DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

GEOLOGIC ATLAS
 OF THE

UNITED STATTES

NEPESTA FOLIO
COLORADO

WASHINGTON. D. C.
engraved and printed by the u. s. geological survey
Eorgew. stose, eotror of geologic maps \quad s.u. kuel. chier engaver
1906

UMV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hill and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts of the area mapped, to delineate the outline or form or all slopes, and to line the
 evel, the altitudinal intercal represented by the ew, betwen lines being the each map. These lines are called contours, and the miform altitudinal space between each two conmirs is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour matp (fig. 1).

.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice forming a precipice. Contrasted with this precipice is the gentle slope from its top toward the left. In beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet sur ounds it. In this il numbered, and those for 250 and 500 feet are ccentuated by being made heaver Corrs and then the accentuating and numbering of certain fhem-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismat wamp. In mapping greal Tor in liste rlif contour intervals of 10,20, 55,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover 3,025,000 square inches of paper, and to accom modate the map the paper would need to measure about 240 by 180 feet. Each square mile of ground surface would be represented by a square inch of map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scals The scale. may be cexpressed also by a fraetio. The scale may be expressed a so by action, of which the numerator is a length on the ma and the denominar the correspong leng in are 6360 inches in a mile, the scale " 1 mile to an inch" is expressed by $\frac{1}{6,3,50}$,
an inch" is expressed by $\frac{1.350}{6,36}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{20,000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the cale $\frac{1}{1250}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { s.and }}$ conoins one-sixteenth of a square degree. The aren of the corresponding quadrangle
1000 , and 250 square miles.
a da parts of one map lines United States, disregard political boundary hips. To each sut, to the quadrangle represents, is piven the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.- On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating ditch provide educational material for schools and homes and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribation of rock masses on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma they are distinguished as igneous, sedimentary, and netamorphic
Igneous rocks.-These are rocks which have Through a state of fusio rom time to of all, ages molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thin, and lacco iths when occupying larger chambers produced by the force propeling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pac but are more fully cyalline in ther in burs the outer har more or less pory. Explosive are usu, manies voleanio eruptions cancing eections of duash, and larger fragents. These material whe consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have be broken up and the fragments of which have been carried to a different place and deposited
The chief agent of transportation of rock débris is water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated inte sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and lind. The mot characteristic of the wind-borne or elis deposits is loess, a fine-orained euth; the most char deposits is loess, a ine-g. it mixture of bowlders and pebbles with clay or sond Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chat ged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper par, wher plans, constine soins and subsols, he solls being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter 'into new combinations, certain substances nay be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single . Such changes transtom sandify other rocks in various ways.

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lep.itrary line, and in some cases the distinction An almost entirely on the contained fossils. gnedus formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance ; in such regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which hey are found. Other types passed on from period to period, and thus linked the systems together, fongg a chan of life from the time of the oldest fosm for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thery or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by 'the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava streast, dron (sidges of drift made the edges of glaciers). Other forms are produced by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown
on this map by fainter color patterns. The areal on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formations may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Trrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

ing a vertical seetio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner linds of rock

Schists

Fig. 3.-Symb

 of rocks.The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the sec tion to correspond to the outcrops of a bed of sandof this bed form the surface. The uptred valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is mposed of schists which are traversed by masses and their
 ons of strata, showing
and (b) a t thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
The horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds to 1 and the do the surface of section line, and the depth from he surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.

The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE NEPESTA QUADRANGLE.

By Cassius A. Fisher.

INTRODUCTION.
position and area.
The Nepesta quadrangle extends in latitude from 38°. to $38^{\circ} 30^{\prime}$ and in longitude from 104 o $104^{\circ} 30$. Its length is 34.5 miles (50.5 kilo-
meters) and its average width 27.3 miles (43.9 meters) and its average width 27.3 miles (43.9
kilometers). The area includes a little more than one-third of Pueblo County and a narrow strip along the western boundary of the north half of Otero County, Colo., and comprises Pains, near
miles. it situated on the Great Plain their western margin, a few miles east of the Rocky Mountains and nearly opposite the Arkansas embayment.

сlimate.

The climate of the quadrangle has a moderate range, corresponding mainly to differences of altitude. The southwestern portion is relatively coo and humid, the central portion warm and mor arid, while to the northeast, on the high "Nussbaum plateau," the climate approaches a medium between
the two extremes. During the summer the maxithe two extremes. During the summer the maxilowlands east of Pueblo which in the ire the more or less protected from snow. Not infre quently winter storms from the mountains to the quently winter storms from the mountains to the
west sweep across the district, leaving 1 to 2 inche of snow on the level in the southwestern portion, while to the north and northeast much of the mois ture evaporates before reaching the ground. The rainfall occurs in the late spring and early summer months and is usually confined to local thunder storms, which, though of brief duration, are often of exceptional violence, converting for a time the canyons and dry watercourses into impassable tor rents. The annual precipitation ranges from 6 to 17 inches. Of this amount about one-fifth snowfall, generally occurring during the months of December, January, and February. The heaviest seasonal precipitation ever recorded in the district was 9.92 inches. In the south western part, where the precipitation is probably greatest, the amoun of water which the ground absorbs is relatively small, owing to the
and the rapid run-off.
The prevailing winds are from the northwes, hough during the months of greatest rainfallJune, July, and August-southeasterly winds are common. Gales from the northwest are not infre quent and winds attaining a velocity of 64 mil miles west of the quadrangle boundary.

vegetation

The greater part of the upland of this quadrangle is practically destitute of timber, but in the extreme Her, on the high bluffs bordering Huerfano River, there is a sparse growth of piñon pine and juniper. Trees are abundant along al he larger and many of the intermittent streams. In addition many varieties of forest and fruit trees are cultivated in the irrigated valleys of the larger streams. The upland areas afford a variety of pla teau grasses, cacti, and other low-growing plants, and in the more sandy districts the yucca is combottom lands but most of this area, in it motur state, supports a rank though sparse growth of sage outh have a fertile soil well covered by nutrition grasses.
culture.
Culture, here as elsewhere, is determined by geo ogic and climatic conditions. In the more leve portions, where soil is rich and water available, set-
tements are numerous. The upland grazing disricts are practically uninhabited except here and there along the intermittent streams, where water reaches the surface or can be procured by shallow
wells. The principal settlements are along Arkan as River Valley and the gravelly mesa adjoining on the south. Here a which of small towns have ituated near the eastern margin of the quadrangle The immediate valley of the Arkansas is traversed by the Missouri Pacific and the Atchison, Topeka and Santa Fe railways. Along these lines are several small villages, notably Boone and Nepesta the former near the center of the quadrangle and the latter, from which it derives its name, farther American and Mexican population.
The roads are numerous and in general good. In the grazing districts they follow natural rather than artificial lines, but in the more thickly populated portions they lie along section lines. The
larger rivers are crossed by modern steel-frame larger rivers are crossed by modern
bridges on all the main routes of travel.

