DEPARTMENT OF THE INTERIOR

UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

GFOLOGIC ATLAS
 OT THE
 UNITED STATES

PISGAH FOLIO

NORTH CAROLINA-SOUTH CAROLINA

UMV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, boundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all part of the area mapped, to delineate the outline or for or all slopes, and to line the hrol lemation evel, the altitudinal intercal represented by the ew, hetwen lines being the each map. These lines are called contours, and the miform altitudinal space between each two con ours is called the contour interval. Contours and levations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

. The sketch represents a river valley between two iills. In the foreground is the sea, with a ba which is partly closed by hooked sand bar. On each side of the valley is a terrace. From the from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , evel. Along 200 feet, and so on, above mean se of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet surounds it. In this frem are numbered, and those for 250 and 500 feet and aceentuated by being made hear. Usiny it then the accentuating and numbering of certain fon them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismar wamp. In mapping greal Tor i late rlif contour intervals of 10,20, 55,50 and 100 feet are used
Dramage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ge map.
would be represented by a linear inch on the This relation between distance in nature and corresponding distance on the map is called the scale The scale. may be expressed also by a fraetio. The scale may be expressa a which thaction of which the niner the cosp and the denominar the correspo ing leng in nature expre inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,530}$.
an inch" is expressed by $\frac{1.35}{6,360}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{1230}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on the scale of sam contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { as,juld }}$ contains one-sixteenth of a square degree. .he ares of the corresponding quadrangles Tha 20 square
an and parts of one map line United States, disregard political boundar hips. To and to the quadrangle represents, is siven the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.- On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the landscape. It should guide the traveler; serve the investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating ditch provide educational material for schools and homes; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far
known and in such detail as the scale permits. KINDS OF ROCKS
Rocks are of many kinds. On the geologic ma hey are distingui Ineo
Igneous rocks.-These are rocks, which have throm a state of fusio rom time to time been forced material ha fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called the mass is termed a stock. When the conduits fir molten magmas traverse stratified rocks they ofte send off branches parallel to the bedding plane he rock masses filling such fissures are called sills or sheets when comparatively thiñ, and lacco liths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in he air, and acquire a glassy or, more often, a pac but are more fully aysurn in ther but athe out har more or less por Explowe are usu, manies voleanio eruptions cancing eections of d ash, and larger fragents. These materiab, wht consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited.
The chief agent of transportation of rock débris i ater in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and liod The mot characterstic of the wind-borne or eolis deposits is loess, a fine-prained euth, the most char deposits is locs, a ne-g.ite ill, he most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chat ged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and ocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surfficial class, and the residual layer is commonly included with them. Their upper par, wher anally distinguish by a moits, he sols being organic matter.
Metamorphic rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter 'into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the primary to the metamorphic form within a single quart is. Such changes transform sandstify other quartzite, limestone in

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallee, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formahons. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessury to separate twq contiguous formations by lep itrary line, and in some cases the distinction ander almost entirely on the contained fossils. igneous formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.
ages of rocks.
Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance ; in regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Onher types passed on from period to period, and thus linked the systems together, foning a cham of life from the time of the oldest fossilierous rocks to the presen. Whe other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thery or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, nost valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till) and moraine (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of àny colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal
geology, thus printed, affords a subdued backgeology, thus printed, affords a subdued background upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectic
landseape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner linds of rock

Schists.
,

Fig. 3.-Symb

 of rocks.The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sand of this bed form the surface. The uphed valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is omposed of schists which are trayersed by masses and their
 ons of strata, showing
and (b) a t thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
the upturned, eroded edges of the beds upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 ground along the section line, and the depth from he surace of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.

The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE PISGAH QUADRANGLE.

GEOGRAPHY.
general relations.
Location.-The Pisgah quadrangle lies chiefly in North Carolina, but includes in its southeastern portion about 150 square miles of South Caro ina. It is situated between parallels 35° and 35° 30^{\prime} and meridians $82^{\circ} 30^{\prime}$ and 83° and contains about 975 square miles, divided between Haywood, Jackson, Transylvania, Henderson, and Buncombe counties in North Carolina and PickIn and Greenville counties in South Carolina.
In its geographic and geologic relations thi duadrangle forms part of the Appalachian provon the east to the Mississippi lowlands on the west and from central Alabaima to southern New York All parts of the region thus defined have a common history, recorded in its rocks, its geologic structure and its topographic features. Only a part of this history can be read from an area so small as that represented on a single atlas sheet; hence it is neces sary to consider the individual area in its relations to the entire province.
Appalachian pore marked physiographic divisions, throughout each of which certain forces have tended to produce similar results in sedimentation, in geologic structure, and in topography. These divisions extend the entire length of the province, from northeast to southwest. The central division is the Appalachian Valley. It is the best defined and most uniform of the belt of folded rocks which forms the Cesa of Griad and hana East Teorgia and Alabin Thoreat Valley of East Tennessee and Virginia. Throughout the cen-
tral and northern portions the eastern side only is marked by great valleys-such as the Shenandoah Valley of Virginia, the Cumberland Valley of Maryland and Pennsylvania, and the Lebanon Valley of eastern Pennsylvania-the western side being a succession of ridges alternating with narrow valleys. This division varies in width from 40 to 125 miles. It is sharply outlined on the southeast by the Appalachian Mountains and on the northwest by the Cumberland Plateau and the Allegheny Mountains. Its rocks are almost wholly sedimentary, and are in large measure calcareous. The strata, which must originally have been nearly horizontal, now intersect the surface at various angles and in narrow belts. The surface features vary with the outcrops of different kinds of rock, so that sharp ridges and narrow valleys of great length follow narrow belts of hard and soft rock.
Owing to the large amount of calcareous rock Owing to the large amount of calcareous rock
brought up on the steep folds of this district its surface is more readily worn down by streams and is lower and less broken than the divisions on either side.
The
the Appalachian Mountains, a system embrace made up of many minor ranges and which, under various local names, extends from southern New York to central Alabama. Some of its prominent parts are the South Mountain of Pennsylvania, the Blue Ridge and Catoctin Mountain of Maryland and Virginia, the Great Smoky Mountains of Tennessee and North Carolina, and the Cohutta Mountains of Georgia. The eastern division also embraces the Piedmont Plateau, a vast upland which, as its name implies, lies at the foot of the Appalachian Mountains. It stretches eastward and southward from their foot from New York to Alabama, and passes into the Coastal Plain, which borders the Atlantic Ocean. The Mountains and the Plateau are separated by no sharp boundary, the same structures appear in each, and the form of the surface varies largely in accordance with the ability of the different streams to wear down the rocks. Most of the rocks of this division are more or less crystalline, being either sediments which have been changed to slates, schists, or similar rocks by varying degrees of metamorphism, or
igneous rocks, such as granite and diabase, which have solidified from a molten condition.
The western division of the Appalachian province embraces the Cumberland Plateau, the Allegheny Mountains, and the lowlands of Tennessee, is indefinite but may be regarded as an arbitrary line coinciding with the eastern boundary of the Mississippi embayment as far up as Cairo, and then crossing the States of Illinois and Indiana. Is eastern boundary is sharply defined arong the Appalachian Valley by the Alegheny Front and Plateau, Allegheny Mountains, and associated plateaus are called the Appalachian Plateau. The rocks of this division are almost entirely of sedimentary origin and remain very nearly horizontal. The character of the surface, which is dependent on the character and attitude of the rocks, is that of a plateau more or less completely worn down. In the southern half of the province the plateau is sometimes extensive and perfectly flat, but it is oftener much divided by streams into large or small areas with flat tops. In West Virginia and portions of Pennsylvania the plateau is sharply cut by streams, leaving in relief irregularly rounded knobs and ridges which bear but little resemblance to the original surface. The western portion of the Plateau has been completely removed by erosion, and the suree is now comparatively low and level, or rolling. Altitude of the Appalachian province. - The Appalachian province as a whole is broadly dome 500 feet along the eastern an altitude of about the Appalachian Mountains and thence cescent the Appalachian Mountains and thence descending
westward to about the same altitude on Ohio and Mississippi rivers.
Mississippi rivers.
Each division
Dore culminating of the province shows one or more culminating points. Thus the Appalachian
Mountains rise gradually from less than 1000 feet in Alabama to more than 6700 feet in western North Carolina. From this culminating poin they decrease to 4000 or 3000 feet in southern Virginia, rise to 4000 feet in central Virginia, and descend to 2000 or 1500 feet on the MarylandPennsylvania line.
The Appalachian Valley shows a uniform increase in altitude from 500 feet or less in Alabama to 900 feet in the vicinity of Chat nooga, 2000 feet at the Tennessee-Virginia line and 2600 or 2700 feet at its culminating point on the divide between New and Tennessee rivers From this point northward it descends to 2200 feet in the valley of New River, 1500 to 1000 feet the Potomac River basin, remaining about the same through Pennsylvania These figures same through Pennsylvania. These figures repre below which the stream channels are cunk from 50 to 250 feet, and above which the valley ridges rise from 500 to 2000 feet.
The Plateau or western division increases in altitude from 500 feet at the southern edge of the province to 1500 feet in northern Alabama, 2000 eastern Kentucky. Its height is between 3000 an 4000 feet in West Virginia, and decreases to about 2000 feet in Pennsylvania. From its greatest altitude, along its eastern edge, the Plateau slopes gradually westward, although it is generally separated from the interior lowlands by an abrupt escarpment.
Drainage of the Appalachian province.-The drainage of the province is in part eastward into the Atlantic, in part southward into the Gulf, and
in part westward into the Mississippi. All of the in part westward into the Mississippi. All of the small portion in Pennsylvania and another in Alabama, is drained by streams flowing westward to the Ohio. The northern portion of the eastern or Appalachian Mountain division is drained east ward to the Atlantic while south of New River all except the eastern slope is drained westward by tributaries of the Tennessee or southward by tributaries of the Coosa.

The position of the streams in the Appalachian Valley is dependent on the geologic structure. In general they flow in courses which for long distances are parallel to the sides of the Great Valley, following the lesser valleys along the outcrops of
the softer rocks. These longitudinal streams empty the softer rocks. These longitudinal streams empty into a number of larger, transverse rivers, which
cross one or the other of the barriers limiting the cross one or the other of the barriers limiting the
valley. In the northern portion of the province valley. In the northern portion of the province they form Delaware, Susquehanna, Potomac, James, and Roanoke rivers, each of which passes throug flows eastward to the seans In a narrow gap and of the province in Kentucky and Virgini, thes longitudinal streas form New (or Kanewa) River, which flows westward in a deep, narro gorge through the Cumberland Plateau into Ohi River. From New River southward to northern Georgia the Great Valley is drained by tributaries of Tennessee River, which at Chattanooga leaves the broad valley and, entering a gorge through the Cumberland Plateau, runs westward to the Ohio South of Chattanooga the streams flow directly the Gulf of Mexico.
detalled geggraphy of the quadrangle.
Mountain ranges.-The Pisgah quadrangle included mainly in the Mountain division of the Appalachian province. In the southeastern part of the quadrangle there is a small area of the Piedmont Plateau, at the foot of the Blue Ridge. The relations of the two are shown in fig. 1 (illustration tain res there by deparow rall is the Blue Ridge which h. The longest chain trend through the southern part of the quadrange, winding back and forth between the quadrang basins and dividing the Atlantic from the Missis sippi waters. On this is situated Great Hogback, 4790 feet high. The greater portion of the Blue Ridge in this quadrangle is between 3000 and 3300 feet in elevation and forms part of an ancient pla teau now deeply cut by the various streams. Most of the mountains between French Broad River and the Blue Ridge and along the upper parts of Toxaway and Horsepasture rivers also form parts of the same plateau. The view in fig. 1 is directly along the heads of all these streams. Another con spicuous range is the Pisgah Ridge, which has a northeasterly-southwesterly course, parallel to the French Broad Valley. On this are situated Big Pisgah Mountain, 5149 feet; Chestnut Bald, 604 Reet; and numerous points of intermediate height. Running northwestward from this are the cros 6540 fet, the hishest point in dran Cold Mountain, 6000 feet; and six quadrangle more than 6000 feet in height. In fig 5 are seen Big Pisgah Mountain, Cold Mountain, and various minor ridges. Pisgah Ridge closely follows the trend of the rock formations. The other moun tains have no such relation, however, except here and there for short distances.
The sides of the mountains are steep and usually made up of smooth, flowing slopes. The crests are smooth and rounded, and as a rule are free from
cliffs. A typical summit and an exception are seen in fig. 3. The abrupt slope or escarpment along th southerly side of the Blue Ridge (see fig. 1) is on of the notable features of the region. Large cliffs, which are noticeably rare in other parts of the mountains, are common here. The large bodies of mica gneiss which form the Balsam and Pisgah quantains are among the hardest rocks in the quadrangle and cause lines of small cliffs and
ledges. In Big Pisgah Mountain and Cold Mountain extensive cliffs appear in the mic neiss. These are due in large part, howeve Shining Rock (see fig) the sor an form of cliff consisting entirely of massive vein quartz.
similarly the granites make enormous cliff
where they are near drainage lines or along th
slopes of the Blue Ridge. The cliffs around Cæsars Head are typical of the latter group, while Dunn Rock, near Brevard, and the many cliffs along Toxaway and Horsepasture rivers illustrate the former class. A third class of cliffs is seen in Panthertail, Cedar Rock, and Lookingglass mounains. (The two last-mentioned cliffs are shown in fig. 2.) These cliffs are situated on divides and owe their great size to the spheroidal weathering of the granite which forms them. With these and similar exceptions, the even slopes of the weathered rocks are seldom broken and the cover of heavy In all the illustrations the extent of the forest very noticeable.
Valleys and
Valleys and plateaus.-The valleys intervening between the mountain ranges are sharp, narrow,
and V-shaped at their heads and have similar grades down to definite levels, at which they widen out into rounded and plateaulike valleys. The plateaus consist near the stream heads of a series of gently rolling and smoothly rounded summits only slightly varied by shallow valleys. These characters are shown in fig. 4. The summits rise to heights which are remarkably uniform over large areas, and the plain which they once formed is readily recognized from any of the sum mits. Excellent illustrations of this are the view around Brevard and westward from Cesars Head (See fig. 1.)
These plateaus are alike in origin and form, but they vary considerably in altitude. They rise gradually toward the heads of the rivers and each major stream has its set of plateau altitudes. The plateau of Pigeon River near Waynesville and hat of French Broad River, about 2000 feet; the Piedmont Platequ surf ee south of the Blue Pide from 1100 to 1300 feet. An exception to thi variation from river to river is the phate th Blue Ridge, most of which is between 3200 and 3300 feet. Remnants of this pass entirely around the French Broad valley along the heads of the minor streams and continue southwestward acros the headwaters of Toxaway and Horsepasture rivers, which flow into the Atlantic. The flat loor of the Pink Beds at the foot of Pisgah Ridge a fine example of the original surface of the

