle and at all elevations there are surficial deposits of brown gravel. They may lie upon the surface of any formation, and range from a few scattered peb-
bles in some localities on the uplands to deposits 7 or 8 feet thick in the lowlands. The heavier or 8 feet thick in the lowlands. The heavier
deposits occur along the lower reaches of the deposits occur along the lower reaches of the
larger valleys, whither they have been transported and accunulated by streams, and in some places deposited in beds. Most of the deposits are too inconsiderable, however, to be of economic value for macadam, ballast, or other purposes, except in very small way
The materials composing the gravel consist almost wholly of chert and flint, but include also a small percentage of sandstone and lime stone and are derived from disintegrated lime stones. For the most part the pebbles, though stream worn, are angular or subangular, and the larger deposits usually contain some associated sand and clay.
Among the localities at Independence the gravels
are exposed just southeast of the are exposed just southeast of the county high school building in a road cut 2 or 3 feet deep, on Locust Coffeyville, near the Washington Schol, At locks west of the Mecca Hotel, they form a fed hocks west of the Mecca Hotel, they form a deposit this city also, near the Vitrified Brick Company, plant, on the banks of the Verdigris, is exposed a deposit of 2 to 4 feet of ferruginous red clay, loose sand, and stream-worn gravel. The material as a whole is crudely and discordantly stratified or crossbedded, indicating its deposition in turbulent water
Five-eighths of a mile south of this brick plant, on the Browne estate, the upper portion and slope of the elongated mound which trends northwest and southeast, parallel with the course of the river nea by, are composed of a 7 -foot deposit of the gravel, covered in spots by a veneer of soil only a foot in maximum thickness. The gravel here contains just enough clayey material or matrix to enable it to stand vertically when faced, and being structureless it has in a fresh-cut bank somewhat the appearance of thi . At the ty the sand being of the the ight-brownish color th most of the the same within the drainage area of the Verdigris, Th cravel is fine grained, most of the pebbs. 1 less than an inch in diameter, though a feer of the largest attain 3 or 4 inches. Some are corroded pitted, scalloped, and cupped to varying forms and degrees, a few very deeply so.
Outside of the quadrangle the gravels were noted near Altoona and Fredonia, on the north, and Barlesville, Okla., on the south. They extend east ward into Missouri and westward perhaps to the Tertiary rocks.
Although the gravels are here referred to the Quaternary, for the reason that they are derived from rocks in place by disintegration, which ha been acting on these rocks ever since they have formed the surface of the country, it is quite probable that some of the gravels may belong to earlier periods, as is known to be true of similar gravel ound in southwestern Missouri and adjacent por tions of Arkansas.

The alluvium of the Independence quadrangl orms the flood plain or recent stream-lad deposit detrital silt, soil, clay, sand, and gravel, that and its larger tributaries. It has been derived from the various rock formations by the processes of weathering and erosion, and it is the most recen and most composite of all the formations of the quadrangle. It is constantly receiving addition from high-water floods and wash from the neigh boring hills, and may locally contain waste from all the formations occurring within the drainag basin of the stream above the point at which it found. Hence much of it has come from outside of the quadrangle-some from the Flint Hills of Butler County, on the west, and some from Chase Lyon, and other counties, on the north. It is com-
monly known as "soil" or "made ground." In monly known as "soil" or "made ground." In some localities it has an average thickness of 35 or 40 feet.
Along the Verdigris and the lower reaches of its arger tributaries the alluvium forms a variable belt about 2 miles wide, the surficial portion conheavy, rich soil, mostly derived from limestone and hale. It follows the valleys and on the smalle tributaries usually becomes much narrower within short distance upstream. On Fall and Elk rivers and Little Caney and Big Hill creeks extends, with decrease in width, upstream beyond the limits of the quadrangle; on Drum Creek to point about 30 miles above Cherryvale; and on Onion Creek nearly to Dearing.
sidsurface formations.
cabroniferous system
The underlying or subsurface portion of the Carboniferous section comprises the Bandera shale Pawnee limestone, Labette shale, Fort Scott lime in descending order as and Boone formation, named in descending order as encountered in drilling. A rief description of these formations follows.
pennsylvanian series.
Bandera shale.-The uppermost formation of the ubsurface portion of the section, the Bander just beyond to the southeast cormer of the quad rangle It has a thickness of 140 feet and conta considerable thin-bedded sandstone

Pawe limestona. The Pawne

mestone formation underlying the is a massiv It has a thickness of 30 feet.
Labette shale.-The Labette shale underlies the Pawnee limestone and is about 110 feet thick. It contains but little sandstone and has no character that distinguish it from other shales of the series. Fort Scott limestone.-The Fort Scott is the lowest "Coal Measures" limestone encountered in this rea. It has a thickness of about 40 feet and comprises three members-an upper limestone 10 fee hick, an intervening shale and sandstone 15 feet hick, and a lower limestone 15 feet thick.
Cherokee shale.-The well-known Cherokee shale underlies the Fort Scott limestone and is of prime economic importance, as it is the great oil- and gas-
bearing formation of the Kansas-Oklahoma field earg 30 mile It outcrops 30 miles east of the Independence
quadrangle, in a broad belt crossing the southeastrn part of the State and extending northeastward into Missouri and southwestward into Oklahoma It is about 450 feet in thickness and consist mainly of soft shale, but contains beds of lenticula bodies of sandstone that vary in character, extent, and thickness.

Boone formation.-The Boone formation under lies the Cherokee shale. It is the basal formation of the Carboniferous system, and is from 200 to 300 feet thick. Farther east it contains the well known Galena and Joplin zine and lead deposits in southeastern Kansas and southwestern Missouri Its upper surface is eroded and forms a somewhat neven floor, upon which the Cherokee rests uncon formably. The general dip of the upper surface of the Boone formation from the eastern part of 21 feet per mile, and the dip of the is about Pennsylvanian rocks is about 9 feet per mile the difference in dip, or general angle of unconformity
between the Pennsylvanian and the Mississippian eries, being about 12 feet per mile. So slight i his unconformity that it can not be shown in the orizontal section on the structure and economi geology map.
ere-carbontrerous rocks,
The rocks which underlie the Boone formation consist of 1500 feet of Devonian, Silurian, and Cambrian sediments extending downward to basa ell at Caney granite, gneiss, or schist. The deep ry rocks haw being drilled in these sedimenjudge from thached a deptill penetrated nearly to the Cambrian strata. The ubjoined \log shows the rocks thus far penetrated
Log of deep well at Caney, Kans