TOPOGRAPHY.
relief.
Broadly viewed, the surface of this quadrangle is plateau which rises uniformly from east to west he greatest difference not tuceeding 1100 feet with the extremes 25 miles apart. The lowes point is at the eastern margin of the quadrangle in the valley of Arkansas River, near the town of Fowler, where the altitude is 4300 feet above se level. The highest point is in the extreme south west corner, about 3 miles northwest of the Ben Butler ranch, where an altitude of 5375 feet is reached. The highest portions are near the southwest and northeast corners, and from these areas Galley. The meral slope toward Arkansas River ny one area of the quadrangle is in the southwes portion along Huerfano River, where the rise from the river bed to the bluffs on the north, a distance f about 3 miles, is nearly 500 feet.
The quadrangle is divided by Arkansas and Huerfano rivers and Chico Creek into four unequal parts, which may be conveniently discussed sepaately. The nowne quadrange is an uplana, the southern portion of which resemand southwest, while its northern al a soun portions have the character of a gently undulatin plateau, with a triangular area of typical dune and topography near the center. This upland which will be termed the Nussbaum plateau, from he formation which outcrops throughout its greate part) is bounded on the south by the valley of Arkansas River and on the west by Chico Creek. Along the southern boundary the Nussbaum plaeau is dissected by the valleys of Haynes and Kramer creeks, between which a narrow neck of highland extends for 6 or 7 miles southeastward, of Nepesta and forming one of the most conspicuou opographic features of the quadrangle. Closely adjacent to this ridge on its southern and western borders are several small detached portions of the plateau. Similar outliers occur lower in the valley and Kramer creek valleys the "tepee" horizon of he Pierre shale is exposed siving rise to numerou cone-like hills. These hills, or "tepee buttes" hey are sometimes called are a characteristic topo raphic feature along the north side of Arkansa River across the quadrangle. To the southeast the Nussbaum plateau is terminated by a high, rather eeply serrated line of bluffsoverlooking Arkansas Valley. The western part of the plateau slopes radually toward Chico Creek.
The area west of Chico Creek and north of the rkansas consists of broad, gently sloping ridge southeasterly direction. At the north, in the vicinity of the Tolle ranch, these ridges terminate
gradual slopes toward the lower land of Chico Valley; to the south, along the lower courses of the stream, they end abruptly, forming somewhat

rominent bluffs.

That portion of the quadrangle lying south of Arkansas and west of the Huerfano presents
ome variations of form. The area rises with eral uniformity from an altitude of 4500 feet along Arkansas River to the summit (5375 feet) of a high ridge in the southwest corner. This prominent cliff and the corresponding cliff on the opposite side of Huerfano River are capped by hard limestones and inclose a small triangular area of lowe and underlain mainly by soft, easily eroded rocks. To the north, in the vicinity of Huerfano Lake, the ountry is nearly level and is traversed by shallow intermittent drainage courses. Still farther north a range of flat-topped, detached hills or mesas extends across the area in a line roughly paral el to the course of Arkansas River. These are arved from soft deposits which have been more or less protected from erosion by a capping of gravel. Between this range of hills and Arkanfrom ther Valley is aver terrace which extends from the mouth of Huerano River to the western width of 3 miles. The western end of this terrace crossed diagonally by the narrow valley of St . Charles River.
The area lying east of Huerfano River and comprising the southeastern portion of the quadrangle as a more or less uniform topography. Its saliloping to the east and surmounted here and there by low, inconspicuous, gravel-capped ridges. To the northwest is a group of high, flat-topped rominences, locally known as the Hooker Hills, hich overlook this entire area. To the northeas narrow fringe of level terrace rises 50 to 70 fee bove the level of Arkansas River Valley and xtends from the eastern margin of the quadran le to the mouth of Huerfano River.

drainage.

The proncipal drainage channel is Arkansa River, which enters the quadrangle from th west, a little north of the middle, and flow eastward. Its principal tributare theuth and St. Charles river entering from the outh west, the form outhwest corner of the quadrangle and the latter hear the center of the western border. Huerfano River flows northeastward and joins the Arkansas near Boone. St. Charles River has a very short course in the quadrangle, crossing the western boundary about 4 miles above its mouth. It has narrow, flat-bottomed valley bordered by bluffs 30 to 60 feet high. Arkansas River flows below the general level of the region in a meandering ourse through an open, level-floored valley which averages 1 to $1 \frac{1}{2}$ miles in width. This bordered on the south by a sharp ascent of 50 to 75 feet to a gravelly mesa; to the north long, radual slopes intervene between the immediate valley and the high bluffs of the Nussbaum plaeau. Arkansas River has an average fall of rades. The A, and its tributaries have steeper water in all seasons, but the flow in its la ributaries is of an intermittent character, thei tream beds being dry the greater part of the year Huerfano River is subject to violent and destruc ive floods during the rainy season, with the result hat a large amount of valuable agricultural land has been washed away during the last twenty years. When settlement was first made along the river the average width of the stream bed is reported to have been less than 30 feet; at present it exceeds 200 feet. Apishapa Rive crosses the southeastern part of the quadrangle
It flows northeastward and joins the Arkansas
beyond the boundary, a few miles east of Fowler. The remaining area in the southern half of the quadrangle is drained by Sixmile and Chicosa Arkansas rivers All these streams flow interittently for the whole or suans flow interIn the more level portions the surface water, owing to imperfect drainage, tends to collect in lakes or ponds, some of which hold water only during the rainy season, while others, notably Erdman and Hungerford lakes, are ordinarily filled the year round.
The drainage water of the Nussbaum plateau reaches Arkansas River by way of Kramer and Haynes creeks, the former draining the northeast-
ern and the latter the north-central portion of the rea. The porous sandstones of the Nussbaum cormation porous sandstones of the Nussbaum rapid run-off, so that these streams are prevent ject to violent floods. Haynes Creek has a small How at all seasons in the vicinity of Langford ranch, but lower in its course the water is lost in the porous sands of the stream bed
The northwestern portion of the quadrangle is rained by Chico Creek, with Black Squirrel Creek a tributary from the northeast and rom the northwest. Chico and Black Squirrel the Skinner and Tabor ranch, but below this the water sinks. The Chico receives considerable flood water from Andy Creek.

DESCRIPTIVE GEOLOGY.

General relations.-The strata forming the surace of the Nepesta quadrangle belong to the heir dis, Nertiary, and Quaternary systems. heet, and their thickness, succession, and general haracters are illustrated graphically on the columnar section sheet.
Deep-seated formations.-A considerable thickness of sedimentary deposits underlies the formations exposed in the Nepesta quadrangle. These deposits lie in sheets which have a gentle inclinacon to the east and rest upon a floor of granite and schist. The quadrangle is in the transition he Great Plains r. to the the west and郎 Great Pais region to the east, where the ocks undergo more or less change. There is in
consequence some uncertainty in regard to the charaeter and succession of the deep-seated beds. The Morrison and Fountain formations probably underlie the entire quadrangle, but little is known regarding their thickness and character here, for they have not been penetrated by the deepest borings. The Morrison lies near the surface in Huerfano Valley, in the extreme southwest corner of the quadrangle, being here covered by less than 300 feet of sediments. It is probable also that the quadrangle is underlain by the Millsap limestone nd Harding sandstone, for these formations are nown to have considerable extent from north to outh along the Rocky Mountain Front Range. Concerning the succession of the beds below the Harding sandstone there is much uncertainty. In Cermably quadrangle this formation rests unconmably upon the granite and schists, but to the beds which were laid down as off-shore deposits.

cretaceous system.

dakota sandstone
General relations.-The Dakota sandstone underlies the entire quadrangle. It is exposed over a very small area in the extreme southwest corner. Here the beds, dipping to the east, soon pass short distane suce in the valley of Hueranh. The ast side of this area is deeply incised by the Huerrano, forming the lower extension of the so-called Huerfano Canyon, a deep and picturesque gorge
which continues upstream to the southwest for a distance of 20 miles．
Thickness and character．－The formation has a coarse－grained sandstone consists of medium－ to coarse－grained sandstone，occurring in beds
which are variable in thickness and character． Light－gray and buff colors predominate，weather－ ing to shades of orange and brown．Immediately below the Dakota sandstone is a bed of highly refractory clay about 12 feet thick，underlain by about 200 feet of coarse－grained sandstone merging
locally into conglomeratic material．This sandstone and the overlying refractory clay were formerly in－ cluded in the Dakota formation，but a recent study of these beds by Mr．T．W．Stanton and others h hown that they are of lower Cretaceous age．
If is said that the Dakota sandstone is not water bearing in regions to the west，but in the deep well east of Towler a good supply of water is obtained wells at Manzanola and Ordway still farther eat． The Dakota sandstone lies conformably upon th fire clay of the lower Cretaceous，as shown by exposures to the west．Its uppermost limit is not sharply＂defined，but it merges rapidly into the overlying Graneros shales．The Dakota offer great resistance to erosion and where it outcrop the rock is only partly covered by a thin soil Owing to the large amount of moisture which it absorbs it furnishes a good rootage for trees，and a a result the exposed areas are generally covered with a relatively dense growth of pine．
Elsewhere the formation contains fossil plants， but only a fei fragmentary fossil leaves wer found in this district．