The plateaus of Pigeon and French Broad river belong to the same period of erosion. The Blue Ridge plateau represents a much earlier and much longer period. Southeast of the Blue Ridge the great Piedmont Plateau was formed at a.still later period of erosion, whose action has not yet prointo the Mississippi The streams when drai Blue Ridge have sorter courses to the stlanti and have been able to establish lower aldes o their headwaters Into all these platesus ivers and creeks have sunk their che plateaus th yons during the later periods of crosion. These have steep and rocky borders and are so narrow o be easily overlooked from a short distance. The Blue Ridge plateau is most deeply dissected, the treams of the French Broad plateau having cut into it 1000 feet, and those of the Piedmont 2000 feet.
Drainage.-The drainage of the quadrangle is divided between the streams flowing toward the Atlantic and those flowing toward the Gulf, abou ne-fourth going toward the former. The waters of Davidson, Mills, and Little rivers and other tributaries of the French Broad are joined by those of Pigeon River and flow through the Tennessee into He Ohio and Mississippi. Saluda, Toxaway, and River, which flows into the Atlantic to Savannal heads, high up on the mountains, the From the with bovy up on the las For consideable distances near those the grades are light, until the heads of the secna ary canyons are reached Thence downstreat the currents descend swiftly, with many waterfall and rapids. Thus Mills River, for instance, goes
through this cycle twice, as do all the streams which traverse the 3200 -foot plateau. Starting at elevaions of 5000 to 6000 feet the waters of Mills River descend with rapidly lessening grades to the Pink ords plateau at 3 miles with very little fall. As the now or 3 miles with very lithe fai. As the newly hrough a narrow rorge to 2200 feet in rapoutly hrough a narrow gorge to 2200 feet in about 1 it descends slowly to French Broad River, at a little less than 2100 feet. A similar course is followed by other branches of the French Broad. Toxaway and Whitewater rivers and similar streams have the same characters as Mills River, but the fall from the upper plateau to the Piedmont is nearly twice as great. Accordingly, the country which they traverse is exceedingly steep and rugged and the The plateau continuous rapids are well pre served and have made possible, by means of a dam about 50 feet in height, the flooding of a large area in Lake Toxaway.

GEOLOGY.

general geologic record.
Nature of the formations.- The formations which ppear at the surface of the Pisgah quadrangle and adjoining portions of the Appalachian province comprise igneous, ancient metamorphic, and sedmaterials were first brought together. Some of them are very ancient, going back to the earliest known period. They are found mainly in two groups, of widely different age and character. These are (1) gneous and metamorphic rocks, including gneiss, schist, granite, diorite, and similar formations; and (2) sedimentary strata, of early Cambrian age, including conglomerate, sandstone, shale, limestone, of these groups occupies the greater area, and the younger the lesser. The materials of which the sedimentary rocks are composed were originally gravel, sand, and mud, derived from the waste of older rocks, and the remains of plants and animals. All have been greatly changed since their deposition, the alteration being so profound in some of the older gneisses and schists as to destroy their original

From
From the relations of the formations to one another and from their internal structures many the crystalline rocks were formed at great depth at the surface is shown by their structures and tex tures. The amount and the nature of the pressure sustained by the rocks are indicated in a measure by their folding and metamorphism. The composition and coarseness of the sediments show the depth of water and the distance from shore at which they were produced. Cross-bedding and ripple
marks in sandstones indicate strong and variable currents. Mud cracks in shales show that thei areas were at times above and at times below water. Red sandstones and shales were produced when erosion was revived on a land surface long subject to decay and covered with a deep residual soil. Limestones show that the currents were too weak to carry sediment or that the land was low and
furnished only fine clay and substances in solution Coarse strata and conglomerate indicate strong curents and wave action during their formation. Principat geologic events.-The rocks themselves hus yield roms of when Paleozoic The of geologic his through the Paleozoic. The entire record may be summarized as shown in this general region:
Earliest of all was the prod
Earliest of all was the production of the great
odies of Carolina gneiss. Its orici bodies of Carolina gneiss. Its origin, whether
igneous or sedimentary, is buried in obscurity It represents a complex development and many processes of change, in the course of which the original characters have been largely obliterated. The gneiss is, however, distinct from and much older than any other formation yet identified in the province, and the time of its production is the earliest of which we have record.
During succeeding epochs masses of igneous
oock were forced into the gneiss. The lapse of rock were forced into the gneiss. The lapse of
time was great; igneous rocks of many different time was great; igneous rocks of many different
kinds were intruded, and later intrusive masses were forced into the earlier. The granitic texture schistosity of others were produced at great depths schistosity of oth
below the surface.

Upon these once deep-seated rocks now rest
avas which poured forth upon the surface in avas which poured forth upon the surface in pre-Cambrian time. Thus there are in contact two extremes of igneous rocks-those which con
solidated at a considerable depth, and those which olidated at a considerable depth, and those which line complex had therefore undergone uplift and ong-continued erosion before the period of volanic activity began. The complex may safely be bly older than any rocks of known age. Whether hese ancient lavas represent a late portion of the Archean or are of Algonkian age is not certain. The latter is more probable, for they are closely associated with the Cambrian rocks. Yet they are eparated from the Cambrian strata by an unconformity, and fragments of the lavas form basa onglomerates in the Cambrian.
Next, after a period of erosion, the land was submerged, and sandstones, shales, and limestones were laid down upon the older rocks. In these sediments are to be seen fragments and waste from the igneous and metamorphic rocks. The different edimentary formations are classified as of Cambrian or later age, according to the fossils which infolded in the igneous and metamorphic rocks, infolded in the igneous and metamorphic rocks,
and the portions thus preserved from erosion cover large areas of the mountains. The submergence which caused their deposition began at least as early as the beginning of Cambrian and extended beginning was earlier and the end not until the lose of Carboniferous time; the precise limits ar not yet known.
These strata comprise conglomerate, sandstone, slate, shale, limestone, and allied rocks in great variety. They were far from being a continuous series, for the land was at times uplifted and areas radur deposits were exposed to erosion. The se reas which funced eastward, however, and land Cambrian were covered by later Paleozoic deposits The sea occupied most of the Appalachian prov ince and the Mississippi basin. The area of the Pisgah quadrangle at first formed part of the eastin margin of the sea, and the materials of which he land to the southeast. The exact position of the he len shore sine of this ance portion of the ere and the and it probably varied from time to Cycles of sedimentation.-F
Cycles of sedimentation.-Four great cycles of
edimentation are recorded in the rocks of thi region. The first definite record now remaining was made by coarse conglomerates, sandstones, and hales, deposited in early Cambrian time along the eastern border of the interior sea as it encroached upon the land. As the land was worn down and still further depressed the sediment became finer, until in the Cambro-Ordovician Knox dolomite ery little trace of shore material is seen. After this long period of quiet came a slight elevation, producing coarser rocks; this uplift became more and more pronounced, until, between the Ordovician and Silurian, the land was much expanded and large areas of recently deposited sandstones ere lifted above the sea, thus completing the first reat cycle. After this elevation came a second depression, during which the land was again worn he accumulation of the Dorsing conder After this the Devorian theles and sandstone vere deposited, recording a minor uplift of th and, which in northern areas was of preat of tance. The third cycle began with a depression, during which the Carboniferous limestone accumulated, containing scarcely any shore waste. A third uplift brought the limestone into. shallow pon it were deposited, in shallow water and wamps, the sandstones, shales, and coal beds of the Carboniferous. Finally, at the close of the Carboniferous, a further uplift ended the depo sition of sediment in the Appalachian province, except along its borders in recent times.
The columnar section shows the composition, ame, age, and, when determinable, the thicknes of each formation exposed in the quadrangle.
description of the formations.
rocks of the quadrangle.

The rocks exposed at the surface in the Pisgah quadrangle comprise three great classes-metamor
phic, igneous, and sedimentary. The sediments are found in a narrow band passing up the French Wroad Valley and across the heads of Toxaway and Whitewater rivers. They cover barely 3 per cent fally quadrangle. Igneous rocks are very genpring about 50 per cent of its quas soccu the sedime 50 cent of southeast of f igneous origin. The remaining the rocks are per cent of the quadrangle, is underlain by the metamorphic rocks of the Carolina gneiss.
The sediments consist of a group of black and gray slates and schists. These contain thin beds of limestone and marble at many points in this quadrangle. The age of the sediments is not well determined, but they are probably Cambrian and re so considered in this discussion.
Of the igneous rocks, granites are found in one arge, irregular area in the southeastern part of the quadrangle and in several other and smaller areas est and north of Brevard. Other igneous rocks re diorite, hornblende gneiss, and dunite, which ccur in a large number of narrow bands with no efinite grouping. The width and frequency of he tands increase somewhat toward the north. he Carolina gneiss, which underies most of the neiss throughout its extent The gneiss masses hich form the Balsam and Piscah mountains conin much cyanite and garnet to whose creater resistance to weathering is due much of the height of those mountains. Garnetiferous bands are also numerous in the formation, near the borders of the Roan gneiss areas.
Practically all the igneous and metamorphic Pew are of Archean age. There are, however,
few exceptions to this. The Brevard schist is regarded as Cambrian, for reasons given in the escription of the formation. Dikes and small bodies of fine-grained granite are found in the Carolina and Roan gneisses near the northern bor-
der of the quadrangle. These seldom exceed a few der of the quadrangle. These seldom exceed a few
feet in thickness and are not of sufficient size to feet in thickness and are not of sufficient size to
be represented on the map. That they are much be represented on the map. That they are much
younger than the other granites of the region is younger than the other granites of the region is shown by the almost entire absence of the schis-
tosity which appears in the other formations of the mountains. The latest time at which this schistosity was produced was post-Carboniferous. The granite dikes, therefore, are clearly later The granite dikes, therefore, are clearly later produced during the later part of the deformation eriod
In the southern half of the quadrangle are found large bodies of granite which are probably younger han the Archean. They show much less metaina gneiss, through which they cut. Considerable portions of their mass have little or no metamorhism, but retain their original structures. Since he rocks in the same areas which are known to be rchean have very great metamorphism, it is probble that these granites are of considerably later ge. It can not be stated from present knowledge how young they are, but the fact that they are
altered considerably in places shows that they are tered considerably in places shows that they are In the erous or older
In the columnar sections are shown the character and probable age of the different formations, and it is known.

archean rocks

carolina gikiss
Distribution.-The northwestern half of the quadrangle is nearly covered by the Carolina gneiss, which is so named because of its extent in reas of this formation are connected with one nother and in reality form one large mass penetrated by many bodies of the different igneous ocks. In addition to being the principal formaion of this quadrangle, it is also the oldest, since it is cut by the igneous rocks and overlain by the sediments. Inclosed within its areas are numerous igneous and secondary rocks. Althotgh these are
too small to be shown on the map, they can readtoo small to be shown on the map, they can read-
ily be assigned to formations which are elsewhere ily be assigned to formations which are elsewhere
mapped in larger bodies. mapped in larger bodies
General character
Ceneral character.-The formation consists of an chist, mica gneis crached mica schist, garnet and fine granitoid layers. Most of them are light or dark gray in color, weathering to dull gray and
greenish gray. Layers of white granitic material are not uncommon, and lenses and veins of pegmatite are frequent. Much the greater part of the In most of the formation the minerals mica schist. gated into the former thus producing rocks with a marked conded appers, ance. These rocks usually have manded appearance. These rocks usually have more feldspar than feldspar, with muscovite and biotite in small amounts; in the light-colored layers the biotite and most of the muscovite are wanting. The schists are composed of quartz, muscovite, a little biotite, and a very little feldspar. They have a fine grain and a strong schistosity, but their texture is even and the minerals are uniformly distributed.

