GEOLOGIC ATLAS

OF THE
UNITED STATMS
WINSLOW FOLIO
ARKANSAS - INDIAN TERRITORY

UND STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroads, oundaries, villages, and cities.
Relief.-All elevations are measured from mea tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is esirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form or all slopes, and to line the hrol l lewtion evel, the altitudinal intercal represented by the per ben lines being the bug each map. These lines are called contours, and the miform altitudinal space between each two con ours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
orm, and grade is shown in the following sketch and corresponding contour matp (fig. 1).

.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice forming a precipice. Contrasted with this precipice is the gentle slope from its top toward the left. In beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet fallis just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea, acorgiglus the the contous ounds it. In this fre 250 the contours are numbered, and those for 250 and 500 feet and accented the contours, and then the accentuating and numbering of certain of them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The mallest interval used on the athas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping greal Tor int liste relif contour intervals of 10,20 , 55,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. would be represented by a linear inch on the map.
This relation between distance in nature and corresponding distance on the map is called the scal The scale. In this case it is 1 mile to an inch." The scale may be expressa a which thaction, of which the niner the cosp and the denominar the correspo ing leng in are 6360 inches in a mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,3,50}$.
n inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{20.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on the scale of sam contains one square degree - i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { taskub }}$ conoins one-sixteenth of a square degree. The aren of the corresponding quadrangles Tha 2 squae
a mats of one map the Unted States, disregard political boundar hips To ach shet, and to the quadrangle represents, is piven the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topoyraphic map.- On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the andscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating ditch provide educational material for schools and homes and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igneous netamorphic
Igneous rocks.-These are rocks, which have throm a state of fusio rom time to time been forced material ha fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thin, and laccoiths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pac
 but are the c tions. Toss porlore panies voleanio eruptions causing ejections of duash, and larar fragents. These materials, consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited
The chief agent of transportation of rock débris is water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, the different materias may be intermingled many ways, producing a great variety of rocks. And; and liol The mot chateristic of the wind-borne or eolis deposits is loess, a fine-orainel euth; the most char deposits is loess, a ine-gra ite ill, the most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper pars, whor plans, constie solls and shouls, he solls being organic matter
Metamorphic rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism he substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single . Such changes transform sandstone into rocks in various ways.

From time to time in geologic history ignous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessury to separate twq contiguous formations by lep.itrary line, and in some cases the distinction An almost entirely on the contained fossils. igneous formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance, in such except in regions of intense disturbance, in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the remains or imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are foun. Other types passed on from period to period, and thus linked the systems together, foning a cham of life from the time of the oldest fosm fur to other and it is impossible to observe their relative positions, the characteristic fossil types found in pom may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and eolian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava streall, and (soranes (ridges of drift made the edges of placiers) Other forms are prode by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formaground upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

ing a vertical seetio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes are generally used in sections to represent the commoner kinds of rock:

Schists

Massive and bedded igneous rocks.

 sections toof rocks.
The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the sec tion to correspond to the outcrops of a bed of sand of this bed form the surface. The upturediate valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is omposed of schists which are trayersed by masses and their
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the upturned, eroded edges of the beds upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlving formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds th 1 and the do groud along the section line, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE WINSLOW QUADRANGLE.

INTRODUCTION

Location and area.
The Winslow quadrangle lies mainly in the west ern part of Arkansas, north of Arkansas River. It is bounded by parallels $35^{\circ} 30^{\prime}$ and 36° and meridians 94° and $94^{\circ} 30^{\circ}$. Its average width from east
to west is about 28 miles and its length is about to west is about 28 miles and its length is about
$34 \frac{1}{2}$ miles. Its area is almost 969 square miles. $34 \frac{1}{2}$ miles. Its area is almost 969 square miles Nearly 29 square miles in the southwestern quarter of the quadrangle lie in Indian Territory. The area small part of Franklin County, and the southern half of Washington County except a narrow strip along the eastern side
general geography of the ozark region. limits of the region.
The Winslow quadrangle lies within the Ozark region, known in geologic literature as the Ozark uplift. This physiographic region extends from to the Arkansas Valley, and from Neosho or Grand River, in Indian Territory, eastward to the Tertiary owlands of southeastern Missouri and eastern Arkansas, its area comprising 40,000 square miles In outline the region is roughly an ellipse whose major axis extends from the St. Francis Mountains of Missouri southwestward to the town of Wagoner, in Indian Territory, a distance of about 300 miles. On the south the Ozark uplift is bounded by the Arkansas Valley, a synclinal trough extending east and west, which has been reduced by erosion to a plain about 30 miles wide having an average elevaion of about 500 feet above sea level. Upon this plain stand Sugarloaf Mountains, Magazine Moun Jean Mountain, and other elevations of less promJean Mountain, and other elevations of less prom-
inence, besides numerous low, parallel, east-west ridges. The highest point is the summit of Magazine Mountain, which stands 2800 feet above sea level.
divisions of the region
The Ozark region consists of two areas, a northern and a southern, which differ greatly in size, in the nature of the rocks at the surface, and in sur ace features. The northern and larger of these
areas is the Ozark Plateau, and the southern is the Boston Mountains. The Winslow quadrangle lie in the Boston Mountains, its exact location being shown in fig. 1 .

the ozark platead.

Location and surface features.-The Ozark Pla eau occupies all the Ozark region of Missouri, most of that of Indian Territory, and a strip about 40 miles wide in northern Arkansas, In the easter part of this plateau there is a group of peaks collectively known as the St. Francis Mountains, The highest part of the plateau lies in Webster The highest part of the, plateau lies in Webster
and Wright counties, east of the city of Spring and Wright counties, east of the city of Springfield. This area is roughly a broad, flat dome part of Webster County, where it reaches a height of 1700 feet above sea level.
The surface of the Ozark Plateau slopes both to the northwest and to the southeast, the divide being oughly indicated by a line drawn from the St . Francis Mountains to Springfield, Mo., and from the latter place to Fayetteville, Ark. To the north west the surface descends to Missouri River and its tributaries, along which the altitude is about 900 eet above sea level; to the southeast it descends to White River and its tributaries, which fall from about 1000 feet above sea level near their headwaters to about 250 feet above sea level at the easter margin of the plateau. These slopes in general are rather uniform but are interrupted by certain significant topographic features.

The surface of most of that part of the platea which lies in Missouri is low and well rounded between the streams, but in the vicinity of White River, both in Missouri and Arkansas, the stream aphy is rugged. In steep slopes, southern margin of the plateau, several outliers of he Boston Mountains form conspicuous feature of the landseape.
Drainage.-The direction of the drainage of the Ozark Plateau has been determined by the uplif of the region, and is therefore away from the axis, Host of the main to the northwest and southeast. Gasconade River on the northern slope and Current and White rivers on the southern slope, being of notable size.

White River

White River, the largest stream in the region, parallel to that portion of the divide which extend fom Springfield to Fayetteville, turns eastward for short distance in the southern part of Missouri, then flows southwestward, in conformity with the eneral slope of the plateau, to the lowlands of rkansas, and thence into Arkansas River near it mouth. In Arkansas it receives Kings River from he south, Buffalo River from the west, and North Fork of White River from the north.
The course of White River is marked by numer ous bold and graceful swings, giving it the appear nce on the map of a meandering stream with ide flood plain. In fact its valley is narrow, with teep sides. Alluvial deposits occur only here and here, forming narrow strips along the stream. The lopes of the valley on the inside of the curves ar ng ang thavel over ecipitous bluff It is evident from this that the
 eral shifting of the stream while it was cutting it bed downward.

Location and surface features.-Along the south rn border of the Ozark Plateau, at a higher eleva ion, stands a much disseeted region known as the th Mountains, which form the southn wel verace width part of the Ozar regon. 35 miles and they extend east and west approximately 200 miles, from Grand River, in Indian Territory, to the Tertiary lowlands of eastern Arkansas. The highest part whose altitude has been determined i bout in the middle of the east-west extent of the nountains, on the eastern border of the Winslow quadrangle, where the
This area is essentially a plateau, into which umerous streams have cut deep, narrow valleys Along its northern border stethes an escarpment fowing streams. This escarpment is highest in it middle portion and gradually falls off eastward and westward to the borders of the area. If the Boston Mountains are viewed from the Ozark Plateau on the north, this escarpment appears to be more or less complicated by outliers or mountains of cir cumdenudation, which rest upon the Ozark Plateau and stand up to about the same height as the mountains from which they have been separated by ero ion. The southern slope of the mountains is less precipitous, passing off rather gradually into the Arkansas Valley.
Drainage.-The Boston Mountains are drained northward almost wholly through White River and its tributaries and southward into the Arkan as. A little of the western part of the area drained westward into Illinois River, a tributary of he Arkansas. The streans on both sides of the lock, making a zigyag line of the water divide. The streams within the area are not large, but have
cut deep, canyon-like valleys from 500 to 1000 feet below the highest points.
The streams south of the divide are swifter and
herefore cut faster than those north of it, with the sesult that the vall than those north of it, with the more precipitous. The slopes above the streams are interrupted by numerous nearly perpendicular escarpments produced by the differential weathering of the alternating hard and soft beds of rock. North of the divide these escarpments are practi-
cally horizontal, but south of it the dip of the rock cally horizontal, but south of it the dip of the rock
gives them a pronounced southward slope gives them a pronounced southward slope.
OPOGRAPHY OF THE QUADRANGLE.

relief.

general features.
The Winslow quadrangle lies mainly in the western portion of the Boston Mountains, extending across them in a north-south direction. A small nd a still northern border, about Prairie Grove, bout Summers, belong to the south ward extension of the Ozark Plateau. These areas are level plains that stand about 1200 feet above sea level. A small area in the southeast corner belongs to the Arkansas Valley region. The remainder-about ninetenths of the quadrangle-lies within the greatly dissected plateau that constitutes the Boston Moun-
tains, and for the purpose of description may be tains, and for the purpose of description may be
divided into a northern area and a southern area. the northern area.
General description.-The northern area extends from the northern part of the quadrangle south the St. Louis and San Francisco Railroad. The the S. Louis and Sin Francisco Rairoad. The dissect the region, as well as the highest points of the quadrangle, occur in this division. Like the remainder of the region, it is deeply cut into by streams that form steep-sided, narrow, canyonlike valleys, leaving promiscuously distributed over the area many hills that stand up above the general level and are locally known as mountains. The tops of most of these hills are flat, of small area, and stand from 500 to 1000 feet above the adjacent valleys. Among these are Weedy Rough Mountain, Henderson Mountain, Gaylor Mountain, Cartwright Mountain, Meadow Mountain, Lockard Mountain, Kimes Mountain, Bald Knob, Chinkain Knob, Grapevine Knob, and others.
The highest part of the area is near the eastern brder, at the village of Sunset, which is somewhat more than 2250 feet above sea level, and from which the general surface gradually falls off toward the cortran, The whent borders of the arder are about 1750 feet those near the wester border 1950 feet, and those near the southern order 1150 feet above sea level.