${ }^{\text {benton group．}}$

oraneroo shale

Distribution and character：－The Graner shale－the lowest formation in the Bento group－outcrops as a narrow belt skirting the mest of the Daro sme the south of dark shales nearly black in the middle with of dark shales，nearly black in the middle，with ticular character．The most persistent of thes layers is a calcareous sandstone about 2 feet thick ccuirring in the upper part of the formation．The Graneros shale is generally fossiliferous．There are also near the center several thin layers of light colored＂talc－like＂clay，some of which are asso－ ciated with thin beds of highly foissiliferous lime tone containing an abundance of shells．A concretionary horizon usually occurs 30 to 40 feet above the base．These concretions vary from a few inches to a foot in size and are of a calca－ reous nature．The formation has a total thicknes of about 200 feet and merges upward into the Greenhorn limestone

grabnhorn limestone．

Character and thickness．－The Greenhorn for－ nation consists of alternating layers of light－gra to dove－colored limestone and a slightly darke gray sandy shale．The limestone beds vary from dance of fossil shells，the most common bein Inoceramus labiatus．The limestone is traversed by vertical cracks，which，with the bedding planes， separate it into flat plates．These plates lodge on the slopes in sufficient abundance to obscure the intervening shale in many places．The shale occurs in layers 1 to 2 feet thick and is also very fossiliferous．Thin layers of white clay are also sometimes found．The formation has an aggre－ gate thickness of about 50 feet．It lies conform－
ably upon the Graneros shale and merges upward ably upon the Graneross shale and merges upward apidy into the Carife shale
Distribution．－The Greenhorn outcrops in a narrow band bordering the underlying Graneros and Dakota in the extreme southwest corner of he quadrangle．The characteristic topographic xpression of the formation is a low，winding scarpment interrupting the gradual slopes of broken limestone of the formation holds．Th ble moisture thus favoring the growth of trees nd moisture，thus favoring the growh of treea， This forested strip separating the covered with piñon the Graneros and Carlile shales affords a means by which the position of the Greenhorn limeston may be easily recognized．
cardite shales．
Character and thicliness．－The Carlile formation is composed of shales，shading from light gray to black，with an occasional layer of lenticular sand－ tone and concretions．The sandstone lenses are hale occurring to more sandy portions of the these sandy shales are the concretions，which gen－ erally have rounded outlines and vary in size from a few inches to 6 feet．The larger are septaria， being traversed by numerous large shrinkag cracks filled with white or wine－colored calcite in crystals of varying dimensions．At the top of the formation is a layer of light－brown sand－ tone， 4 feet thick，which is used to some exten s a building material．In thickness this forma Distribution－ 210 to 225 feet
his quadrangle is greater than that the Carlile in his quadrange is greater than that of the Green is a narrow meandering zone between the low escarpment of the underlying Greenhorn lime tone and the bold cliffs of the Timpas．Its stee lopes are largely due to the protection afforded by the resistant massive limestones of the Timpas formation．The soft shales of the upper part of he Carlile sometimes give way under the heavy load of the overlying limestone，causing small landslides．

impas formation

Thickness and character．－The Timpas forma tion has a thickness of 200 feet．The basal mem－ ber is a dark－colored sandy limestone，about 2 fee hick，very fossiliferous and containing shells and nany shark＇s teeth，also numerous dark－colore pebbles．Above this is a series of massive gray limestones 40 to 50 feet thick，which is in turn overlain by lead－colored shale containing a few
thin bands of limestone．At the top of the forma ion there are onestone．At the top of the forma tion there are one or two distinct layers of impure
limestone．The massive limestone is in strata which range from 6 inches to 1 for in strat hich range from 6 inches to 1 foot in thick calcareous shale．Exposed surffaces of the lime tone are usually badly broken and fractured the cracks run parallel to the bedding and the detached plates are thin and conchoidal．Inocer amus deformis is the most common fossil，though not especially abundant，and to the surface of this marine shell Ostrea congesta is often found attached A closer examination of the limestone generally reveals the presence in great abundance of minute organisms，collectively known as foraminifera．In the lower portion of this formation nodules of iron oxide abound．They are of a dark－brown color， spherical or cylindrical in shape，with a diameter rarely exceeding three－quarters of an inch．The surfaces of the less weathered specimens are found on close examination to be covered with angular projecting crystals．These iron particles are prob－ As the limidized product of marcasite nodules As the limestone decomposes these resistant nod he surfe The win if the loose on ion is a．paper－like shale of medium－to dull－gray color．It contains an abundance of to dull－gray tals of oypsum，of the selenite variety．Fish scales of considerable size oceur throughout the formation Distribution．－The outerop of the Timpas is a relatively broad band extending diagonally across the southwest corner of the quadrangle．Its east ern boundary is marked by a low ridge of hills apped with a thin layer of weathered yellow lime tone；the middle shaly portion forms an undulat ing plain；and the massive basal－limestones giv rise to bold cliffs overhanging the softer Carlile shales．

apishapa formation．

Character and thickness．－The Apishapa forma on－the upper division of the Niobrara group－ composed mainly of dark－to light－gray sandy haales，interrupted＂at intervals by＂dull－gray to cam－colored calcareous shales and impure lime beds are fould the top of the frontion，wher series of alternating layers of y yello w llimeston and light bluish－aray shale reaches a thickness of 10 to 20 feet．The formation has a total thicknéss of 425 to 450 feet．The lowest 50 feet is com－ posed of a dark，fissile shale，followed by about

00 feet of a somewhat decayed papery shale of lightly darker shade．The shale of the central portion of the formation is generally arenaceous， and in places，owing to its increased hardness，has resisted erosion sufficiently to form low escarpments one of these，however，occur within the limits of his．quadrangle．This sandy shale contains tracks sewhere in thens，and fish scales abound intion of the Apishapa，comprising about 100 feet of sedi nent，is a dark bluish－gray，fissile shale contain－ ing two and in some places three horizons of ream－colored imestone，the uppermost marking the top of the formation．There is also near the op a horizon of limestone lenses varying in size om 1 to 20 feet and arranged parallel to the bed ing plane．These lenses are ramified by crack outh side of Chicosa Creek，north of Aong he aln side of Chicosa Creek，north of Hungerfor nderlyitig softer shale from have protected th nderying to sise to low round such or hills，forming a conspicuous feature of the topography．
Distribution．－The outcrop of the Apishapa is a broad band extending from east to west across the southern part of the quadrangle and comprising out one－fourth of its entire area．It has a simple he south the north，but a more complex one on part of this formation，appears in the landscape as gently undulating plain，interrupted here and here by a low prominence capped by a rémnant of Nussbaum sandstone．The upper limestone is seen within the limits of this quadrangle only on xmile Creek at the northern boundary of the frimation and on the Rocky Ford Highland canal miles south of Fowler

pierre fhale．

Thickness and character．－The Pierre is the ighest formation of the Cretaceous period which ours within the quadrangle．It has a thickness
 mexhat yellow at the base which has been called he＂barren zone＂on account of the absence of Cossil remains．Above this zone are about 500 feet of dark－gray shale characterized by bands of con－ cetions composed chiefly of iron and lime car－ onate．These concretions are a dark bluish gray hen newly exposed，but weather to rust color hey vary in size from a few inches to 2 feet，and here they outcrop broken，angular＇frabments are rewn over the surface in grat abundance， bove this is a deposit 100 to 200 feet thick a somewhat lighter gray shale which contains any specimens of the marine shell known as aculite．This shell varies from one－half to 1 nch in diameter and is 4 to 5 inches long．Next above is a shaly series known as the＂tepee zone，＂ exhibits This by the tepee－shaped hills which ex or less i compor manly of light 50 eet or less．It is composed mainly of light－gray bodies of gray limestone known＂t ane las，＂ The concretions are composed of calcium carbon te，oval in shape and ranging in size from a few aches to 6 feet．They are very fossiliferous：The epee cores vary in diameter from 10 to 30 feet，are regular in shape，and have a vertical extension of t least 50 feet．While they are generally roughly ylitdrical，one case was noted where the core apparently tapered downward like an inverted cone，and in other localities there is evidence that me are of lenticular shape．These tepee buttes ave beefí studied jointly by Messrs．G．K．Gilbert Id E．P．Gulliver and their description of the epee rock is here given