A few thin layers in the mica schist have a bluish-gray or black color, largely due to grains of iron oxides. These are most numerous in those portions of the formation near the Brevard schist. They strongly resemble the coarser portions of the Brevard schist; the component minerals are about the same, and the dark color given by the iron oxides is the most prominent characteristic of each. The similarity in appearance near the contacts sugorigin. The possible origin of the Carolina is disorigin. The possible origin of the Carolina
cussed under the heading " Metamorphism."
The gneisses and schists alternate in beds from few inches to 50 feet thick. Layers similar inom a position and froet thick. Lays compose the banded gneisses. That part of the formation which is adjacent to the Roan gneiss contains some thin interbedded layers of hornblende schist and hornblende gneiss precisely like the Roan gneiss. The areas of the formations thus merge somewhat, so that the boundary between them is seldom definite.
Cyanite gneiss.-In the Balsam and Pisgah mountains and the area drained by West Fork of Pigeon River, the gneiss shows a marked increase in cyanite. This mineral is distributed along distinct layers of the gneiss and occurs in crystals an inch or less in length, giving the rock decided porphyritic appearance. These are usually parallel with the foliation and the other
minerals of the inclosing gneiss. In areas northminerals of the inclosing gneiss. In areas northast of this quadrangle the cyane is seen to be of ing the gneiss. The cyanite forms stubby flascrystals or blad of lipht On weathered surfaces these stand out prominently from the rest of the rock Associated with these cyanite layers in many places are prominent large patchy crystals of muscovite. These are distributed through the rocks just as the cyanite crystals are, and, like them, probably have a secondary origin. Where they are frequent they give a noticeable silvery appearance to the schist or gneiss. Small garnets are often found in the same layers with the cyanite and coarse muscovite.
Garnet gneiss.-Garnet schist and garnet gneiss are a conspicuous part of the Carolina gneiss. The garnets are small, seldom exceeding onefourth of an inch in diameter. They are rather evenly distributed through the rock and but seldom restricted to bands in the gneiss. These rocks are most prominent in the northwestern por-
tion of the quadrangle, in the Balsam and Pistion of the quadrangle, in the Balsam and Pisgah mountains, and extend as far northeast as
Skyland. Thus in this quadrangle they characskyland. Thus in this quadrangle they characand 25 miles in length, and extend far into the adjoining quadrangles, Some occurrences accompany the contacts of the Roan oneiss and are apparently due to them. In most of the large areas, however, there is no apparent connection between eruptive beds and the production of garnets, many of the garnets being miles from any outcrop of the Roan gneiss. If the igneous rocks caused the growth of all the garnets, it must have been by inducing an extensive circulation of mineralizing waters.
Granite gneiss.-The granitoid layers of the gneiss contain quartz and feldspar, with small colored layers the biotite and the muscovite are sparse The granitoid layers and the schists alternate in beds ranging in thickness from a few inches to a foot or two. Beds of such size are rather rare in this quadrangle. Layers similar in arrangement, varying in thickness from one-tenth of an Toward the north and east in this quadrangle the granitoid layers increase in amount. In them
the minerals are much less distinctly parallel than in the schists and gneisses. The parallel arrange ment is usually seen more or less roughly, however, and its prominence d
amount of mica in the rock.
Pegmatite.-Included in the area of the formation are numerous veins and dikes of pegmatite. On group of these occurs in the shape of lenses
ranging from 1 foot to 25 feet in thickness. ranging from 1 foot to 25 feet in thickness.
Some of the largest of the lenses can be readily Some of the largest of the lenses can be readily
followed for 2 or 3 miles. The smaller ones, howfollowed for 2 or 3 miles. The smaller ones, howdiate can not be trace sory beyone he imme diate outcrops. For the most part, they lie paralle to the foliation of the gneiss. In places they have
the form of veins or dikes and cut the gneisses abruptly, with nearly parallel walls. The pegmaabruptly, with nearly parallel walls. The pegma-
tites are most conspicuous near the contacts of the tites are most conspicuous near the contacts of the
Carolina and Roan gneisses, but are not closely Carolina and Roan gneisses, but are not closely
limited to those localities. They are also found in great numbers near the Whiteside granite mass, which itself has pegmatitic portions. These latter pegmatites are closely associated with that granite, cut the foliation of the gneisses, and are of the nature of dikes. They vary greatly in form, from narrow masses to irregular patches, or even scattered rystals. Many of the smaller lenses can be seen to be surrounded on all sides by mica gneiss, and apparently were deposited from aqueous solutions. The pegmatites consist chiefly of very coarsely crystalline feldspar, quartz, biotite, and muscovite; crystals of orthoclase feldspar rarely attain dimenons of 2 feet, and mica 2 feet. In them are als ound many rare or valuable minerals, including eryl, emerald, tourmaline, garnet, and cyanite he pegmatites associated win the granite contain pathic. Much more the the pegmatites of lenticular and veinlike shape and he Begmatites of lenticular and veindike shape, and best mica districts of the State.
Many of the minerals of the pegmatite have been which folded the gneisses. The pegmatites, therefore, are older than this deformation. Their connection with the contacts of the Roan and Carolina neisses is not sufficiently marked to prove that contact action caused the pegmatites. The smalle lenses appear to have been formed by deposition from mineralized waters, after the manner of veins Those of veinlike form also show a banded arrange ment in places. Owing to the considerable alteration of the pegmatite contacts, however, it is difficult to determine their origin with precision. As stated above, much of the pegmatite is plainly igneous.
Intrusive granites.-Inclosed within the gneiss nhese st areas are many bodies of intrusive granite, These vary in thickness from a few inches up to a he difficulty in tracing them, they are not repre dine difficulty in tracing them, they are not repreconcei vable angle. The granite is fine grained and very uniform in texture, and has a light-gray or hitish appearance. The smaller dikes are somewhat lighter colored than the large ones on account of the larger proportion of quartz and feldspar The component minerals are quartz, orthoclase and plagioclase feldspar, biotite, and museovite, the micas being subordinate in amount. As a rule hese beds are massive and fairly free from the schistosity which marks all of the adjoining formation. For this reason it is concluded that they were intruded into the gneisses after the principal part of the deformation of the region had been coomplished. They are accordingly later than the arboniferous in age. In approaching the White side granite areas, these dikes are found more often Since both dikes and granite masses have the same
relations and composition, it is probable that they cations and composition,
Metamorphism. The Cun
Netamorphism. - The Carolina gneiss covers reaion. On account of the uniform aspect of its region. On account of the uniform aspect of its
beds over large areas, no true measure of its thickhess can be obtained; even an estimate is idle The apparent thickness is enormous, having been increased many times by the folding and the enormous metamorphism to which the gueiss has been subjected. The original nature of this gneiss is necertain. It is possible that much of the mass was once a granite. Some of the material has a granitic character now, and its local metamorphism o schist can be readily seen. Other and simila naterial might easily have been altered into the reat body of mica schist. Such an origin can less asily be attributed to the beds of banded gneis, Pisgah.
however, since it fails to account for the parallel layers and banding. Many parts of the formation in areas adjoining on both the northeast and the southwest are doubtless of sedimentary origin. The
apparent transition of the Carolina into the sedimentary Brevard schist indicates that other parts of the Carolina are sedimentary. It is very likely that still other sedimentary masses have not been distinguished from the Carolina because of their Whatever theirm and similarity to the latter. Whatever their original nature, one deformation deformation folded and crushed the A surlier plane and structures. P fore the later period per vere formed. These were atter period pegmatites the second deformation and retain in many places the second deformation and retain in many places
only a fraction of their original coarseness. In most of the formation excessive metamorphism has destroyed the original attitudes and most of the original appearance of the rocks. The rocks of the formation are now composed entirely of the metamorphic minerals. These are usually arranged with their longer dimensions nearly parallel to one another and to the different layers. Where the layers have been bent by the later deformation the minerals are bent into corresponding curves. In places where by the second deformation a second schistosity was produced, this schistosity cuts in parallel planes across the older schistose layers. Since the schistosity is evidenced more strongly by the micas than other minerals, the coarse and granitoid layer
schists most so.
Decomposition.-The schistose planes of the arious layers afford easy passage for water and destroyed the feldspar the resultant deasition has destroyed the feldspar the resultant clay is filled
with bits and layers of schist, quartz, and mica. Solid ledges are seldom found far from the stream cuts and the steeper slopes. Near the Blue Ridge many large ledges and cliffs appear. The cyanite gneiss and garnet gneiss of the Balsam and Pisgah mountains, especially, form big cliffs and rocky slopes. In fact, these mountains owe their height to the superior resistance of these gneisses. The over of clay on the decayed rocks is thin, and the soil is light on account of the large proportion of
quartz and mica that it contains. Accordingly, its quartz and miea that it contains. Accordingly, its
natural growths are poorly sustained, even in the natural growths are poorly sustained, even in the
areas of gentle slope where the formation has been areas of gentle slope where the formation has been
well decomposed. These soils, however, are suswell decomposed. These soils, however, are sus-
ceptible of great improvement by careful tillage. ceptible of great improvement by careful tillage.
In the mountain areas, where slopes are steep and In the mountain areas, where slopes are steep and fresh rock is nearer the surface, the soils are richer
and stronger and produce good crops and fine timber. The greater amount of soluble matter and clay in the gneass renders its soluble matter more productive than those of the schist Th garnet and cyanite gneiss areas are somewhat less productive than those of the ordinary gneiss.

roan gaviss.

Distribution.-Areas of this formation are found enerally throughout the quadrangle, usually in he quadrangle the Roan forms dikelike bands in he Carolina gneiss. In the southeastern half, however, the Roan lies in very irregular bodies inclosed by the eruptive masses of Henderson or Whiteside granite. The formation receives its name from Roan Mountain, on the boundary of Tennes
and North Carolina, north of this quadrangle. nd North Carolina, north of this quadrangle. Relation to Carolina gneiss.-The Roan gneiss appears to cut the Carolina gneiss, but the contacts re so much metamorphosed that the fact can not well be proved. Moreover, the rocks included in the Carolina are entirely metamorphosed; some of
the Roan is less altered, however, and thus appears to be younger. Narrow, dikelike bodies of Roan in the Carolina support this view, for some of thes rrow beds are plainly of an iozeous nature In fact, the shape and continuity of many of the narrow sheets of Roan gneiss can be explained only on the theory that they represent original dikes cutting the Carolina gneiss. In still other areas the Roan neiss consists of large numbers of lumps or lenses of hornblende gneiss surrounded by mica gneiss. These undoubtedly represent original dikes of the Roan disconnected by folding and faulting. The frequent development of garnets in the Carolina near the borders of the Roan gneiss seems to indicate contact metamorphism.
Character.-The Roan gneiss consists of a great schist, and diorite, with some interbedded mica
parallel layers, causing the schistosity. These
beds are dark greenish or black in color and the micaceous beds are dark gray. The mica schist and gneiss beds range in thickness from a few
inches to 100 feet, and are numerons only near the inches to 100 feet, and are numerous only near the Carolina gneiss, into the areas of which they merge.
In composition the mica schist and gneiss are In composition the mica schist and gneiss are
exactly like the micaceous parts of the Carolina exactly like the micaceous parts of the Carolina
gneiss, and are composed of quartz, muscovite, gneiss, and are composed of quartz, muscovite,
a little biotite, and more or less feldspar. The a little biotite, and more or less feldspar. The
hornblende schists make up most of the formation and are interbedded with hornblende gneisses throughout. The schist beds consist almost entirely of hornblende, in crystals from one-tenth to onehalf inch long, with a very small amount of biotite feldspar, and quartz; the gneisses contain layers or seams consisting of quartz and feldspar interbed bed with layers of hornblende schist. In places these are regularly disposed and give a marked banding to the rock. Here and there the hornblende, feldspar, and quartz appear with the mass-
ive structure of diorite. Some of these beds are very coarse and massive, with crystals half an inch long. Many of the beds of this formation consist almost entirely of hornblende and are so basic that they appear to have been derived from gabbro. So thorough is the alteration, however, that such an
origin is not certain. In many localities the dioorigin is not certain. In many localities the dio-
rites contain large crystals of garnet, due to alteration induced by intrusive granite.
In composition the mica schist and the mica gneiss beds are exactly like the micaceous parts of biotite, and more or less feldspar. The hornblende
bet schists make up a large share of the formation and are interbedded with hornblende gneiss throughout The schists are most prominent north and west of Burnsville, near the Cranberry granite masses. The schist beds consist almost entirely of hornblende, in crystals from one-tenth to one-half an inch long, with a very small amount of biotite, feldspar, and quartz. The gneiss is composed of layers or sheets of quartz or feldspar interbedded with sheets of hornblende schist. In places these are very regularly disposed and give a marked banding to the rock. An accessory mineral frequently seen is garnet. As already stated, this occurs in the Carolina gneiss near the contacts of the Roan gneiss, and it is common also in the Roan gneiss in simi-
lar positions. The garnets are seldom larger than lar positions. The garnets are seldom larger than
a quarter of an inch in diameter and as a rule are a quarter of an
much smaller.
In the northeastern part of the quadrangle many lenses and patches of epidote, hornblende, and quartz are to be seen in the gneiss. These are of late origin and replace the older hornblende more or less thoroughy. They are associated wis veins Seldom are and mor thed few inches thick
Here and there
quartz are found with the structure of dionar, and quartz are found with the structure of diorite or
gabbro. A few of these beds are very coarse and gabbro. A few of these beds are very coarse and
massive. About 3 miles west of Sitton is a small body of massive diorite with crystals of feldspar and hornblende nearly an inch long. Massive rocks of medium grain are found here and there in the Roan gneiss with no special geographic distribution. Many of the beds of the formation which consist almost entirely of hornblende are so basic that they appear to have been derived from gabbro. Of this kind are the hornblende schist and many layers less strongly schistose. So thorough is the alteration, however, that such an origin is not certain. At
many points in the Roan gneiss there are found many points in the Roan gneiss there are found
veins and lenses of pegmatite of secondary growth, veins and lenses of pegmatite of secondary growth,
precisely similar to those deseribed under "Carolina gneiss." They seldom, however, equal the latter in size and importance. Dikes and small masses of Roan gneiss, just as in the Carolina too small to be Roan gne
m.-Deformation and recrystallization have extensively changed the original rocks of this formation into schist and gneiss. The exact because the original character of the rock is uncertain. It is probable that most of the mass was originally diorite and gabbro of much the same mineral composition as now. A few of the coarse masses still retain much of their original texture. The minerals in most of the formation are secparallel layers, causing the schistosity. These
and closely folded in many places to an extent Thus the all the folding of the later formations. Thus the Roan gneiss has passed through two deformations, one producing the foliation, and a
second folding the foliation planes and minerals. second folding the foliation planes and minerals. During or before the second deformation the bands of quartz and feldspar of the gneiss appear to ha been formed. The total alteration is extreme. Weathering.-In reducing the surface of the formation, the first stage is the decomposition of the hornblende and feldspar. The more siliceous laymica shist ore how dists and mica schists are extremely slow disintegration, ledges near the streams and creatly and heavy reduction of the surface. As a whole, the formation is somewhat less resistant than the Carolina gneiss and far weaker than the Cranberry or Henderson granites. Consequently its areas are reduced to plateaus in the large stream valleys and form gaps and depressions in the high ground away from the rivers. The rise of the mountains beyond its areas is very noticeable in most cases. In this respect the formation differs much from its habit farther northeast in the Roan and Cranberry quadrangles. The clays accumulating on this formation are always deep and have a strong dark-red color; the soils are rich and fertile and well repay the labor of clearing. The hilly surfaces keep the soil well drained, and yet the clayey nature of the latter prevents serious wash. Hence, the soils are
extensively cultivated in situations remote from extensively cultivated in
the principal settlements.

oapstonk, dunite, And serpentine.

Distribution.-Many areas of these rocks are found within the quadrangle. While most of them are less than half a mile in length, one exceeds that considerably. The largest area is on Pigeon River at Three Forks, with a length of about a mile. Here most of the masses are lens shaped and three or more times as long as they are wide. This area is nearly all in contact with Carolina gneiss, but end. In this respect this area differs considerably from most others of the formation, the association of which with the Roan gneiss is usually close and marked. There are in this quadrangle only six exceptions to this rule, out of sixty-two areas of the formation.
Relations.-The rocks of this group break through and across the beds of Roan gneiss and are thus seen to be distinct from and later than the gneiss. From the constant association of the
two formations, however, and the rarity of the two formations, however, and the rarity of the oapstone group in other situations, the diference is as greet as reer that gneiss, so that it appears to have shared in that earlier period of metamorphism which involved the Roan and Carolina gneisses.