So rugred is thi divic level

extend along the valleys or the the public roads vening ridges, and as most of the valleys run in a northerly or southerly direction, travel in an eastwest direction is possible only by circuitous routes. Escarpments and benches.-The slopes above the reams are interrupted by numerous escarpments, some of which are 50 feet or more in height. The most prominent and most persistent among these is the one formed by the basal ledge of the Winslow formation, to be described later. These escarpments have been formed by the weathering back of beds of soft or readily soluble rock that lie under beds of more resistant rock, mostly sandstone, which has in onsequence broken off at places from want of support. The blocks thus broken off leave perpendic-
ular bluffs of their parent rocks, along the base of ar buns of their parent rocks, along the base of hich hey inm great heaps of talus. These talui, the result of their own disintegration, of sufficient depth to support a strong growth of vegetation.

Below such escarpments there are benches or gradually sloping surfaces, few of them exceeding a quarter of a mile in width, and most of them much narrower. In the northern and middle portions of the area the escarpments in the main lie in horizontal planes, and the most prominent of them can be followed for miles; but in the southern part they slope southward with the dip of the rocks, so that any particular escarpment at length passes out of sight beneath those above.
The valleys extend northward, westward, and southward from the main summits, the heads of
those from opposite slopes passing upward beyond those from opposite slopes passing upward beyond interdigitation of the upper parts of the villeys interdigitation of the upper pans the valleys The south slope of this division is much steeper than the north slope. From the railroad tunnel at Winslow southward to Chester a distance of about 8 miles, the fall is 910 feet. From the same level to Greenland, on the north slope, a distance of about 14 miles, the fall is only 400 feet. As above stated, the valleys of the south slope are much deeper than those of the north slope, as a result of the greater declivity and consequent greater cutting power of the streams.
the southern area.
General description.-The northern area passes imperceptibly into the southern area, but there is a marked difference between the topography of the two. The southern area slopes gradually southward and for the most part has an even surface. it is well developed between the ralroad and the eastern border of the quadrangle, where the uniMountain the shallow valleys of the southwardflowing streams, east-west ridges along the southern border. The even surface is not so common over the area west of the railroad, which is dissected by deeper valleys, but it is well developed in the flat-topped divides between the streams, from Pine Mountain south ward.
drainage.
General statement.-The streams of the quadrangle flow northward, westward, southwestward, and southward. The water of about one-sixth of the area passes into White River through West and Middle forks of that stream, the remainder into the Arkansas. The water divide is a crooked though well-defined line passing from Sunset, near the eastern border, through Winslow, thence northwestward and northward, roughly paralleling the St. Louis and San Francisco Railroad, to the northern border of the quadrangle.
Northward drainage.-About one-fifth of the quadrangle, in its northwestern part, drains northward and westward through Minois River and its
tributaries, Muddy Fork and Barren Fork. Evanstributaries, Muddy Fork and Barren Fork. Evans-
ville Creek, which flows westward across the western border of the quadrangle, turns northward in Indian Territory and joins Barren Fork, which enters Illinois River near Tahlequah. The Illinois enters the Arkansas about 35 miles west of the southwest corner of the Winslow quadrangle. In the northeastern part of the quadrangle are West and Middle forks of White River, which unite with East Fork in the southeastern part of the Fayetteville quadrangle, forming the main branch of White River.
Southward drainage.-The streams flowing southward and southwestward into the Arkansas are Lee Creek with its tributaries (Ellis Branch, Fall Creek,
Cove Creek, Mountain Fork, and Webber Creek); Cove Creek, Mountain Fork, and Webber Creek); Yog Bayou, formed by Howard Fork and Jones Mulbery Piver which Creek at Rudy, and Mubery River, wrich hows the near the eastern border, is a tributary of Mulberry niver.

Size of the streams.-Practically all the streams \mid to the height of about 1500 feet, consists mainly of the quadrangle head within it, and the distance so short on either side of the divide to the bor ders of the quadrangle that no large streams are formed in it. However, the principal streams carry constant supply of water, which, in their upper parts, passes over the escarpment-forming rocks as alls and rapids, while in their lower parts, at verage stage, it filters from pocket to pocket

stones that have accumulated in their beds.
Those streams on the south slope which have in art an east or west course receive, along such defined streams from the north and practically noned from the south. This fact is due to the rock tructure and will be considered under "Influence of structure on the drainage," on page 6.
of limestone and black, carbonaceous shale. These do not appear on the southern slope except in have cut down into or through them. Resting pon these and dippirg southward are about 1500 et of sedind dipping southward are about 1500 lly black and carbonaceous, alternating shales, usuf brown andenaceous, alternating with beds enerally more or less massive in their strata are enerally more or less massive in their upper parts, into the black clay shales foresh The shale reatly predominate over the sandstones, Probably greatly predominate over the sandstones. Probably not more than 350 out of a thickness of 1500 feet Ozark region and the geologic structure and stratigraphy are shown in the sketch map and section forming figs. 1 and 2.

FIG. 1.-Sketch map of the Ozark region,

DESCRIPTIVE GEOLOGY

ROCKS OF THE OZ
The rocks of the Ozark region comprise strata presenting and the systems from supped Archean ble exception of the Algonkian. The rocks classed as Archean are granitic rocks of isneous origin. Most of the surface rocks are of Cambrian and Ordovician age and consist mainly of sandstone and magnesian limestone. Over the southwestern part of the plateau the surface rock is principally limestone containing a large amount of chert, and is of Carboniferous age. The structural center of the uplift is the St. Francis Mountains, in which the supposed Archean rocks are exposed, and from which the younger rocks dip away in all directions. During the long time that has elapsed since the final uplift of the region from the sea a large amount of erosion has taken place over the entire area, removing such of the upper and younger beds as were deposited within the central part and leaving only the older rocks there exposed at the surface. But the dip of the strata away from the structural center of the uplift causes the younger rocks to pated edges being exposed in roughly concentric cated edges
lines about it.
the rocks of the Ozark Plateau pass out of sig at the northern base of the Boston Mountain escarp-

Nothing below the Boone chert appears at the Wace within the Winslow quadrangle, and the Mooretield shale and Batesville sandstone are
therein wanting above the Boone chert. All the herein wanting above the Boone
ther formations are represented.
recks of the winslow quadrangle.
general statement.

All the rocks exposed within the Winslow quadrangle are of sedimentary origin, and consist of and shales were formed of detrital mestendstones was carries were formed of detrital material that and spread out over the lattom areas by streams the Boston Mountrins and weighboring resi were beneath sea level. The fine material which at the time of deposition was mud, containing a large amount of carbonaceous matter, subsequently became consolidated, forming the shales; and the coarse material, which at the time of deposition was loose sand, became consolidated, forming the sandstones. The limestones were formed largely of shells and other parts of animals that lived in the seas at that time. The rocks are unmetamor-phosed-that is, except that they have been consolidated, they have suffered little change since they were laid down. No tgneous or voleanic rocks occur at the surface within the quadrangle
Age and succession of the rocks.-The formation that occur at the surface in the Winslow quadrangle are all of Carboniferous age, both the Mississip pian and the Pennsyl vanian series being represented. ponding terms used in adjecat areus and by the ponding terms used in adjacent areas and by the columnar section and the aceompang cores tion table. The palentologic determinations and descriptions are by E. O. Ulrich

The rocks in the Winslow quadrangle belonging to the Mississippian series consist, from the bottom upward, of about 300 feet of limestone, containing a large amount of chert, followed by from
300 feet of shale and sandstone, mainly, and thi in turn by about 40 feet of limestone. These different formations are known as the Boone formation, the Fayetteville formation, and the Pitkin limestone, respectively