	${ }_{\substack{\text { Thick } \\ \text { nese }}}$	Depth.
Surface soil	${ }_{\text {Feet }}$	${ }_{30}{ }^{\text {Fef }}$
Carbonifrrous:		
Coffeyville:		
Shale	1853030	${ }^{195}$
Sand		
Shale	8510	310
Sand		320
Black shale	10 15	335
Shale	15	425
Limestone (Mound Valley member)	${ }^{90} 5$	430
Black shale and gas.	10	440
Sandstone	10	455
Sbale.	${ }_{25}^{15}$	480
Parsons:		
Limestone	206060	500560
Shale ..		
Linestone	20	580
Bandera:		
Black shale.	${ }^{28}$	582610
Liuestone		
Shale.	100	710
Pawnee:		
Limestone	30	740
Labette:		
Black shale	588	
Shale		
Fort Seott:		${ }^{833}$
Limestone	2488	
Black shale.		
Limestone	29	894
Black shale	${ }_{5}^{6}$	900915
Limestone	15	
Black shale.	102520	915 935
Shale -		950980
Limestone	10	
Cherokee:		
Shale -.-	9520	$\begin{aligned} & 1055 \\ & 1075 \end{aligned}$
Sandstone		
Shale ...	78	11531168
Oil sand	15164	
Shale ---		1332 1350
Gas sand	$\begin{array}{cc} & 18 \\ 18 \\ \hline 210 \end{array}$	
Shale		1560
Boone:		
Limestone		1822
Devomian:		
Black bituminous shale, with traces of gas and odor of petroleum	$\begin{array}{r} 35 \\ 208 \end{array}$	1857
Limestone, variable, mostly fine		
Sandstone. fine grained	$\left.\begin{gathered} 207 \\ 11 \end{gathered} \right\rvert\,$	2075
Stluriax:		
St. Clair: ${ }^{\text {a }}$	10	${ }^{208}$
Limestone, erystalline, gray		
Limestone, crystalline, hard, bluish gray (gas).	15	2100
Limestone, crystalline, hard, bluish gray, some brownish		
Limestone, crystalline, grayish, fine grained	- $\begin{array}{r}10 \\ 13\end{array}$	${ }_{2110}^{2123}$
Limestone, erystalliue, bluish gray --.	- $\begin{array}{r}17 \\ 141\end{array}$	2140
Limestone, crystalline, brown, gritty		
Limestone, crystalline, brown, gritty-	$\begin{gathered} 141 \\ 6.2 \\ 6 \end{gathered}$	$\begin{aligned} & 2381 \\ & 2343 \\ & 2450 \end{aligned}$
Limestone, crystalline, variable.------		
Ordovician:		
Maquoketa:	22	
Sandstone, fine grained, white.		2472
Limestone, soft, brownish gray (trace of asphalt?)		2500
Limestone, cherty, porous..------	\} ${ }_{37}$	
Polk Bayou and Kimmswick : Limestone, granular, light buff.		2537
Limestone, eoarse in part.---	${ }^{63}$	2600
Limestone, bluish gray, crystalline (oil)		
Plattin and Joachim:		
Limestone ? and shale ? ...	50100	26502752751
Limestone, soft, elayey, bluish .		
Limestone, magnesian, gray, sandy...		
St. Peter:		
Sandstone, fine grained, gray to brownish, locally hard.	46	2800

The Cambrian rocks will probably be passed hrough in about 500 feet more of drilling and the nderlying pre-Cambrian granites and other crys3300 feet.
The deep well located at Iola, 35 miles northeast of the Independence quadrangle, is 3085 feet in depth. All of the well except about the first 1000 feet is in Mississippian rocks, from which most of the limestone cuttings are reported to be or soft grit, but when treated with acid nearly all the cuttings dissolve, showing their calcareous character.
structure.
general outline.
The Independence quadrangle forms a part of the great Prairie Plains monocline, which embraces all of eastern Kansas and portions of the neighboring States on the ens. It characterized by a very gentle dip of the rocks slighty north of west, from this dip the rocks are on the whole only slightly deformed. In this quadrangle the dip FIt. 2-Seection through Table Mound along line B-B on
areal geology map. Horizontal seale. 1 inch-approxi-
mately 2 miles; vertical scale exaggerated 5 times.

averages about 15 feet per mile, but ranges from a maximum of 70 feet in the eastern part to 10 or 12 feet in the western. It begins to diminish along feet ine of Verdigris River, whence it gradually decreases to the western border of the quadrangle, so that the Verdigris in a general way lies on a very shallow north-south sag or bench on the Prairie Plains monocline.
structural districts of the surface rocks.
principal fraturks

A study of the exposed edges or croppings of the formations with reference to trend and elevation, as represented on the areal geology map, shows that the quadrangle contains two general structural districts of about equal size, a northern and a southern, the southern being slightly the larger. In the northern half of the quadrangle the general strike of the rocks is about $\mathrm{N} .30^{\circ} \mathrm{E}$. At about the latitude of Cherryvale and Elk the strike gradually swings until in the southern half
of the quadrangle it is about north and south, or of the quadrangle it is about north and south, or
slightly west of north. This is shown by the trend slightly west of north. This is shown by the trend The east-west belt about 4 miles in width within which the districts meet and the strike changes which the districts meet and the strike changes
from east of north to west of north, consists in the main of a broad, low anticline or elongated transverse swell whose axis pitches very gently westward. Its southern limb forms part of the southern district, and its northern limb part of the northern district. It may be called the Cherryvale anticline, from the position of Cherryvale on its crest, near the point where the change in strike is pronounced. In a narrow belt just south of this main axis and running from Elk to Liberty the strike swings to the northwest before assuming its general northsouth direction. The southwest dips associated with this strike are plainly visible in the scarp of Piqua limestone at Elk River and in the Drum limestone west of Liberty. A similar diversion of the strike is to be seen along the State boundary at the south border of the quadrangle. The north-
easterly strikes and northwesterly dips there shown, easterly strikes and northwesterly dips there shown,
taken in connection with the southwesterly dips taken in connection with the southwesterly dips basin covering most of the southern half of the quadrangle.
northern district
The dominant structure of the northern district is essentially the same as that of the Prairie Plains monocline in general. The average dip is northnorthwesterly at the rate of about 15 feet per mile. From Morehead to the Verdigris at Neodesha the rocks descend westward at the rate of about 23
feet per mile, but locally just west of Neodesha feet per mile, but locally just west of Neodesha
they lie nearly flat. Beyond this, however, a they he nearly flat. Beyond this, however, a the dip plain of the Piqua limestone extending to
the Buxton scarp beyond Lafontaine and Elk. Other outcrops and stream sections show similar departures from the general strike and dip, as, for and the north of the Verder of the quadrangle, where the dip is in places to the south at a very slight angle.