Character.-The group comp

cks, such as soapstone, dunite, many different rocks, such as soapstone, dunite, and serpentine, from the original rocks by metamorphism. The variety most common in this quadrangle is an impure soapstone containing chlorite, hornblende, and silicates of magnesia. There are also two or three bodies of dunite composed almost entirely of olivine. These are found in the basins of Wolf and Tennessee creeks. The soapstones are white and light gray, while the other varieties of the formation have a greenish color, either bright or dull. In some localities the soapstone contains little but alc and is fit for industrial uses, but, as a rule, it contains much chlorite and crystals of enstatite, tremolite, actinolite, or magnesian silicates. The around the borders of the formation but the found mass at Three Forks is nearly all made up of schistose talc all the narieties all made up of may be present in a single ledge or ore variety may be present in a single ledge, or one variety
may occupy the whole of an area. The latter relamay occupy the whole of an area. The latter rela-
tion is most common where soapstone alone is seen. The dunite is usually more or less altered to serpentine. This change may appear in considerable masses of the rock, or in small patches or seams, and is very irregular in its distribution.
Many minor mineral deposits of later origin are found in the formation. Nickel ores form thin seams and coatings between portions of the dunite, and corundum occupies small veins and patches in dunite and soapstone. Here and there small veins in the shape both of small veins and of irregular
rounded crusts between portions of the dunite. |the phenocrysts are drawn out into lenses (or Small veins of this kind are found near Tennessee augen) more than twice their original length and Wolf creeks, but are of no importance. The the rock, replacing the dunite more and more near the surface.
Metamorphism.-In their original form these Metamorphism.- In their original form these olivine, with more or less feldspar and pyroxene The change from these to the soapstone group is ny of the other formations. The minerals whic now appear, however, are closely related in chemical composition to those of the original rock. The intermediate stages of alteration are obscure or absen in this region. These changes seem to have easily
affected the peridotites and pyroxenites. Unlike fffected the peridotites and pyroxenites. Unlik he other metamorphosed rocks, these show only moderate schistosity. Near their borders the soap stones are often schistose in consequence of the parallel arrangement of the talc and chorite scales.
This condition prevails throughout many of the maller bodies and even of the large mass at Thre Forks. In a few places in this quadrangle a schisof tremolite. This result, although common in adjoining regions on the west, is rare in this quad rangle, for the usual alteration is to soapstone Entirely different is the arrangement of the actino lite and enstatite crystals in many localities, for they form bunches and radiating clusters in the soapstone.
An exception to the general altered aspect of these rocks is the dunite, for it appears to be one of
the least metamorphosed rocks of the region. The erpentine, which is a common alteration produc of the dunite, is not due to such metamorphism a the schistose rocks, but to hydration. In this process the water worked in through the cracks and joints of the original dunite and un
with the olivine to form serpentine.
Weathering.-Few rocks are slower to disintegrate han those of this formation, and its areas invari ably show many ledges. Wherever the formation come to the surface and large buwlite huge ledge everywhere. The rock is not much affected by slution, but breaks down un sies low troud. Fina decay leaves a cover of stiff yellow clay of little depth and much interrupted by rock. Soils derived from this are of almost no value.

henderson grantte

Distribution.-The rocks of this formation lie in a band 6 or 8 miles wide running diagonally through the quadrangle. Northwest of this granite lies the Brevard schist and southeast of it the
Whiteside granite. The extensive areas and exposures of the granite in Henderson County give th formation its name.
Relations.-This granite is intrusive in all the Archean rocks with which it comes into contact Northeast of this quadrangle the ends of some of he granite bodies pass under the surrounding gneiss with shapes like anticlines. The schistose
planes of the gneiss arch over and dip away planes of the gneiss arch over and dip away
from the granite as if pushed up by the granite from below. In this quadrangle the contacts with he Carolina gneiss are much obscured by metamorphism. The granite cuts the Roan gneiss and Blue Ridge. The granite passes out of this quadBlue Ridge. The granite passes out of this quadboth northeastward and southwestward.
Character.-The granite is composed mainly of orthoclase and plagioclase feldspar, quartz, musco-
vite, and biotite, enumerated in order of their vite, and biotite, enumerated in order of their
importance. The latter mica varies a great deal mportance. The latter mica varies a great deal
in amount, but is usually subordinate. The usual color of the rock is gray, becoming lighter afte weathering. The general aspect of the rock is strikingly uniform through this area. Porphyritie crystals of orthoclase feldspar are a prominent feature of the rock. The porphyritic varieties are not limited to any particular position in the granite The porphyries grade into granites of uniform rain, and the two varieties may be present in a ingle ledge. In this quadrangle the porphyritic nd the massive variety is rather uncommon This is most strikingly to be seen near French Broad River, in numerous cliffs and ledges. The rock has a general gneissoid aspect and most of

Where they retain their origi
seldom over an inch in length.
Northeast of Brevard and near the Carolina neiss the granite is finer grained and the porphy tic feldspars are fewer and smaller. Many fine beds have there been metamorphosed into dark chists resembling the Carolina schists.
The massive granite which appears here and there in small bodies is usually of fine or medium rain and contains very little biotite. The feldspars make up a large portion of the rock and
ive it a much lighter color than that usual in the give it a mu
Metamorphism.-The formation has been greatly ffected by metamorphism. This is hest shown by the porphyritic portions, where the change in the Thm of the mineral particles can often be measured. The rock has been squeezed and mashed until large portions have a pronounced gneissoid structure Resuls of cind are prominent throughout thi rea and especially near the French Broad Valley he change is manifest in the growth of the new icas and in the elongation of the porphyritic wo or three times their original length. During the squeezing and slipping under pressure large crystals were cracked and their fragments rotated until they were nearly parallel with the schistos planes. The mica flakes were turned into similar planes and the small grains of quartz and feldspar were broken and recomposed into quartz, feldspar, and mica. Large bodies of a very gneissoid rock (or augen gneiss) were thus produced, in which many porphyritic crystals were cracked and pressed out into eyes or strings. The amount of distortion an be plainly measured in the least extreme cases by the interval between the fragments of one crystal. The large feldspars retain their shape better than the finer groundmass, however, and the mica flakes in the latter are bent and wrapped around the large Wears almost as if fluid
Weathering.-As the formation is attacked by weathering agencies its surface is slowly lowered ins siliceous composition and its great mass unit in maintaining the relative altitude of its areas. It forms a high plateau south of the French Broad,
deeply cut by the smaller creeks, The summits of deeply cut by the smaller creeks, The summits of the streams. The granite causes many ledges and cliffs, which are conspicuous features of the land scape near French Broad River. The bowlders and waste from the formation are carried for long distances over the adjoining formations. Upon complete decay the formation produces a yellowish or reddish clay, which is frequently leached out nearly white. This is mixed with sand and
fragments of rock on the mountain sides and is fragments of rock on the mountain sides and is
of no great depth. In the valleys the rock is of no great depth. In the valleys the rock is
often decomposed and soft to depths as great as 30 often decomposed and soft to depths as great as 30 feet, and the overlying clay is 6 or 8 feet in thickinfertile and is subject to drought.

cambrian rock

Age, name, and relations.-The strata of this formation are the only sedimentary rocks recognized ithin the quadrangle. They are named from thei The evidence thus far obtained is insufficient to determine their age. They form the first sedimentary deposit upon the Archean rocks, holding a position which is occupied in this region only by Cambrian strata. The rock types found in this frmation can be precisely duplicated in the Cambrian rocks farther north and northwest. In fact, he resemblance between this and the Hiwassee late is very marked. Each consists in the main of bluish-black and dark banded slates or schists, he color varying according to the degree of metamorphism. Interbedded with these are sandy lay-
ers and lentils of blue limestone. The Hiwassee ers and lentils of blue limestone. The Hiwassee
formation, which is a slate in its northwestern outformation, which is a slate in its northwestern out-
crops, is metamorphosed toward the southeast into crops, is metamorphosed toward the southeast into
schists which are identical in varieties and in ppearance with the Brevard schist. The freand the of limestone lenses in the Hiwassee slate f strata above and below it give added interes the presence of these limestone lenses in the Brevard schist. The latter is not now known to be connected in area with the Cambrian strata lying farther northwest, so that there is no definite proof
that the B
acter.-As it is displayed in this quadrang Cormation consists mainly of schist and slate lost of it is schist, of a dark bluish-black, black, dark-gray color. At several points considerable In some of the lower layers of the formation along Boylston Creek the schistose character is less pronounced and the rock is a banded mica slate. All he strata are fine grained except a few siliceous layers, which represent original sandy strata, and some thin layers of quartzite and fine conglomerate. The rocks are composed mainly of very fine quartz and muscovite, through which are scattered countless minute grains of the iron oxides, producing the ark color. Another constituent commonly found is graphite. This is disseminated in minute grains through large masses of the rock and is only here
and there concentrated in some layers. Graphite is lso found associated with some layers. Graphite is lenses, In the adjoining Mount Mitelll wuad loses. In the adjoining Mount Mitchell quad ining operations. The base of the formation is he most regularly graphitic and has many strikingly lack beds. In a few localities garnets are found in these rocks They are disseminated through the chist in small crystals, usually less than one-tenth of an inch in diameter. They are more numerous in the northeastern parts of the formation, but are nowhere conspicuous. Where the garnets are present it is sometimes difficult to distinguish the schist from garnet schists in the Carolina gneiss. This is particularly true where they are much e usually fieschists of this formation, ho wever ondary origin, and probably were developed by the ame agencies in each of the formations during Their metamorphism.
The most unusual part of the formation in this quadrangle is the series of limestone lentils which re found at intervals throughout its extent. They and consist of finely crystalline limestone or marble. This is usually white but contains also eds af hiff and banded blue and white colors, Southe, of Lake Toxaway the carbonate of lime is largely Laked by silica and the rock has a cherty agpect In the quarries near Fletcher the total thickness of the marble lentil is about 250 feet and its length over a mile. The quarries at the head of Boylston Creek show about 50 feet of marble, with a probable length of $1 \frac{1}{2}$ miles. The other lentils are both thinner and shorter. Owing to the soluble nature of the limestone, outcrops of it are very scarce, and It is possible that it extends considerably farther han shown on the map. The contacts of the limestone and the adjoining black schist are sharp wherever they are visible, and there is no interbedding. The materials composing the limestone
are entirely different from those of the black schist, are entirely different from those of the black schist, except for a little silica, which is probably of secondary origin. The change in the conditions which produced limestone instead of the black schist must, therefore, have been abrupt and complete.
The limestone deposits extend only about 4 The limestone deposits extend ores northeast of Fletcher, but they are found
mile ath atward at intervals through South Carolina and far into Georgia; so the conditions which they epresent were widespread.
Anexception to the usual fine grain of the Brevard chist is to be seen in the thin beds of quartzite These occur interbedded with the black schist 700 or 800 feet above the base of the formation. They consist of feldspathic quartzite, usually fine, but in places conglomeratic. They are only a few feet thick and seldom outcrop. By their waste they can be traced for considerable distances, but they are too small to be indicated separately on the map. They represent local activity in erosion, in contrast
with the uniformity which preceded and followed with th
them.

Metamorphism.-While the effects of metamorphism are not conspicuous in this formation o account of its fine grain, they are in reality profound. Only near the base of the formation and bands be seen; usually they are entirely destroyed bands be seen; usually they are entirely destroyed ceous or feldspathic materials of the slate developed new quartz and muscovite. It is probable that some of the latter seen in the less-altered slates is an siginal mineral. The quartz is in very small grains, sometimes lenticular in shape. The muscovite
occurs in extremely small scales and flakes, which lie nearly parallel to one another and cause the schistosity of the rock. The iron oxides and gartet are undoubtedly secondary
Weathering.-The rocks of the formation disintegrate more readily than most of the others of the region, but the formation occupies ground only slightly lower than the Carolina gneiss. Decay makes its way down the schistose partings, and the rock breaks up into slabs and flakes, largely by the action of frost. Red and brown clay soils are left when the rock is completely disintegrated. These are shallow and contain many flakes of the black schist. Ledges are usually near the surface, but
seldom outcrop far from the stream cuts. The soils seldom outcrop far from the stream cuts. The soils
are light and fairly productive on the lowlands, but on the slopes and summits of the mountains support only a scanty growth of timber.