one formation

Extent and subdivisions.-The Boone formatio was so named by the Geological Survey of Arkansas because of the prevalence of these rocks in Boone County, one of the northern counties of the
State. It is the surface rock State. It is the surface rock over wide areas in Kansas, and northern Indian Territory Winslow quadrangle it is the surface rock over only the two relatively small areas in the northwestern part of the quadrangle which belong to the Ozark Plateau and another small area about Dutch Mills From these areas it passes out of sight below th younger rocks of the Boston Mountains, and reappears in only two small areas on their southern slope. One of these, probably not exceeding 100 acres, is in the upper part of Mountain Fork valley just east of the Arkansas-Indian Territory line; the other, still smaller, is somewhat more than a mile west, on Indian Creek, in Indian Territory.
Where the entire thickness of this formation is Where the entire thickness of this formation is exposed, it consists of two members,
being named the St. Joe limestone.
being named the St. Joe limestone.
St. Joe limestone member.-The St. Joe limestone member was so named by the Geological Survey of Arkansas, from the town of St. Joe in Searcy County, where it is well exposed. It is the basal in the Winslow quadrangle. As seen elsewhere in the Whslow quadrangle. As arm 40 feet or more, but is usually from 20 to 25 feet It is a coarse-textured, crystalline limestone full of crinoid stems, and varies in color from gray to red or chocolate. Much of it will take a good polish and is true marble.
The portion of the Boone limestone that lies immediately above the St. Joe limestone contain at many places a large amount of limestone sim ilar to the upper part of the St. Joe. But it is usually an easy matter to determine the contact
between the two on hillsides where both are exposed, because the St. Joe limestone commonly forms an
escarpment above which the overlying Boone lime tone retreats, forming a salient angle at their contact. The St. Joe limestone is practically free from chert, whereas the overlying beds always contain some, and at many places a large amount of chert. Character.-At some places where the complete
section of the Boone formation above the St . Joe is section of the Boone formation above the St . Joe is exposed, it somewhat exceeds 300 feet in thickness. The greatest exposure of this formation within the Winslow quadrangle occurs in the vicinity of Dutch Nills, near the western border of the quadrange, ills. It is composed of limestone the limestone is gray, impurities Polished surfaces show that it is for iliferous, its common fossils being crinoid stem In places the limestone occurs in massive bed almost free from chert; in other places it occurs a lenses within the chert. The heavy beds make ime of excellent quality, as well as building stone The chert varies from white or gray to blue in color, has a dull fracture, and occurs in lenses in limestone and in beds that range in thickness fron 4 to 10 inches and have very uneven surfaces. In places the chert weathers to a white, easily pu verized material that would make good tripol Weathered débris on the surface shows fossil coral brachiopods, and crinoids. The relative amount of limestone and chert in the St. Joe member var greatly, both horizontally and vertically. In place the formation is largely limestone, in others cher While elsewhere it is a mixture of the two. The Boone limestone forms an even surface where it whore of the rock numerou they form, by solutio producing a very rough surface Over the por tion of the Winslow quadrangle where this rock is exposed the surface is mainly level and bears great deal of chert débris, which in some place has accumulated to a thickness of several inches, while in other places it is mixed with clay soil Both the chert and the clay are residual products, resulting from the solution and removal of the c ars portion of the rock by ground water of the Most of the fossils are dismembered plates crinoids and joints of their columns, but at some localities other fossils are associated with thes Among such the delicate "lace bryozoa" of the yenera Fenestella and Polypora, and various brach opods, especially Spirifer logani, are common. Unconformity at top of Boone formation.-In he Boone formation is overlain area of Arkansa hale and this in turn by the Batesville sandstone. In the central part of the aren the Moofield sha is absent the Patesville sandtone resting upon the Boone formation. In the Winslow quadrangle the Moorefield shale and Batesville sandstone are both absent, and the succeeding formation, the Fayette ville, rests upon the Boone. So even was th surface of the Boone limestone on which the Fay etteville formation was laid down, and so nearl did this surface conform to the dip of the rock, tha no irregularities were noticed in the contact between the two, though doubtless small ones exist.
fayettevilie formation.
Extent.-The Fayetteville formation was named by the Geological Survey of Arkansas from the city of Fayetterille. It is widespread over north ern Arkansas and Indian Territory, occurring everywhere at the northern base of the Bosto Mountains and around their outhiers. It is exposed on all the slopes in the northern part of the Win sow quadrangle, along the west side as har sout Whitzen, and Garrett hollows, and in the upper parts of Mountain Fork and Indian Creek.
Character and subdivisions.-From 60 to 100 feet of the lower portion of the formation is black, thin-fissile, carbonaceous clay shale, contain ing numerous dark, calcareous clay concretions of arge size, which are much dissected by veins of calcite. Locally it includes, at or near its base, a bed of gray or bluish fossiliferous limestone. The clay shale passes by a rather abrupt though not well defined transition into a brown ferruginous shale Arkansas, is underlain by 10 to 40 feet of sand
ent, and, because of their southward dip, do not of the Geological Survey of Arkansas, being derived reappear on the south slope. They are deeply from the record of a well at Cushman, Independence buried beneath the rocks of the Arkansas Valley. County. It may be that the rocks in the lower The northern base of the Boston Mountains, up portion of the well are of Cambrian age
stone, known as the Wedington sandstone. The 150 feet eass of Tolu to about 300 feet in the northwestern part of the quadrangle
The upper part of the Fayetteville formation, which lies above the sandstone, where that i present, and is generally from 20 to 30 feet thick is a bed of shale ranging in color from green to bluish. The layers composing it are, as a rule, thicker than those of the lower portion and contain numerous nodules, many of them 4 inches or less in diameter. Some layers are composed
entirely of these nodules. Locally this portion of entirely of these nodules. Locally this portion of
the formation contains gypsum in thin veins and the formation
small crystals

Wedington sandstone member.-The Wedington sandstone, named from Wedington Mountain, in the Fayetteville quadrangle, constitutes a part of the Fayetteville formation, near its top, in the western part of the State. It outcrops on slopes in the northern part of the Winslow quadrangle and in the western part as far south as Evansville. In color it varies from a brown to a light gray. the more massive beds display cross-bedding It the more massive beds display cross-bedding. It
is generally even bedded, and at many places can is generally even bedded, and at many places can
be quarried in beautiful, even-surfaced slabs of be quarried in beautiful, even-surfaced slabs of
almost any thickness from 2 inches to 3 feet. Its ordinary thickness is about 10 feet, but south of Prairie Grove it is about 40 feet thick and, being undermined through the weathering and removal of the shale below, it breaks off in enormous blocks, leaving a steep escarpment. In the area of its outcrop this member is, as a rule, sufficiently prominent to permit its easy discovery, but in some places on the slopes it is so thin that it is completely hidden by débris.
Fossils.-Fossils are rarely found in the shale of the Fayetteville formation, but the limestone that occurs locally at its base and the calcareous shales above the Wedington sandstone generally afford a large and varied fauna. Fossils occur also, though sparingly, in the sandstone member and in the calcareous clay concretions found in the lower part of the shale. In the basal limestone perhaps the mosibed crinoid related to Eupachycrinus the thick scribed crinoid related to Eupachycrinus, the thick
and bulbous plates of which are in places thickly scattered through the rock. Associated with these crinoid fragments there are both finely and coarsely crinoid fragments there are both finely and coarsely
striated species of Productus, Spirifer increbescens, striated species of Productus, spirifer increbescens, of Chester age. Bryozoa are rare in this bed.
The thin limestone plates in the upper shale are distinguished at once from the lower bed by the much greater abundance of bryozoa-chiefly of
species of Archimedes and Septopora-and of both species of Archimedes and Septopora-and of both
straight and coiled cephalopod shells. straight and coiled cephalopod shells.
pititin limestone.

Extent.-This formation is named from Pitkin, in the northern part of this quadrangle, where it is well exposed. In the reports of the Geological Survey of Arkansas it is known as the Archimedes
limestone. Like the Fayetteville formation it is of wide extent, occurring every where along the northon slopes in the northern part of the quadrangle, on slopes in the northern part of the quadrangle,
on those of the west side as far south as Evansville, in the valley of Cove Creek, in Garrett Hollow, Low Hollow, Whitzen Hollow, and in the low, Low Hollow, Whitzen Hollow, and in the
upper parts of Mountain Fork and Indian Creek. upper parts of Mountain Fork and Indian Creek.
Character.-The Pitkin limestone is a gray, fossiliferous rock containing here and there small glomeratic. In the vicinity of Dutch Mills, in the northwestern part of the quadrangle, it is only 10 feet thick, but along Cove Creek, near the Washington-Crawford County line, where it probably reaches its maximum thickness, it is 45 feet thick. Its thickness along its northern outcrop in this quadrangle generally ranges from 20 to 30 feet. Within the Winslow quadrangle the Pitkin limestone rests upon the upper shale of the Fay-
etteville formation and is overlain by shas etteville formation and is overlain by shales of the
Hale formation. Its upper and lower surfaces are Hale formation. Its upper and lower surfaces are even, with no suggestion of unconformities, but beyond the northence, in the Fayetteville quadragle this lime rangle, in the Fayetteville quadrangle, this limestone occurs at some places in pockets and is ing an unconformity at its base. There is also a
distinct unconformity at the top of
within the Fayetteville quadrangle.
The Pitkin limestone is so undermined by the
Thadrale. weathering of the upper shale of the Fayetteville formation, on which it rests, that it breaks off in huge blocks, which rest upon the slopes below till they are disintegrated or dissolved through weathering. As a result of being thus undermined this formation generally outcrops as a steep escarpment, which is in many places impassable. The prominence and persistence of this escarpment are sufficient to distinguish this limestone from others in the area.
Fossils.-A study of the fossils from the different formations in this region shows that the Pitkin limestone here lies at the top of the Mississippian series and is overlain by the Pennsylvanian series of the Carboniferous system. The fossils are all of late Chester types and consist principally
of species of brachiopods and bryozoans. Among of species of brachiopods and bryozoans. Among of latter the solid axial screws of various spe
orchimedes are common in most exposures.

pennsylvanian series.

The rocks of the Pennsylvanian series constitute the great mass of the Boston Mountains. To this series belong all the rocks above the Pitkin limestone on the north slopes and all on the south area, where the older rocks have been cut into by the deepest gorges. The total thickness of the series as shown here approximates 2000 feet. The lower 300 feet is made up of shale, limestone, and sandstone; the upper 1700 feet of shales and sandstone, the shales greatly predominating. Probably less than 350 feet of the entire 1700 feet is sandstone. The series is divided into three formations, the Hale and Bloyd, comprising the Morrow group and the Winslow

morrow group.

The Morrow group constitutes the base of the Pennsylvanian series, and everywhere within the Winslow quadrangle rests upon the Pitkin limebeen described under the heading "Pitkin lime seen described under the heading "Pitkin lime stone. At its upper limit, within this quadrangle,
it is everywhere overlain conformably by the Winslow formation. It occurs along the northern base of the Boston Mountains, in the bases of their immediate outliers, and in the deep ravines on their southern slopes. In thickness it ranges from about 200 feet in the northern part of the quadrangle to somewhat more than 300 feet in the central part. The lower portion consists of shale and sandstone, and has been called by J. A. Taff the Hale formation, from Hale Mountain, in the western part of the Winslow quadrangle. The upper portion, named the Bloyd shale, consists of car-
bonaceous shale with two limestone lentils, the bonaceous shale with two
Brentwood and the Kessler.

hale formation.