southerr distric

In the southern district, though the rocks in many localities retain a westerly dip, on the whole they incline more to the southwest, and in some places nearly to the south. The dips for
Just south of Cherryvale a southerly inclination is manifest. South of the cement plant on Rock Creek, a few miles southeast of Independence, at an elevation of about 800 feet, the Drum limestone hows a distinct minor fold with a nearly east-west axis and a southwestward pitch of about 60 fee per mile. On its line of strike about 5 miles arther southeast, at a point about 2 miles northwest of Liberty, at subs the dip is the sane elevatio near Independence, the dip is even greater in ver shown in the seaps along the the Verdigris, the strike veers to about N. $10^{\circ} \mathrm{E}$ ad the dip to westerly, so that the Drum limeston leaves the quadrangle in the same longitude and about the same elevation which it has nea Independence.
Another local irregularity occurs in the southeastern corner of the quadrangle, where, as shown by the Parsons limestone, a rather sharp anticlin pitches southwestward toward the Verdigris. The esone on the northwest side of the fold slopes lown northwestward from the hilltops to the bed istance ef 3 miles a descent of about 80 feet inill he beds lie nearly flat. Parts of the north side of he same anticline are to be seen along the State boundary as far west as the latitude of Tyro Between this fold and the main Cherryvale anti cline lies a broad, shallow syncline pitching very ently toward the west.
The Piqua limestone, which forms the scarp ortheast of Tyro above the 900 -foot level, dis appears at the surface, but well excavations show evel, and it is exposed at a greater elevation farthe southeast.
In the Went sandstone quarry 2 miles north of dependence, the beds dip very gently northward and show slight warping at two points 125 feet part. Quaquaversal dips also occur denoting tha the rocks have been warped into broad, low domes, nost of which, however, are so gentle that without continuous exposures the structure can not be worked out. The anticlines or warpings in the Drum limestone south of the Independence cement plant and in the Parsons limestone 5 miles about ast of Coffey ville partake of this domal structure.
Besides the folding and warping mentioned in he foregoing paragraph, the rocks also exhibi Parsons shale in the brick pit at cleavage. The Parsons shale in the brick pit at Coffeyville is cu y several systems of close jointing, the most proirection and has a nearly vertical dip. Simila hirection and huch more complicated systems occur in the Cherryvale shale, as exposed in the shale pit at the mound about a mile south of Cherryvale, and in he Concreto shale in the pits at Sycamore and a few miles farther north, near Neodesha. These joint systems locally resemble shear zones and in places zones of cleavage. They may be due to teral compression, to settling, or to slight, nearly vertical faultlike movements. Thus far, howver, no evidence has been found to establish their origin conclusively.
structure of the quadrangle shown by
tructure contours.

On the structure and economic geology map the present shape of the upper surface of the Boone sented by contour lines. The figures on which hese contours are based are derived from the iden fication of the Boone formation in the logs of dication of the Boone formation in the logs of
various wells which have reached it. Owing to the small number of these deep wells the contours re necessarily generalized. They are drawn at intervals of 50 feet and indicate the depth below
ea level of the surface of the Boone formation. In ground to the top of the Boone at any point it is necessary to add to the depth of the Boone the elevation of the present surface above sea level, as shown by the topographic contours. In the area north of Elk River and west of the Piqua limestone escarpment the information as to the depth of the Boone formation is very meager and the beation of the structure contours is only approxinate.
It will be seen from the structure contours that the base of the main oil-bearing formation, the Cherokee shale, or the top of the Boone, has eneral westward dip and that the average direc nion of the contours is north and south. The genral surface is, however, uneven. Two ridges and wo depressions are shown, all trending nearly east and west. The northern ridge passes about 3 miles Wrth of Neodesha and the southern ridge 7 miles uth of Independence, each of them trending pparently fades out toward the west and the phen ride diminith toward the depressions between these ridgcs are shallow, mounting to little more than 100 feet The change from depression to ridge is made within rather narrow limits.
About 1 mile east of Morehead and one-hal mile east of the quadrangle the base of the Cherokee shale is at sea level. West of that point it descends to 950 feet below sea level in about 28 miles. This gives an average westward slope of 34 feet per mile in the northern depression. The lope along the southern ridge on a line running 2 iles omparison of these figures with the slope of the rata at the surface shows that the Boone surface lips toward the west at an angle about twice as great as that shown by the rocks at the surface. Wis difference in dip, or unconformity, agrees win and is the westward continuation of that xisting between the same rock far and he Independence quadrangle, as described under "Mississippian series."
When the synclines and anticlines of the surface rocks are compared with the ridges and depressions at the top of the Boone formation a total lack of orrespondence is seen. The Cherryvale anticline, principal depression of the Boone surface. Simlarly the main syncline south of Independence cincides nearly with the southern ridge of the Boone surface. The most striking divergence is along the line from Liberty to Elk, where the surace rocks dip southwest and strike northwest, at ight angles to the dip and strike of the surface of he Boone along the same line. Southeast of Cof feyville, also, a considerable doming of the surface ocks overlies a rather level place in the Boone arface.
From a consideration of this area alone the disrepancies between the Boone surface and the festures which characterize the Boone surface rther After the deposition of the Boone formation there was a considerable period of erosion and solution, uring which the surface of the Boone was renered very irregular. A similar erosion period ollowed the deposition of the Chester, which was atirely removed from many parts of the region. Thus the Cherokee shale was deposited over an neven surface of the beveled edges of the Boone irmation. The irregularities of this surface bore no relation to the warping of the lime et forth in the Joplin district folio. ${ }^{a}$ Evidence of this erosion epoch following the Boone can be cen wherever that formation is exposed, and it xtension into the Independence region is considWhed to be probable
When the conditions in the Independence quadrangle are considered in the light of this general he Cherokee it will be seen that the Boone and in the Boone surface shown by the irregularities rells do not represent folding of the Boone rocks
they merely indicate that the surface is lower at certain points than at others. The presumption is as they are in other places where all the facts can be traced. Thus the discordance between the Boone surface and the structure of the surface rocks is not so abnormal as appears at first sight. Inasmuch as the depressions on the Boone surface occupy areas of uplift, as determined by the flexure of the rocks at the surface, it is apparent that the present Boone depressions are shallower than the original ones by just the amount that the surface rocks have been deformed. The reverse is true of the Boone ridges underlying depressions in the surface rocks. The curious result appears, therefore, that original depressions have been made shallow and original ridges have been partly or wholly smoothed out.
The greater
The greater dip of the Boone surface as compared with that of the surface rocks is similar to the conditions observed farther east. It indicates a thinoverlap of some of the oil-bearing strata It also indicates the thickening of the Cherokee toward the west and the possible incoming over the Boone surface of the Chester, which should lie between the Boone and the Cherokee

