GEOLOGIC ATLAS

O采 TE
UNITED STATES

FAYETTEVILLE FOLIO

ARKANSAS' - MISSOURI

UNIV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topograph ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills, and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu ately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all part of the area mapped, to delineate the outine or for or all slopes, and to line the hrol in lation evel, the altitudinal intercal represented by the en, hetwen lines being the each map. These lines are called contours, and the miform altitudinal space between each two con ours is called the contour interval. Contours and levations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

. The sketch represents a river valley between two iils. which is partly closed by a hooked sand bar. O ach side of he valley is a hill rises gradually, while from that on the left the ground ascends steeply, from that on the left the ground ascends steeply, is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the nanner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , evel. Along 200 feet, and so on, above mean sea ovel. Along the contour at 250 feet lie all points he contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at bao feet surounds it. In this fir numbered, and those for 250 and 500 feet and ccentuated by being made heavier. Usually then the accentuating and numbering of certain fhem-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
noothly are continuous horizontal lines, they wind noothly about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping greal Tor i late rlif contour intervals of 10,20 , 55,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scal." The scale. In this case it is cexpred also that. The scale may be expressed also thaction, of which the numerator is a length on the ma and the denominar the correspong leng is there ate 63.360 inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,530}$,
a inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{123 \pi}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of a square degree; each sheet on the scale of $\frac{1}{\text { dasivile }}$ contains one-sixteenth of a square degree. The aren of the corresponding quadrangls.

Thand 250 square

a da parts of one ma line United States, disregard political boundary hips. To and to the quadrangle represents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.--On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the he investor It should guide the traveler; serve position and surroundings of property; save the engineer preliminary surveys in locating road ailways, and irrigation reservoirs and ditches; provide educational material for schools and homes; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masse on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma hey are distinguished as igneons

netamorphic

Igneous rooks.-These are rocks which have Through a state of fusio rom time to of all, ages molten material ha fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within the channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes; the rock masses filling such fissures are called sills or sheets when comparatively thiñ, and lacco iths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a par
 burs the or to tha mons. Or less por Explows are usa, manies voleanio eruptions causing eections of dut ash, and larar fragents. These materials, consolidated, constitute breccias, arglomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been carried to a different place and deposited
The chief agent of transportation of rock débris is water in motion, including rain, streams, and the water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and lind. The mot characterstic of the wind-borne or eol deposits is loess, a fine-prained euth; the most char deposits is loes, a ine-ga. it ill, he most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
subsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper pors, wher plants, constine soins and subsols, he solls being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism he substances of which a rock is composed may enter 'into new combinations, certain substances nay be lost, or new substances may be added. here is often a complete gradation from the priary to the metamorphic form within a single puar ins. Such changes transtom sad other rocks in various ways.

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessury to separate twq contiguous formations by lep. An almost entirely on the contained fossis. igneous formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentany deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance ; in such except in regions of intense disturbance, in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are foun. Other types passed on from period to period, and thus linked the systems together, fongg a chain of lie from the time of the oldest form for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and eolian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be
arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thery or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by 'the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava streall, and (sidges of drift made the edges of glaciers) Other forms are producel by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, oo this class belong abandoned river channels,
glacial furrows, and peneplains. In the making glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formaground upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to show these additional economic features.

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical seetion
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes are gencrally of much variation, but the following commoner kinds of rock:

Schists

Massive and bedded igneous rocks.

Fig. 3.-Symbol sections to
of rocks.
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the secsion to correspond to the outcrops of a bed of sandof this bed form the surface. The uphermediate valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such breaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is omposed of schists which are trayersed by masses and their
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the upturned, eroded edges of the beds upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the
 the surface of any mineal, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of aceumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE FAYETTEVILLE QUADRANGLE.

By George I. Adams and E. O. Ulrich.
introduction.
physiography of ozark region
General features.-Broadly defined, the Ozark region embraces the southern half of Missouri, very small corner of southeastern Kansas, the ortheastern part of Indian Territory, and the orthern part of Arkansas. On its borders ar he cities of St. Louis, Jefferson, Marshall, Sedalia, Joplin in Missouri, Galena in Kansas, Wag ner in Indian Territory, Fort Smith and Bates Missouri. In a general way ${ }^{\text {Misssissippi and Mis- }}$ ouri rivers bound it on the northeast and north, Spring, Grand, and Arkansas rivers approximately limit it on the west and south, while the upper portions of St. Francis and Black rivers mark it outheastern margin
Fig. 1 illustrates the relations of the Ozar gion to the surrounding physiographic provinces, and also indicates the divisions of the region.

In its northern portion the region is to a larg xtent a simple rolling plain; in its southern and more rugged part the broken character is evidently the result of erosion by streams which have deeply dissected a generally even surface. As compared with the Mississippi Valley, the region is an ele ated one. To the no and west of it he the Ge Gulf Plains To the south is the Arkas Valley region, and beyond it the Ouehita Moun in region both with different types of structure Considered in its broader relations the geologic istory of the Ozark region is complex. At the lose of the Paleozoic era a thick mass of sedi nents which had accumulated over southern Misouri, Arkansas, and parts of Indian Territory and Kansas was lifted above the level of the sea, proucing an elevated region which in its southern part has a folded structure. The force whic used the folding was compressive. The eleva ion may have been a coincident or a later effect In central Arkansas and eastern Indian Territory the compression resulted in the Ouachita Mountain tructure, which is characterized by close foldin and faulting. To the north of this it produced the wide and open folds which are exhibited in he Arkansas Valley. Farther north is the Ozark egion, in which the forces developed a less complex structure. The Boston Mountains, on its southern border, are of a monoclinal type, while he plateau portion, or northern part, has the ndulations. The structure produed during th ountain-making period gradually dies out to the tand woth, whe the formations inclin low angle, dipping away from the Ozark Pl rau, and the topography is characterized by step r escarpment features, such as are usually found in nearly horizontal rocks. To this region, which rder around the northern and northwester

Plains has been given. In Cretaceous time there was a subsidence in the Gulf region, and sediment were deposited which concealed the southern bor der of the Ouachita Mountains. A later oscilla caused the eastern extension of that mound ange to be buried under sediments of Tertiary . This region, which is covered by Cretacous Tertiary sediments, is in general low lying dis known as the Gulf Plains. Just how thes determined. There were undoubtedly warpings of the strata as the sea in the Gulf region retreated dvanced, and again retreated, but the structure hich was developed at these intervals has not ye een differentiated from that produced by the pre ous faulting and folding. The generally eve ky line of the plateau portion indicates a tim and which the area was worn down to a low Triary time Sine the the rion ben and the trean have rored deep Rem of the odd low ande and ang the are being developed.