post-cambrian (?) intrusive rocks

whithside granitr

The Whiteside granite lies in two general areas in this quadrangle. The principal mass occupies the southeast corner of the quadrangle and is part of a much larger body to the south and east. Also, the Pink Beds there are many irregular bodies of the granite. They do not extend far northeast of the Pink Beds, but pass southwestward considerable distances into Georgia and South Carolina. In the southeastern area the craite Caroins man the southeastern area the granite contains many
enormous inclusions of the older gneisses, which lie with various positions and directions. In the northwestern area the granite appears for the most part in dome-shaped masses uplifting the gneisses, and from them many sheets and dikes are sent off. The formation is named from Whiteside Mountain, in the Cowee quadrangle, where it forms a series of enormous cliffs.
Relations.-This granite is intrusive in all the rocks of this quadrangle with which it comes into contact except the Triassic diabase. The ends of some of the granite bodies pass under the surrounding gneisses and are shaped like anticlines. The schistose planes of the gneiss arch over and dip ite from below grante as is pushed up by the gran Lake Toxaway and around the Pink Beds. This Lake Toxaway and around the Pink Beds. This relation is characteristic of those masses of the The smaller granite bodies in that region appear to lie between the layers of gneiss, both formations having moderate dips in the same direction. The great granite mass in the southeastern part of the quadrangle shows none of the anticlinal arrangement. Within this general granite area are many extremely irregular inclusions of the gneisses. These extend in many directions and dip at all angles. The general position of these included masses is monoclinal between the different parts of the granite, and they appear to represent the remnants of the original gneiss cover. The large granite for considerable distances into the adjoining quadrangles, and the rocks now at the surface evidently were once deep down within the granite body. The granite domes represent the upper portions of a similar great mass.
Only a small amount of metamorphism is to be seen in this granite, some of its masses appearing to be entirely free from it. For this reason it is concluded that the granite was forced the gneisses after most of the A cordingly the granite had been accomplished. Accordingly the
may be as late as the Carboniferous in age. Included within the areas mapped as Whiteside granite are numerous outcrops and small bodies of the older formations. There are also many dikes of the granite beyond the borders of the principal masses. Near the contacts of the formations the beds vary from a few inches up to many feet in thickness and alternate with great frequency. In comparatively few cases do the boundaries shown on the map represent a single contact between two large masses, but rather they indicate a narrow one beyond which one rock or the other predom inates. Unless the included bodies of other forareas they were disregarded in the mapping. Character.-The granite is composed mainly of orthoclase and plagioclase feldspar, quartz, museovite, and biotite, enumerated in order of importance. Minor accessory minerals are magnetite, ilmenite, pyrite, and garnet. Most of the rock is made up of the feldspars. The biotite varies a
great deal in amount and is sometimes entirely absent. The granite has least biotite in the dikes
and small bodies, and they are nearly white There is also little biotite in the neanites wh There is also little biotite in the granites of the contains the most biotite and its color is, accord ingly, darker than any of the others. All the rocks of the formation, howe light color, varying from white to gray.
Most of the granite is of fine or medium grain. This is especially true of the dikes and small bodies and of the great southeastern mass. At various places near the borders of the granite, porphyritic feldspar crystals are found. These are most prom-
inent near Lake Toxaway and east of Brevard. At the latter place it is difficult to distinguish between the porphyritic forms of the Whiteside and Henderson granites. In the Whiteside granite, however, the massive form is much more common and
the porphyritic phase is usually localized near its the porphyritic phase is usually localized near its
borders. In those parts of the formation which borders. In those parts of the formation whe metamerphosed the phenocrysts are some
are much metam what drawn out into lenses or augen of slightly retain their original shape they. Where they to three-fourths of an inch in lenoth Akin to to three-fourls found at many points in the granite Some of these are massive and others porphyritic, and the varieties grade into one another. The pegmatite patches grade into the granite and range in size from single crystals of feldspar up to bodies 2 or 3 feet across.
Another variety of the Whiteside granite is marked by a decided flow banding. This is due to the arrangement of the minerals in rudely parallel layers when the granite was foreed in a molten condition into the other rocks. This can be seen at many points in the various granite bodies, but is best shown near Lake Toxaway, Lookingglass Mountain, and along Saluda River east of Cessars Head. The rock marked by wavy flow bands merges into the massive variety in the same ledge.
Metamorphism.-During the deformation of the Metamorphism.-During the deformation of the rocks the granite suffered changes both by folding
and by metamorphism. The folding is the most and by metamorphism. The folding is the most prominent and berth of the Blue Ride. It is proble that some of the folding and upheaval of the surthat some of the folding and upheaval of the sursion of the granite. Similar folding is shown near Marietta, in the southeastern part of the quadrangle, where the granite and gneiss bodies describe a semicircle. Metamorphism is comparatively small in most of the granite, but locally is of importance. Its chief development is near Lake Toxaway, where schistose and gneissoid granites are common. Some of these are as much deformed as the Henderson granite. The coarse varieties and those containing most biotite show the alteration best, while the fine-grained and light-colored granites have practically no metamorphism throughout large masses. When the rock was folded planes of fracture and motion were found in the rock mass along which metamorphism took place. As the process went on the quartz was broken and recemented, the feldspar developed into mica, quartz, and new feldspar, and chlorite replaced par or the biotite. These minerals crystallized in general parallel to planes
of motion in the rock; inasmuch as these were the result of broad general stresses the plase we the tosity are fairly uniform in position The change is most manifest in over large areas. feldspars, which have increased somewhat in length. They were cracked and broken and their fragments were rotated until nearly parallel. The mica flakes were turned into similar planes and thus was produced a gneissoid rock or augen gneiss with many porphyritic crystals pressed out into eyes. The large feldspars retained their shape better than the finer groundmass, and the mica flakes in the latter are bent and wrapped around the large crystals. Other results effected by the deformation are the stripes and striated surfaces which mark the granite here and there. These are due to linear growths of new minerals with parallel arrangement. The dark stripes are composed in the main of fine biotite and fibrous hornblende and the light stripes of quartz and feldspar. This phenomenon is well shown along the southen border of the quadrangle and in the fresh sections along Toxaway and Horsepasture rivers.
Weathering. slowly lowered as it is attacked by weathering
agencies. There is considerable variety in the topographic forms caused by the granite. All varfound worn down into plains. The cliffs of Whiteside Mountain, in the adjoining Cowee quadrange, are the largest in the A ppalachians, and the same granite forms similar cliffs in Lookingrlass Moun tain, Table Rock (see figs. 1 and 2), and man other localities. In these positions the granite also forms plateaus adjoining the cliffs. The difference seems to be due to the action of the acids in the soils, by which the feldspars are decomposed wherever soil is allowed to accumulate. A ledge once bare of soil is kept so by rain and frost and if situated on a steep slope becomes a cliff. Decay work down into the granite by the decomposition of the feldspars, leaving the quartz and mica grains free The final product is a light-red or yellowish clay often strewn with fine white sand. In coves and hollows the soil is fairly fertile, but elsewhere
thin, easily worn out, and subject to drought.
triassic (?) rocks.
diabask.

Distribution and relations.-In the southeaste part of the quadrangle are found three areas of this ock. They form practically one narrow dike, being Their most distinctive feature is the absence of dynamic metamorphism, although the adjoining rocks are all metamorphosed, in places extremely Rocks of the character of diabase and gabbro are especially subject to metamorphism, so that its absence here indicates that the diabase was formed after the general period of metamorphic action. Inasmuch as rocks of precisely this character are of frequent occurrence among the rocks of the Triassic period and are found at intervals in the older rocks of other areas, and as there are no other formations of this character known in the Appalahians, this rock is considered to be of Triassic age. Character.-The diabase is a dense, hard rock of prevailing black or dark color, and on weathered It is composed chiefly of plagn or rusty appearance It is composed chiefly of plagioclase feldspar, hornblende, and pyroxene, in crystals of medium size. in small grains and crystals. The texture of the rock is sometimes massive and granular like gab rock is sometimes massive and granular like gab-
bro, but usually has the ophitic structure of diabro, but usually has the ophitic structure of diagrain of the rock grows perceptibly finer, but it is seldom coarse in this quadrangle. In places the contact variety is an extremely fine whitish or gray rock without visible grain and resembling gray ro
chert.
Weat
eathering.-This rock withstands weathering joints, Decaively. Dorks gradually in along joints, and spheroidal masses and bowlders are
formed, which are characteristic of the surface of the formation. Ledges are seldom far from the surface and the cover of brown clay is usually
thin. The rounded bowlders readily find their way downhill and block the stream channels.

structure.

The rocks of this quadrangle that were deposited upon the sea bottom must originally have extended in nearly horizontal layers. At pres-
ent, however, the beds or strata are seldom horient, however, the beds or strata are seldom horiedges appearing at the surface. Folds and faults of great magnitude occur in the Appalachian region, their dimensions being measured by miles, but they also occur on a very small, even a microscopic scale. Many typical Appalachian folds are to be seen in the region. In the folds the rocks have changed their forms mainly by adjustment and motion on planes of bedding and schistosity. There are also countless planes of dislocation independent of the original layers of the rocks. These are best developed in rocks of an originally massive texture and are usually much nearer together and smaller than the planes on which the deformation of the stratified rocks proceeded. In these
more minute dislocations the individual particles more minute dislocations the individual particles
of the rocks were bent, broken, and slipped past one nother or-were recrystallized.
Explanation of structure sections.-The sections on the structure-section sheet represent the strata cut across the country. Their position with reference to the map is on the line at the upper edge
of the blank space. The vertical and horizontal slope of the land and the actual dips of the layer are shown. These sections represent the structure as it is inferred from the position of the layer they can not represent the minute deale of the map ture, and they are therefore somewhat generalize from the dips observed in a belt a few miles in width along the line of the section. Faults are represented on the map by a heavy solid or broken line, and in the section by a line whose inclination shows the probable dip of the fault plane, the
arrows indicating the relative direction in which the arrows indicating the rela
strata have been moved.
general structure of the appalachian province.
Types of structure.-Three distinct kinds of struc ture occur in the Appalachian province, each one prevailing in a separate area corresponding to one Plateau and the region lying farther womberan ate generally flat and retain their original composi ion. In the Valley the rocks orge beenposiilted, bent into folds broken by feen steeply some extent altered into slates. In the Mountain district faults and folds are important features of the structure, but cleavage and metamorphism are qually conspicuous.
Folds.-The fold
Folds.-The folds and faults of the Valley he northe about parallel to one another and to They northwestern shore of the ancient continent gle structures may be very long. Faults 300 mile long are known, and folds of even greater length occur. The crests of most folds continue at th same height for great distances, so that they pre sent the same formations. Often adjacent folds are nearly equal in height, and the same beds appea and reappear at the surface. Most of the beds dip at angles greater than 10°; frequently the sides of the folds are compressed until they are parallel. Generally the folds are smallest, most numerous, and most closely squeezed in thin-bedded rocks, most striking feature of the folding is the psi lence of southeastward dips. In isme pection across the southern portion of the soction Valley scarcely a bed can be found which dip toward the northwest.
Faults.-Faults appear on the northwestern side of anticlines, varying in extent and frequency with plane dips toward the southeast and is approxi mately parallel to the beds of the upthrust mass. The fractures extend across beds many thousand feet thick, and sometimes the upper strata are pushed over the lower as far as 10 or 15 miles, There is a progressive change from northeast to
southwest in the results of deformation, and difsouthwest in the results of deformation, and dif-
ferent kinds prevail in different places. In south ferent kinds prevail in different places. In south-
ern New York folds and faults are rare and small Through Pennsylvania toward Virginia fold become more numerous and steeper. In Virginia
they are more and more closely compressed and ften closed, while here cosely compressed and Through Virginia into Tennessee the folds are nore broken by faults. In the central part of the Valley of East Tennessee folds are generally so narrow by faults that the strata form a series of eastward. Thence the structure remains south the same southward into Alabama; the faults become fewer in number, however, and their horizontal displacement is much greater, while the remaining folds are somewhat more open.
Metamorphism.-In the Appalachian Mountains the southeastward dips, close folds, and faults that trata leavage and are metamorphosed by the breaks of new minerals. The cleavage planes dip eastwar at angles ranging from 20° to 90°, usually about 60°. This phase of alteration is somewhat devel oped in the Valley as slaty cleavage, but in the Mountain region it becomes important and frequently obscures all other structures. All rock were subjected to this process, and the finar prod ucts of the metamorphism of very different rock Throughout the southern part of the Appalachis province there is a great increase of metamorphism toward the southeast, until the resultant schistosity
becomes the most prominent of the Mountain struc hures. Formations there whose original conditio the alteration has obliterated all the original char acters of the rock Many beds that are scarcely altered at the border of the Valley can be trace southeastward through greater and greater changes until every original feature is lost.
In most of the sedimentary rocks the bedding planes have been destroyed by metamorphic action, and even where they are distinct they are usually ess prominent than the schistosity. In the igneou rocks planes of fracture and motion were developed, which, in a measure, made easier the deformation of the rocks. Along these planes or zones of localized motion the original texture of the rock was largely destroyed by the fractures and by the growth of he new minerals, and in many cases this alteration extends through the entire mass of the rock. Th extreme development of this process is seen in the mica schists and mica gneisses, the original textures of which have been entirely replaced by the schis The structure and parallel flakes of new mineral The ph the ford then ains, althoug in outheastern and southern portions, nothwesterly dips prevail. The range of the southeasterly dip is from 10° to 90°; that of the northwesterly dips, from 30° to 90°.
Earth movements.-The structures above described are chiefly the result of compression which acted most effectively in a northwest-southeast direction, right angles to the general trend of the folds and the planes of schistosity. Compression was als axerted, but to a much less extent, in a directio bout at right angles to that of the main force. To here and due the cross folds and faults that appear earliest known period of compression and deforma ion occurred during Archean time, and resulted in nuch of the metamorphism of the present Carolina gneiss. It is possible that later movements took place in Archean time, producing a portion of the metam. In the cour of time early in the Paleozoi chs. \quad. of movements took place that culminated soon after he close of the Carboniferous period. The latest of this series was probably the greatest, and to it is chiefly due the well-known Appalachian folding nd metamorphism. This force was exerted at two distinct periods, the first deformation producing reat overthrust faults and some metamorphism the second extending farther northwestward and deforming previous structures as well as the unfolded rocks. The various deformations combined have greatly changed the aspects of th rocks-so much so, in fact, that the original nature of some of the oldest formations can be at presen only surmised.
In addition to the force that acted in a horizontal direction, this region has been affected by forces that acted vertically and repeatedly raise or depressed the surface. The compressive forces were tremendous, but were limited in effect to elatively narrow zone. Less intense at any point but broder in their res lhe It is likely roughout this ands of provice combined duving the same epochs of deformation. In most cases the movements have resulted in varping of the surface as well as in uplift. On result of this appears in overlaps and unconformi ties of the sedimentary formations.
. As was stated under the heading "General geoogic record" (p. 2), depressions of this kind took place at the beginning of Paleozoic time, with everal repetitions later in the same era. The alternated with uplifts of varying importance, the hast of which closed Paleozoic deposition. Since Paleozoic time there have been at least four, an probably more, periods of décided uplift. How many minor uplifts or depressions have taken plac can not be ascertained from this region
local structures.
General features.-The rocks of this area have undergone many alterations in texture and position ince they were formed, having been bent, broken, and metamorphosed in a high degree. The strucgeneral northeast direction. Exceptions to thi re seen south and east of Cæsars Head and in Pisgah
the basin of Pigeon River. In these areas the structure planes swing into a northwest course nearly at right angles to their prevailing direction Many minor changes of this kind are to be found at various localities in the quadrangle.
Structures in the sedimentary rocks are readily deciphered. In the igneous and metamorphic formations, however, while it is easy to see that the rocks have been greatly disturbed and the details of the smaller structures are apparent, it is difficult to
discover the larger features of their deformation. discover the larger features of their deformation. One reason for this is that the original shape of are intrusive and consequently irregular Another reason is that the masses of one kind of rock are so great and distinctive beds are so rare that structures of large size can seldom be detected.
While folds are numerous throughout the quadrangle, especially where they are defined by the sedimentary rocks and the uplifted granite masses, meir importance is much less than that of the
multude of slips that accompany the metamorphism, which combined equal the larger structures. It is possible, also, that other faults occur in addition to the few faults that are shown, but for lack of distinctive or regular beds they can not be determined. By far the greater part of the deformation of the rocks in the region has taken place through metamorphism. It is very probable that the folds are complicated with faults along their borders; for instance, in the synclines of Brevard schist. No sharp line can be drawn, however, between the dislocation shown in fauls and in metamorphism without displacement.
In the structure sections it is not possible, on account of the small scale, to show the minor folds and wrinkles, so that the structure is generalized
and represented as comparatively simple. Nor is it and represented as comparatively simple. Nor is it
possible to represent the granite and gneiss occurring beneath the surface, since they have no known methods of disposition or occurrence, such as characterize the sediments. In many places the granite bodies can be seen protruding through the gneisses from below. In other places the same relation can be deduced from a study of the topography. There are also instances in which the bodies of Roan and Carolina gneiss and soapstone rest at various discordant angles within and upon the bodies of the granite. As a general principle, moreover, it is evident that the granites were intruded into the gneisses from larger bodies of granite lying deeper in the earth. For these reasons the granite masses have been represented as growing larger downward. From a similar course of reasoning, the bodies of Roan gneiss, being probably eruptive in the Carolina gneiss, have been treated as enlarging beneath the surface.
of the Pisgah quadrangle is that of ar the roc of the Pisgah quadrangle is that of a synclinal
basin between two broad areas of uplift. The basin basin between two broad areas of uplift. The basin, Brevard schist, has a nearly straight course from northeast to southwest, almost from corner to corner of the quadrangle. The principal syncline is composed of from two to five minor synclines, along which in places the underlying granites are exposed. This fold, which begins in the adjoining Mount Mitehell quadrangle, extends with a singularly straight course southwestward through South Carolina and far into northern Georgia. Its extent and straightness make it one of the most striking folds in this part of the country. Toward it the structure planes of the gneisses on the north approach in succession. Local twists and turns in the individual beds can be found in almost any large outcrop. These are accommodated to one another, however, so that the average course of th The synctines is very regular for long distances.
The synclines in other portions of the quadrangle definite anticlines. Minor exceptions to this are definite anticlines. Minor exceptions to this are
seen in the contorted gneisses northwest of Pisgah seen in the
Mountain.
The two areas of uplift are marked both by the foliation planes and by the masses of granite which have forced the gneiss upward from below. Of the two uplifts the southeastern is far the simpler and compares in this respect with the principal syncline. This is especially true of a belt 5 or 6 miles wide adjoining the syncline. The southeastern portion of this uplift, however, is very irregular in the
direction of the foliation planes. Just west of Maridirection of the foliation planes. Just west of Mari-
etta, in particular, the included masses of gneiss etta, in particular, the included masses of gne
and the foliation planes describe a semicircle.