GEOLOGIC AND PHYSIOGRAPHIC

 HISTORYThe Carboniferous rocks of the Independence quadrangle were deposited for the most part conformably under water on a nearly level sea floor. An tilted by Carboniferous time they were raised Mountains on the southeast and the great inlark swell of the Mississippi Valley, and they were swell of the Mississippi Valley, and they were
otherwise locally but as a rule slightly deformed. These sediments were derived from land by erosion but from what particular area can not be stated, owing to subsequent physiographic and geologic consisting of fine silt, but dso conatain deposits, and textural evidence of littoral conditions. The limestones, which are usually underlain and lain by shale and some of which are cherty, were deposited presumably at shallower depths than the shale, in clear water adapted to animal life, and contain accumulated calcareous skeletal remains of the marine animals that lived in them. The sandstones are composed of coarser sediments than either the shale or the limestone, and clearly denote shallow-water or shore deposition.
The gradual change from deep-sea to shoal or shore conditions is shown in many places where the shale and limestone strata gradually become arenaceous, or locally conglomeratic, until they
pass either horizontally or vertically into sandstone. The alternation of these different rocks with one another at short intervals in the section shows that the cycle of change from deep to shoal water was many times repeated. Traced southward through limestone and shale Oklahoma the transition of limestone and shale into sanastone becomes very of shallow-wate deposits, notably the well preservel fossil wave marks in the sandstone and ripple marks and mud cracks in the shale indicates near ness to the shore line in that direction.

Since the uplift of the redirection.

heric agencies, acting through long and atmostime on alternately hard and soft formations, have given rise to the several geographic provinces that have been described, and more recently the same agencies, dominated by erosion in the Verdigris Valley, have modified the topography of the quadngle into its present forms.
With reference to its physiographic history the country is now in old age. Its surface has been much reduced. The truncated character of its tilted formations clearly shows that its original surface, which was probably nearly smooth, stood at a
much higher level than the present surface. The much higher level than the present surface. The
drainage began on the original surface by the development of a few consequent streans, which with others that originated soon thereafter rapidly trenched the country by a system of canyons and V-shaped valleys nearly to the level at which the valleys stand to-day, so that the topography at that
time may be characterized as a network of gorges and corresponding sharp-crested ridges. From
that time on the ridges and interstream areas were reduced more rapidly than the valleys were rounded forms they present to-day. Their reduction is still going on and will continue until they are worn down nearly to base-level, the process becoming increasingly slow with the decrease in relief. The factors that have influenced the degradation of the region are elevation, relief, precipitation, temperature, softness of the rocks, and the nakedness or unforested condition of the surface.

ECONOMIC GEOLOGY. ${ }^{a}$

The important mineral resources of the quadrangle are petroleum, gas, coal, stone, glass sand,
Portland cement materials, clays, soils, and water petroleum.
Occurrence and development.--Petroleum is found in the lower "Coal Measures," which underlie the entire quadrangle. Though small quantities of it lies at greater depths. It is contained il coarse sandstone beds in or near but not below the Cherokee shale, and has been prevented from escaping by an overlying cap of impervious shales and limestones of great thickness.
At Coffeyville, where the strata overlying the Cherokee shale are thinner than at any other point, three oil sands are encountered at depths of 350 , 600 , and 900 feet. The best wells, yielding oil with a gravity of $32^{\circ} \mathrm{B}$. and above, derive their oil from the middle or 600 -foot sand. Near Independence the productive zone ranges in depth from 450 to 600 feet; at Cherryvale from 700 to 800 feet; at Neodesha from 800 to 900 feet; at Bolton and Caney from 1100 to 1200 feet, and at Wayside, midway between Bolton and Caney, two oil sands 1450 feet the depths of 700 to 800 and 1350 to 1450 feet. The lower of these sands at Wayside
are in the lower part of the Cherokee shale, about 150 feet above its base the Cherokee shale, about 150 feet above its base. They probably correspon is struck or the pool, where 1300 fis approximately the depth at which oil occurs in the approx. The oil does
um of sand nor at a definite horizon the field, but in disconnected lenses or beds of sandstone at various horizons in the shale formaion. These sandstone bodies are merely reservoirs and do not necessarily represent the beds whence the oil has been derived. Their storage capacity depends on the porosity of the rock, which in an ordinary fine-grained sandstone is from 8 to 10 per cent of the volume. Such fine-grained sandstones are frequently called "sugar sands" and are most productive where completely sealed by impervious shales.
The pressure under which the oil is confined and the size of some of the reservoirs are indicated by the facts that in the western part of the field, where the Cherokee shale is somewhat deeply have had a large initial production and have con, have had a large inal productio, a number of wells produced from 200 to 500 barrels per day during the frst few weeks of their exist per day during the first few weeks of their existdaily production of 600 to 700 barrels. A great many which produced from 100 to 200 barrels per day several years ago are still good producers. Though most of the old wells ara steadily ducing, there is much less development than there was several years ago. But few more than half as many new wells were drilled in 1905 as in 1904, and the number drilled in 1906 was slightly less than half the number drilled in 1905.
Character of oll.-Like most Kansas oils, the oil of this quadrangle has an asphaltum base, and contains also a very appreciable amount of paraffin. It is dark brown or black in color and rather heavy, but varies greatly in specific gravity from place to place, locally with nhale is usually lighter than that derived from sandstone. The specific gravity ranges from $28^{\circ} \mathrm{B} .(0.8750)$ to $37.3^{\circ} \mathrm{B}$.
${ }^{\text {a }}$ For a more complete treatinent of this subject see
Schrader, C. C., and Haworth, E., Eeonomic geology of the Independence quad
No. $296,1006,74$ pp.
(0.8433), and the Standard Oil Company, which The most important coal beds of the quadrangle purchases most of the product, sets the highest are those outcropping on Chetopa Creek, in the price on oil with a specific gravity of 32° B. (0.8641) northeast corner, approximately between Neodesha or more. The following analyses represent typical samples of the oil
ortheast corner, approximately between Neodesha and Thayer, Neosho County, whence they are
commonly known as the Chetopa Creek-Thayer
 quadrangle.