Divisions of Ozark Regio
 boston mountains.

The Ozark region may be considered as consisting of two divisions, the Boston Mountain and the Ozark Plateau. The Boston Mountain occupy the southern portion. Their northern ing the plateau, above which they rise from 500 to 700 feet. They may be described as consti uting a highland having in general a monoclinal structure. The dip of the rocks is to the south, and the southern slope of the mountain blends with the Arkansas Valley. The trend of the Boston Mountains is approximately east and west from Batesville, Ark., to within a few miles of Wagoner, in Indian Territory. The formations which constitute them are principally sandstones and shales, and the resultant topography is largely of the terrace and escarpment type. The area is
very broken as a result of dissection by the streams. ozark plateau
The plateau portion of the Ozark region deeply dissected in its central and eastern parts, levations rise to approximately the same reneral orizon, so that, viewed in its entirety, it has th hape of a low elliptical dome, ranging in eleraion between 1000 and 1500 feet above sea level In the southeastern part of Missouri, in th vicinity of Pilot Knob and Iron Mountain, the surface features of the plateau are of an excepional character. Within an area approximately 0 miles square, known as the Iron Mountain country, there is a group of peaks, to which th ame St. Francis Mountains has been applied he rocks which form them are crystalline, and rosion has developed a type of topography dif rent from that which prevails geterally over the plateau
The drainage of the Ozark Plateau is believed to be consequent, the arrangement of the streams leing radial-that is, down the slopes of the dome While this is true of the higher portions of th region, along its borders there are seeming depart res from this arrangement. One of the most conpicuous examples of what might appear to be a iver. This is formed by is given by Whit hiver. This is fured a number of stream Mountains and is jousd by ope whe outhward from the higher parts of the Ozar Plateau in Missouri. This flows northward, the portheastward, and finally southeastward, its cours evidently having been determined by the Boston position farther north. Since the establishment
is stream, erosion has removed a great thicknes of the rocks which were the equivalents of those the northern slope of the Boston Mountains, nd the river n
the lower rocks.
The valleys of the streams exhibit two phases of development, both of which are represented along any of the larger streams, and which grade int ach other without sharp distinction. The older and simpler phase is an open trough bordered by hills and without rocky ledges adjacent to the tream. This condition is usually exhibited in the upper portions of the streams. The valley generally covered with residual cherts and the
 not occupied by water, except during the time of proted rain, and is not bordered by botom of the the eary pher his prevails there are many tributary sping and his prevails is usully suftient water to render the stre and perennial. In this part of their course some of the treams have developed flood plains, and furnish rich, although usually narrow, bottom lands. The best example of this condition is found in Whit River, which lies from 250 to 500 feet below the general surface of the upland. Tributary to the canyons are numerous short stream valleys, which owe their depth to the grade of the larger stream hey are formed by sapping back from the main hannel and have little headwater drainage. Along the main valleys numerous smaller streams have dissected the plateau, and the country is broken by narrow points extending out from the general are of the upland surface. These form a complicated hallow.
On the general surface of the plateau, wher road undissected areas exist, there is a peculia frm of drainage that is without definite channels. exists in areas known as "flatwoods, and also it untimbered areas where the water largely dis underground channels.

ivisions of the ozark platead.

The Ozark Plateau is divided into the Salem latform and the Springfield structural plain by he Burlington escarpment. This escarpment is constitute the country rock of the western part of the plateay. The escarpment limits the CambroOrdovician area to the west, and in crossing it here is a noticeable rise, although the increased elevation is not maintained, since the dip of the rocks is away from it. That the Mississippian mestones have been croded from over a large part of the Salem platform is shown by the mall residual areas of those rocks and the accumulation of cherts derived from them by weath ring and erosion. The escarpment, where wel defined, has an altitude of from 250 to 300 feet To the east of Springfield, near Cedar Gap, it sands at a greater elevation than in any other part of the region, inasmuch as at this point it farthest up on the divide of the Ozark Plateau In Arkansas, White River and its tributaries hav cut a wide embayment into it. It extends in its
southern portion in an approximately east-west ine parallel with the northern escarpment of th oston Mountains.
Salem platform.-The eastern portion of the that of a general plain interrupted by the surface eys which have been cut into it and by occasional hills rising above it. The streams flow in steep ided narrow valleys, some of which reach a dept of 250 feet or more. Where the country is not dissected it is an undulating upland; but along the lower portion of White River and its tributaries, and along some of the other large streams, disse tion has gone so far that the plain is searcely recog
nizable, except as indicated by the general elevation of the higher points. The hills which rise above the plateau are of two kinds-those which protrude through the strata forming the upland surface, and those which are remnants of higher formations Of the former type are the hills and peaks of crys plline rock which are found in the southeastern part of Missouri and form the St. Francis Mounins. The second group are residual areas of the ocks which originally overlay the surface, but which have been largely carried away by ero ion. They are outliers from the main area of Sississippian limestones farther west.
Springfield structural plain.- This is essentially
a a structural plain developed on the surface of the Mississippian limestones. The drainage of the
upland in its broader part, namely, in southpland is broader part, na ely, in socth
 rocks-westward and southwestward dip of the reams begin near the eastern border of the are nd have their upper courses in shallow, trough ike valleys; they cut deeper as they flow farther lown the slope, and in some places expose the nderlying Ordovician rocks, which rise in antiines and low domes. Adjacent to Grand River the border of this area is very much dissected by umberless short streams whose valleys are deep in proportion to their length. The streams that flow astward and pass through the Burlington escarpment have but a small portion of their course on he Springfield upland. They have deep channels, due to the fact that they pass over the edges of the Mississippian limestones, in which they have cut a ragged fringe.
The Springfield structural plain extends into Indian Territory westward to Spring River and Grand River. Along Illinois River it forms, in the area of Pennsylvanian rocks, an embaymen which, as a result of the dip of the strata, ha the peculiarity of extending down the stream. In Missourt it Kansas and in the western part of Missouri it grades off into a lowland country, approximately along the contact of the Pennsyl Illinois River in
Hhais River, in northwestern Arkansas, rise竍 the northern base of the Boston Mountains and ard. In ite nothern course it flows away from he Boston Mointains into the border of the pringfield plain, while-in its southwestward course it puts through the Boston It flows in a deep, well-defined valley, and, jud ing from its course with respect to the Boston carpment and its relation to outlying areas and cadlands of the Carboniferous sandstones and shales, it formerly stood at a much higher level. The northern part of the Springfield plain is cossed by Osage River, which has a very tortuou course, probably due to meanders which were developed before it eroded its channel into the Mississippian limestones. The western border of he Springfield plain is indefinite, especially wher is coincident with the outcrop of the soft Coal Measures shales and sandstones which form a lowand in Missouri and Kansas. In Indian Terri ory its border follows the valley of Illinois Rive the Boston escarpment. Beyond that point the lowland continues along Arkansas River, where -in al ber ble Arkana