The northwestern uplift is composed of many xes, the most conspicuous being those which expose the Henderson granite. At four places-near Lake
Toxaway, around Panthertail Mountain, LookingToxaway, around Panthertail Mountain, Looking
tass Mountain, and the Pink Beds-the doming of glass Mountain, and the Pink Beds-the doming of
hese masses and their anticlinal arrangement very well shown. The same attitudes are to be sen in the rocks overlying the main granit masses, comprising the Roan and Carolina gneisses and smaller sheets and masses of the granite. All hese axes pitch toward the northeast, so that the ranite disappears in that direction and highe lines of the various formations on the pithing fold re yery striking. Around Lake pitching fold anticlinal arrangement of the foliation planes is finely shown well down into the granite mass Similarly, the sections northeast of Lookingolass Mountain show the arching of the overlyin gneisses. The remainder of the great anticlina uplift is characterized by very steep dips. Enor mous bodies of the rocks stand on edge and ar very highly contorted. This condition is brought out somewhat by the thin bands of Roan gneis northwest of Big Pisgah Mountain
The folds, both anticlines and synclines, range in size from mere wrinkles up to arches and basins
with breadths of miles. Folds of all intermediate dimensions are to be observed. A few of them are open, especially near the ends of the granite domes. Sections C-C and D-D exhibit these moderately folded rocks. The majority of the folds, however, are nearly or quite elosed. Thin beds, like those of
the Brevard schist and portions of the Carolina nneiss, are bent and crumpled in an extreme degree $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ Section $\mathrm{B}-\mathrm{B}$ and C-C masses of highly contorted oneisses with closed folds. Other large masses of gneiss with steep or vertical dips undoubtedly co
Faults. Fet deted.
nd the only situation in which they quadrangle, is along the southeast side of the Brevard syncline It is difficult to explain the change from Carolina gneiss to Henderson granite on the opposite sides
of the syncline without faulting. Usually there perfect conformity hat a fault can not be detected by that means. Davidson River the granite near the schist highly brecciated and undoubtedly faulted. It i not probable, however, that the contact between
the Henderson granite and the schist is usually one of faulting. Except in that situation no faults of few note have been determined. Small faults of a the gneisses, especially where large ledges hav the gneisses, especially where large ledges have are local and unimportant.
Metamorphism.-Metamorphism of the rocks was extreme, as well as the folding. In the description of the individual formations its detailed effects on
the rocks were described. In general it consiste of a mashing of the rocks under the overwhelming pressure and a production of planes of fracture and motion through the body of the rock as well as along the sedimentary planes. Along these planes of fracture and to a less extent in other parts of the rock new minerals were developed, lying abou parallel to planes of motion. To this arrangement is due the schistosity of the rocks. For the most part the new minerals were quartz and muscovit developed from the recrystallization of the old quartzose, feldspathic, and argillaceous material. throughout the Appalachian Mountains. In this of secondary garnet and cyanite during metamorphism. Similar metamorphic products are found in tracing these structures southwestward int
 extend for 40 or 50 miles and southwestward for 10 to 25 miles, while the other products continu throughout the Appalachians.
The processes of metamorphism were alon The same lines in both sediments and crystallines, and broken during the folding of the rock In folding, the differential motion in the sedimentary strata was to a large extent along bedding plaer planes of vidual layers mion rocks. In rocks which had already become gneiss-
. or schistose as the result of previous metamor phism the existent schistose planes served to acilitate flexure, as did the bedding planes of the wiments. In the massive igneous rocks there developed by fracture and mashing, and the change of form expressed in folds was less than in the laminated rocks. These schistose partings are in a general way parallel to one another for long distances and over large areas. This is conpicuously true of the gneissoid portions of th Henderson granite. They sometimes diverge con ions of the rock, which have yielded less under compression, but the in luave of these lest unde only local. Near the boundaries of formations also, the schistose partings are usually about par allel to the general contact of the formations, the yielding to pressure having been directed by differences in strength between the formations. Thus, while the strike of the different formations may ary considerably in adjoining areas, yet the schisose planes swing gradually from one direction to nother, and there is seldom an abrupt change. As was stated in the description of the Carolin nd Roan gneisses, the foliation evident in them was produced at an exceedingly early date. In the later or post-Carboniferous compression these foliation planes were deformed by folding. Thus were produced the larger folds, such as appea in the Balsam and Pisgah mountains, the minor folds, and the wrinkles which are seen in scores in very were such as to fold and mash or deformabreak the layers, and the bands of the rather than wisted and grow thicker and thinner in the great est variety. Bending of the bedo was largely est variety. Bending of the beds was largel In the granites during the same period of folding there were no existing foliation planes. Under the great stresses, however, planes and zones of shearing and mashing were produced and changes of form took place on them. These planes dip for the most part toward the southeast and are nearly uniform over large areas. They vary in amount from 5° or 10° up to vertical, averaging about 40°. Along the contacts of the formations the planes of chistosity are roughly parallel to the contact in both dip and direction. Within the body of each for from the direction of the contact. Around more massive and resistant portions of the rocks, also, the chistose planes swing gradually. In places wher the motion was especially localized the minerals of
the granites were elongated into thin sheets and he granites were elongated into thin sheets and
trings or striated forms. In the porphyritic grantes, like the Henderson, the large feldspar crystan tere cracked, rotated, flattened, and longated into yes. Around these harder portions the secondary cyes. Around these harder portions
There is great variety in the direction of the ructure planes in the region. Their average trend is between N. $30^{\circ} \mathrm{E}$. and N. $45^{\circ} \mathrm{E}$. Locally there ar west and southeast out by the Roan gneiss bands in the Pigeon River basin. Local curves due to anticlinal structures are be seen around the ends of the Whiteside gran he graid of the French Broad Valley, boin grenite and in the surrounding gneisses. Simila the southout trace of anticlinal origin are seen it schistose planes describe a semicircle in both gneiss and granite. In practically every case where th itch of a large fold can be determined it is towar the northeast.
In the dips of the schistose planes of this quad angle there is great variation. Throughout mos of the area the dip of the schistose planes and sed manging from 10° to 90°. In certain belts ther isually distinct groups of dips An exceptiona feature in this respect is the series of north westwar dipping beds and schistose planes seen along th headwaters of French Broad River. This is best defined in the region lying south of Tennessee Bald, in which locality most of the dips are northerly at angles of 20° to 60°. These northwesterly dips are caused by the anticlinal domes of Whiteside granite, which run from the Pink Beds in a southwest masses is follow anticlinal form taken by the granite is developed, and by the foliation of the gneiss. An exceptional area of another character is found in
the Henderson granite. In this rock the dip of the chistosity as a rule is very small-from 10° to 20 ward the southeast. Similarly light dips prevai in the adjoining Whiteside granite around and ortheast of Cæsars Head. Strongly in contras with these are the dips in the gneisses of the Pigeon River basin, where for mile after mile th rocks scarcely diverge from the vertical, even in pite of extreme crumpling.
Vertical movements.-The latest form in which yielding to pressure is displayed in this region vertical uplift or depression. Evidence of such an be found in this quadrangle, as at the beain ing of the deposition of the Brevard schist, In ng of the deposition of the Brevard schist. I Appalachian folding just described, such uplifts took place again and are recorded in surface forms While the land stood at one altitude for a long time, most of the rocks were worn down to nearly level surface. Over a large part of this region one such surface was developed, but only its worn remnants are now to be seen, at the head of the main streams, where secondary cutting ha not yet reached. Along the Blue Ridge are found he largest areas of this plateau, from 3000 to 3200 eet above sea. There are many smaller remnant here and there in the high mountains, the mos perfectly preserved being the Pink Beds. Ove uuch of this region another such surface wa developed, which is still visible in the plateau long French Broad River at elevations of 2200 to 300 feet. Actual profiles of small parts of thes loutheast of 1 xtensively delo after furthor on he This Pidot Plater now stands at heights of 1100 to 1200 f Plateau, now. st
sea.
After the formation of each of these plains, uplifts of the land gave the streams greater slope and greater power to wear; they have therefore at into the old surfaces to varying depths and produced canyons or later plains, according to thei power and the nature of the waste they carried. The amounts of the uplift can be estimated, from he vertical intervals between the plateaus, at nearl 1000 feet after the first period of reduction, 1100 ret after the second, and perhaps 1000 feet after the last period. Other uplifts and pauses undoubt dly occurred in this region, but their traces are obscure; and probably there were still others which were not of sufficient length to allow plains to be formed and record the movement.

ECONOMIC GEOLOGY
mineral resources.
The rocks of this region yield materials of value, ach as soapstone, tal ine, ining old, graphite, copper, lime, building stone, and
rick clay. The soils they form produce timber and rops, and the grades they cause furnish abundan water power.

soapstone.

Soapstone is found here and there through the Archean formations. With allied rocks it occurs at frequent intervals through the entire length of the Appalachians. Although soapstone is thus very widespread, few of its areas are over a mile in length. Some of the bodies are to be measured by few feet, and most of them cover only a few acre oapstone is derived from the metamorphism of ery basic igneous rocks and is associated with unite, serpentine, chlorite schist, and other prod ucts of that metamorphism. It is customary to in seach area the metamorphic varieties togethe in each area. South of the Blue Ridge only one found in the district north of Brevard and a b Toxaway. More than twenty areas of the forma ion show a considerable amount of the forma addition to those bodies pure enough to be classed as talc.
In places the soapstone is sufficiently pure for conomic use. As a rule, however, the tale, the hydrous silicate of magnesia forming the basis of apstone, is too much mixed with other silicates specially of the hornblende family, to be valuable he special uses of soapstone demand a rock which material that is affected by fire. Some of the horn blendic minerals fuse readily, and others which fus
less easily are hard and injure the texture and the working of the stone. The igneous rocks from which the soapstone was formed vary much in composition, so that the bodies of soapstone are
equally variable in quality. Metamorphism of the equally variable in quality. Metamorphism of the aginal rock was not always complete and cid nete always produce a soapstone, even when complete.
Accordingly, in this quadrangle large bodies of soapstone are rare, the mass at Three Forks of Pigeon River being much the greatest. The soapstone usually occurs in seams or layers in serpentine and dunite, a few inches or a few feet thick, and in larger bodies at the ends and borders of their inclosing masses. In this quadrangle an entirely made up of soapstone or talc. On the entirely made up of soapstone or talc. On the
econology map are indicated twenty-one areas of the formation where soapstone is found in sufficient purity and body to be valuable. The most promising localities are at Three Forks, 5 miles west of Fletcher, and 2 miles southeasterly from Lake Toxaway. At Three Forks the soapstone body is about a mile long, much of it being nearly pure tale, while at the other two localities its bands are from 100 to 1500 feet long. Thus far, however, only loose blocks and bowlders have been sawed and used for building fireplaces, and
nowhere has the rock been quarried to any extent.

talc.

Deposits of pure tale are found in connection with the dunite-soapstone rocks. The tale has the same origin as the soapstone bodies, both being
derived from the metamorphism of peridotite, and derived from the metamorphism of peridotite, and
is, in fact, only the purest form of those deposits. On the the gergy map ten east of Lake Topar, at Thee Fork Pi and just south of Waynesville. In these thre localities the talc forms substantially the entire outcrop of the formation. No tests have been made of the depth of the talc bodies. Since, however, they replace the dunite the depth of the talc is probably similar to that of the dunite. The shape of the dunite bodies is lenticular and their depth is doubtless as great as their length on the surface. At Three Forks the tale crops out in an irregular area about a mile long. Near Waynesville and east of Lake Toxaway the talc forms small lenses 10 to 50 feet thick and from 50 to 150 feet long. Some uses of tale demand that the product shall be absolutely free from grit; others, that it shall contain no fusible minerals; still others, that the minerals shall be massive and capable of being sawed into small sections. All of the tale shown here is sufficiently free from grit and fusible substances. A few small grains of iron oxides are fow for these oxide there are po fusbe impuris for these oxides there are no fusible impurities. This structure renders it unfit for the manufacture of pencils, on account of the easy splitting which it produces; but it does not affect the use of the talc in larger forms, such as linings for fireplaces and furnaces. In this way considerable use has been made of the material from these localities. None of the talc is translucent or massive. The portions now available are the surface materials, however, and the deeper rock would doubtless be better. In no case would the schistose character be absent.

mica.