Future development.-Inasmuch as this quad- and Neodesha-Thayer coals. The best of thes angle lies wholly within the oil and gas belt, any beds are found in what is known more particularly part of the considerable area within it that has not been prospected may become productive when drilled. From what has been accomplished, however, it does not seem likely that the production will ever exceed its present rate. To judge from he history of the wells, not to say of the belts or districts, it will do well if it maintains this rate for ny considerable number of years, for oil stored within the earth, however abundant, is strictly mited in quantity, and a reservoir once exhauste can be but partially replenished only after consid rable lapse of time, and many reservoirs can not ee replenished at all. During 1904 and 1905 which the Bolton, Wayside Tyra Caney Chataqua areas were discovered or ,

gas.

Occurrence.-Gas occurs in intimate associatio with the oil of this quadrangle, but is generally more abundant and has been found in a large number of places. Individual wells also usually pass through more gas sands than oil sands. Most the gas wells are intimately assoc vells, and some wells produce both oil and gas.
No definite rule can be laid down in regard to the elative positions in lid in a given well. The gas may be found either above or below the oil. For the most part, how ever, the horizons of the two are separated by an impervious shale stratum 30 feet or more in thickness. The gas, like the oil, occurs under enormous pressure and in large volumes, some of the wells having a prod
feet per day.
Character.-The gas is composed principally of marsh gas, which forms about 94 per cent of the 0 per cent; carbon dioxide, 0.4 per cent; olefiant gas, 0.3 per cent; and oxygen, 0.3 per cent.

COAL.

Distribution.-Within a belt 5 to 10 miles in width, extending diagonally across the quadrangle from its northeast corner to its southern edge, are several thin but workable beds of bituminous coal nd developed which these beds are best exposed are Chetopa Creek, Brooks, Sycamore, Independ ence and Jefferson.
Occurrence.-The coal beds occur in the upper part of the Chanute shale member of the Wilso formation, below the Iola limestone. They lie nearly flat. No bed exceeds $2 \frac{1}{2}$ feet in thickness than a foot.
beds are found in what is known more particularly the Thayer field, an east-west rectangular area o reek 15 square miles at the head of Chetopa Creek, in the extreme northeast corner of the est of Thayer. The most important bed is that of Coal Hollow, a south-side head branch of Cheopa Creek in the northwest corner of Shiloh Township, 3 to 4 miles south west of Thayer. The oal produced here is the typical Thayer coal and is of better grade than any other outcropping in the quadrangle.
About 6 miles west of Thayer the coal bed is $1 \frac{1}{3}$ feet in thickness and is overlain by calcareous sandstone and shale and underlain by 8 feet o conglomerate. Five-eighths of a min limesto this locality, the the ban the coal sours in two benches, as shown in the following section:
so benches, as shown in the following section of coal al Seott bank, Wilson County.
Limestone lentils,
Cool, good quality
Shale
Coal, good quality
Shale, arenaceous.
About a mile northeast of Independence, on Verdigris River, occurs a coal bed from 1 to 2 feet hick. It is capped by an arenaceous limestone verlain by sandstone. A coal bed $1 \frac{1}{4}$ miles south east of Independence, in the north face of the sandstone hill situated south of Rock Creek, is 18 inches wo shale beds each 30 to quality. It 40 feet thick
About 3 in
About 3 miles south of Jefferson, on Fawn reek, where a slope has been drven in for 175 thickness including two very thin shale partings. The roof is a thin layer of shale overlain by sandstone;
sandstone.
Deep-seated coal beds-Deep-seated coals have een encountered in drilling in this area, the most important being found in the Cherokee shale, which contains the thickest beds of workable coal known in Kansas, such as the Weir-Pittsburg and thers. Drill records 4 miles south of Independnce show a 4 -foot bed of coal at a depth of 600 reet, and a well on the Linscott farm, a mile farther south, is reported to have passed through a 14 -foo bed of coal at a depth of 1100 feet. The same bed or one of like thickness is reported in the vicinity of Sycamore, in the northern part of the quadrangle. This bed may be regarded as the one represented in the upper part of the Cherokee shale in the gen al

Building stone.-Foundation and building stone is widely distributed over the quadrangle and bers of the Wilson formation and in the Buxto and Drum formations. Probably four-fiths that ued ion low fres of and economic geology map, stone quarries have been opened near practically all the citio and towns and at many intermediate points. The principal source of supply near Independence principal source of supply near Independence i
the Went quarry, situated on the level prairie miles north of the city. The sandstone is in the Concreto shale and the exposure shows 10 to 12 feet, mostly of good stone, beneath a covering of 3 to 4 feet of surface soil and shaly sandstone. The stone now being worked consists of layers ranging in thickness from 3 or 4 inches at the top of the section to $2 \frac{1}{2}$ feet at the bottom. The section exposed here, borings made in the bottom of the quarry, and the \log of a near-by well indicate a probable thickness of 50 feet of good stone. The stone is easily quarried, dressed, and fashioned and is taken out in all sizes, the thicker slabs being used for foundation and building purposes and the thinner ones for sills, caps, steps, curbing, and pavbuilt of it The sandstone near Liberty, est Big Hill Creek, has supplied practically all the building and paving tone used in Liberty and has recently furnished the abutment for a new stel bridge across Pumpkin Creek, Sandstone house at Caney, Jefferson, Larimer, and many other places in the quadrangle give evidence of the widespread utility of this stone for building purposes.
The most important source of limestone is fro 2 to 4 miles northwest and west of Coffeyville The quarries are in the upper member of the Drum formation, which extends in a narrow belt from Reservoir Hill westward to Dearing, thence southeastward along Onion Creek to the State boundary. The stone is mostly hard blue limestone, in some places flinty, and is more thinly bedded than the sandstone previously described. As in the case of the sandstone at Independence and elsewhere, the heavier beds are used principally for footing, foundation, and building purposes, and the thinexcellent having a thickness of 3 to 5 inches, make excellent flagging, paving, and curbstone. The quarry, on the south side of Onion Creek, $3 \frac{1}{2}$ miles west of Coffeyville, is a fair average:

Partial section of Drum formation expost in W. W.
linestone quarry, $\# \#$ miles west of Coffeyville.