Physiographic Relations of Fayetteville Quadrangle.
The Fayetteville quadrangle, in northwestern rkansas, lies principally in the Springfield plain The mountains and hills which near its souther brder rise above the general level of the country The narrow lowland in the valley of White River along the eastern border of the quadrangle, is an arm of the Salem platform.

general geology of ozark region.

The formations represented in the Ozark region, when grouped for the purpose of general discussion, correspond closely with the physiographic features. They have a somewhat concentric dis tribution. The oldest rocks are found in the St Francis Mountains, while those younger and geo-
logically higher occur successively farther southlogicall
west.
Igneous rocks.-The igneous rocks constitute but a small factor in the geology of the region. There are but three areas in which they are known to occur. The most important of these is the St. Francis Mountains, in southeastern Missouri. The exposures have the form of rounded bosses and series and constitute a scattered group embraced within an area about 70 miles square. The rocks are granites and porphyries with several
varieties of basic rocks that occur as dikes. The exposure represents but a small portion of the great mass which forms the basal member over a large area. The age assigned to these rocks is pre Cambrian, since they are overlain by sedimentary rocks of Cambrian age and there is no sign of contact metamorphism.
The second area of igneous origin is found in the northeastern part of Indian Territory, near the mouth of Spavinaw Creek, where there is a gran-
itic dike about one-fourth of a mile long. The itic dike about one-fourth of a mile long. The third is a dike consisting of graphic granite or pegmatite, having an actual exposure of only a few
 and third areas are intrusions probably of postand third areas are intrusions probably of post-
Carboniferous age.
magnesian limestones dolomites, gre int mas of magnesian limestones, dolomites, and interbed
ded sandstones forming the floor of the Salem platform belongs partly to the Cambrian system and partly to the Canadian series of the Ordovician. As at present defined these two systems can not be separated satisfactorily in the Ozark Plateau. The lowest formations surround the pre-Cambrian area and are exposed on the flanks of the St. Francis Mountains. In general they dip away from these mountains, their margins
therefore being buried by later rocks. Younger Ordovician pure limestones and shales, corre sponding in age to the Trenton limestone of
New York and the Richmond formation of Ohio New York and the Richmond formation of Ohio and Indiana, are found rather generally along the eastern border of the plateau and more locally
on its southern margin. The contact of these late on its southern margin. The contact of these late
Ordovician deposits with the older magnesian rocks is always unconformable.

Silurian.-Rocks of this age occur in very limited exposures on the northeastern and again on Plateau. In the southwestern flanks of the Ozark Plateau. In the latter area they consist almost line limestone to which the name St Clair marbl has beepn applied.

Devonian. - Formations referred to the Devonian have a limited outcrop along Mississippi and Missouri rivers, but sediments of this age are
apparently wanting in a large part of the remain ing portion'of the region. There are, however, ing portion of the region. There are, however,
numerous small areas in northern Arkansas. In these the Devonian rocks consist of the black Chattanooga shale and of the Sylamore sandstone member, which usually underlies the shale.
Carboniferous.-The rocks of the Springfield structural plain are principally limestones with interbedded cherts belonging to the Boone formation of the Mississippian series.
The rocks which outcrop in the north escarpment of the Boston Mountains and constitute this division of the Ozark region consist of shales and
sandstones with unimportant interbedded lime stones, and may be conveniently grouped in accordance with their prevalent lithologic character. They include in their basal portion Mississippian formations and extend up into the Pennsylvanian series. They are in sharp con-
trast with the rocks of the Springfield both in the character of the sediments which constitute character of the sediments which occupy, They rise above the structural plain of the Mississippian limestones and constitute a deeply dissected highland.

Geologic Relations of Fayetteville Quadrangle.
The larger portion of the Fayetteville quadrangle, which is essentially a plain, is developed on the surface of the Mississippian limestones. This series is in places cut through by erosion, exposing the
underlying Ordovician rocks; for instance, along the valley of White River. In the southern border the valley of White River. In the southern borde of the quadrangle Pennsylvanian shales and sand tuting the northern edge of the Boston Mountains.

GEOGRAPHY.