Extent.-The Hale formation, besides occurring in the Winslow quadrangle, is present in the Tahlequah quadrangle, to the west; the Fayettevile quadrangle, to the north; and Its eureka spring is not yet definitely known, though it probably occuis not most of the Boston Mountain area. Within the Winslow quadrangle it everywhere rests upon the Pitkin limestone and is apparently conformable with it; but in the adjoining areas to the north the Pitkin limestone is locally absent and the Hale rests upon the Fayetteville formation. It is exposed on the northern slope of the Boston Mountains over considerable areas where the Pitkin limestone oceurs, and also along Jones Fork and Schrader Branch, in the eastern part of the quadrangle; along Lee and Fall creeks, in the central part of the quadrangle; and over a small area south of Mountain Fork and north of Lee Creek, near the Arkansas-Indian Territory line.
Character.-The Hale formation ranges in
thickness from about 100 feet to neary 200 feet thickness from about 100 feet to nearly 200 feet.
Probably its thinnest part is in Sugar Hill in the Probably its thinnest part is in Sugar Hill, in the northwestern part of the quadrangle. Its thickest ally about 50 feet thick, consists of sandy shale interbedded with thin layers of ripple-marked sandstone. The sandstone is variable in amount
and at some places is almost entirely wanting Above its basal portion the Hale consists of mor amounts of sand and lime are by no means constant, nor are the beds persistent in character, but change within short horizontal distances. Smal lenses of rather pure limestone are common in the sandy layers; and throughout most of the sandstone, especially in its massive portion, there are pherical masses of calcareous material, the size o walnut or smaller, which weather out, leaving istic pitted appearance. Weathered surfaces massive parts show cross-bedding.
The amount of lime in this member appears to
ncrease south ward. At the head of a small ravine increase southward. At the head of a small ravine
leading into Lee Creek, $2 \frac{1}{2}$ miles north of Barcelona, the limestone of this member is at least 40 feet thick and some years ago was utilized for the

manufacture of lime

Fossils.-Locally the limestone in the Hale i
highly fossiliferous. Its fauna has not been fully highly fossiliferous. Its fauna has not been fully determined but is very clearly of later age than the
Chester. Fenestellid Bryozoa, of species appar ently distinct from those found in the Pitki ently distinct from those fornd the Pitkin Gasteropoda, and Pelecypoda being more sparingly represented. The most common form seem indistinguishable from the lower Pennsylvanian Spirifer boonensis. Some of the fossils appear to be confined to the Hale, but most of the specie are represented in the later Brentwood limestone.

bloyd shale.

General character.-The thickness of the Bloyd shale ranges from 100 to 220 feet. Its thinnest rangle. The thickest exposure noted is on the western slope of Hale Mountain, though it approx imates 200 feet in all the ravines of the souther slope. With the exception of the Brentwood and Kessler limestone lentils and a bed of coal which is present in places, this formation consists almos
entirely of black, thin-fissile, carbonaceous clay shale of uniform character. Locally the shale part, but this is not common. Becauze of its sof hess, the shale rapidly wears away forming long ness, the shale rapidy wears away
sloping benches on the hillsides.
The coal occurs between the Brentwood and the Kessler limestones. It rarely exceeds 12 inches in thickness and is generally found not far above th Brentwood limestone. As a distinguishable vein it is only local, but streaks of coal ranging in thicknoss from a fraction of an inch to 2 inches are seen in fresh exposures.
A small fossil flora is occasionally associated wit this coal bed. The plants resemble those charac terizing the Sewell formation, of the Pottsville stage, in the southern Appalachian region.
Brentwood limestone lentil. - The Brentwood limestone, named from the town of Brentwood, in
the Winslow quadrangle the Winslow quadrangle, lies near the base of the Bloyd shale, there being usually but from 5 to 10 top of the Hale This is know in the anot top of the Hale. This is known in the reports tremital limestone" Within the Winde "Pe remital limestone. Winin the Winslow quadplaces, of three or more beds of gray fossiliferou limestone, each from 3 to 10 feet thick, separated by beds of the black shale in which it occurs. The upper part of the limestone is difficult to map, it is hidden in most plàes, but its total thickness to 50 feet.
Kessler limestone lentil.-The Kessler limeston was named by the Geological Survey of Arkans from Kessler Mountain, in the Fayetteville quad rangle. It occurs in the upper part of the Bloy
shale, generally within 60 or 75 feet of its top. I shale, generally within 60 or 75 feet of its top. I
is a compact, gray to chocolate-colored fossilifer is a compact, gray to chocolate-colored fossilifer-
ous limestone, and is in places conglomerati ous limestone, and is in places conglomeratic
In weathering the chocolate-colored portion passe In weathering the chocolate-colored portion passe
into characteristic shalelike masses, which will at some places assist in distinguishing it from one o it is here and there covered by debris, but usually can be found by careful search at, bue per horizon. It was not found however, on Sugar Hill, in the northwestern part of the quadrage and was seen at only two places in the hill just eas
f Boonsboro. In some localities it is overlain by few feet of sandstone, and at such places a sligh carpment shows its exact location on the hillside Fossils.-In both the limestone lenses of th specifically the organic remains are abundant and of forms the two lentils are strikingly different the number of species occurring in the Kessle being small as compared with the number found in the Brentwood.
A rather striking and widely distributed species of the Brentwood is Pentremitus rusticus, the fossil from which the old name of the bed-"Pentremital limestone"-was derived. A subramose, honeycombed coral, forming small masses, generally an inch or less across, and belonging to the
eenus Michelinia, is perhaps the most common genus Michelinia, is perhaps the most common ad characteristic fossil of these limestone lentils, with small gasteropods and pelecypods of many kinds; others are made up almost entirely of delicat kinds; others are made up almost entirely of deli
branching and reticulated species of bryozoans. While the fauna of these limestones is in lar part new to science, critical comparisons with described species show clearly that it is more closely related to well-known Pennsylvanian faunas than to any known fauna in the Mississippian series, The fact that marine faunas of Pottsville age had been hitherto almost unknown imparts unusual tions of the their occurrence in the calcareous por ame time it explains their strange aspect when compared with described faunas.

winslow formation

The Winslow formation is named from the town of Winslow, at the summit of the Boston Mounains, on the St. Louis and San Francisco Railroad It rests upon the Bloyd shale, and the rocks belong ing to it are the only ones that outcrop along the ummit of the Boston Mountains and on the south ern slopes, except in the deepest ravines, where
older ones have been exposed. Rocks of this for mation also occur on the tops of the outliers imme diately north of the Boston Mountains. Its total thickness in the Winslow quadrangle is indeterminable, but approximates 2300 feet.
muad
Character.-The formation consists of alternat ing beds of sandstone and shale, with a few thin lenses of limestone. The sandstone is usually brown, composed of medium-sized grains, more or less micaceous, and occurs in beds that range in thickness from 3 feet to more than 50 feet. The thick beds are remarkably similar in character, passing from sandy shale at the base to mass ive layers at the top, so that it is impossible to recognize the same bed at different places, and impracticable to map any particular bed above
the basal one. Within the Winslow quadrangle the basal one. Within the Winslow quadrangle at least one of these beds is conglomeratic, con taining waterworn quartz pebbles the size of pea and smaller. This bed lies not far above the base of the formation. In other portions of the Boston Mountains there are two or more such beds.
ple marking is common in all the thin-bedded le marking is common in all the thin-bedded These belo cros mass form a series of similar escarpments and benches form a series
on the slopes.
The shales, which constitute probably 75 per ent of the formation, are as a rule black and carbonaceous, though less so than those of th Morrow group. Some of the beds in the uppe nd middle parts are more or less sandy, mica ceous, and brown to drab
black carbonaceous matter
Lenses of the limestone above mentioned occu at several places in the summit region of the west ern half of the quadrangle, but they are thin and apparently of small extent. The thickest lens
observed was on the south slope, away from the observed was on the south slope, away from the summit region, on West Cedar Creek a half mile
bove its junction with East Cedar Creek. Thi above its junction with East Cedar Creek. This
lens is 8 feet thick, and passes gradually into lens is 8 feet thick, and
sandstone above and below.
Coal above and belor.
Coal occurs within this subdivision, but only in thin beds. The thickest bed reported- 2 fee of Rudy. A thin seam was struck in an open prospect hole at Chester, and other seams are reported from Lee Creek and Hurricane Creek above Plymouth.

Subdivisions.-It was not found practicable to divide the formation in the Winslow quadrangle, because of the general similarity of the rocks from its base to its top, yet it is elsewhere subdivided each other. The upper portion may correspond to ach other. The upper portion may correspond to in the Tahlequah folio.
The lower portion of the Winslow contains mo of the sandstone of the formation, and the sand from mica than that of the upper part The bere f the Winlow formation covist of 20 to 60 fet of massive sondstone underlain by about 20 feet shaly sandstone. Unweathered portions of the shaly sandstone present a massive appearance, but on exposure the bedding planes are developed and the shaly appearance follows. The rapid weather ing of this rock and the shales beneath it under mines the massive layers and forms the steepest and most pronounced escarpment of the region, which conspicuously marks the dividing line between the Morrow group and the Winslow for mation. The mode of occurrence of the basal layer of the sandstone, with its sandy shales beneath, is repeated in the several sandstone beds above. it In none of the others is the massive portion so thick, however, as in the basal one, except in certain beds about 100 feet thick in the upper portion along Frog Bayou, just south of Lancaster. A beds of this prominence are not exposed elsewhere, it appears that at the point mentioned they are th
result of local thickening The thickness of the lo
Tind but it prortion is not dete mined, but it probably exceeds 1500 feet. There are 900 feet exposed northwest of Bidville, near Mountain the thickness is at least 1000 feet mile south of Rudy, near the railroad, a well was drilled to the depth of 1449 feet, apparently with out reaching the Bloyd formation beneath.
The upper portion of the Winslow formation the surface rock in the southeastern part of the quadrangle from Plymouth southward, extending westward beyond Rudy, on the railroad. It also occurs south of Stattler and east of Lee Creek, in
is northeast and southwest. All the faults are probhave the normal type, though some of them locally on the appearance of overthrusts. Slickensiding novement was mainly horizontal. The vertical displacement is generally small, but at some places is as much as 500 feet.
Structure of the Boston Mountains.-The rocks of the northern and middle portions of the Boston Mountains probably are mainly horizontal. The very low arching that occurs in the Winslow quad-
rangle, giving the rocks a low northward dip on angle, giving the rocks a low northward dip on east, but the survess made to the present time do hot indicate this. The structure of the souther portion of the Boston Mountains is monoclinal, he rocks dipping southward, generally at a low hough easily perceptible angle. A certain amoun of faulting occurs along the east-west line wher the Boston Mountains pass into the Arkansas Valley, but neither the horizontal extent nor the vertical displacement is yet known. The down hrow of these faults is on the south side.
structure of the winslow quadrangle,

generral statement.