Sur	
Surface soil-.-.-.-.-.---3	
Limestone, hard, blue, flags	
Seamy parting	
Limestone, hard, blue	
Limestone, seamy	
Limestone, hard, blue	
Seamy parting---...	
Limestone, hard, blue	
Limestone, hard,	

There is good reasan to believe that with carefu prospecting deposits that will furnish as much and as good stone as that now quarried near Independce and Coffeyvilit of the quadrangle.
Ren independence the Drum nestone is crushed for macadam, and from some hipped for railroad ballast. Limestone suitable for road metal also occurs near other towns, Neodesha, Elk, and Coffeyville. The chert gravels are also excellent road material, but such deposits are usually too small to be of much value.
lime.
The remnants of numerous lime kilns and the reports of settlers indicate that practically all the important limestones of the quadrangle have been utilized in the past for burning into lime. The iqua limestone has been worked at Table Mound and to the northwest, the Drum limestone has been quarried east of Independence, and the Denis limestone northeast of Cherryvale. The Allen limestone in the northern part of the quadrangle, to quicklime. The general distribution of these limestones is shown on the geologic map.
glass sand.
At a number of localities in the western part of he quadrangle sandstone in the Buxton formation to give promise of usefulness in the manufacture to give promise of usefulness in the manufacture of square mile in areal extent. The best rock is found in heavy beds which have been least stained by the descending surface waters. Exposures of sandstone apparently suitable for glass making occur 4 miles northwest and 2 miles north of Caney. The long hill at the locality near Caney is capped by such a sandstone, here at least 10 feet thick. Other exposures occur farther north. That which seems to be the most worthy of attention is in the SE. $\frac{1}{4} \mathrm{sec} .22$, Fall River Township, about 4 miles southwest of Fredonia, just north of the quadrangle boundary. Here the rock is exposed over an area of 10 to 15 acres and is about 12 feet in thickness, as nearly a can be judged from the topography and local prospects. It is reported that the glass factory at Fredonia procures its sand from the sandstone of this region.
portland cement matertals.
Materials suitable for making Portland cement are abundant in the Independence quadrangle, especially in its northern part. They consist
mainly of the Drum, Allen, and Piqua limestones and associated shales, whose distribution is shown on the geologic map. The abundance of the raw material and the uniformity in its chemical composition, together with the large amount of natural gas available for fuel, render the field a very atrac tive one for cement manufacturers. Three large plants are now in operation, at Independence, Neodesha, and Table Mound, and a fourth is being constructed at the north border of the quadrangle on Fall River.
The plant at Independence utilizes the Drum limestone, which has a thickness of nearly 100 feet near the city and outcrops over several square miles. It is a very pure stone, massively bedded, semicrystalline, medium to coarse grained, highly fossiliferous, and entirely satisfactory in every way. The shale used is taken from the Chanute member of
the Wilson formation, which immediately overlies the Wilson formation, which immediately overl he limestone and is likewise of good quality.
The material used at Neodesha is the Allen lime-
stone, which caps Little Bear Mound the town, with a thickness of 55 to 70 feet and the Concreto sha directly underlying the limetone Conal of the forlo Analyses of these rocks are as follows: a

At Table Mound, where the third cement plant recently been erected, the limestone used is the and , l nint, most persistent, gle. The section of usful materials he quadra follows:

Section at Table Mound.

At Table Mound and Neodesha the limestones overie the shales and cap the hills. Quarrying the lose uncovers the shale and both are carried by gravity into the mills. At Independence the and carried into the from an open cut, hoisted, and carried into the mills by rail. Conditions as favorable for cement making as those at Table Pound and Neodesha may be found along the miles on the north side of Elk River.

cuy

Brick clay.-The clay resources of this quadrangle are abundant and consist of the numerous beds of shale which extend across the quadrangle and are exposed over wide areas aggregating many square miles. Some of the beds is usually buff, drab, or olive green and generally overlies or underlies some limestone formation. At present the most important and extensively developed beds are those in the Buxton formation at Buxton and Caney; in the Concreto shale at Buff Mound, Neodesha, Sycamore, Table Mound, and Tyro; in the chate in the Cherryve shale at cheryvale, and ous ville The abundance of shales and natural mas in nearly all parts of the field renders it peculiarly favorable for the development of clay industries which already include the manufacture of brick roofing tile, and pottery. Of these industries rooing tile, and pottery. Of these industries product is common building brick; next in abundance is vitrified or paving brick, followed by sidewalk brick and the different styles of drypressed or re-pressed ornamental brick. Owing to the iron oxides in the shale used, the building brick burn to a beautiful, very uniform red color. Roofing-tile and pottery clay.-At Coffeyville the shale of the Parsons formation is manufactured into roofing tile and different kinds of fancy-shaped tile of different colors; also into a variety of ornamental patterns for cornices, gables, finials, and all
kinds of stoneware, such as crocks, jars, etc. It burns to a rich, deep, uniform red.

soris.