Location and general relations.-The Fayetteville quadrangle lies between parallels 36° and 36° 30^{\prime} north latitude and meridians 94° and $94^{\circ} 30^{\prime}$ west longitude, and embraces, therefore, a quarter miles fuare degree. It measures approximately 34 miles from north to south and 28 miles from east
to west. It is situated in the extreme northwest corto west. It is situated in the extreme north west cor-
ner of Arkansas. The Missouri-Arkansas boundary, as established, falls just south of the $36^{\circ} 30$ parallel, so that a strip of Missouri approximately
one-fifth of a mile wide is included in the quad-one-fift
rangle.
That portion of the Arkansas-Indian Territory boundary line which lies to the west of the quadrangle has a west of north direction. The southwest corner of the quadrangle approaches within $1 \frac{1}{2}$ miles of Indian Territory, while the northwest corner is $7 \frac{1}{2}$ miles east of it. Accord-
ingly, a small triangular portion of the State lies ingly, a small triangular porte
to the west of the quadrangle.
to the west of the quadrangle.
Drainage. -The quadrangle lies on the divide of the Ozark Plateau. This watershed crosses the southern border of the quadrangle crosses the Mountain and trends northward past Fayette ville, Springdale, Rogers, and Avoci, where it ville, springdale, Rogers, and Avoca, where it
turns eastward and passes over the border on turns easthard and passes over the border on
the narrow ridge between Little Sugar Creek and White River. The principal streams of the quadrangle are White River and Illinois River, which in their upper courses flow northward from the Boston Mountains on either side of the abovementioned divide. Illinois River, after a course of about 11 miles in a northward direction, turns to the west and leaves the quadrangle, beyond which its course is around the western end of the Boston Mountains to its confluence with Arkansas River. White River, which flows northward in a very tortuous course along the eastern border, leaves
the quadrangle east of Rogers. Its course farther the quadrangle east of Rogers. Its course farther on has a broad curve northward, thence southeast-
ward and around the eastern end of the Boston ward and around the eastern end of the Boston
Mountains to its confluence with Arkansas River. Mountains to its confluence with Arkansas River.
The remaining important streams of the quadrangle are Spavinaw Creek, which flows westward to rrand River in Indian Territory, and Butler Creek Missouri, where Creek, which fow northward into Missouri, where they are tributary to Elk River,
which is an affluent of Grand River. The try is well watered. These streams. The coun ous tributary springs, and are perennial, except in ous tributary springs, and are perennial, except in
their upper portions. The valleys of the main their upper portions. The valleys of the main
streams dissect the plateau and the short streams have a dendritic arrangement which gives a rugged character to the country, especially near the larger valleys.
In that portion of the quadrangle which is semimountainous and is considered as belonging to the Boston Mountains the streams have tortuous courses and the smaller tributaries an irregular rrangement between the isolated hills. In the parts a shallow trough phase, and in their lower courses, especially along the larger streams, there is developed a canyon phase. These two phases grade into each other.
Springs.-A very noticeable feature of the quad-
rangle is the large number of springs which are rangle is the large number of springs which are found well distributed. In the vicinity of Fayetteville, in the area which consists principally of sandstones and shales, the springs issue from under beds of interstratified limestones, the joints and bed-
ding planes of which furnish channels for the cirung planes of which furnish channels for the cirwhere the streams have cut below the upland here the streams have the bew the upland stone and some of them have a large fow of lime Illinois River, Little Sugar Croelow. Along
Creek, where erosion has cut through the lime-
stone and exposed the underlying Devonian shales, a number of springs are found just above the shale bed, which acts as an impervious stratum. The springs issue at the contact of the St. Joe limestone
member with the Chattanooga shale, where the dip is such as to bring the circulating water to the point is such as to bring the circulating water to the point
of outcrop. Where there is a surface covering of of outcrop. Where there is a surface covering of
detrital material these springs are sometimes condetrital material these short distances and issue at a lower level. There are a number of shallow caves formed at the base of the limestone by the solution of the rock along the joint planes and by the shelving down of the beds along the underground watercourses. At Sulphur Springs there are springs which are noted for their medicinal qualities. They issue at a lower horizon than those heretofore described; viz, from the Ordovician limestones. At Electric Springs, just east of Rogers, water issues from the Boone limestone at a number of places. There are, no doubt, many other springs within the quadrangle which have similar properties, but the picturesque location of the above-mentioned springs and the facility with which they ca
contributed to their popularity
Caves.-There are, as is usual in a limestone country, numerous caves and sink holes. None are of great extent, but many can be entered and explored for short distances. Those which occur in the upland often have their entrances on spurs
between small ravines. Such caves are above the between small ravines. Such caves are above the
level of ground water and are dry. They contain dead leaves which have been blown in, and the floor is strewn with rocks which have fallen from the roof. Usually they contain dirty stalactitic and stalagmitic growths which form botryoidal surcite and dolomite crystals some pound. The floor usually slopes at a low angle, and the for appear to have originated by solution along the appear to have originated by solution along the
joint planes of the rocks and by the breaking down of the roof. The lower point of outlet can not usually be discovered.
Another class of caves consists of those from which springs issue. They occur in the valleys and are not much above the level of the water in the streams. Some of them are high enough to be entered, and the streams of water are occasionally of sufficient volume to be available for water power. In a few cases there are sinks above the place of outlet which indicate the course of the underground streams. Low, shallow caves occur in the valleys of Butler Creek and Little Sugar Creek, at the contact of the limestones with the
shales, at which horizon springs also issue. They shales, at which horizon springs also issue. They
are formed by solution and , breaking down of the are formed by solution and, breaking down of the
limestone where the ground water flows over the limestone where the ground water flows over the
impervious shale. They sometimes extend upward along joint planes as a result of the widening of Relif. Thenion.
Relief.-The northern portion of the quadrangle has the general appearance of a plain dissected by deep stream valleys, while the southern portion is
semimountainous. The northern or more level semimountainous. The northern or more level of the limestone formation. On the divides the altitude ranges between 1250 and 1450 feet above
and tide. The valleys of the larger streams are about 250 feet lower. The lowest points are where the principal streams leave the quadrangle, and are approximately as follows: Illinois River, 950 feet; White River, 1050 feet; Little Sugar Creek, 950 feet; Butler Creek, 900 feet; and Spavinaw Creek, 1000 feet.

In the semimountainous parts the higher point ise from 250 to 500 feet above the structural plain. They constitute a part of outlying areas of the Boston Mountains. Elkhorn Mountain, in the northeast corner of the quadrangle, and Cal-
lahan, French, Webber, Price, Fitzgerald, and lahan, French, Webber, Price, Fitzgerald, and Twin Mountains, are conspicuous because of their isolation, although they are not over 250 feet above the general level of the surrounding coun-
try. The highest points in the quadrangle have elevations approximately as follows: Kessler Moun tain, 1750 feet; Round and East mo feet; Robinson Mountain, 1800 feet
rowth. - The country is covered generally with but along the borders of the streams and on the benches of the mountains there are a large number of other hard-wood forest trees. Near the Missouri border in the vicinity of Sulphur Springs there are
a few scattered pine trees. The hard wood is cut extensively to supply the demand for railway ties. In the more level portions of the quadrangle there are natural prairies of considerable extent.
Agriculture.-The principal industry of the country is farming and fruit growing. The farm products usually grown are corn, wheat, and oats. The forage plants, clover and grasses, grow luxu-
riantly. Orchards are a common feature of the landscape, and the growing of apples and small landscape, and the growing of apples and small
fruits is carried on to a very large extent. The cherty-limestone soil is well adopted to ing and a large number of vineyards are success fully cultivated.
\dot{C} ulture.-Portions of two counties are embraced in the quadrangle. The northern two-thirds belongs to Benton County, while the southern third is a portion of Washington County. The county seat of Washington County is Fayetteville, and that of Benton is Bentonville. Along the line of the St. Louis and San Francisco Railroad, which passes through Fayetteville, are the towns of Johnson, Springdale, Lowell, Rogers, Avoca, and Brightwater. The St. Paul branch of the St. Louis and San Francisco Railroad runs eastward from Fayetteville through Baldwin and Harris, while the Bentonville branch, formerly the Arkansas and Oklahoma Railroad, extends westward from Rogers through Bentonville and Gravette and into Indian Territory. Another branch
of the Frisco System extends southwestward from Fayettevisle System extends southwestward from Fayetteville to Tahlequah, Ind. T., passing through
the village of Farmington and thence out of the the village of Farmington and thence out of the
Fayetteville quadrangle. The Kansas City Southrayetteville quadrangle. The Kansas City Southern Railway runs through Sulphur Springs, Gravette, Decatur, and Gentry. The country is well
settled, especially in the level portions, and there settled, especially in the level portions, and there
are numerous small country towns, post-offices, are numerous small country towns, post-offices,
and mills. The University of Arkansas, which is the principal educational institution of the State, is situated at Fayetteville.