In the pegmatites of the Archean rocks, mica occurs in crystals large enough to be of commercial value. Pegmatites are found in the various granites and gneisses throughout a large portion
of their areas, but they contain mica of of their areas, but they contain mica of workable size chiefly in a belt about 20 miles southes wide and runlargest mica has been produced from the Big Ridge mine, on the south western side of Lickstone Bald. All of the mines are in the Carolina gneiss, as are most of the good mica mines of this region. The principal developments in mica mining have been in the Big Ridge mine and also within a distance of 4 miles from Tennessee Bald. The mica region also extends westward into the Cowee quadrangle. The group of mica-bearing pegmatites passes northward into the Asheville quadrangle, In gennot there contain mica of workable size. In gen-
eral, however, outside of the mica district above described the crystals of mica in the pegmatites Pisgah
either were not originally of workable size or have been crushed or distorted during the deformation
of the rock. In this quadrangle the permatites which carry. In this quadrangle lye pegnicula shape and lie in general parallel to the inclosing gneisses. Some can be traced for miles, while others extend only a few rods or a few feet. In some places the pegmatite has the form of a vein or dike, with nearly parallel walls; this variety cuts across the schistosity of the gneiss at high angles. Still other pegmatites are replacements of the Whiteside granite and are entirely inclosed in it. These are more feldspathic than the other forms and are closely connected with the granite in origin; they seldom or never carry merchant-
able mica. Pegmatite in the Henderson granite is comparatively rare and the mica is small.
The mica which is mined is the variety muscovite, and it is crystallized with quartz and feldspar forming the pegmatite. In many localities biotite also occurs, and beryl, garnet, chlorite, and numer ous other minerals are found. From a texture like that of granite the coarseness of the pegmatite varies until the mica crystals attain a diameter as great as 20 inches. Crystals of this size are rare, having been found only in the mine at the head of Pigeon River. The average crystals mined are from 3 to 8 inches in diameter.
In places the mica apparently follows rather irregular planes, which are termed the "vein." The distribution in the vein of the crystals or "blocks"
of good mica is very irregular. They can not be of good mica is very irregular. They can not be
predicted or traced far with a definite position in the predicted or traced far with a definite position in the
pegmatite. Consequently, the success of any mica pegmatite. Consequently, the success of any mica
mine is uncertain at the start. Large mica may be found at once or barren rock may continue throughout. Large mica at one point may become maller in a few feet, or the crystals may be crush and cut into ribbons. Even when the mica large, most of it may be "A" mica with poor cleavage. Generally, however, one class of mica prevai or considerable distances.
Many of the crystals do not furnish sheets across them entire diameter, for seams and cuts divide however, are suitable for an pieces. Such crystals, in the form of dendrite figures, stains, and spots render much of the mica worthless for any purpose and clay penetrates between the sheets where the rock is decayed near the surface. Clayey impurities can be, for the most part, taken out by careful washing, but the spots of dendrite can not be wholly removed, existing as they do between the thinnest sheets. These spots are unimportant in mica where transparency is not required, or where used for Pits and shallowsion electric currents. Pits and shallow openings have been made at scores of places in this region during many years, but they have usually been sunk in the decayed rock is difficult, on account of the hardness of the quartz and feldspar
At present the only work carried on is at the Big Ridge mine and 2 miles north of Balsam Grove on the head of French Broad River. The Big Ridge mine is the most important and has been worked for many years. At that point inclines go down
for 70 or 80 feet, at angles of 10° to 30° to the northeast, following the pitch of the pegmatite and the inclosing mica gneiss. The mine lies just on a small anticlinal fold in the mica gneiss which pitches northeast. The pegmatite is composed of feldspar, quartz, muscovite, and biotite, with a little beryl, apatite, garnet, and chlorite. The amount of biotite is unusually large in this pegmatite. The feldspar is mainly plagioclase, some of which is clear
and glassy. Its crystals are large, occasionally and glassy. Its crystals are large, occasionally "blocks" " foot in length. The largest mica blocks are neary a foot across the sheets, but has good cleavage and but little figuring. The product is used chiefly for insulating work in electric construction.
corundum.
Corundum is an aluminum oxide and is found in association with the Archean rocks. Within this it is reparted to have been found in numerous others. There are two distinct kinds of occurrence: Near Great Hogback, a mile northeast, and also about a mile southwest, corundum is found in connection with the dunite formation. At Retreat it also occurs in mica gneiss.

At Retreat corundum was first found in the gravel bed of a small stream. During later search for its in a small tunnel in the mica schist a few red northeast unnel in the mica schist a rew rod that the main source of the corundum was not discovered, becauss the corundum was found in the gravels above the tunnel. The corundum float was
traced for perhaps 200 yards. Most of the coruntraced for perhaps 200 yards. Most of the corun-
dum was of a light-grayish color. Small fragments dum was of a light-grayish color. Small fragments
of a clear sapphire blue were found, and some of of a clear sapphire blue were found, and some of
the light-colored pieces contained sapphire streaks. Some of the larger pieces are deeply pitted, as if the corundum had filled in spaces between other minerals. In the tunnel the corundum crystals were reported to be embedded directly in the mica schist. Small veins of vermiculite, usually asso These schists are somewhat cornetiferous and are just northeast of a narrow dike of the hornblend gneiss which lies in the Carolina gneiss. Aside from this suggestion of a contact relation between the corundum and the igneous rock, there is no evidence in this region as to the origin of the corundum. No deposit of note was developed in the hard rock, nor is the amount of corundum in the gravels or the amount of gravel itself sufficient to justify much work to recover it.
The deposits near Great Hogback are typical of most of the southern Appalachian corundum.
They are closely associated with the dunite formaThey are closely associated with the dunite forma-
tion. The principal occurrence here is at the Burnt tion. The principal occurrence here is at the Burnt Rock mine, a mile northeast of Great Hogback. contact of the hornblende centics and mass at There is a minor lens of the dunite formation he principl one and separated from it by a thin band of min and permat The min body of the mica below it is chiefly hornblende gneiss. The whil as a whole have a dip of about $30^{\circ} \mathrm{NW}$. The as a whole have a dip of about $30^{\circ} \mathrm{NW}$. The ized by large amounts of enstatite and chlorite. These are secondary replacements of the minerals of an original peridotite or pyroxenite.
Corundum is found there in two situations. A little is embedded in the kaolin of the pegmatite lenses; the major part, however, is derived from veins along the border of the dunite and filling small cracks between its blocks. These veins or seam are seldom more than a foot or two thick, and consist mainly of chlorite, actinolite, vermiculite, an corundum. The corundum occurs in nodules and small lumps in the other minerals. They form a closely felted mass in which most of the crystals are arranged at right angles to the walls of the vein The corundum has for the most part a dull gray color, but now and suppher ingly in the permatite lenses cutting the gneis. ingly in the pegmatite lenses cutting the gneisse not of commercial importance. About 10 tons corundum was taken out from this locality in 1892 but the work was discontinued the following year. Several times since then the deposits have been and pits following the contacts and irregularities of he veins, and no systematic exploration has been nade.
Great Hoghack, the associations are practically th same as at Burnt Rock. A much larger amount of corundum was taken out, however, at the same ti
that operations were carried on at Burnt Rock. that operations were carried on at Burnt Rock.
The origin of the corundum is doubtful.
The origin of the corundum is doubtful. Al
the rocks in which it is inclosed are marked b the rocks in which it is inclosed are marked by
schistosity which results from metamorphism. The corundum and associated minerals in the veins do not display this feature. It is most probable formed later than the inclosing rock.

kaolin.

There are two localities in the quadrangle at which kaolin has been found in quantity-at Retreat and near Sonoma, $2 \frac{1}{2}$ miles nearly disintegration of pegmatite lenses, which are very common in that region. Those which contain a large proworkable deposits. Rock decay has been most thorough and deepest near the old plateau sur-
faces, and in those regions also it is most difficult determine the regions also it is most difficult to
account of the thick cover of soil. It is certain that there are many other deposits not discovered, The pegmatite bodies are universally found in thi region, and on the uplands are frequently seen to be of large size.
The two instances cited are scarcely developed at all and barely more than their presence is known. Near Retreat the kaolin has been exposed in three small pits on opposite sides of a little ridge, and it is probable that it is a single body. One pit is early north from the other, a direction which crosses the foliation of the mica gneiss. The kaolin near Sonoma appears to have a similar north-south with the strike of the inclosing mica coness. this locality a ingle pit about 15 feet deep ha this locality a single pit about 15 feet deep ha
been sunk on the top of a hill. In each case the kaolin has a clear white color and is very little surface stained. It is mixed with a moderate amount of fine quartz and but little mica. Although no considerable deposit has been revealed, the prospects are worth further testing; owing to the steep dips of the country rocks, they would probably descend to considerable depths. Near Retreat the kaolin deposit has a length of about 200 feet, and may be much longer; the length of the other deposit is unknown.

cotb

Vein gold is found at only one place within th Pisgah quadrangle, at the Boylston mine, on the southeast slope of Forge Mountain. In addition to this occurrence of gold in the ledge, gold has been
washed from the gravels along the head of Toxaway washed from the gravels along the head of Coxaway River, now occupied by Lake Toxaway. Simila wravels at the western foot of Great Hogback were they were covered by the present lake at Fairfield The were covered by the present lake at Fairfield within 2 miles of the deposit. The basins above the gravels are mainly underlain by granite with narrow bands of hornblende and mica sneis These gravels at Lake Toxaway are associated closely with the plateau of the Blue Ridge, and are a little over 3000 feet above sea. Similar gravels derived from the same group of rocks are found in a nar row belt running northeastward across the headwaters of French Broad River near Balsam Grove, of Davidson River, and of Mills River in the Pink Beds. While it is not known that these gravels are uriferous, there is reason to suppose that they are At the Boylston mine operations have been car ried on at several times during a period of thirty years. The deposits are quartz veins carrying gold nd pyrite. The country rock is bluish-gray and ray mica schist and mica gneiss, cut by narrow quartz wio in the gan with and of $\mathrm{N} .30^{\circ} \mathrm{F}$ the O ne on which the most work ha ben done li near the foot of the mountain. This varies is hickness from 2 to 8 feet. It is lisures in haracter, but in places the lentil is so long as to resemble a fissure vein. The dip of the lentils and of the containing rocks is the same. Along the surface in shallow cuts they all dip toward the northwest, while in the hard rock of the tunnel the dip is steep toward the southeast. Inasmuch as all the rocks of that. region dip toward the southeas when in place, it is probable that the northwestward dips are due to creeping of the decayed rock down the mountain. Some of the quartz is very rich in pyrite, while the greater part of it carries a very little. It is probable that the great range in reported values is due to very unequal distribution of pay ore. Most of the quartz is vitreous, but considerable part is saccharoidal. The principal invelopments consist a long lime of open cut loug foot of the montain long the foot of the the a mile reported lenoth of 700 feet. The original devel repents included a 10 -stamp mill, which remains the last work was done by a 40 -stamp mill, which has been removed.

:raphite.

Graphite is found here and there in many of the ayers of the Brevard schist, disseminated through the body of the schist in extremely fine particles. While the deposits of this mineral have been mined on the extension of the schist in the Mount Mitchell quadrangle, no work has been attempted in
this quadrangle. The black schists are graphitic in many parts of the formation, especially near it base. In fact, graphite might be said to be a reg the cause of the presence of the graphite in som places and its absence in others there is no good evidence, nor is it known whether the graphiti material was introduced into the schists as an orig nal or as a secondary constituent. Its presence in the Mount Mitchell quadrangle in veins, the quart of which is secondary, indicates a secondary origin for the graphite. The schist itself is composed of very fine quartz and muscovite scales with black iron oxides in extremely minute grains. These various minerals are distributed uniformly through the schist. Another mineral sometimes found in the graphitie schists is garnet
In some respects the outlook for successfu recovery of the graphite is better in this than in th Mount Mitchell quadrangle, where both cyanite and garnet were abundant in the graphitic schist and were a serious hindrance to the separation of the graphite. In this quadrangle the schists appear o be as graphitic, while cyanite is absent and garn uncommon.

COPPER

Copper ore is known to exist along the wester border of the quadrangle at a number of places shown on the economic geology map. The copper occurs as chalcopyrite mixed with pyrite and pyr--as concentrations in layers of mica schist and mica gneiss, as vein deposits with quartz, and as vein deposits with epidote and quartz. No deposits of value have been discovered where minerals were disseminated in mica gneiss. In this form, however, when weathered, they cause a great deal o iron-ore float and limonite stains, forming small gossans. These have led to considerable prospectng work, but without success. Of this character re the localthes near Lavina. On Dick Cree south of Retreat small op Hisor 1 outz retre sing the mica about N. $30^{\circ} \mathrm{W}$. and dip at steep angles toward the southwest. Small amounts of pyrrhotite and pyrite and traces of chalcopyrite were found, but no deposit of any value. On Wolf Creek a few miles west of Pinhook Gap chalcopyrite occurs in an epidotequartz vein associated with pyrite, plagioclase feldspar, and lime garnet. The vein, about 20 feet wide, cuts the mica gneiss and runs northeasterly for a considerable distance. Numerous other occurrences of the epidote-quartz rock are found in that region, but in no case does it constitute an ore About a mile northeast of Tennessee Gap lies considerable series of gossans. In one pit 2 fee ins ore were found, which is the greatest thickness shown at any point. Several prospects extend in the Roan gneiss. Although about a mile, mainly been done on this deposit, the indications are better than anywhere else in the quadrangle.
bullding and ornamental stone. Most of the formations of this quadrangle yield one suited for building. The best is foud in the Hend
Granite.-The two granite formations contai by far the best and most abundant building stone. Neither is very variable in texture, and procured. The Henderson granite yields the most workable and accessible stone in this region. Extensive outcrops of the formation are common throughout its course, especially near French Broad River. .The formation consists mainly of the porphyritic granite, which is usually schistose or gneissoid. The rock is gray for the most part, either light or dark. The porphyritic feldspa crystals give a striking aspect to the rock and render it suitable for ornamental work. The stone can readily be opened along the schistose planes, and split into beds of any desired thickness. It dresses well, and is exceedingly hard and durable. near French Broad River. In these situation near Fare - Bros and thes situations surface and the slopes are steep. Considerable stone has been quarried at three places shown on the economic map and local use made of it in bridges and buildings.

The Whiteside granite yields excellent stone of a wore massive texture than the Henderson. It ad very uniform through large bodies. It splits out in thick she very well. Its dut ability is shown by its enormous cliffs in Tabl Rock and Lookingglass Mountain. Along the Blue Ridge are found the best natural outcrops, but quarries could be developed readily at nearly any ocality in its areas. The cover of soil is seldom heavy over the rock and weathering is not deep. butments.
Marble.-Beds of marble are found in the Bre ard formation at several points. While the area nderlain by the marble are large, outcrops of the rock itself are very scarce. The marble is much more rapidly dissolved by circulating waters tha the adjoining rocks, so that its surface is low and verspread with wash from the harder formations. Most of it is white or light colored, but associated ith this variety are beds wie marble whblu, of the male near Fis Analy frbe of 5 ger ent por of magnesium. The marble is finely erystallin ad of it has almost the texture of limestone The lower beds of marble shown near Fletcher are not suitable for ornamental use, since silica present in the form of small grains which impair the polish of the stone. The upper 200 feet, however, are suitable for ornamental stone. The great est thickness of the marble shown in this region is near Fletcher, about 250 feet. At all other points the thickness is much less.
No attempts have been made to utilize the mat ble for building stone, but large amounts have been taken out for burning into lime. The locality nea Fletcher affords the most available places for quar ying. The marble there lies along the bottom land of a small stream, and hard rock comes within or 5 feet of the surface. This would necessitat considerable pumping. The dip of the strata 65° to 75° an thess angle the quarrying from beds of marble would not involve handling a deal of rock the is urully massive airly free from joints, so that laree blocks could b quarried.

tine.