Residual soils.-The soils of the Independence quadrangle consist in the main of two classesresidual and transported. The residual soils are those derived from the underlying or adjacent country rock, principally, through the agencies of weathering, disintegration, and corrasion. A residual soil varies with the nature of the rock whence
it has been derived. Its composition, moreover, is modified by the character and amount of foreign material introduced. The soil-producing rocks of the quadrangle, named in order of their importance, are limestone, shale, and sandstone.
The limestone soil, though not the most abundant, occupying only about 200 square miles, or less than 20 per cent of the entire area of the quadrangle, is preeminently the most important.
covers a considerable portion of the limestone area
shown on the map. It is generally dark or black and heavy, greatly exceeds the other residual soil in fertility, and is less susceptible to drought. Next in importance for agricultural purposes is the shale soil, which is clayey or argillaceous and usually light or buff colored. It is lighter in weigh and less productive than the limestone soil, but nevertheless somewhat extensively cultivated. It varies in character from place to place, decreasing in fertility with the increase in arenaceous material or sand, derived from sediments that were depos ited with the shale. Shale soils cover about 40
square miles, or nearly 40 per cent of the area. square miles, or nearly 40 per cent of the area.
The sandstone soil is derived from sandstone
The sandstone soil is derived from sandstone and ranges from almost pure sand in some localities to shale originally present in the sandy beds from which it has been derived. It is the least fertile of the residual soils and least adapted to agriculture It supports the prairie grass and a native growth of black-jack oak (Quercus nigra), which constitute the most important vegetation of the uplands. These oaks, though not tall or stately forest trees, form numerous timbered areas several square miles in extent on an otherwise treeless prairie.
Transported soil.-As the name suggests, transported soil or alluvium has reached its present position through the agency of water. It constitutes the surface deposits of the lowlands or flood plains of Verdigris River and the lower reaches of its tributaries, where it constantly receives accretions at periods of high water. By reason of its character and position it is variously known as
"soil"" "made ground"" "bottom land," and "soil," "made ground," "bottom land," and
"bottom." It is the most composite of the soils of "bottom." It is the most composite of the soils of
the area, being made up of particles derived from the area, being made up of particles derived from practically all the formations within the drainage result of the disintegration of limestone and shale but it contains also considerable humus and organi material gathered by the transporting wate Much of it has come from distant points beyond the quadrangle, as well as from the adjacent hills It is usually black and heavy, retains moisture well, and constitutes some of the richest agricultural land in the Mississippi Valley, being unsurpassed in its heavy yield of wheat and corn. In some places it is so heavy, impervious, and tenacious as to be tillable only with great difficulty, and is locally known as "gumbo," but it is n velated to gumbo as used in the geologic sense.
The alluvium supports most of the timber The alluvium supports most of the timber
he quadrangle-a mixed growth of hard woo
bordering the streams and valleys. Its relatively low position and flatness of surface render it less susceptible to drought than the uplands. During the last three years, however, its immense crops have been almost wholly destroyed by the devastating spring and summer floods which in duration, magnitude, and destructiveness have surpassed any settlers, floods in the Verdigris, Neosho, and neighboring valleys in recent years that their prevention has become an important problem for solution, and it is now being studied by the State and the United States Geological Survey. The results of such investigations indicate that as the topography is not adapted to water storage, the
the best preventive now in sight.

water resources.

surface watrrs.
Streams.-The surface water of the quadrangle as described under "Drainage," passes into Verdigris River, which in its general course flows
slightly east of south near the center of the quad rangle. Together with its tributaries it carrie potable water-a fact which, taken in connection with its size, renders it a stream of great economic importance. Its flood flow is large and its summer low small. Its average annual flowage or run-off is 0.45 second-feet per square mile, and its average velocity about 1.2 miles per hour. This larg volume of water flowing through the quadrangle, ogether with the central position of the Verdigris, the widespread distribution of its tributaries, and
the annual precipitation of about 44 inches, he annual precipitation of about 44 inches, makes
he region relatively well watered. egion relatively well watered.
At times of high water, particularly during the its bank and inunates its flod plin cent country for a width of 1 to 3 miles, with th consequent destruction of crops and property. I its course of about 50 miles across the quadrangle it has a fall of 130 feet, which at favorable points makes it available for water power. McTaggart's mill, about 6 miles southeast of Independence, and the mill at Neodesha illustrate its possibilities Owing to the cheapness of natural gas, hovever, no use is now made of this water power. Fall River is used for generating power for a flour mill at Neodesha, and Elk River supplies power at Elk. Fall River is reported to be less muddy and more steady in flow than the Verdigris, but Elk River fuctuates more than the master stream.
aderground waters.
Springs - The principal supplies of underground ater in this area are in the alluvial deposits of he valleys; also in the sandstones and shales and ricial deposits of soil, gravel, and talus at he foot hills or in the sides and heads of alleys on higher ground. Such sources are r y known as springs, and the water is usel eated springs issuing from bed rock were noted in the area.
Wells.-Most of the wells in the area are shallow, supplying as a rule surface water only. Owing to the soluble salts contained in the rocks, and par icularly in the shale, this water is usually hard, kaline, or brackish. Exceptions occur where the oft, potable water, and in much of the lowland ge, where the water has become purified in filtering through the alluvial deposits of silt and, and gravel. As shallow wells may fail in dry seasons, deep wells have been drilled to insur a permanent supply of water, especially in the uplands, but their water, though deep-seated in bed rock, is usually hard, and beyond a certain depth the deeper the well the more likely is the water to be brackish or saline.

mixbrai waters.

The term "mineral waters" here used refers to he health waters of a few wells at Independence Coffeyville, and Cherryvale. ${ }^{a}$
The well at Independence is 110° feet deep and is artesian in character. Its water is bromomag-
nesian and is derived from the Mississippian or eesian and is derived from the Mississippian or vaters of it olas is used at anitarium and bath hotel in the northern part of the city
The Coffeyville well is $1 \frac{1}{2}$ miles east of Coffey ville. It is shallow and lies wholly within upper Carboniferous strata. Its water belongs to the chlorine-carbonate group and is used at a watercure establishment built at the well for the accommodation of boarders. It is also sold to the people in the community
The Cherryvale well is 3 miles northwest of Cherryvale and like the Coffeyville well lies wholly in the upper Carboniferous. Its water said to come from a depth of 120 feet.
April, 1908.
${ }^{{ }^{\text {a A A faller a account of these }} \text { wells is given in Bull. U. S. Geol }}$ Survey No. 296, 196,
Kansaa, vol. 7,1902