The structure of the quadrangle is indicated in he sections forming figs. 3 and 4, which show th positions in which the rock beds would be seen if hey were cut through on a north-south line and the rocks on the east side removed, leaving tho n the west side exposed to view
The rocks the quad but the for small folds and faults. Those of the southern two thirds dip as a whole to the south, forming a continuous monocline. The dip is generally at a low angle and is here and there interrupted by horizontal stretches or dips of minor importance i ther directions. In places, along certain lines, the dip is as much as 15°, forming upon the general monocline secondary monoclinal folds which greatly
affect the structure. Over the northern third of the quadrangle the rocks dip northward at a low angle,
extreme western margin of the quadrangle a syncline which, a little farther east, passes into the Evans nle rault, to be described later. For a distance It about 3 miles the top of the anticline is flat outh fern limb forms the western part of the auth fork of the Frisco monoclinal fold. Thi inticline is not noticeable east of Cove Creek.
West of Natural Dam, between Mountain Fork and Lee Creek, there is an anticline similar to th lso appers to be bro text. Thi line entering from the west.

General statement--Within the quadrangle ther re two sets or systems of faults, one of which xtends from northeast to southwest and the other mainly from east to west. They are of the clas
nown as normal faults, and the displacemen seldom exceeds 100 feet. In neither system does here appear any rule of downthrow. In some faults it is on one side, in others it is on the other The character and relation of these faults to th monoclinal folds will be understood by referenc to the areal geology map and the structure sections. The shortness of the distance over which some of he faults are mapped is due to the similarity of he sandstones and shales constituting the Winslow formation, which prevented the detection of faults in those areas where the lower rocks are not
exposed.
White River fault.-Of the northeast-southwest
faults, one is located in the northwestern part of fequadrangle. This fault has an extent of only passes southwestward into Iudian Territory, and ortheastward into the Fayetteville quadrangle hence it extends eastward into the Eureka Spring quadrangle. In the Winslow quadrangle the downhrow of this fault is small and is on the southeast ide. It has been described in the Fayetteville folio is the White River fault.
Price Mountain fault.-The most prominent fult extending in a northeast-southwest direction is the one along Cove Creek. In places it is
well-defined fault; in others it is represented by
monocline that is so pronounced in the southern part of the quadrangle. It is this fault that cause the escarpment bordering the Arkansas Valley in Lafayette and Vine Prairie townships. The down hrow is on the southeast side. The amount of throw is uncertain, but if a thin bed of coal out cropping in the southern part of sec. $21, \mathrm{~T} .10 \mathrm{~N}$. R. 29 W ., at an elevation of about 450 feet, is the same as a similar one outcropping in the southern part of sec. 13 , T. $10 \mathrm{~N} ., \mathrm{R} .30 \mathrm{~W}$. , at an elevation of 750 feet, the throw is about 300 feet. The graphic relations of these coals indicates that they are the same bed.

Evansville Creek fault.-Of the east-west faults the most pronounced is the one along Evansville Creek, extending eastward beyond Fall Creek. The same general line of disturbance is indicated by the Frisco monoclinal fold, which is notably displayed on Lee Creek near the Washingtonrawford county lin
Along Porter. rice Mountain fault the structure is somewhat nusual. The Price Mountain fault brings the base of the Winslow in the northeast quadran made by the crossing of the faults down to the evel of the Brentwood limestone in the northwest quadrant. Likewise the Evansville Creek ault brings the Winslow in the northeast quadrant down to the level of the Brentwood limestone in the southeast quadrant. In the southwest quadant the Pitkin limestone occurs at two very differant heve the rat of the fault of the of the le and the side a
arch.

This fault follows the axis of a syncline from its estern end, south of Anderson Mountain, to some point east of Cove Creek, but at Fall Creek it i on the south limb of the syncline. The displacenent of this fault does not exceed 100 feet, and F. Frisco, which is in the same general line of disdownthrow of this fault is on the south.

Frat 3.-South-north section through Anderson Mountain, along line A-A on areal geology map.

 \section*{If. 4.-South-north section through Winslow, along line B-B on areal geology map
 \section*{If. 4.-South-north section through Winslow, along line B-B on areal geology map
 }
he southwestern part of the quadrangle. It consists of thick beds of dark carbonaceous shales containing dark micaceous sandstone. The amount of sandstone is relatively smaller than in the lower division. Coal from 3 to 8 inches thick is found in the shate but it has not been observed at a suf ficient number of points to determine whether occurs at only one horizon or at more than on The thickness of this subdivision within the Win low quadrangle is not determinable from prese data, but it probably reaches 800 feet

STRUCTURAL GEOLOGY.
structure of the ozark region.
Structure of the Ozark Plateau.-The general structure of the Ozark Plateau is simple. As stated above, the structural center of the Ozark uplift is the St. Francis Mountains. From this structural center the rocks dip to the north, west, and south. The dip is at most places so low that it can not be detected in single exposures, but it is sufficient to carry the older rocks, which outcrop
around the central portion of the uplift, far beneatl the surface in northern Arkansas.
Near the northern base of the Boston Mountains faulting is common. A line of faults extending in a general east-west direction runs from near the western border of Arkansas to the eastern border of the plateau. This line of faulting is crossed a intervals by faults of a system whose general course
making the structure over the northern half of the quadrangle that of a low anticline.

Frisco monoclinal fold.-A pronounced monolinal fold extends south of east from Anderso Mountain, near the western border of the quad angle. Another, of equal importance, extend orth of east from Whitzen Hollow. Each o hese folds is about 2 miles wide and the dip probably nowhere exceeds 10°. The two monoburn Creek, frem which they extend of ock to the eastern border the quadrangle Thi tructural feature is well marked at the bend he railroad above the town of Frisco and is there fore called the Frisco monocline. On the areal reology map these folds can be traced by inlier of lower formations, such as the Pitkin and Hale in the deep ravines south of the divide, where hese lower rocks have been cut into along the tops of the folds and are thus exposed over small reas, as shown on the map.
stxclines and anticlines.
Near the middle of the western portion of the quadrangle there is what appears to be the easter foom the west. The northern limb of this anticlie from the west. The northern limb of this anticline fork of the Frisco monoclinal fold, forms at the
monoclinal fold, extending for several miles long the valley. The same line of disturbance is shown in a fault west of Onda post-office and in he northeast in the Fayetteville ecomes east, in the Fayetteville quadrangle, it extent, and it reappears as a fault in the Eureka Springs quadrangle. The total length of the line of disturbance is about 55 miles. Along Cove Creek the displacement by this fault is only about 50 feet, and the downthrow is on the southeast fide. This has been described in the Fayettevill A small fault belonging to this series follows the
A sous and San Franciseo Railrod for obout 2 miles, its north end being at thë bend of the rail road just south of Brentwood. The downthrow on the west side and the displacement is small What is probably the same line of disturbance is hown in slight faulting in the bed of Howard Fork, south of Winslow, and in a fault on Frog Bayou, south of Chester, at the mouth of Jones Fork.
Muberry fault.-A northeast-southwest fault ccurs in the southeastern part of the quadrangle. Etering the quadrangle in the northwestern part fsec. 36, 1. 10 N., R. 30 W., it extends northeastward for about 5 miles, to a point above the
junction of Little Mulberry and Rock creeks From this point it can not be traced eastward, From this point it can not be traced eastward,
but it appears to pass into the southward-dipping

Mountain Fork faults.-In the upper part of Mountain Fork valley, at the western border of the quadrangle, there are two parallel east-west fault out one-half mile apart. These are plainly dis crnible on account of the variety of the forma ions exposed in the locality mentioned, but they can not be traced far eastward because of the uni orm character of the rocks of the Winslow forma ion, into which they pass about 2 miles east of the tate line. The deformation consists of a block et dow between the two fauls, the downthrow eing 100 feet along the long the north one.
llis Brat crosses Lee Creek and Cllis Branch a short distance above their junction 00 feet. Another crosses Lee Creek in T 14 N R. 31 W ., in which the downthrow is nearly 200 feet and is on the south side. Another which ha downthrow of about 50 feet on the north side ccurs in the same township northwest of Onda post-office, and still another occurs in sec. 31, T 4 N., R. 29 W ., in the eastern part of the quad angle. The direction of the downthrow of the last ault was not determined, but it is probably on the orth side. All the faults mentioned in this para graph either occur in the Winslow formation o an into it within short distances. On account of the similarity of the Winslow rocks it is not prac ticable to map the faults therein, although they may extend for considerable distances.

HISTORICAL GEOLOGY

General historical events.-Probably from Archean time, during long geologic periods, the area occupied by northern Arkansas and adjoin
ing regions was covered by the waters of the ocean ing regions was covered by the waters of the ocean,
except at intervals when parts of it were temporarily except at intervals when

The final

ithe the emergence of the Ozark area began with the central part of the uplift and, except dur all directions, so that those parts far removed from the center were late in appearing. Most of the Ozark Plateau was a land area long before the Boston Mountain region emerged from the sea. During this time denudation was going on over the Ozark Plateau, and the detrital material result ing therefrom was carried by streams and deposite over the present area of the Boston Mountains and farther south along the Arkansas Valley. That the Boston Mountain region formed an area subsidence during this time is shown by the gre hickness of Pennsylvanian rocks it comprises.
That the Ozark region has not stood at a contant level since its final uplift from the sea, bu has sufered oscillations, is indicated by the charfer of its stream valleys and by the overlapping dges of the older rocks of the rea Differentid dges at a sequently, or both at the time of uplift and late produced the crustal warping and the faults above described. But the movements over the area were comparatively uniform, leaving the rocks horizontal or with only low dips.
Local geography in Ordovician time.-Although no rocks lower than the Carboniferous appear a the surface of the Winslow quadrangle they doubtless occur beneath, and would be penetrated by deep drilling. That is to say, the geographic conditions in pre-Carboniferous time were much the ame within the area of this quadrangle as in adja ent regions where older rocks are exposed. Th Ordovician rocks are magnesian limestones interbedded with small amounts of shale and large amounts of sandstone. Their sandy parts show
ripple marks of short wave length, and the limetone, on weathering, frequently shows simila narks. Sun cracks are also seen in them. The ripple marks indicate a shallow sea and the sun ngs and the fact that nearly all these rocks are imestones indicate that during Ordovician an here was a shallow sea of clear water over the entire area, with low neighboring land areas.
Local geography in Silurian time. In the
art of the highland region of northern Arkansas the Silurian is represented by the St. Clair limetone. But in the western part of Missouri and northwestern Arkansas rocks of this age do not tcrop and may be wanting also heneath the cove later rocks. At Marble, Ind. T., however, about 8 miles west of the southern half of this quadran is quite possible that it may extend eastward from that point into this area. Where the Silurian wanting, rocks of Devonian or Carboniferous ag rest upon the Ordovician. Most if not all of the rea over which Silurian rocks are absent was land huring silurian time, and consequently was under oing erosion. The rocks constituting that land Ordovician are and the mas and vicinty were of Ordovian into the and the the Silurian hat were being laid down in the neiglboring sea Local geography in Devonian time.-During late Devonian time the geography of the region changed o as to extend the sea over a considerable port of what had been land during Silurian time. This extension resulted in the deposition, over parts of northern Arkansas, of Devonian rocks, which conist for the most part of sandstones and shales, The Sylamore sandstone and the Chattanooga shale were laid down at this time. It appear that the sea advanced from the south toward the north, and that the Sylamore sandstone was laid down along the advancing coast line and was followed by the Chattanooga shale. Where the Silurian rocks are present the Devonian rocks
rest upon them; elsewhere the Devonian rocks lap rest upon them; elsewhe
over on the Ordovician.