The tépee rock is essentially a calcium carbonate，th 8 to 1 in the single sample analyzed．That sample nained also 12 per cent of argillaceous material．For closing shale and of one of the ordinary concretions of the shale，the determitations showing that the tepee
rock doess fiot differ materially in composition from the nicretions and that the argillaceous material is practi－ cally identical with the spale．This permits us to regard
the argillaceous material as included shale，and there－ the argillaceous material as included shale，and there－
fore an impurity rather than an essential constituent of he an impurity rather than an essential constituent of The rock is of
re，and its general color is a light，warm gray．It is解 of fissil shells，and the microse ped shems in a matrix which is composed of frag nents of shell，waterworn grains of caleite，foraminifera， d clay．Cross sections of Lucina shells show that the riginal shell structure remains，although the lime of the
hell has been recrystallized into calcite．Inside of the hell wall there is a band of radiating crystals of calcite howing well－marked spherulitic structure．The calca－ rous ooze which must have at first occupied the central avity of the shell has recrystallized into very pure cal－ ce，leaving the clay impurites at one side of the shell． has replaced the lime－of the shell，for the two parts extinguish together，the cleavage cracks extend from litic center through the ontside，and when the spheru－解的 band is fanted the clear calcite is continuous litic layer to be slightly less soluble in dilute hydro－ chloric acid than the clearer calcite．
Ari analysis of a typical sample of tepee rock， ade by Dr．W．F．Hillebrand（Gilbert，G．K．， eologic Atlas U．S．，folio 36，U．S．Geol．Survey， 897），is as follows：

Siliea（ SiO_{2} ）．	7.46
Titanium dioxide（ $\mathrm{TiO}_{\mathrm{z}}$ ） ）．．．．．． \}	1.78
Alumina（ $\mathrm{Al}_{8} \mathrm{O}_{3}$ ）$\ldots \ldots \ldots \ldots .$.	1.78
Iron sesquioxide（ $\mathrm{Fe}_{3} \mathrm{O}_{2}$ ）	94
Lime（CaO）	． 98
$\left.{ }^{\text {Magnosia（ }} \mathrm{MgO}\right)$	． 86
Potash（ $\mathrm{K}_{\mathrm{s}} \mathrm{O}$ ）	． 37
Soda $\left(\mathrm{Na}_{2} \mathrm{O}\right)$	． 37
Phosphoric oxide（ $\mathbf{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$ ）	Undetermi
Carbon dioxide（ $\mathrm{CO}_{\mathbf{3}}$ ）	
Water lost at $100^{\circ} \mathrm{C}$ ．	． 16
Water lost above 100°	
Organic material．．．．．．．．．．．．．）	80
	100.00

The limestone constituting these＂tepee cores＂ bears a marine fauna．Lucina occidentalis is the most abundant molluscan species，forming a lead－ ing constituent of the rock．Inoceramus is rather ommon and cephalopods ocar in considerable ariety．Foraminiferal forms are frequently seen nder the incroscope．The occurrence of fossil cor The flling a list the the secie dermined by Mr．W．Stan fiom pecimen collected by．Gilb pecimens collected by Mr．Gilbert

Ostrea inornata M．and H ． Inceeramus crispii var．ba
 Tioceramus crispii var．barabini Mort Inoceramus vanuxemi M．and H ．
 noceramus sagensis owe．
 Lucina oceidentails var．ventricosa M ．and H ． Thetis circolaris M ．and H ．
 Anchichara（Drapepanochilisis）amerieana E．and S． Nautilus ．
 Nautilus dekayi Morton Bacelites ovatus Say．
 Baculites compressus Say． Scaphites nodosus 0 wen（ （）
 Scaphites nodosus var．quadrangylaris M ．and H Seaphites nódous var．brevis MMe
 seap ties nodosus var．brevis Mee Ptychoeras erassum Whitfeld．
 Heteroceras（Exiteloceras）cheyennense M．and H ． Heteroeras（Didymoceras）nebrascense M. and H Hetereser
 Heteroceras（Didymoceras）cochleatom M．and H ． Heteroceras sp．undet．
 Heteroceras sp．undet Helicoeras sp．undet

The remainder of the Pierre shale，as found in this quadrangle，consists of a series of lighter gray sandy shales containing concretionary
an aggregate thickness of about 600 feet
Distribution．－The Pierre shale occupies a broad band，narrowing to the east，extending from north－ west to southeast across the quadrangle along the general course of Arkansas River．On the south its outline is relatively simple，with one ontlying portion at the western margin of the quadrangle， near the head of a large branch of Sixmile Creek； but on the north the boundary is very irregutar， being determined by the overlapping of the Nuss－ baum formation．The shale yields readily to ero－ sion and the slopes of the larger areas are traversed by numeroas ravines．

tertiary system．

Distribution．－The Nussbaum formation has the greatest surface extent of any deposit within the limits of the quadrangle，occupying the greater part of the northern half．Its main portion ary of the quadrangle，and several large detached
 highland formation south of Vineland and Avon－ dale and it caps the Hooker Hills on the opposite side of Huerfano River．The district lying to the south and east of Arkansas and Huerfano rivers
contains many small isolated areas of Nussbaum, especially in the region of Erdman Lake, along Chicosa Creek and its tributaries, between Hungerford Lake and the southern margin of the quadrangle, and along Apishapa River. There is so a the Huerfano about 4 miles south of Underclifl
 sands, and silt, with very little clay. The sand and gravels at the base are often bound together by a calcareous cement, forming sandstone and conglomerate of considerable firmness. The formation lies unconformably upon the underlying
Cretaceous rock and is of river origin, as is indiCretaceous rock and is of river origin, as is indi-
cated by the coarseness of the material and the cated by the coarseness of the material and
general direction of the slope of the mesas.

```
quaternary system.
tertace depostrs.
```

Age and distribution.-The terrace deposits of his quadrangle repres time In the boundaries of the earlier and later deposits can be easily delineated and in mapping distinct patterns have been used. The materials composing these two terraces are much the same and the basis of their classification is largely topographic. The earlier terrace caps a number of small flat-topped hills bordering the south side of Arkansas River Valley between St. Charles and Huerfano rivers. A few smaller areas are also found in the vicinity of Erdman Lake The later terrace occupies a strip from 2 to 3 miles wide on the south side of Arkansas River, extending across the entire quadrangle and forming its most fertile agricultural district. There are also less extensive terraces along the Huerfano from the icinity of Undercliff to its mouth. On the north side of the Arkansas, from Boone to the eastern some of the more prominent ridges; and a cap mall areas occur on the east side of Chico Creek in the vicinity of the Skinner and Tabor and the Tolle ranches. Character a
Character and thickness.-The chief components ing proportions, the whole having an aggregate thickness of about 30 feet, but in places the earlier errace is somewhat thicker. At the base the material is locally cemented by lime, forming conlomeratic sandstone, a notable feature of the earlier terraces. The gravels of the later terrace are smoothly spread and slope gently toward the iver, terminating abruptly in low cliffs. While he materials composing the earlier and later terrace deposits are much the same, the former exhibits a lightly wider range of rocks. The deposits along Huerfano River, Chico Creek, and on the north side of Arkansas River rarely exceed 15 feet in thickference from those of the larger terraces.

alluvial deposits.