GEOLOGY.

description of formations.
general record of sedimentation.
The rocks of the Fayetteville quadrangle are all of sedimentary origin. They are nearly horizontal beds which, except in a few localities, have been but slightly disturbed since their deposition. The complete series can not be seen at any one locality, but from the sections which are exposed their sequence has been learned and the general sec-
tion established. This is shown graphically on the columnar section sheet.
During the progress of deposition there were many important changes in the life of the sea in which the sediments were deposited. Some of the Shells of the animals which existed at the time the formations were laid down have been preserved
as fossils in the rocks. Since each period of the as fossils in the rocks. Since each period of the earth's history has been characterized by certain
forms of life, their fossil remains afford forms of life, their fossil remains aftord a means
of determining the age of the formations. Accordof determining the age of the formations. Accord-
ing to such evidence the rocks belong to the Ordovician, Devonian, and Carboniferous to periods of the
vevidence the relo Paleozoic era. During the whole of the Silurian period and the early part of the Devonian no sediperiod and dearly part of the Devonian no sedi-
ments were deposited, or if they were they were eroded before the later Devonian and Carboniferous rocks were laid down.
Varying conditions of deposition have given rise to several lithologic units. The rocks which constitute these units either are uniform in character between their upper and lower limits or, when changeable, consist of beds which are uniformly varied in character. The units are called "formations," and their extent is shown on the map by different-colored patterns. The subdivisions of the formations which can not be distinguished throughout the field are discussed as members. are well defined, have been mapped as lentils are well defined, have been mapped as
within the formations in which they occur.

Ordovician Rocks.

The oldest rocks which are found within the quadrangle are of Ordovician age. They are more seen only in valleys which have been cut deeply seen only in valleys which have been cut deeply
into the upland. The areas in which they occur have usually a low anticlinal structure. The
streams have eroded the higher formations, unco ering Ordovician rocks, and to these facts th exposures are due. Such outcrops are found White River and on Illinois River

yellyille formation.

This formation, of which only the upper part is exposed in the Fayetteville quadrangle, consists of magnesian limestone and dolomite, in rather evenly bedded layers varying in thickness from a cerinches in composition, and more in physical characters The beds containing much lime and little silica weather with an even surface and have a soft gray color. The more siliceous varieties are of a darker, leaden color, have uneven bedding planes, darker, leaden color, have uneven bedding planes,
and generally exhibit angular faces and close jointand generally exhit angular faces and close jointregated weather with a pitted surface. Many layers after long exposure to atmospheric agencies have the superficial appearance of sandstone, the surface being made of small grains of dolomite partially freed by the solution and removal of some of the more soluble components of the rock. Layers containing numerous small rounded grains of quartz frequently occur. Traced laterally in one direction, the grains in such a layer may become so abundant as to constitute a calcareous sandstone, while in the opposite direction they may soon fail entirely. As a rule these quartz grains are asso-
ciated with oolitic granules. Thin, irregular beds ciated with oolitic granules. Thin, irregular beds
of oolite, now almost invariably silicified, abound of oolite, now almost invariably silicified, abound
in the upper part of the formation as represented in the upper part of
in this quadrangle.
in this quadrangle.
Chert is much more abundant in the upper than in the lower part of the formation as here exposed As a gray color, and occurs in the form of irregular masses and concretions. The masses are frequently
brecciated or conglomeratic, and in this respect correspond with many of the limestone layers associated with them, from which they were formed by replacement. The part of the formation conby replacement. The part of the formation con-
taining the lenses and irregular beds of oolite are usually fossiliferous. The fossils, while not uncomusualy fossiliferous. The fossils, while not uncomtion. They consist almost entirely of small coiled Gasteropoda, generally less than one-half inch in diameter.
This formation occurs principally in two areas; the larger is 5 miles east of Rogers, on Prairie Creek and White River, where the latter stream leaves the eastern border of the quadrangle; the smaller is on Butler Creek near Sulphur Springs. The base of the limestone is not exposed within the quadrangle, and the total thickness is not known. The vertical section of the formation south of Prairie Creek is estimated at 100 feet. The best exposures are in ledges and bluffs along White River, and present vertical sections of 20 to 50 feet. North of Sulphur Springs, along the rail way, there are ledges which aggregate 50 feet in thickness. In the immediate valley or Litte limited exposures of this formation may be seenThe top of the Yellville limestone form. The top of the Yellville limestone forms an unconformable contact with the succeeding for-
mation. In this area the rock usually overlying the Yellville is the Sylamore sandstone nember of the Chattanooga formation of the Devonian system. Locally, however, this sandstone is wanting, in which case the black-shale portion of the Chattanooga rests on the Yellville. The stratigraphic hiatus indicated by the unconformity therefore represents the time in which the later Ordovician, all of the Silurian, and the early Devonian deposits were elsewhere laid down. During much of the time not represented by deposits in this quadrangle the surface of the earlier Ordovician rocks was being subjected to erosion and removal. In consequence the top of the Yellville is uneven, and exhibits considerable local variations. For instance, in the vicinity of Sulphur Springs, situated near the northwest corner of the quadrangle, it is estimated that during this time at least 100 feet of Yellville ocks were removed from the top of the formation

Devonian Rock.