Winslow.

Local geography in Carboniferous time.-During he greater portion of Carboniferous time the are occupied by northern Arkansas was covered by the
sea, so that all the general divisions of the rocks of hat age are there represented. Occasional change f level resulted in the local absence of certain for mations and parts of others, but the intervals repThe conditions seem to have been those of lying land areas and an which only slight a curions or subsides of land were necessary to cause the sea to recede advance.

Sands

water, but in in themsel ves are evidence of shallow Mississippian and Pennsylyanian series are ripple marked where thin, and cross-bedded where heavy, indicating deposition in shallow water along a seashore. The same conditions are indicated by the onglomeratic nature of the northern border of
he Pitkin limestone, certain parts of the Kessler limestone, and some of the beds of the Winslow ormation.
Numerous beds of black, carbonaceous shale constitute a large part of the Carboniferous rocks bove the Boone formation. Probably these were detrital in shallow water and were composed of detrital material from low-lying, vegelation-covere and areas, over which flowed sluggish streams that
were unable to carry coarser-grained material. The hallow-water origin of some of the shale beds i confirmed by the presence in them of thin beds of ipple-marked sandstone
The Pitkin limeston
out the Boston Mountain, which occurs through etteville formation, represents a time of minimy deposition of detrital material and consequently clear sea, which, as above stated, was probabl hallow.
The Hale formation, which rests upon the Pitkin mestone, represents a resumption of land sedimenation, which appears to have continued throughout the time occupied by the deposition of the Morrow group and the Winslow formation, except during the
two intervals in which the Brentwood and Kessler two intervals in which the Brentwood and Kessler imestones were put down. These limestones occur in the black, argillaceous, coal-bearing shale of the Bloyd formation and seem to indicate radical physnuddy sediment being followed by one that was practically free from such deposits.
The f Window form the ither to uplift of the land supplying the material, resulting in renewed vigor of the streams suffician enable them to carry coarse material; or to th verse action, encroachment of the sea upon th and, during which process the sorting power of he water would separate the sand from the fine near the shore and carrying the finer muds seaward. Possibly some of the sandstone beds owe heir origin to the one process, and some to the ther; but the sequence of the rocks from argillaeous shales upward through sandy shales to massive sandstone, which is the one so often repeated in he region, favors the theory that the sandstone ere the result of land elevation rather than se ncroachment.

unconformities.

General statement.-While the region was beneat he ocean, detrital material carried from land area y streams was forming sedimentary rocks upon . Such parts as were from time to time lifted he land suffered erosion during the time they tood above sea level, while adjacent marine areas ontinued to receive deposits. After these tempoary land areas had subsided beneath sea level, eposition upon them was resumed, but the formations that were deposited in the surrounding seas while the land area was suffering erosion were wanting over this area. The part removed by eroion was also wanting. In such cases there is a gap etween the older rocks and the overlying younger nes, known as an unconformity. The amount of ock thus lacking in the geologic column at any particular point depends upon the thickness o trata deposited while the area was land, and the amount eroded from the land during this time.
Several notable unconformities have already been
determined in this general area, but most of them ocur in rocks older than those exposed in the
Winslow quadrangle. However, there are two Winslow quadrangle. However, there are two,
one at the top of the Boone limestone and one at one at the top of the Boone limestone and one at
he top of the Pitkin limestone, which enter int he history of the exposed rocks in the quadrangle Unconformity at top of Boone formation.-In the astern part of the Paleozoic region of northern rkansas the Boone formation is overlain by the Moorefield shale, mentioned in the accompanying ble of formations and general time scale. This in urn is overlain by the Batesville sandstone. Th nd both formations uadrangle. The history of the unconformity is a fllows: After the Boone formation was deposited orthern Arkansas was lifted above sea level, becoming a land area which suffered more or less erosion. The period of erosion was followed by one of subsidence, bringing a portion of the area below ocean level and resulting in the deposition of the Moore eld shale. It appears that this subsidence did not abmerge northwestern Arkansas, which remained and; but a later subsidence brought the greate part of it beneath sea level during a period in which he Batesville sandstone was deposited in certain ration for the Batesville hane been of slor very thick, and at its close the nore is nowher very thick, and at its close the northwestern part ise to Arosion by which the Baterate giving was partially ry wed Amertly this sandston was either not deposited over the Winslow quad rangle at all or it was wholly removed from it. In hose parts of this region where the Batesville sand tone is absent the Fayetteville shale, the next ormation deposited, rests directly on the Bbone formation.
Unconformity at top of Pitkin limestone.-The northern border of the Pitkin limestone is in he southern part of the Fayetteville quadrangle, which joins the Winslow quadrangle on the north. Around its northern border this limestone is truncated by erosion, the overlying Hale formation resting unconformably upon it and lapping over
on the Fayetteville formation. This condition is ignificant, because it indicates that a land area hen existed north of the Winslow quadrangle an only a short distance away. It follows that e rocks of the Morrow group and probably later formations are made
It is also true that along its northern border the Pitkin limestone is conglomeratic. This indicates n elevation of the land, resulting in the rejuvenation of the streams sufficient to enable them to arry pebbles of considerable size. These pebbles ere deposited around the borders of the sea at the me the Pitkin limestone was being deposited, in that way became a part of that formation. The very uniform thickness and even surface of
the top of the Pitkin limestone in the Winslow uadrangle and the fact that it is everywhere found there at the proper horizon indicate that the unconformity does not reach into the Winslow quadranle. The Hale formation here rests upon the itkin in such a way as to indicate that the periods of the deposition of these two were not separated by an interval of erosion, but that the one placed without interruption upon the other. ny rate it seems certain that the erosion interva was here relatively short
was here relatively shor
Emergence of the area.-Deposition seems to have Mountain region during the latter over the Boston ippian (Lower Carboniferous) time and during a large portion and probably all of Pennsylvanian (Upper Carboniferous) time. The region may have been a land area during the later part of Pennsylvanian time, in which case it was washed on the outh by the sea which then occupied the valley of he Arkansas. However this may have been, the egion was affected, either by increased uplift of the land or by entire emergence from the sea, by he widespread crustal movements that brought Carboniferous time to a close. Except, possibly,
for a brief time, during which the waters of the Tertiary sea that covered the lower portions of the state may have encroached somewhat upon its present slopes,
remained land.

physiographic record

Oscillations of the region.-The forces which produced the above-mentioned uplift and which lines south of Arkansas the rocks along east-west he lifted vertically upward so as to leave them to beds practically horizontal in the leave the rock However, it should be remembered that a monoclinal fold, which has already been described under the heading "Structural geology," extends southward from near the summit to the southern base of the Boston Mountains. The present altitude of the rocks is not the result of a single impulse that first lifted them from beneath sea level, for at least twice since the first uplift the region subsided sufficiently to bring the waters of the Gulf far inland and was again uplifted, forcing the water border seaward. The first of these subsidences occurred during Cretaceous time and resulted in extending the waters of the Gulf over a large portion of the area now occupied by the Gulf Coastal Plain. This subsidence was followed by an uplift and this in turn by another subsidence, bringing the Gulf as far north as the mouth of Ohio River. The last subidence occurred during Tertiary time, and the folits present posift forced
The structure of
Thed of ozark region is the comned result of its oscillations, including the initial Its present altitude is the net result of its oscillations and the amount lost by erosion. The maximum amount of uplift within the region occurred in the vicinity of the St. Francis Mountains, a fact which explains the general dip of the rocks away from that center. As the rock strata throughout the region are so nearly horizontal, it is concluded that the force producing the uplift acted in a vertical and not in a horizontal direction. There was little of the lateral thrust that tends to produce folds. The region as a whole was lifted bodily upward. There is reason for believing that by a late movement the Boston Mountains were forced up higher than the country farther north. This uplift is indicated by the present height of those countains, which is greater than that of any other part of the Ozark uplift; by their drainage, which is north and south from the divide; by the deep and youthful character of the canyons through which into White Rive and westward into the Askard into White River and westward fore thought that the Boston Mountains owe their height not only to excesive erosion of the region to the north, but in part to differential uplift.
Erosion of the region.-Had the region not suffered erosion after uplift it would have stood much higher than it now stands, and the surface of the Winslow quadrangle would have been a flat arch, with its southern base several hundred feet lower than its northern one; but no sooner was the region lifted out of the sea than streams began to form on it. The main lines of drainage at first developed were White River to the north and Arkansas River to the south. From these main streans tributary streams gradually cut back toward the divide, many of them having now passed beyond that line, so that their heads interlock in the manner already been developed in such numbers that the region is been developed in such numbers th.
now completely dissected by them. now completely dissected by them
Ero region north of the Bos, for it has rains than in the part of Missouri and northern Arkansas to a comparatively low altitude, leaving the Boston Mountains standing up above the area thus eroded, their front forming a rather bold escarpment. The summits of many of the outliers north of the Boston Mountains stand several hundred feet above the general level of the area about them, furnishing incontrovertible evidence of a part of the erosion that has taken place over the area
Influence of structure on the drainage.-The preservation of the Boston Mountains from the marked erosion which has affected the region to the north is due in part to their structure, which, as already stated, is that of a flat anticline. The divide was located by the structure, and only the headwaters tains. Since the reduction of the surface is latest
along the small streams the rocks of the anticline are there least removed. Their preservation in places is due also to the massive beds of sandstone
of which they are in part composed, and which is of which they are in part composed, and which is
able to withstand erosion for a long time. Most able to withstand erosion for a long time. Most ledge at the base of the Winglow formation.
The steep slope win he Winhow
The steep slopes within the Winslow quadrangle caused the streams hat flow northward and souththeir beds rapidly, without much side or lateral cutting, a process which has formed the steep, nar cutting, a process which has ormed the region. The alternating layers of hard and soft rocks have oiven rise to numerous small waterfalls and rapids, which appear along the course of each stream at the outcrops of the hard layers.
Streams develop easily in the direction of the dip and along the strike of rocks, but with difficulty in other directions. This is well exemplified in the streams of the southern part of the Winslow quadrangle. By reference to the topographic map it
will be seen that the main streams south of the will be seen that the main streams south of the divide flow nearly southward, with here and there a stretch extending eastward or westward. Over the south ward parts of their courses they flow with the dip of the rocks, and over the eastward or westward parts they flow along the strike. Thus the the latitude of Natural Dam, from which point it the latitude of Natural Dam, from which point it
flows westward for several miles, following the flows westward for several miles, following the
strike of the southward-dipping rocks. The abstrike of the southward-dipping rocks. The
rupt turn of Cove Creek to the east, north of Graperupt turn of Cove Creek to the east, north of Grape-
vine Knob, is caused by the upturned edges of the rocks along the Frisco monocline. The influence of the strike on the course of streams is observed also in the courses of Webber Creek and Cedar Creek west of Rudy, in those of McCaslin Branch west of Chester and Jack Creek south of Patrick Mountain, and in the lower part of Little Mulberry Creek. The tendency of streams to follow fault lines is shown in Cove Creek from its source to the point where it turns eastward, in Evansville Creek, and in the lower part of Garrett Hollow.
The effect of structure is shown not only in the main streams of the region, but is even more
marked in their tributaries. It is interesting to marked in their tributaries. It is interesting to note that the northern tributaries of Lee Creek, Webber Creek, Cedar Creek, and Little Mulberry
Creek are numerous and comparatively strong and Creek are numerous and comparatively strong and
well developed, while those from the south are few weld feeble Thi condition is due to the geral and feeble. This and slowing in that direction to develop with strean prohibiting the development of large northwardprohibiting the
flowing streams.