Distribution and character.-The alluvial deposits of this area are confined mainly to Arkansas River and its principal tributary, the Huerfano. A relatively narrow strip occurs along the St. creeks. The alluviúm of Arkansas River has a fairly uniform width of 1 to $1 \frac{1}{2}$ miles, continuing across the entire area. Through this flat the river pursues a meandering course, generally adhering to the south bank. The deposit consists of a lightcolored, fine-grained sand with varying proportions of clay and decayed vegetable matter. Its total hickness is 20 to 25 feet. The alluvium of Huerfano River extends from the Ben Butler ranch to its junction with the Arkansas. It rarely exceeds one-half mile in width. Along St. Charles River he allúvial flat is very narrow. It continuës from he western margin of the quadrangle to its mouth,
distance of 4 or 5 miles. a distance of 4 or 5 miles.
dUNE SANDS.
Distribution.-Extensive accumulations of dune ands derived from the sandy Tertiary beds to the orth cover an area read th a point about 5 miles northeast of Boone. Other smaller areas are found along the eastern margin, on the highlands between Haynes and Chico creeks, and on the gravelly terrace southeast of Boone.

Character and age.-The sands are of recent igin and in many places are still loose and travel of the large winds. Throughout the southern hal entire surface is a system of hills and hollows with practically no drainage by streams. The dunes are 30 to 40 feet high and they lie with their greater diameters from northwest to southeast, which is he direction of the prevailing winds. Farther orth the sand has been blown about by the wind to some extent, but not formed into distinct dunes, and this area has a well-defined drainage. West of Langford ranch and along the eastern margin of quadrangle the sand hills are low and conspicuous, rising only a few feet above th level of the plais. In the area southeast of deposits.
structure
The general structure of the Cretaceous rocks of he Nepesta quadrangle is indicted in fig. 1 , which

wing structure of
eastern Colorado.

hows the configuration of the Dakota sandstone the surrounding portions of the Great Plains ver all except the southwestern portion of the rea the beds have a slight northeastward inclinaion, as illustrated in the structure section on the rtesian water sheet. A broad dome with a genral southeast-northwest trend crosses the Apishapa and Walsenburg quadrangles, which lie to the south and southwest respectively. Extending from this dome in a northerly direction, a low the Nepesta quadrangle, giving rise in that regio to a perceptible increase in the dips. There is lso a low, flat arch, with a correspong There on the west passing through East Pueblo, which onters the Nepesta quadrangle about $1 \frac{1}{2}$ miles outh of St. Charles River, but extends only a hort distance inside the limits. In the southwest corner of the quadrangle the Cretaceous strata xhibit many waves and small faults. These ould not be traced, owing to superficial covering, but they probably prevail throughout the eneral region. Deformation by the intrusion of neous rocks has not occurred within the quadangle, so far as could be ascertained.

HISTORICAL GEOLOGY.
sedmentary record.
The rocks occupying the surface in the western art of the central Great Plains are of sedimentary origin. They consist of sandstone, shale, limestone,
sand, gravel, and loam, and present considerable and, gravel, and loam, and present considerable originally sand, gravel, and calcareous mud, derived from the erosion of ancient land surfaces or chemical precipitates from sea waters.
These rocks afford a record of physical changes which have taken place from near the beginning of Cambrian time to the present, but owing to the lack of knowledge of the relations of some of the deeply buried rocks only a general outline of
the sequence of events can be offered. One significant feature is that some of the conditions ere widespread, for there is remarkable unimin in the resulting products. There were periods of emergence in which the surf was sculptured by running waters, especially in the later epochs.
Cretaceous seas.-In the Nepesta quadrangle the seologic record begins with sediments characteristic of shallow seas along a coastal plain which alterwately rose and sank, but the general movemen which was one of subsidence. These coastal dest ref which the Dakota sandstone is the rangle, consist mainly of coarse pebbly quadstone laid down by strong currents in be to 30 feet thick. At the close of the Dakota deposition marine conditions were established over wide areas and continued until near the end of the Cretaceous period. During the middle of Benton time there was a change in conditions, resulting in the deposition of the Greenhorn limestone. The close of this epoch is marked by a layer of light-brown sandstone. The shales of the Benton group were followed by a series of limestones and shales, the latter predominating, now known as the Niobrara group. A marked episode at the beginning of Niobrara time was that which resulted in the deposition of the massive limestore which now constitute the base of the Timpas formation. At the close of this epoch several thin layers of limestone were deposited, and these were followed by over 2000 feet of Pierre shale laid down under uniform conditions, Fox Hills of the marks the Fox Hills epoch. During this time extensive sheets of sand were deposited on the underlying
clays, forming a basis for the clays, formg a succeeding Laramie epoch. Whether or not these two last-named formations were deposited over the area occupied by the Nepesta quadrangle is not definitely known, but it is probable that they definitely known, but it is probable that they
were and that attenuated representatives still exist between the Pierre and Nussbaum formations in the northern part of the quadrangle. To the west in the vicinity of Florence, the Laramie reaches a considerable thickness and to the northeast and southwest Fox Hills, Laramie, and later deposits occur in thick masses.
Early Tertiary conditions.-At the close of the Cretacens period the Nepesta quadrangle was raised above the water, and an epoch of gre mountain growth ensued. The disturbances, however, which accompanied this epoch elsewhere were here manifested only by a general uplift, except in
the southwest corner of the area, where local fold the southwest corner of the area, where local folding of the strata took place. During the early part of the Tertiary period this quadrangle was being
gradually uplifted and rapidly eroded, so that large gradually uplifted and rapidly eroded, so that large This uplift and erosion were accompanied by local interruptions, one of which, occurring in late Tertiary time, has had an important bearing on the history of the district. At this time river deposits accumulated on the plains opposite the Arkansas embayment, owing to elevation to the east, which decreased the gradient of the Arkansas and its more important tributaries and rendered these streams incapable of disposing of their sediments. As a result an extensive but relatively thin deposit of sand and gravel, known as the Nussbaum formation, accumulated on the eroded surfaces of the older formations over the greater part of the quadrangle. Subsequent erosion, stimulated by change
of level and increase of slope, has removed much of the deposit in the southern half of this area.

ECONOMIC GEOLOGY.

solls.

Character and distribution.-The soils of the Nepesta quadrangle include several different varieties, some of which are exceptionally fertile. related to the underlying rocks, of which they are in part residual products. The exceptions are in part residual products. The exceptions are
along the larger valleys, where the soils have formed from alluvial deposits.
The bottom land immediately bordering the
deposit of light-colored sandy clay containing alternating layers of gravel. Below this, resting on the bed rock, is a layer of coarse gravel of variable Bordess which affords a local water supply. cially along this bottom land in some places, espe-loess-like well adapted to agriculture when watered. The most productive soil of the quadrangle is on the terraces bordering the Arkansas and its more important tributaries. It is of a sandy character, but contains a sufficient amount of clay to make it coherent when moistened. It varies from 1 to 6 feet in thickness, the maximum being reached at the outer portion of the mesa, adjacent to the base of the older terrace. Along its inner border is a strip of gravely soin, varying in width too stony for arieultural purposes These ter too stony for agricultural purposes. These terespecilly where the intermittent streams of the adjoining highland traverse them. In some localities the material is sufficiently incoherent to be moved about by the wind, forming low hills of dune sand.
The soil of the Nussbaum upland is prevailingly sandy, but sufficiently rich to support a strong growth of various kinds of plateau grasses with a il amount of moisture. In the sand-hill area the oil is very loose and unfit for cultivation, though The soil a vigorous growth of nutritious grasses. Pierre shale, which is essentially a clay formation, is stiff and "gumbo"-like, highly acid on account of decomposing pyrites, and generally not well adapted to cultivation. There are, however, a few open valleys, notably those along Andy Creek and some of the larger tributaries of Chico Creek, in Similar der bit limited extent borde Similar deposits, but of limited extent, borde The Niobrara beds, whi
The Niobrara beds, which occupy the uplands auth of Arkansas River, have soils of clayey char-
acter, containing sufficient limy material mixed with the sand to give fertility. However, over a reat part of this region there is no water available for irrigation and hence farming is not pursued. A notable exception to this is the district under the Huerfano Valley diteh, where considerable farming is done by irrigation from flood waters. The Carlile outcrop within the quadrangle is very limited in extent and usually consists of steep, barren slopes. There is, however, a small tract of productive valley land along Huerfano River just below the Ben Butler ranch. The Graneros shales furnish a narrow strip of tillable land along the Huerfano.
The Dakota sandstone, covering about 2 square miles in the extreme south west corner of the quadAgriculture - The partly covered by a scanty soil. Agriculture.-The general aridity of the climate except in a few low-lying areas adjacent to the principal treams A restricted to the valley land and the adjoining gravelly mesas. The cultivated portions comprise about one-eighth of the total area, the remainder being utilized for pasturage of cattle, an important industry of the region to which the upland areas are well adapted. Among the chief products are oats, corn, wheat, sugar beets, potatoes, Mexican beans, and a variety of garden vegetables, most of which are marketed at Pueblo. The largest and most profitable crops are alfalfa and melons. The alfalfa is consumed in the region, while the melons, especially the cantaloupes, owing to their superior quality, find a ready sale in the best markets of the United States. Fruit raising is a growing industry and many large, well-kept orchards are to be found in the irrigated districts. Cherries, plums, and other small fruits have a hardy growth and abundant yield, but the apple crop is as yet he fruit in its advan stare ordinarily of sufficient length to insure the maturing of all cultivated crops.