The Devonian system is represented in this formation has a very wide geographic distribution, Fayetteville.
being traceable or recognizable from Lake Erie to northern Alabama and thence westward to Indian
Territory. In this quadrangle it consists of a per Territory. In this quadrangle it consists of a per-
sistent bed of black shale, generally underlain by more or less phosphatic, conglomeratic sandstone Locally this basal member attains considerabl thickness, and in such cases it has been distin-
guished as a mappable lithologic unit under the name Sylamore sandstone.

chattanooga formation

As stated above, this formation consists of persistent black shale generally underlain by a sandstone member.
The name of the formation is derived from Chatanooga, Tenn. From this point it has been trace northward through Kentucky and Ohio. In thes States the formation is much thicker than in Tenhessee, and is known as the Ohio shale. Westward from Chattanooga the formation extends as continuous band around the truncated dome middle Tennessee, and finally dips out of sight under the later deposits occupying the Mississipp embayment. On the west side of the embayment it comes to the surface again in northern Arkansa Here it forms an intermittent band around the south western slope of the Ozark uplift. Whereve the formation has been recognized it retains ver strictly the same lithologic character. In western middle Tennessee a more or less highly phosphatic sandstone and conglomerate, corresponding at least ion in Arkansas, pecurs very comber of he form of the formation.
Sylamore sandstone member.-This is a friable andstone, and when struck with a hammer or rushed it often falls into a loose sand, as a rial present. Because of its white and suary appearance, and since it nearly always rest upon the Yellville limestone, it is often mistaken for the upper "saccharoidal sandstone" of the Missouri geologists. The true saccharoidal, or St. Peter, sandstone, howevẹ, is much older, being Ordovician in age, and seems to have been entirely removed in this quadrangle by erosion prior to the deposition of the Sylamore. It appear highly probable that the Sylamore sandstone argely derived from the detritus of the older sand tone.
Though the color of the Sylamore sandstone is usually white, its surface is often brown, from staining of iron. The constituent grains of quartz are translucent and nearly always rounded. Very commonly the rock includes variable quantities of light-gray or black pebbles that on examination prove to be more or less phosphatic. These phosphatic pebbles range from less than one-eighth an inch to several inches in diameter. Locally rounded or angular pieces of chert These pebbles and bowlders were derived from the wat of the underlying Yellville limestone which for long time preceding and during the deposition long time precesis and daring the deposition and subjected to subaerial decomposition and erosion. This condition is clearly shown in the vicinity of Sulphur Springs, where the chert pebbles are often decomposed, leaving cavities whose thin walls are formed by the siliceous sand that filled the interstices between the pebbles. The rock in such cases has a honeycombed or cavernous appearance
hat may falsely suggest the cutting of the rock by a network of quartz seams
The Sylamore sandstone is very clearly unconormable on the Yellville limestone, its bulk having locally sufficed to only partially fill the inequalitie of the old land surface that was submerged beneath the Devonian sea. In consequence its thickness varies greatly, and sometimes very abruptly. Along he north bank of Prairie Creek it is practically wanting in places, or is represented by a conglomrate only a toot or so in thickness. The same is variations in thickness Sulphur Springs, where the to suggest that the deposition of thes so abrapt a to suggest that the deposition of the
at least locally confined to channels.
On leant of the
On acomer character of the cult to find in the Sylamore. Fraces, are diffl of large fishes, chiefly of the genus Dinichthys,
however, are not uncommon, and may, if not ber is reduced to a thin conglomerate.
The name of the member was proposed by the eologists of the Arkansas Survey. It is derive from Sylamore Creek, in Stone County, Ark where it is well developed.
During the course of work in the Fayetteville Eureka Springs, and Yellville quadrangles thi
sandstone was at first erroneously considered the equivalent of the Ordovician upper or "Firs accharoidal sandstone" of Missouri. The sandstone is described under the name Key sand stone in Professional Paper No. 24 of the United States Geological Survey, published in 1904, but as the sandstone at the localities in this quadrangle from which the name Key sandstone was derived proves on examination by Mr. Ulrich to be Devoaian in age, and identical with the Sylamore sand tone, the name Key sandstone must be abandoned. The Sylamore sandstone occurs at numerou oints in northern Arkansas and in neighborin parts of adjoining States, but it does not appear to an be how lown as a continuous sheet. There ated outcrops are practically ome places the proctically contemporaneous. I sfficient quantity to make the rock commerciall valuable. It is essentially the same horizon that affords the valuable deposits of Devonian phosphat The greatest thickness
The greatest thickness measured was nearly 75
feet. This occurs in the bluff on the south White River just in the bluff on the south side of White River just east of the mouth of Hickory upper ones thin and somewhat laminated Th pper ones in the bed of Hickory Creek are The hatter class. Small and not very well exposed are of Sylamore sandstone occur along Illinois River, on Clear Creek, and on the small stream south west of Decatur. A small development of the nember is indicated also on Little Sugar Cree by loose bowlders of sandstone lying on ledge of Yellville limestone, which outcrops along thi

Black shale.-The most common phase of th hattanooga formation is a bed of black carbonrom 30 to fissile shale, varying in thickne At the top there are usually a few inches to a foo of green shale. The outcrops are in slopes and under ledges, and the shale is consequently largely covered by detrital material, so that it is to be see only where erosion is active. It is argillaceous, and has a jointed structure and a tendency to break up nto prismatic blocks. It contains considerable ron pyrite in certain localities, and this weathe nalue nodules and concretions, and athough of in of its yellow metallic appearance. The shale ha fetid odor, and has been thought by some to callowil. It has been passed through in bo has been found in it. The occurrences of the shal which are most often seen are those where waron roads pass over and wear down into it. The black color has suygested to some that coal might be asso ciated with it, but this assumption is wholly unwar ranted. The shale is very uniform in character and, being impervious, forms a lower limit to the circulation of the ground water. Its upper surface is accordingly the horizon of many springs, wher the dip of the rock is such as to cause the water to low to the place of outcrop.
Fossils are always rare in the Chattanooga shale Occasionally a layer may be found containing linuloid shells and perhaps minute teeth and plat of the type known as conodonts. Pieces of fossi wood (of the genus Dadoxylon) are probably the most conspicuous of the organic remains
The principal outcrop of Chattanooga shale in his quadrangle occurs near the northwest corner, in the valley of Butler Creek. It is especially wel exposed near the mouth of the valley at Noel, Mo le. When the survey was made the black shal at Noel was believed to be the same as the Eurek being preoccupied, it was proposed to substitute the hew name Noel for Eureka, and it is under thi ame that the early Carboniferous shate Furek Springs and elsewhere in northern Arkansas
described in Professional Paper No. 24 of the United States Geological Survey. On a recent visit to Noel, Mr. Ulich procured evidenc demonstrating the Devonian age of the black shale, and proving its distinctness from the greenbeen correlated
Where the basal sandstone member is wantin s at a number of points in the vicinity of Sul phur Springs, the Chattanooga shale rests directly pon the eroded surface of the Yellville limeston The usual absence in this region of at least the lower members of the Kinderhook group sugges an occasional and probably always inconspicuou unconformity also at the top of the shale.