ECONOMIC GEOLOGY.
mineral resources.
The resources of the Winslow quadrangle consist of limestone, clays, a small amount of coal and possibly of natural gas and oil, soils, water, and
timber. At present practically no use is made of the limestone and the only point at which clay is utilized is near Prairie Grove, where one plant
uses it for manufacturing brick and tile. It is uses it for manufacturing brick and tile. It is
probable that the limestone and clay which occur probable that the limestone and clay which occur
in association at the northern base of the Boston in association at the northern base of the Boston
Mountains would make good cement. Coal is Mountains would make good cem
mined only for local blacksmithing.
himestone.
The Pitkin limestone occurs in sufficient amounts at all points of its outcrop to permit its being quarried. It is a fairly pure, homogeneous non-
magnesian limestone of a uniform gray color. Its coarse texture and the large number of fossils it contains indicate that it would be neither strong nor durable as a building stone. Except for local use for temporary structures its employment as a building stone is made more improbable by the large amount of good limestone and marble available for this use in northern Arkansas.
The limestone beds of the Hale contain streaks of sandstone and are therefore, as a rule, so heterogeneous as to make them undesirable for use
as building stone. However, at a point on Lee Creek, $2 \frac{1}{2}$ miles north of Barcelona, this limestone occurs in massive beds, more than 40 feet thick, and was utilized many years ago for the manufacture of lime.

The Brentwood limestone is very similar in character and general appearance to the Pitkin,
but it is not so massive and its occurrence in conbut it is not so massive and its
siderable quantities is uncertain.
The Kessler limestone is generally so thin that it could not be quarried with advantage, and it has no qualities to recommend it for any purpose which
the Pitkin or Brentwood would not serve as well Any of the limestones of the region could be Any of the limestones of the region could be mount of sand in the limestone of the Hale would probably render it exceptionally suitable for this purpose.

clays.

The decomposition of the numerous beds of shale that outcrop on practically all the hill slopes give The wase equal number of belts of residual clay. iderable over these softened shales has carried conleposited it along the bases of the hills. This condition is especially noticeable along the north base of the Boston Mountains, where the Fayetteville hale outcrops, and where the clays consist of residual clay derived from the Fayetteville shale and transported clays derived from the shale outcropping above. Because of the great similarity of Fayetteville and Morrow formations the resulting clays are very similar. They contain the resulerable clays are very similar. They contain considerable less, some lime. As would be expected, those that consist in part of transported material from the sopes above contain a quantity of sand, and derived from shales free from sand, are found in the decomposed shale of the upper part of the Morrow group and in other beds. The best clay of this character observed is at the height of 1000 feet on the hillside $1 \frac{1}{4}$ miles south of Mountainburg, where it is finely exposed in the roadside.

irov.

Ferruginous sandstone and small deposits of limonite of poor grade occur at several points in the Winslow formation, but they have no economic value.
\checkmark natural gas and oil.
Oil has recently been struck at Muscogee, Ind. T., and small amounts of gas have been obtained in the Fayetteville quadrangle. The stratigraphic
and structural conditions in the Winslow quadrangle are favorable to the storing of oil or cas if they are present in the area. There is a possibility of procuring natural gas or oil in the western part of the quadrangle, in the two anticlines already described. The portion of the northern of these two anticlines most favorable for prospecting is an area extending 2 miles on either side of the Washington-Crawford county line and from the western border of the quadrangle eastward as far as Stop post-office. In the southern anticline the most
favorable prospecting ground is a small area lying avorable prospecting ground is a small area lying
between Mountain Fork and Lee Creek and extend ing westward Dam to the township line. In neither of these would it be worth while to drill more than a few feet below the base of the Boone formation.

zinc and lead.

The zinc and lead in southwestern Missouri and vicinity occurs in the Boone formation. This forcarefully exploted for these mas has never been assurance can be siven of their occurrence ine quantities in the region, they may yet be discovered in deposits large enough to be profitably mined. Small amounts of sphalerite have been found by surface prospecting near Morrow postoffice. Prospecting for zinc and lead ores within the Winslow quadrangle should be confined to the most promising places along those parts of the White River fault, Price Mountain fault, and Evansville Creek fault where the Boone formation is near the surface. These points can be located by reference to the areal geology map.

соли.
Coal in the Bloyd shate.-In the Bloyd shale at some places there is a bed of coal, usually from 10
to 12 inches thick. This is the coal and shale
referred to in the reports of the late Geological Survey of Arkansas as the coal-bearing shale This coal is worked within the quadrangle for local use only, at several points on the northern slopes and along Cove Creek and Ellis Branch on the southern slopes. It is a coal of superior quality too thin for extensive development.
Coal in the Winslow formation.-A small bed coal was passed through by a prospect shaft Chester, but it probably did not exceed 2 or 3 inches in thickness. The record of a drilled well in the valley of Frog Bayou, a mile south of Rudy, hows that 2 feet of coal was struck at a depth 30 feet from the surface. Though this well i almost 1500 feet deep, it penetrates no other coal bed. In the southeastern part of the quadrangle, in the shales that constitute the upper part of the Winslow formation, coal outcrops at several points in beds that range in thickness from 3 to 10 inches, These outcrops are too thin to be traced, but thei stratigraphic relations indicate that the coal is not confined to a definite horizon, but occurs in lense at different horizons. This coal has been worked for local use at a few points, and these, togethe with the points at which the coal of the Bloy
hale has been worked, are shown on the map.

water resources.

Springs are common in the northern and west arn parts of the quadrangle and at places south of limestone. The water of these springs is distrib uted to all parts of the quadrangle by means streams, most of which furnish a constant supply of excellent quality. In places where springs are not common it is generally easy to obtain water by means of wells. There are four important waterbearing formations within the area, namely, the Boone, Pitkin, Hale, and Winslow.
Boone horizon.-The Boone is much jointed and its cherty parts are fractured, conditions which permit it to receive and readily transmit a large tant water-bearing formation in northern Arkansas and the large amount of water it furnishes is o excellent quality. The area over which this is the surface rock in the Winslow quadrangle is so nearly level that only a few springs emerge from it, and $\begin{gathered}\text { lever wate } \\ \text { the wate } \\ \text { wells. } \\ \text { Pitki }\end{gathered}$
win