WATER RESOURCES.

The underground waters of the Nepesta quadrangle are of two general classes, ground and arte-
sian. The former is the chief source of supply for
domestic purposes throughout the area, but as it usually contains much "alkali" there is great need of artesian water.

ground water.

The ground waters of the area are confined chiefly to the alluvial sands and gravels bordering He intermittent streans of thoulane of the intermittent streams of the upland region, such mall underfow, which is often suffient to apply domestic wells. The gravelly terraces contain coniderable water derived by seepage from irrigation ditches. As the conditions governing these sources f ground-water supply are for the most part variof ground-water supply are for the most part vari-
able, the amount of water is by no means constant. When the annual precipitation is low there is a perceptible decrease in the underflow of the inter mittent streams. During the late summer and fall nonths, when the irrigation canals carry the mininum amount of water, there is also less water in vells adjacent to these ditches, owing to a lowering of the water plane. The seepage from the ditches constantly leaching out the soluble salts con ained in the clays of the terrace gravel and the hales upon which they lie, as is proved by the character of the water in the marginal spring sssuing from these terraces. This leaching pro cess has been more effective in some places than in others, and the water in certain wells has poved in qualiy wish prod, whil in others it
mineralized.
Wals
Wells drawing their supply from the underflow the Arkansas River Valley are more or less of water in the river. During flood times there a lateral underflow from the stream to the alluvial flats, and, as the river water at such times contains an abundance of "alkali" washed from he adjoining highlands, the well water of the valley soon becomes highly charged with objec ionable salts.
The Nussbaum formation, which covers the arface over much of the area north of Arkansa River, contains the only good ground water found in the quadrangle. Along the western and south rn boundaries of the Nussbaum plateau, from the Skinner and Tabor ranch to the vicinity of Fowler here are numerous springs at the base of the Nussaum formation. These have a small flow of comparatively pure water. The gathering ground of these springs is the Nussbaum plateau, which rial wells have been sunk, but, with a few excep ions, little water was obtained
Th
ished by a number of these small Fowler is furnorth side of the river. The water is first collected by porous tiling laid along the sides of the smaller ravines which head in the plateau. This tiling delivers the'water into pipes leading to a storage eservoir situated in the Nussbaum bluffs. From here the water is piped to Fowler, a distance of bout 2 miles. The springs in the bluffs nea Nepesta, Boone, and Nyburg could be similarly
utilized. The following analysis of the Fowler ater male in the laboratory of the Atchison, Topeka and Santa Fe Railway

	$\underset{\substack{\text { Grains per } \\ \text { gallon }}}{ }$	
Organic material.	1.983	${ }^{34}$
	. 991	17
Caleium carbonate.	2.500	${ }^{43}$
Magnesium carbonate.	1.470	24
Sodium carbonate	8.260	141
Sodiuin chloride	3.730	
Sodium sulphate.	9.190	57
	28.14	480

rthsian wathe

Source.-In the Nepesta quadrangle, as elsewhere throughout the central Great Plains region, the Dakota sandstone is the principal artesian-water included in this quadrangle. From the extreme southwest corner, where it disappears underground he sandstone descends uniformly toward the east The only known irregularities in this inclined plane are a low anticlinal fold entering the quadrangle from the northwest at a point due west of Huerfano Lake, and a small arch from the south,

Ben Butler boundary about 4 miles east of the inside the Nepesta Tuadrangle as will be seen by reference to fig. 1 , which shows the configuration of the Dakota sandstone. The gathering grounds of the artesian water lie to the west and southwest, here this sandstone is extensively exposed in the rm of hogback ridges and broad anticlinal folds. Throughout these areas of outcrops the water is escends within the porous sand and streams, an confined by the impervious shales of the marine confined by the impervious shales of the marine River to the east the water in the Dakota sand tone is under sufficient pressure to bring it to the urface when the formation is reached by well borings. The overlying formations have fairly uniform thicknesses, and as these thicknesses are nown, it is possible to predict, with a considerable legree of certainty, the depth below the surface t which the Dakota is to be found. The waterbearing beds in this formation occur at various distances from its top in different localities. In he western part of the area the highest bed fur ishing artesian water is encountered about 100 feet below the top of the formation, while to the ast the uppermost member produces not only the rongest flow but often the best quality of water The depth below the surface of the top of the he artesian water sheet. For the contours on he artesian water sheet. For instance, the 1000 foot artesian contour is drawn through all points he surface While these estimates feet below he serror, it is believed that they are sufficintly curate to be of practical service The facts set forth by these contours indicate that the Dakota andstone lies at only a moderate depth below the urface in the southern half of the quadrangle, but hat the depth increases to the northeast.
Head.-As above stated, the arte
underlying the Nepesta quadrangle enters the Dakota formation on the high slopes to the west. These slopes, which may be regarded as he head of the artesian water, rise to altitudes anging from 4000 to 5500 feet. Throughout the lower lands to the east the height to which water will rise in wells reaching the Dakota sandston decreases toward the zone where the water is free escape at the surface, which is in the vicinity of Lamar, Colo. If the physical conditions govern ng the storage and transmission of this water were ould be rily oulase from head to leak ould be easily calculated, but as these condition in the decrease of head onnt ocal varilong Alkasa Valley, fro Pueblo to Rocky ord everal wells have ben sunk to the Dako and artesian flows obtained. The pressure of these wells affords a means of estimating the total amount of decrease in head from one side to the other of the Nepesta quadrangle. By equally distributin his loss of head along lines connecting wells of nown head at Fowler, Manzanola, and Rocky ord with the lowest points of inflow of the akota outcrop to the west, the head for points points of equal head contours or head lines have been drawn, which are intended to illustrate the decrease in head from west to east. The contour interval is 100 feet. These lines of head afford a means of ascertaining the pressure of wells within the area of flow and the height to which water wil rise in wells that do not flow. The depth below he sury at whits water at any point outside the area of flow is equiv the surface of the oround for the locality in tion. The head lines a determination of the when artesin flows might be expected. The territory of flowing wells within the Nesta quadrangle is not large It is confined to Arkansas River Valley and its principal tributaries from the south. Along the Huerano it is limited to a very narrow strip, but in the vicinity of Chicosa Creek and Apishapa River toccupies broad bands which increase in width to the southern margin of the quadrangle.
Chemical properties.-The quality of the artehe wouter probably varies considerably within the boundaries of the area, as is suggested by a
comparison of the analyses of the two deep wells at Pueblo, less than 2 miles apart

A comparison of the various analyses of the Dakota waters along Arkansas River from Pueblo Lamar, Colo., shows that their mineral contents include sulphates, carbonates, and chlorides, the alphates being the most abundant. Sodium, calam, magnesium, and potassium are the principa metals, their relative quantities being in the orde med, while the kind and amount of salts, cluding sodium sulphate, magnesium sulphate, hloride, vary considerably in different well Reoo, f i.
Record of deep borings.-In the deep well on the water rose 1000 feet. It is reported to be of ood quality, but no analysis has been made. The material penetrated by this well is shown in the following record (fig. 2)

Fita. 2.-Section of deep well near mouth of Andy Creek.
This boring begins in the Pierre shale, 1500 feet bove the base, passes through the basal Timpas eet of Benton shale before reaching the Dakota If the boring had been continued farther into the Dakota it is probable that the water would have isen much higher in the well.
The deep boring near Boone is a dry hole, owing to the fact that the well was discontinued as soon as the Dakota sandstone was reached. The record of the well follows.
At this place the boring begins near the middle the Pierre shale and passes through the Niobrara series from 1100 to 1750 feet, below which

460 feet of Benton are penetrated, containing the characteristic "talc" layer near the base.