Carboniferous Rocks.

The lowest formation of Carboniferous age is a bed of limestone followed by siliceous limestone the Boone formation, which forms the upland ove a large part of the quadrangle. They lie nearly horizontal, and on their upper surface is developed generally even plain. They are succeeded by andstones and shales in the southeast corner of the quadrangle, where the country has a semimountainous character. The Boone formation, Batesville sandstone, Fayetteville formation, and Pitkin limestone represent the Mississippian serien. The Morrow formation and the Winslow forma ion belong to the overlying Pennsylvanian series.
boone formation.
This formation consists of limestone, cherty limestone, and beds of chert. The lower portion consists of even-bedded limestone, distinguished s the St. Joe limestone member
St. Joe member.-The limestone forming this nember succeeds the Chattanooga shale. It is even bedded, quite free from chert, and usually utcrops in a distinct ledge. Its thickness range from 20 to 50 feet, with an average of 30 feet. The limestone has a soft gray color, and whe The upper beds are often full of crinoid stems, which weather out on exposed surfaces. In place there are small nodules of pyrite disseminated hrough the lower, thinner beds. The contac between the underlying Chattanooga shale and the limestone is usually marked by a few inche of greenish-gray shales or soft calcareous beds. The St. Joe limestone member forms a conspic nous horizon, since the weathering and erosion of the shale which lies below it cause it to jut ut in a prominent ledge. Occasionally the ledge breaks down into large slabs and blocks, which are found lying on the slope below. Hs occurrence is hus favorable for quarrying, and its even bed Unden Unded by jurg loges ased by the bore extend upward along joint planes which have been widened by solution.
The upper limit of this member is defined by the presence of chert in the superjacent beds and is not marked by any decided variation in color or change in the texture of the limestone; evi dently there was n
ion at this horizon.
Cherty limestones.-The upper part of the Boone frmation consists of cherty limestone, beds of chert, and thin and massive bedded limestone, which vary in character in their lateral extent and are not sharply differentiated in vertical section. The hickness of this portion of the formation, accord ing to the records of deep wells and the measure section, is about 325 feet. These are the most widespread rocks in the quadrangle, their area of outcrop covering fully five-sixths of it. They are distinguished by the presence of chert, which seen in the exposures or, on the weathering of the rocks, is left upon the surface. As a result and floors of the 10 of the nd fors oficular blufe be bly the perpendicular bluffs are the only outcrops
which are not more or less disguised by this residwhich are not
ual material.
The chert when first exposed is compact, and usually has a light-gray color. On weathering it econes yellowish brown from staining by iron, and the fragments are often very light and por-
us. It has many diverse colors, such as black,
reen, and drab, and the more siliceous varietie etain their compact texture and, being easily fra tured, disintegrate into small angular fragment The chert, which is frequently fossiliferous, occu s concretions in the limestone strata, as lense interbedded with the limestone, and as massive beds. There is much silica distributed through ertain of the limestone beds, and on removal of the lime by solution the rock has a porous texture The term "cotton rock" is used locally to desig nate this variety. As its disintegration progresse uch a rock will crumble into a white, chalky bed such as may be seen in the railroad-cut east of . umilar silieous beds from which the lime h men removed by form thich the lime has been removed by solution, thus rendering the rock must be free from flint concretions or nol es, which would prevent its being cut and dressed easily.
ressed easily.
The limest
ften free from silices the Boone formation are thin and as massive beds. The ocur rystalline and usually have a light-gray color on weathered surfaces. In places they are clarge with bituminous matter, and when struck give ff a fetid odor. Usually the limestone is fos sliferous, and there are some beds which contain numerous crinoid stems. The rock breaks with conchoidal fracture and is very tenacious. Th more even beds furnish a good quarry stone and the purer varieties are burned for lime

batesville sandstone.

The Boone formation is succeeded by rock which are more or less arenaceous. In certain ocalities there are sandstones and shales interratified with limestones. The sandstone bed are yellowish and generally are rather soft. The more argilaceous ones have a greenish-gray color
The outcrops occur in small areas widely scattered ver the quadrangle and are only remnants whid have been left by erosion. The best section of the formation is found on the northern slope of Elkhorn Mountain, where it aggregates 90 feet in thickness and consists of alternating beds of shales, andstones, and limestones, At this place it capped by higher formations.
The small patches in which sandstones and are aceous beds are found over the area of the widel distributed Boone formation have been referred to the Batesville from their relation to the underlying rocks. One of these just west of Bentonville aich has a maximum thickness of 25 feet, conome impure interstratified limestones. The rock are of a greenish-gray color and have been quarried for flagstones.
Along the bases of Callahan, Fitzgerald, and Webber mountains, near the town of Springdale exposures of the Batesville sandstone have been observed resting on Boone chert and overlain by the Fayetteville shale. The sandstone is but $2 \frac{1}{2}$ o 3 feet thick in these exposures, and as it ha outheast of this of Mor or it ossible that the hin ard momas it direction
Near Fayetteville the sandstone which has been referred to this formation is a soft, yellowish, coarserained, and often calcareous sandstone a few feet it. It overlies the Boone formation and is overlain by the Fayetteville shale. The formation hins and disappears also westward from Fayette ville, being absent in the adjoining quadrangles in Indian Territory.
Near the post-office of Wyman it is of a nature similar to that of the sandstone near Fayetteville and occupies the same relative position. Its occurarying such widely separated locot problematic formation. Being an overlapping formation it ma not have been deposited at all in certain localities. ff, however, the Batesville originally covered the whole quadrangle it must have been entirely eroded over considerable areas before the deposition of the Fayetteville shale. Recent erosion has removed it in still other localities, and now small
patches only are to be found. Those in which the
not reduced by the first period of denudation and now remain covered by higher formations, or those from which the overlying beds have only recently been removed.
Fossils occur locally in considerable numbers especially in the more calcareous layers. Th auna indicates that the formation is to be cor elated with the early formations of the Cheste roup in the Mississippi Valley.
The name is derived from Batesville, Ark., where Wyman sandstone of Symonds (teater thickness. Th Wyman sandstone of Symonds (Rept. on Washing the county, Arkansas Geol. Survey, vol. 2, 1888 of this author being the Wedington sandston ans at the being the Wedington sandston this folio Symon, of these sandstones arose from the mistaken viev that the Patesville was underlain by the Fayette ville.