$\operatorname{GOLUM} \mathbb{N} R$ SECTMNS

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price.t	No.*	Name of folio.	State.	Price. ${ }^{\text {t }}$
	Livingston	Montana	Cents. 25				Cents.
					Chicago	Illinois-India	50
12	Ringgola	Georgia-Tennessee	25	82	Masontown-Uniontown	Pennsylvania	25
$\ddagger 3$	Placerville	California	25	83	New York City	New York-New Jersey	50
$\ddagger 4$	Kingston	Tennessee	25	84	Ditney	Indiana	25
5	Sacramento	California	25	85	Oelrichs	South Dakota-Nebraska	25
6	Chattanooga	Tennessee	25	86	Ellensburg	Washington	25
7	Pikes Peak	Colorado	25	87	Camp Clarke	Nebraska	25
8	Sewanee	Tennessee	25	88	Scotts Bluff	Nebraska	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	89	Port Orford	Oregon	25
10	Harpers Ferry	Va.-Md.-W.Va.	25	90	Cranberry	North Carolina-Tennessee .	25
\$11	Jackson	California	25	91	Hartville	Wyoming	25
12	Estillville	Ky.-Va.-Tenn.	25	92	Gaines	Pennsylvania-New York	25
13	Fredericksburg	Virginia-Maryland	25	93	Elkland-Tioga	Pennsylvania	25
14	Staunton	Virginia-West Virginia	25	94	Brownsville-Connellsville	Pennsylvania	25
15	Lassen Peak	California	25	95	Columbia	Tennessee	25
16	Knoxville	Tennessee-North Carolina	25	96	Olivet.	South Dakota	25
17	Marysville	California	25	97	Parker	South Dakota	25
18	Smartsville	California	25	98	Tishomingo	Indian Territory	25
19	Stevenson	Ala.-Ga.-Tenn.	25	99	Mitchell	South Dakota	25
20	Cleveland	Tennessee	25	100	Alexandria	South Dakota	25
21	Pikeville	Tennessee	25	101	San Luis	California	25
22	McMinnville	Tennessee	25	102	Indiana	Pennsylvania	25
23	Nomini	Maryland-Virginia	25	103	Nampa	Idaho-Oregon	25
24	Three Forks	Montana	25	104	Silver City	Idaho	25
25	Loudon	Tennessee	25	105	Patoka	Indiana-illinois	25
26	Pocahontas	Virginia-West Virginia	25	106	Mount Stuart	Washington	25
27	Morristown	Tennessee	25	107	Newcastle	Wyoming-South-Dakota	25
28	Piedmont	West Virginia-Maryland	25	108	Edgemont	South Dakota-Nebraska	25
29	Nevada City Special	California	50	109	Cottonwood Falls	Kansas	25
30	Yellowstone National Park	Wyoming	50	110	Latrobe	Pennsylvania	25
31	Pyramid Peak	California	25	111	Globe	Arizona.	25
32	Franklin	West Virginia-Virginia	25	112	Bisbee	Arizona	25
33	Briceville	Tennessee	25	113	Huron	South Dakota	25
34	Buckhannon	West Virginia	25	114	De Smet	South Dakota	25
35	Gadsden	Alabama	25	115	Kittanning	Pennsylvania	25
36	Pueblo	Colorado	25	116	Asheville	North Carolina-Tennessee	25
37	Downieville	California	25	117	Casselton-Fargo	North Dakota-Minnesota	25
38	Butte Special	Montana	25	118	Greeneville	Tennessee-North Carolina .	25
39	Truckee	California	25	119	Fayetteville	Arkansas-Missouri	25
40	Wartburg.	Tennessee	25	120	Silverton.	Colorado	25
41	Sonora	California	25	121	Waynesburg	Pennsylvania	25
42	Nueces	Texas	25	122	Tahlequah	Indian Territory-Arkansas .	25
43	Bidwell Bar	California	25	123	Elders Ridge	Pennsylvania	25
44	Tazewell	Virginia-West Virginia	25	124	Mount Mitchell	North Carolina-Tennessee.	25
45	Boise	Idaho	25	125	Rural Valley	Pennsylvania	25
46	Richmond	Kentucky	25	126	Bradshaw Mountains.	Arizona .	25
47	London	Kentucky	25	127	Sundance	Wyoming-South Dakota	25
48	Tenmile District Special	Colorado	25	128	Aladdin	Wyo.-S. Dak.-Mont.	25
49	Roseburg	Oregon	25	129	Clifton	Arizona	25
50	Holyoke	Massachusetts-Connecticut	25	130	Rico	Colorado	25
51	Big Trees	California	25	131	Needle Mountains	Colorado	25
52	Absaroka.	Wyoming	25	132	Muscogee	Indian Territory	25
53	Standingstone	Tennessee	25	133	Ebensburg	Pennsylvania	25
54	Tacoma	Washington	25	134	Beaver	Pennsylvania	25
55	Fort Benton	Montana	25	135	Nepesta	Colorado	25
56	Little Belt Mountains	Montana	25	136	St. Marys	Maryland-Virginia	25
57	Telluride	Colorado	25	137	Dover	Del.-Md.-N. J. .	25
58	Elmoro .	Colorado	25	138	Reding	California	25
59	Bristol	Virginia-Tennessee	25	139	Snoqualmie	Washington	25
60	La Plata	Colorado	25	140	Milwaukee Special	Wisconsin	25
61	Monterey	Virginia-West Virginia	25	141	Bald Mountain-Dayton	Wyoming.	25
62	Menominee Special .	Michigan .	25	142	Cloud Peak-Fort McKinney	Wyoming	25
63	Mother Lode District	California	50	143	Nantahala	North Carolina-Tennessee.	25
64	Uvalde	Texas	25	144	Amity	Pennsylvania	25
65	Tintic Special	Utah	25	145	Lancaster-Mineral Point	Wisconsin-Iowa-Illinois	25
66	Colfax	California	25	146	Rogersville	Pennsylvania	25
67	Danville	Illinois-Indiana	25	147	Pisgah	N. Carolina-S. Carolina	25
68	Walsenburg	Colorado	25	148	Joplin District	Missouri-Kansas	50
69	Huntington	West Virginia-Ohio	25	149	Penobscot Bay	Maine	25
70	Washington	D. C.-Va.-Md.	50	150	Devils Tower	Wyoming	25
71	Spanish Peaks	Colorado	25	151	Roan Mountain	Tennessee-North Carolina	25
72	Charleston	West Virginia	25	152	Patuxent	Md.-D. C.	25
73	Coos Bay	Oregon	25	153	Ouray	Colorado	25
74	Coalgate	Indian Territory	25	154	Winslow	Arkansas-Indian Territory	25
75	Maynardville	Tennessee	25	155	Ann Arbor	Michigan	25
76	Austin	Texas	25	156	Elk Point	S. Dak.-Nebr.-lowa	25
78	Raleigh	West Virginia	25	157	Passaic	New Jersey-New York	25
78	Rome.	Georgia-Alabama	25	158	Rockland	Maine	25
79	Atoka.	Indian Territory	25	159	Independence	Kansas	25
80	Norfolk	Virginia-North Carolina	25				

* Order by number.
\dagger Payment must be made b
\ddagger These folios are out of sto
Circulars showing the
on application to the Director, United States Geological Survey. Washington. D. C.