Formation.	Character.	Thicknes
	Soil...	$\begin{gathered} \text { Feet. } \\ 0-20 \end{gathered}$
Pierre......	Shale with concretion	${ }^{20-1100}$
Aрishapa....	Shale, ealcareous at top.......	1100-1525
Timpas.....	Shale with limestone in upper and lower parts.............	1525-1750
Carile......	Shale.	1750-1950
Greenhorn.-		1950-2000
Graneros...	Shale...	2000-2200
Dakota..	Sandstone.	

An artesian well a short distance east of Fowler, on the Atchison, Topeka and Santa Fe Railway, has a flow of soft water from the upper sandstone of the Dakota. The following beds were penetrated:

The boring begins near the base of the Pierre shale and passes through the Apishapa and Timpas formations, the characteristic limestones of the latthis beeng penetred Dakota sandstone.

Rhigation.

The annual rainfall of the quadrangle is so small that all successful farming must depend on irrigation. The principal source of water supply is throughout its, but the demands on this stream to which this area is entitled is inadequate to supply the present needs, and recourse is had to flood water along some of the principal tributaries and small intermittent streams. About 37,000 acres of irrigated land are supplied with water from five large eanals-the Bessemer, Rocky Ford Highland, Fowler, Excelsior, and Huerfano Valley ditches. All except the last named obtain water from Arkansas River. In addition to the above there is a considerable acreage of lowland watered by private ditches. The Bessemer ditch furnishes water for a district comprising about 20,000 aeres in the vice dive of for 10 mil are diverted from the Arkansas about 10 tile headrate The min dith is 30 fet wide on and 8 feet the of 400 cubic feet of water per second The region about Fowler is includ
Rocky Ford Highland and Fowler -ditcher the former begins near the mouth of the Huerfano and supplies water for about 25,000 acres, most of which is outside of the quadrangle. It is stated that the ditch is entitled to 464 cubic feet of water per second. The Fowler ditch is relatively small, with a water right of only 116 second-feet. Its waters are diverted from the Arkansas above Nepesta.
The Excelsior ditch is taken out of the Arkansas nearly opposite the mouth of the St. Charles and extends about 7 miles down the river. This is one of the oldest canals on the river, but carries a relatively smali amount of water. Bob Creek and Otero ditches have their head-gates within the quadrangle, but supply no water to it. The Hais for its wapply, and as the flow of this stream is intermittent it is necessary to store the was
In the southeastern part of the quadrangle th are several natural storage reservoirs, of which the most important are Hungerford and Erdman lakes. At present the latter is being converted into a reservoir where a part of the flood waters of Chicosa Creek are to be stored. There are also a few small lakes near Langford ranch, on the head of Haynes Creek, but here the general conditions for water storage are not so favorable.
At Carpenter Spring there is a tract of land supplied with water from a number of small springs situated along the side of the valley. Other areas are similarly irrigated on the north side of Chico

Creek, from the Skinner and Tabor ranch to the northern margin of the quadrangle.
mineral resources.
saxdstove.
Dakota sandstone.-There are two formations in the quadrangle which afford sandstone suitable for building purposes. That of the Dakota formation best quality of this rock occurs in the upper 100 to 150 feet of the formation. It is of a lightera color, fine grain, and uniform texture, and possesses remarkable firmness and durability. It has been used only to a limited extent in this district, the used only to a limited extent in this district, principal building material being sun-dried brick,
a product which in this semiarid climate is very durable.
Carlile sandstone.-A thin layer of sandstone near the top of the Carlile formation has been used to some extent as a building stone. In the vicinity of Pueblo, a short distance to the west of this quadrangle, a stratum of this deposit is quarried for flagging. The rock shades from yellow to light brown in color, is of uniform texture, and moderately soft. It occurs immediately beneath the massive limestone of the Timpas formation. In many places it is somewhat inaccessible, and, as it is limited in amount, it can not be regarded as an especially valuable economic resource.
himestone.
The chief source of limestone within the quadrangle is the Timpas formation, though a small amount is used from the Greenhorn and Apishapa beds. The Timpas limestone occurs near the base of
the formation. It is in layers 6 to 12 inches thick, constituting a series of beds 50 feet in thickness. The rock is dull gray, but weathers to cream color. It is compact, hard, and much of it satisfactory for constructional purposes. Its principal uses are for burning to lime and fluxing. In the vicinity of Pueblo this rock is extensively quarried to supply the smelters. The following analysis of the lime-
stone was made at the Pueblo Smelting Company's stone was made at the Pueblo Smelting Company's
laboratory (Geologic Atlas U. S., folio 36, 1897): laboratory (Geolog
Nepesta

fire clay.
A fire clay occurring about 150 feet below the top of the Dakota sandstone is said to be of good quality. Numerous samples of the ,material hav been burned with satisfactory results. This clay
is not exposed in the Nepesta quadrangle, but could be reached by shafts from 100 to 150 feet could be reached by shafts from 100 to 150 feet
deep any where within the Dakota outcrop. The clay varies somewhat in composition, but the following analysis may be regarded as representative. It was made in the chemical laboratory of the United States Geological Survey by Mr. George Steiger (Geologic Atlas U. S., folio 36, 1897):

Various attempts have been made in this general egion to utilize certain rocks in the manufacture of Portland cement, but generally without success. Argillaceous limestone concretions occurring at various horizons throughout the Pierre shale have been tested with this object in view. A series of limy shales found just above the massive limestones of the Timpas formation have also been suggested as suitable material for this purpose,
proper limestone can be found to complete th proper limestone can be found to complete t
mixture. The following analysis of the Timpas shales was made in the laboratory of the United
States Geological Survey by Mr. George Steiger States Geological Survey by Mr. George Steiger (Geologic Atlas U. S., folio 36, 1897)

alysis of Timpas shales.	
Silice (SiO_{2}).	89
Titanium dioxide (TiO_{3}).	52
Alumina ($\mathrm{Al}_{3} \mathrm{O}_{\mathrm{s}}$).	13.24
Iron sesquioxide ($\mathrm{Fe}_{4} \mathrm{O}$	
Lime (CaO).	
Magnesia (MgO)	12
Potash ($\mathbf{K}_{2} \mathbf{O}$)	2.31
Soda ($\mathrm{Na}_{2} \mathrm{O}$)	47
Phosphoric oxide ($\mathbf{P}_{8} \mathrm{O}_{5}$	17
Carbon dioxide (CO_{2})	
Water lost at $100^{\circ} \mathrm{C}$.	
Water lost above 10	16
Organic material.	3.47

row ork

The "Rusty zone" of the Pierre, shale lyin bove the so-called "Barren zone," contains many bands of calcum-carbonate and iron-carbonat The 1 vaying in size from 6 inches to a foot, The horizon is well exposed on the gradual slopes
between Arkansas River Valley and the base of he high Nussbaum plateau to the north. A one time the iron-carbonate concretions were collected by local miners and hauled to Pueblo, where they were used in combination with other ores in the manufacture of steel. The ore is said to be of good quality for a carbonate, but the mann
its occurrence prevents extensive operation.