Lime for building and agricultural purposes can e obtained in this quadrangle only from the marble beds in the Brevard schist. For many years oads. Large quantities have been burned and th product has been found excellent. The kilns o Boylston Creek furnish material for local use, whil hose at Fletcher ship their product by railroad Outerops of the marble are scarce and are usuall found near streams, so that disposal of waste mat ial and water requires extra expense.
brick clays.
All of the formations in this region form clay n decomposition. These are of various kindspure, sandy, or micaceous-and they extend ove most of the valleys and lower portions of the quad-
rangle. In the mountains the amount of clay on he slopes is very small. In the smaller valley he sloughout the area hower, or valley is always found. In the more level portions of he region the cover of clay and decompose rock is from 3 to 50 feet thick. The best clay i found in two situations-on the flood plains and erraces of the larger rivers and in the small valley and hollows on the various plateaus. On the smal treams of this quadrangle, except those some dis ance southeast of the Blue Ridge, the grades are oo heavy to permit the accumulation of clay. Alons osits in flood plains and terraces. These clays have oen in food plains and terraces. These clays have nd Fletcher lant is using the clays along the bottom lands o Cane Creek. The deposit is 8 or more feet in thick ness and covers many square miles. Its size is eve exceeded by similar deposits along Mud Creek an hollows of the old platen surfes a the that prtions of the decomposed rock were washed and there excellent clay beds were formed. The total amount of this kind of material in the quadrugl is enormous. These clays are from 1 to 6 feet deep
eing thickest in the bottoms of the hollows and hinner on the hill slopes. In many places

water resources.
 water power.

Within this quadrangle there are abundant Wources in the form of water power. In nine mall, flow rapidly. Since they are fed from mulitudes of springs and drain well-forested areas their flow is very steady from season to season The stream grades are divided into three general roups, according to their relations to the larg opographic features. These are above, below, o on the old plateau surfaces. As was explained nder the heading "Geography," plateaus now are found at three heights above sea level and cover bout two-thirds of the quadrangle. Above them tand large mountain masses never reduced to the vels of the plateaus.
Since the formation of the plateaus as plains th treams have acquired fresh power and recut thei hannels to greater depths. The new cuts ar nd are progressively shallower toward their heads The streags are only beginuing their work in read ting the Piedmont Plateau, and their channels are less than 200 feet below the platean tops. The French Broad plateau is only from 2 to 6 mile wide in this quadrangle. On this the channels of he streams still flow for 5 or 6 miles below Brevard, at which point recent cutting is well under way Where the stream leaves the quadrangle it is abou 200 feet below the plateau surface. The plateau of igeon River extends only a few miles into th uadrangle and has not been appreciably lowere by recent cutting. The Blue Ridge plateau was the ost extensive of all in this region. Its height is ipally to 3200 feet above sea and it was prin River developed in the basin of French Broa Whitewater rivers on the south side of the Blue Ridge.
During the formation of the French Broad plateau the streams cut down into the Blue Ridge deep canyons. Stream grades in these are usuall heavy and small waterfalls are common. Typical f this is the course of Mills River. This heads on Pisgah Ridge over 5000 feet above sea, descend rapidly to the plateau of the Pink Beds at 3200 eet, and descends in a narrow canyon to the French Broad plateau at 2200 feet in about 8 miles. South ward from the Blue Ridge plateau the streams descend a little more than 2000 feet to the Piedmont Plateau. The fall from the upper to the lower plateau is extremely heavy in most of the treams, many of the smaller creeks accomplishin it in 4 or 5 miles. Typical of this is South Salud Creek. Horsepasture and Toxaway rivers flow or 6 miles along the upper plateau surface and descend with many waterfalls and rapids to the lower plateau in 8 or 9 miles, an average grade o onsiderably more than 200 feet per mile. Th luggish and descend in this quadrangle only about 00 feet in 10 miles.
The streams which flow northward from Pisgah Ridge and Balsam Mountains start at heights of 0id 6000 feet above sea and fall with grea of the Pigeon plateau are to whe seen beginning of these streams lie in V-shaped gorges and the mount of water is considerable in each, although the drainage areas are small.
Thus, there are two situations in which extremel high grades are typical of all the streams. These are the unreduced masses of the Balsam and Pisgah ountains and the canyons intersecting the Blue mall, plateau. Most of the streams thus located are an, but they drain heavily forested and welland steady. Their extremely high grades concenrate the water power within narrow limits an The water it able at little expense.
The water power developed in this region is thus btained, for the most part, by the elevation and tream o the Bly water powers which are above the platean are oost cases on small streams and of no grea ard cutting of the streas, here and there concen
trated into falls and rapids by hard beds of rock his is notably the case in the Whiteside granite reas near the Blue Ridge, where its hard and Similar but smaller falls are made by the Henderson granite. The various gneisses are not widely different in their influence upon the immediate stream grades.
The enormous water powers thus at hand in the quadrangle have received scarcely any development few sawmills and gristmills have been turned by the small streams, but nothing more. With the coming of railroads and the possibilities of electric ransmission the energy of the various streams hould prove very valuable.

water supplifs.

The various sources of water in the Pisgah quad angle furnish an unusually large supply. The egion is covered, for the most part, with heavy timber grown and is alogeh whans, igh beavy ond the The fall 8 nis ery great The of the mountain district particularly the greisses in the northwestern part of the quadrangle, have large nuthwestern par planes and are not dense. Accordingly, they are ble to hold large quantities of water. The granites re less schistose and more compact, and thus are able to store up less water. The result is seen in he more frequent droughts which affect the granite regions. In the granites, also, the schistose planes ver large areas dip at small angles and do not condoct the rainfall readily into the interior of the rock. The gneisses, on the other hand, stand a very steep angles over nearly all the areas, and thus he water is carried into the earth most readily Ample time is allowed for this transfer, for evapo ation is checked by the forest growth and by the lower temperatures due to the height of the mountains. In times of flood the streams rise and fall quickly, but the usual flow is steady and full nomerable springs maintain this flow in spite of cames do the mounains, where rock irectly from the reat the ralleys he residual soils are from 6 to 50 feet thick The water of the springs is largely absorbel by this and eeps out from the clay into hollows, Actual spring re very much fewer on surfaces of this kind, wich are practically limited to the remnants of the plateaus. As was stated under the heading "Geog aphy," these plateaus are found chiefly around rench Broad River and the streams which flow outhward from the Blue Ridge.
The only use made of the enormous outflow of ater from this region is for domestic purposes. he houses were buit within easy reach of springs, which was usually possible. On the uplands of the plateaus and on the flood plains of streams shallow ells were sunk in the clay and gravel. A few vells have been cut in decomposed and solid rock r depths of 50 or 60 , but any considerable depth. The town of Waynes hout 3 miles north bam A prly and a for distant about 6 miles, while from West Fork of Pigeon Piver, 13 miles ditant, an wole supply heonst quality an be shained. The latter could he taken through Davis Gap and delivered to th Wwn under a head of about 200 feet. Thes upplies are of the very best quality. The wate is seldom turbid, even after the heaviest rain, and good flow is maintained by the stream, howeve evere the drought. The situation of each catch ment basin is excellent, since it includes a compact rea of mountains from 5000 to 6500 feet in height, where the forest cover is very heavy and the pre pitation unusually great. Similar supples are to found in East Fork of Pigeon River, West For French Broad River, Mills River, and Daviaso River, all flowing from the Pisgah Ridge. Fo xample, the town of Brevad is now supplied from Kings Creek, a small branch dammed 2 miles from the town. A much better supply could be secure fout 11 Sime Silar supplies to be Toway Ho suppled to be had owing sol and entward from the Blu Ridge.

July, 1906.

FIG. 4.-PLLLEEAU OF PIIEON RIVER, 2 MLES SOUTHEAST OF WaYNESVILLE, N. C. Li. Looking NEARLY North.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. \dagger
			Cents.				Cents.
	Livingston	Montana	25	75	Maynardville	Tennessee	25
$\ddagger 2$	Ringgold	Georgia-Tennessee	25	76	Austin	Texas	25
$\ddagger 3$	Placerville	California	25	77	Raleigh	West Virginia	25
$\ddagger 4$	Kingston	Tennessee	25	78	Rome	Georgia-Alabama	25
5	Sacramento	California	25	79	Atoka	Indian Territory	25
$\ddagger 6$	Chattanooga	Tennessee	25	80	Norfolk	Virginia-North Carolina	25
$\ddagger 7$	Pikes Peak	Colorado	25	81	Chicago	Illinois-Indiana	50
8	Sewanee	Tennessee	25	82	Masontown-Uniontown	Pennsylvania	25
$\ddagger 9$	Anthracite-Grested Butte .	Colorado	50	83	New York City	New York-New Jersey	50
$\ddagger 10$	Harpers Ferry	Va.-Md.-W.Va.	25	84	Ditney	Indiana	25
11	Jackson	California	25	85	Oelrichs	South Dakota-Nebraska	25
12	Estillville	Ky.-Va.-Tenn.	25	86	Ellensburg	Washington	25
13	Fredericksburg	Virginia-Maryland	25	87	Camp Clarke	Nebraska	25
14	Staunton	Virginia-West Virginia	25	88	Scotts Bluff	Nebraska	25
15	Lassen Peak	California	25	89	Port Orford	Oregon	25
16.	Knoxville	Tennessee-North Carolina	25	90	Cranberry	North Carolina-Tennessee	25
17	Marysville	California	25	91	Hartville	Wyoming.	25
18	Smartsville	California	25	92	Gaines	Pennsylvania-New York	25
19	Stevenson	Ala.-Ga.-Tenn.	25	93	Elkland-Tioga	Pennsylvania	25
20	Cleveland	Tennessee	25	94	Brownsville-Gonnellsville	Pennsylvania	25
21	Pikeville	Tennessee	25	95	Columbia	Tennessee	25
22	McMinnville	Tennessee	25	96	Olivet.	South Dakota	25
23	Nomini	Maryland-Virginia	25	97	Parker	South Dakota	25
24	Three Fork	Montana	25	98	Tishomingo	Indian Territory	25
25	Loudon	Tennessee	25	99	Mitchell	South Dakota	25
26	Pocahontas	Virginia-West Virginia	25	100	Alexandria	South Dakota	25
27	Morristown	Tennessee	25	101	San Luis	California	25
28	Piedmont	West Virginia-Maryland	25	102	Indiana	Pennsylvania	25
29	Nevada City Special	California	50	103	Nampa	Idaho-Oregon	25
30	Yellowstone National Park	Wyoming	50	104	Silver City	Idaho	25
31	Pyramid Peak .	California	25	105	Patoka	Indiana-Illinois	25
32	Franklin	West Virginia-Virginia	25	106	Mount Stuart	Washington	25
33	Briceville	Tennessee	25	107	Newcastle	Wyoming-South-Dakota	25
34	Buckhannon	West Virginia	25	108	Edgemont	South Dakota-Nebraska	25
35	Gadsden	Alabama	25	109	Cottonwood Falls	Kansas	25
36	Pueblo	Colorado	25	110	Latrobe	Pennsylvania	25
37	Downieville	California	25	111	Globe	Arizona	25
38	Butte Special	Montana	25	112	Bisbee	Arizona	25
39	Truckee	California	25	113	Huron	South Dakota	25
40	Wartburg	Tennessee	25	114	De Smet	South Dakota	25
41	Sonora	California	25	115	Kittanning	Pennsylvania	25
42	Nueces	Texas	25	116	Asheville	North Carolina-Tennessee	25
43	Bidwell Bar	California	25	117	Casselton-Fargo	North Dakota-Minnesota	25
44	Tazewell	Virginia-West Virginia	25	118	Greeneville	Tennessee-North Carolina.	25
45	Boise	Idaho	25	119	Fayetteville	Arkansas-Missouri	25
46	Richmond	Kentucky	25	120	Silverton.	Colorado	25
47	London	Kentucky	25	121	Waynesburg	Pennsylvania	25
48	Tenmile District Special	Colorado	25	122	Tahlequah	Indian Territory-Arkansas .	25
49	Roseburg	Oregon	25	123	Elders Ridge	Pennsylvania	25
50	Holyoke	Massachusetts-Connecticut	25	124	Mount Mitchell	North Carolina-Tennessee.	25
51	Big Trees	California	25	125	Rural Valley	Pennsylvania	25
52	Absaroka.	Wyoming .	25	126	Bradshaw Mountains.	Arizona .	25
53	Standingstone	Tennessee	25	127	Sundance	Wyoming-South Dakota	25
54	Tacoma	Washington	25	128	Aladdin.	Wyo.-S. Dak.-Mont.	25
55	Fort Benton	Montana	25	129	Clifton	Arizona.	25
56	Little Belt Mountains	Montana	25	130	Rico	Colorado	25
57	Telluride	Colorado	25	131	Needle Mountains	Colorado	25
58	Elmoro	Colorado	25	132	Muscogee	Indian Territory	25
59	Bristol	Virginia-Tennessee.	25	133	Ebensburg	Pennsylvania	25
60	La Plata	Colorado	25	134	Beaver	Pennsylvania	25
61	Monterey	Virginia-West Virginia	25	135	Nepesta	Colorado	25
62	Menominee Special	Michigan.	25	136	St. Marys	Maryland-Virginia	25
63	Mother Lode District	California	50	137	Dover	Del.-Md.-N. J. .	25
64	Uvalde	Texas	25	138	Redding	California	25
65	Tintic Special	Utah	25	139	Snoqualmie	Washington	25
66	Colfax	California	25	140	Milwaukee Special	Wisconsin	25
67	Danville	Illinois-Indiana	25	141	Bald Mountain-Dayton	Wyoming.	25
68	Walsenburg	Colorado	25	142	Cloud Peak-Fort McKinney .	Wyoming	25
69	Huntington	West Virginia-Ohio	25	143	Nantahala'	North Carolina-Tennessee.	25
70	Washington	D. C.-Va.-Md.	50	144	Amity	Pennsylvania	25
71	Spanish Peaks	Colorado	25	145	Lancaster-Mineral Point	Wisconsin-Iowa-Illinois	25
72.	Charleston :	West Virginia	25	146	Rogersville	Pennsylvania	25
73	Coos Bay	Oregon	25	147	Pisgah	N. C.-s. C.	25
74	Coalgate	Indian Territory	25	148	Joplin District.	Missouri-Kansas	50