Pitkin horizon.-The Fayetteville shale, on which the Pitkin limestone rests, holds the water p in the limestone, through which it moves along and there along the hillsides in strong, beautiful springs. The historic springs at Boonsboro issu from the Pitkin formation, and there are numerou others along its northern outcrop. Many springs also flow from this horizon on the south slope where the limestone is exposed in the ravines, such as Cove Creek, Low Höllow, Garrett Hollow, Whitzen Hollow, and Mountain Fork.
Hale horizon.-The upper portion of the Hal formation, being of an open, porous nature, form excellent water reservoir, from which issue vals along its outcrop in the northern part of the quadrangle, in the deep ravines south of the divide, and along the western border as far south as Lee Creek.
Winslow
inslow horizon.-Springs emerge from the Winslow formation on the hillsides of the north slope, but they are of minor importance, in bot stone furnishes water in abundance from wells moderate depth, even on the summits of the high est hills. Over the area in which this is the sur face rock the people rely almost wholly on well for their culinary and drinking supply. In th ravines of the south slope springs issue here and there from sandstone. These springs owe their existence to the general southward dip of the rock and the alternation of beds of shale and sandstone are Dripping Sping Stattler; Oliver Sprin 2 miles west of Rudy; Dean Spring; Fine Sprin and many others.
Character of the water.-All the water of the limestone beds is clear, cold, and sparkling, and is unsurpassed in purity among natural waters. As
imestone is hard, being heavily charged with lime. That from the Boone and Hale, while hard, loes not contain so much lime as that from the
Pitkin, owing to the large amount of silica that is Titkin, owing to the large amount of silica that is he other in sase formations-in one as chert, in the other as sandstone. The water from the Mineral springs.-About $1 \frac{1 t}{}$ miles northe Uniontown there is a spring strong in sulphur, which has been inclosed and is locally used for nedicinal purposes. It issues from the Winslow formation. At Sulphur City, a local resort, in he northeastern part of the quatrangle, a similar sring issues from the Wedington sandstone.
Uses of the water:-The water flowing in the streams of the Winslow quadrangle is practically unutilized except for domestic and stock purposes. The city of Fayetteville, north of the quadrangle, receives its water supply from West Fork of White River, the water being pumped 2 miles into a res-
voir on a hillside overlooking the city. The ervoir on a hillside overlooking the city. The
water supply of Van Buren, south of the quadater supply of Van Buren, south of the quad rangle, is procured from Lee Creek. Many of the prings on the hill slopes could be utilized for irri ating small vegetable and fruit farms, and wate ra be piped freed by hydraulic rams to those above.
soils.
Practically all the soils within the area are resid-nal-that is, they have been formed by the disinte ration of the rocks on which they rest. Only Frog Bayou, and Mulberry River are composed of Frog Bay
Soil of the Boone formation.-The soil overlying the Boone formation consists of a mixture of clay nd chert fragments, the insoluble residue of that formation. In most places it is fairly productive, result apparently due to the prevention of evaporation of the soil water by the loose chert fragment of the surface.
Soil of the Fayetteville formation.-The disinte ration of the Fayetteville shale, which covers a onsiderable part of the northern portion of the quadrangle, has produced a clay of fair fertility nd would doubtless be much improved by underdraining.
The bench of the north slopes at the base of the Pitkin limestone is of unusual fertility, the soil being the product of the joint weathering of the pper shales of the Fayetteville formation and the limestone above, but as the width of this bench does not at many places exceed 200 yards, it is dapted only to small vegetable and fruit farming Soil of the Morrow group.-The Hale formation at the base of the Morrow group, consisting of hale, sandstone, and limestone, forms a soil of excellent quality when it is so situated as to permit its disintegrated parts to accumulate, as it does over considerable areas in the northern part of the quad angle. The unusually rich soil about Boonsbor produced in a large measure by the disintegra ion of this rock. The Bloyd shale, which constitutes the upper part of the group, forms a poor, inproductive soil.
Soil of the Winslow formation.-As a rule the northern slopes above the Bloyd shale are too stee and their soil is too poor and rocky to be worth much as agricultural land. The soils at the top and on the south slope of the Boston Mountain are formed by the disintegration of sandstones and Their patial sterility is probably due largely to the drying up of the bume by the bot ray of the long the lower parts of Lee Creek, Frog Bayou, and Mulberry River are, of course, productive.

timber.

The region was formerly covered by an excellen growth of timber, but all timber of commercial value is rapidly being removed. The principa ries are oak, hickory, and ash. Some walnt ase . The bench on the north slope at the ugar the rim rowth maple. Many of the north slopes have ric removed and shipped for posts. Some pine and mall amount of cedar grow on the south slopes. January, 1907.

COLUM \mathbb{N} 瓜R SCTIM

PUBLISHED GEOLOGIC FOLIOS.

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. ${ }^{\text {t }}$
	Livingston		Cents.				Gents.
	Rivington	Montana	25	78	- Rome	Geo	25
\pm	Ringgold	Georgia-Tennessee	25	79	Atoka	Indian Territory	25
	Placerville	California	25	80	Norfolk	Virginia-North Carolina	25
\$. 4	Kingston	Tennessee	25	81	Chicago	Illinois-Indiana	50
5	Sacramento	California	25	82	Masontown-Uniontown	Pennsylvania	25
6	Chattanooga	Tennessee	25	83	New York City	New York-New Jersey	50
7	Pikes Peak	Colorado	25	84	Ditney	Indiana	25
- 8	Sewanee	Tennessee	25	85	- Oelrichs	South Dakota-Nebraska	25
$\ddagger 9$	Anthracite-Grested Butte .	Colorado	50	86	Ellensburg	Washington	25
10	Harpers Ferry	Va.-Md.-W.Va.	25	87	Camp Clarke	Nebraska	25
11	Jackson	California	25	88	Scotts Bluff	Nebraska	25
12	Estillville	Ky.-Va.-Tenn.	25	89	Port Orford	Oregon	25
13	Fredericksburg	Virginia-Maryland	25	90	Granberry	North Carolina-Tennessee	25
14	Staunton	Virginia-West Virginia	25	91	Hartville	Wyoming	25
15	Lassen Peak	California	25	92	Gaines	Pennsylvania-New York	25
16	Knoxville	Tennessee-North Carolina	25	93	Elkland-Tioga	Pennsylvania	25
17	Marysville	California	25	94	Brownsville-Connellsville	Pennsylvania	25
18	Smartsville	California	25	95	Columbia	Tennessee	25
19	Stevenson	Ala.-Ga.-Tenn.	25	96	Olivet.	South Dakota	25
20	Cleveland	Tennessee	25	97	Parker	South Dakota	25
21	Pikeville	Tennessee	25	98	Tishomingo	Indian Territory	25
22	McMinnville	Tennessee	25	99	Mitchell	South Dakota	25
23	Nomini	Maryland-Virginia	25	100	Alexandria	South Dakota	25
24	Three Forks	Montana	25	101	San Luis	California	25
25	Loudon	Tennessee	25	102	Indiana	Pennsylvania	25
26	Pocahontas	Virginia-West Virginia	25	103	Nampa	Idaho-Oregon	25
27	Morristown	Tennessee	25	104	Silver City	Idaho	25
28	Piedmont	West Virginia-Maryland	25	105	Patoka	Indiana-Illinois	25
29	Nevada City Special	California	50	106	Mount Stuart	Washington	25
30	Yellowstone National Park	Wyoming	50	107	Newcastle	Wyoming-South-Dakota	25
31	Pyramid Peak	California	25	108	Edgemont	South Dakota-Nebraska	25
32	Franklin	West Virginia-Virginia	25	109	Cottonwood Falls	Kansas	25
33	Briceville	Tennessee	25	110	Latrobe	Pennsylvania	25
34	Buckhannon	West Virginia	25	111	Clobe	Arizona	25
35	Gadsden	Alabama	25	112	Bisbee	Arizona	25
36	Pueblo	Colorado	25	113	Huron	South Dakota	25
37	Downieville	California	25	114	De Smet	South Dakota	25
38	Butte Special	Montana	25	115	Kittanning	Pennsylvania	25
39	Truckee	California	25	116	Asheville	North Carolina-Tennessee	25
40	Wartburg	Tennessee	25	117	Casselton-Fargo	North Dakota-Minnesota	25
41	Sonora	California	25	118	Greeneville	Tennessee-North Carolina	25
42	Nueces	Texas	25	119	Fayetteville	Arkansas-Missouri	25
43	Bidwell Bar	California	25	120	Silverton	Colorado	25
44	Tazewell	Virginia-West Virginia	25	121	Waynesburg	Pennsylvania	25
45	Boise	Idaho	25	122	Tahlequah	Indian Territory-Arkansas	25
46	Richmond	Kentucky	25	123	Elders Ridge -	Pennsylvania	25
47	London	Kentucky	25	124	- Mount Mitchell	North Carolina-Tennessee	25
48	Tenmile District Special	Colorado	25	125	Rural Valley	Pennsylvania	25
49	Roseburg	Oregon	25	126	Bradshaw Mountains	Arizona.	25
50	Holyoke	Massachusetts-Gonnecticut	25	127	Sundance	Wyoming-South Dakota	25
51	Big Trees	California	25	128	Aladdin	Wyo.-S. Dak.-Mont.	25
52	Absaroka	Wyoming	25	129	Clifton	Arizona	25
53	Standingstone	Tennessee	25	130	Rico	Colorado	25
54	Tacoma	Washington	25	131	Needle Mountains	Colorado	25
55	Fort Benton	Montana	25	132	Muscogee	Indian Territory	25
56	Little Belt Mountains	Montana	25	133	Ebensburg	Pennsylvania	25
57	Telluride	Colorado	25	134	Beaver	Pennsylvania	25
58	Elmoro	Colorado	25	135	Nepesta	Colorado	25
59	Bristol	Virginia-Tennessee	25	136	St. Marys	Maryland-Virginia	25
60	La Plata	Colorado	25	137	Dover	Del.-Md.-N. J. .	25
61	Monterey	Virginia-West Virginia	25	138	Redding	California	25
62	Menominee Special	Michigan	25	139	Snoqualmie	Washington	25
63	Mother Lode District	California	50	140	Milwaukee Special	Wisconsin	25
64	Uvalde	Texas	25	141	Bald Mountain-Dayton	Wyoming	25
65	Tintic Special	Utah	25	142	Cloud Peak-Fort McKinney	Wyoming	25
66	Colfax	California	25	143	Nantahala	North Carolina-Tennessee	25
67.	Danville	Illinois-Indiana	25	144	Amity	Pennsylvania	25
68	Walsenburg	Colorado	25	145	Lancaster-Mineral Point	Wisconsin-Iowa-Illinois	25
69	Huntington	West Virginia-Ohio	25	146	Rogersville	Pennsylvania	25
70	Washington	D. C.-Va.-Md.	50	147	Pisgah	N. Carolina-S. Carolina	25
71	Spanish Peaks	Colorado	25	148	Joplin District	Missouri-Kansas	50
72	Charleston.	West Virginia	25	149	Penobscot Bay	Maine	25
73	Coos Bay	Oregon	25	150	Devils Tower	Wyoming	25
74	Coalgate	Indian Territory	25	151	Roan Mountain	Tennessee-North Carolina	25
75	Maynardville	Tennessee	25	152	Patuxent	Md.-D. C.	25
76	Austin	Texas	25	153	Ouray	Colorado	25
72	Raleigh .	West Virginia	25	154	Winslow	Arkansas-Indian Territory	25

[^0]
[^0]: * Order by number.

 Payment must be made by money order or in cash
 Cirsuse follos s.osewe out of stock.
 on application to the Director, United Stat States Geologicical burvey, Washington, D. C.