Considerable prospecting for oil has been done during the last year in the Pierre shale area north of Arkansas River. Two deep wells were on their ranch northeast of Pueblo. The deeper of these wells, located near the mouth of Andy Creek, was sunk to a depth of 2600 feet, passing through the Pierre and Benton shales into the is about 10 miles northenst of Pueblo penetrate the Pierre and Benton formations to a depth of 1900 feet and was equally unsuccessful in finding
oil. At a depth of 800 feet, about 400 feet above the base of the Pierre shate, gas was discovered, but not in paying quantities. In 1903 a deep boring was made in search of oil on Haynes Creek 2 miles north of Boone. Here the Dakota was reached at a depth of 2200 feet and the project was abandoned. It is very doubtful if either petroum or gas occurs in paying quantitie limits of this quadrangle.

araven.

The later Quaternary gravels along the south side of Arkansas River have been used exten ively as railroad ballast during the last decade. The gravel about 2 miles west of Fowler, on the Atchison, Topeka and Santa Fe Railway, is especially well suited for this purpose. The material is composed of medium-sized pebbles of quartz quartzite, and various kinds of igneous rock. It chief value as a ballast material is due to the uniform size and subangular shape of the pebbles and the small percentage of sand associated with them.

barite

In the upper part of the Apishapa formation is zone of large limestone lenses. Within thes enses occur cavities in the form of ramifying cracks, which have been partly or wholly filled by pa-blue barite crystals. Outcrops of these lime the lenses were ide of Chicosa Creok about 3 miles west of Fow ler. In the latter locality barite crystla have bee cllected to some extent, but are not of economi importance.

There are no coal-bearing formations within the limits of the quadrangle. The chief supply of frewood is found in the extreme southwest corner, orn, and esed area of the basal Timpas, Green parse growth of piñon.

CASSIUS A. FISHER,
Geologist.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. \dagger
	Livingston	Montana	Cents. 25		Huntington	West Virginia-Ohio .	Cents. 25
\$2	Ringgold	Georgia-Tennessee	25	70	Washington	D. C.-Va.-Md. . .	25 50
3	Placerville	California	25	71	Spanish Peaks	Colorado	25
$\ddagger 4$	Kingston	Tennessee	25	72	Charleston. .	West Virginia	25
5	Sacramento	California	25	73	Coos Bay	Oregon	25
\ddagger	Chattanooga	Tennessee	25	74	Coalgate	Indian Territory	25
$\ddagger \downarrow$	Pikes Peak	Colorado	25	75	Maynardville	Tennessee	25
	Sewanee	Tennessee	25	76	Austin	Texas	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	77	Raleigh	West Virginia	25
\ddagger	Harpers Ferry	Va.-Md.-W.Va.	25	78	Rome.	Georgia-Alabama	25
11	Jackson	California	25	79	Atoka	Indian Territory	25
12	Estillville	Ky.-Va.-Tenn.	25	80	Norfolk	Virginia-North Carolina	25
13	Fredericksburg	Virginia-Maryland	25	81	Chicago	Illinois-Indiana	50
14	Staunton	Virginia-West Virginia	25	82	Masortown-Uniontown	Pennsylvania	25
15	Lassen Peak	California	25	83	New York City	New York-New Jersey	50
16	Knoxville	Tennessee-North Carolina	25	84	Ditney	Indiana	25
17	Marysville	California	25	85	Oelrichs	South Dakota-Nebraska	25
18	Smartsville	California	25	86	Ellensburg	Washington	25
19	Stevenson	Ala.-Ga.-Tenn.	25	87	Camp Clarke	Nebraska	25
20	Cleveland	Tennessee	25	88	Scotts Bluff	Nebraska	25
21	Pikeville	Tennessee	25	89	Port Orford	Oregon	25
22	McMinnville	Tennessee	25	90	Cranberry	North Carolina-Tennessee.	25
23	Nomini	Maryland-Virginia	25	91	Hartville	Wyoming .	25
24	Three Forks	Montana	25	92	Gaines	Pennsylvania-New York	25
25	Loudon...	Tennessee	25	93	Elkland-Tioga	Pennsylvania	25
26	Pocahontas	Virginia-West Virginia	25	94	Brownsville-Connellsville	Pennsylvania	25
27	Morristown	Tennessee	25	95	Columbia	Tennessee	25
28	Piedmont	West Virginia-Maryland	25	96	Olivet.	South Dakota	25
29	Nevada City Special	California	50	97	Parker	South Dakota	25
30	Yellowstone National Park	Wyoming	50	98	Tishomingo	Indian Territory	25
31	Prramid Peak	California	25	99	Mitchell	South Dakota	25
32	Franklin	West Virginia-Virginia	25	100	Alexandria	South Dakota	25
33	Briceville	Tennessee	25	101	San Luis	California	25
34	Buckhannon	West Virginia	25	102	Indiana	Pennsylvania	25
35	Gadsden	Alabama	25	103	Nampa	Idaho-Oregon	25
36	Pueblo	Colorado	25	104	Silver City	Idaho	25
37	Downieville	California	25	105	Patoka	Indiana-Illinois	25
38	Butte Special	Montana	25	106	Mount Stuart	Washington	25
39	Truckee	California	25	107	Newcastle	Wyoming-South-Dakota	25
40	Wartburg.	Tennessee	25	108	Edgemont	South Dakota-Nebraska	25
41	Sonora	California	25	109	Cottonwood Falls	Kansas	25
42	Nueces	Texas	25	110	Latrobe	Pennsylvania	25
43	Bidwell Bar	California	25	111	Globe	Arizona .	25
44	Tazewell	Virginia-West Virginia	25	112	Bisbee	Arizona	25
45	Boise	Idaho	25	113	Huron	South Dakota	25
46	Richmond	Kentucky	25	114	De Smet	South Dakota	25
48	London	Kentucky	25	115	Kittanning	Pennsylvania	25
48	Tenmile District Special	Colorado	25	116	Asheville	North Carolina-Tennessee .	25
49	Roseburg	Oregon	25	117	Casselton-Fargo	North Dakota-Minnesota	25
50	Holyoke	Massachusetts-Connecticut	25	118	Greeneville	Tennessee-North Carolina.	25
51	Big Trees	California	25	119	Fayetteville	Arkansas-Missouri	25
52	Absaroka	Wyoming	25	120	Silverton.	Colorado	25
53	Standingstone	Tennessee	25	121	Waynesburg	Pennsylvania	25
54	Tacoma	Washington	25	122	Tahlequah	Indian Territory-Arkansas .	25
55	Fort Benton	Montana	25	123	Elders Ridge	Pennsylvania	25
56	Little Belt Mountains	Montana	25	124	Mount Mitchell	North Carolina-Tennessee.	25
57	Telluride	Colorado	25	125	Rural Valley	Pennsylvania	25
58	Elmoro	Colorado	25	126	Bradshaw Mountains	Arizona.	25
59	Bristol	Virginia-Tennessee	25	127	Sundance	Wyoming-South Dakota	25
60	La Plata	Colorado	25	128	Aladdin.	Wyo.-S. Dak.-Mont.	25
61	Monterey	Virginia-West Virginia	25	129	Clifton	Arizona.	25
62	Meriominee Special	Michigan.	25	130	Rico	Colorado	25
63	Mother Lode District	California	50	131	Needle Mountains	Colorado	25
64	Uvalde	- Texas	25	132	Muscogee	Indian Territory	25
65	Tintic Special	Utah	25	133	Ebensburg	Pennsylvania	25
66	Colfax	California	25	134	Beaver	Pennsylvania	25
68	Danville . . Walsenburg	Illinois-Indiana	25	135	Nepesta	Colorado	25
68	Walsenburg	Colorado . . .	25				

* Order by number.
\dagger Payment must be made by money order or in cash.
\ddagger These folios are out of stock.

Circulars showing the tocaction of the area covered by any of the above folios, as well as information concerning topographic maps and other publications of the Geelogical Survey, may be had
on application to the Director, United States Gieogical Survey, Washington, D. C.