ayetteville formation

This formation consists principally of a bed of usually thinly laminated. As a rule a more or less definite bed of hard, dark-gray or blue, fosthe base of the formation. Frequently also there are some highly fossiliferous thin layers of lime stone near the top. The shales making up the middle part of the formation are perhaps always
lighter colored than those constituting the lower hird or half of the thickness, Commonly th color of this middle part varies from gray to yel low, while its lithologic character ranges, according to the proportion of siliceous matter contained in litter a shale to a true sandstone. Where the trer phase predominates this portion of the for tone member.
The Fayetteville formation has a wide occurence in the southeast corner of the quadrangle feet a proximately thichess pro nade up by the Wedington sandstone. The black color of much of the shale has suggested to som the possibility that it might contain coall, but none has ever been found in the formation. In som localities the shale contains gypsum, which occu
as individual crystals or as a coating of calcareou concretions.
Fossils occur rather generally in the limestone layers included in the formation. In the sandy beds, however, their distribution seems to be much more local, though, as at the north end of the railroad cut at Fayetteville, they are sometime extremely numerous, both in species and in individuals. Excepting the upper limestone bands, which abound in fossil bryozoa and brachiopod closely simulating those in the Pitkin limestone, the fauna of
of mollusks.
There is perhaps no unconformity at the base o the Fayetteville when it rests upon the Batesvill sandstone. This sandstone, however, is frequently wanting, and in these cases the shale rests upo mation. The ecasional unconfor Boone mation. The occasional unconformity at the top ocalities where the Pitkin limestone is absent the Morrow formation rests on the Fayetteville. It ot decided whether the absence of he Pe cases is due to nondeposition, because of local and conditions, or is the result of erosion subse quent to its deposition and prior to the laying down of the Morrow formation. The latter explanation, Wedingtoms at present to be the more reasonable Wedington sandstone member.-Typically this he bed ranging from 50 to 150 feet in thick ness. But northwest of the White River fault grades apparently from the base upward into sandy shales, the arenaceous constituent growing grad ually less, until finally no trace of the sandston remains. The sandstone is found capping Wed ington Mountain, which is the type locality Clkhorn Mountain, and the mountains east of Springdale. In the area east and southeast of Fayetteville it forms the lower bench of the
mountains. In some localities the top of the mountains. In some localities the top of the
sandstone is defined by the Pitkin limestone,
which in these cases lies unconformably above it. In other localities, especially near and beyond he south border of the quadrangle, a bed of shale anging in thickness from a few feet to over 60 feet, intervenes between the Wedington sandstone and the Pitkin limestone. This shale is regarded as the upper member of the Fayetteville formation
It is rarely so dark as the lower member, and is It is rarely so dark as the lower member,
commonly of a gray or slightly buff color.
pitkin limestone.
This formation is usually a light-gray limestone wrying in thickness from a lew ines to 40 fee
 in contrast with the shales and sandstones. It outcrop, when treed, is found to follow the benches of the mountains. It is not mappe continuously, bease it is not persistent, or o, is concealed by the débris of sandstones and hales. It is the highest formation of the Missis ippian series, according to paleontologic evidence The conspicuous fossil of this formation is the bryzoan Archimedes swallovanus, the screw-like solid xes of which can be seen on the weathered surface of the limestone. Other, but generally smaller, species of the same genus occur, generally very sparingly, in the underlying Fayetteville formation an Batesville sandstone.

This name is applied to a succession of sandstone and shale beds in which there are some limeston lentils. The beds aggregate 400 feet, but the varihe vertial in thickness. In this not uniform in character or in thickness. In this quadrangle the full section is found only in the higher mountains, such as round, East, and Kessler mountains. The inter ratils, since they are of minor importance and or entis, s. th tore and
 ance, and probably only the Brentwood can followed any great distance
The name is derived from the post-office of Mor row, in Washington County, Ark., just south of hich a high hill affords a nearly complete section of the formation. The formation is of considerable representations of an early Pennsylvanian invert brate fauna known in America. The Brentwoo mestone member in particular is highly fossi ferous. The Pennsylvanian age of this bed indicated by the presence of the brachiopod enus Hustedia and by numerous gasteropod and pelecypods closely allied to later Carboni erous species.
The contact of the base of the Morrow with the top of the formation next beneath is probably always unconformable. The unconformity, however, is never conspicuous, and often difficult to see, but its probable occurrence is convincingly of the Morrow and at the top of the underlying formation, shown in different sections. In a fe entirely removed the Pitkin limestone
Hale sandstone member.-This, the basal portion onsists of sandstones with some shale. This por ion is not separately mapped, but its uppe limit is the Brentwood limestone. The strat which compose the Hale sandstone are usuall oft, thick-bedded, yellowish-brown sandstone an light layers, with more or less carbonaceous an in bluffs, the Hale sandstone generally presen a characteristic honeycombed appearance. The soil found on this lower sandstone is often red from the large amount of iron present, and this feature is in som
of the member.
Brentwood limestone member.-This is a gra rystalline limestone, and usually is conspicuously exposed. It abounds in fossils, a common one being Pentremites rusticus. The member is some limes separated into two divisions by the interca-
lation of sandstone and shale, and where this occurs he thickness may aggregate 80 feet. In the mor prominent mountains it forms a conspicuous ledg and has a marked influence on the topography.
It is important as indicating the base of the coal-
bearing shale, and furnishes a reference horizon in bcating the coal bed, the latter lying from 15 to 30 feet above it when present.
Above the Brentwood limestone are shales, more orless carbonaceous and approximately 100 feet hick. They are sometimes decidedly arenaceous, and where their upper limit is not marked by the Kessler limestone they grade into the superjacent sandstones. They contain the coal bed above referred to. The coal has been discovered at any places, but is not very important. It woch it al extent or 14 inde, but inas uch as it nowhere exal 14 inches in thickmportance. The shales occur in the highe nountains, well up the slope and in the hill in the rorth part of Fayetteville. Their occur ence at a lower elevation 7 miles northeast of Fayetteville is due to flexing and faulting. Like wise, the outcrop in North College avenue in Fay tteville, near the rave and in the block notheas of the St. Louis and San Francisco station are the result of local disturbances.
Kessler limestone lentil.-This name is applied a zone in the upper part of the Morrow forma fion containing from one to four thin beds of genrally dark, argillaceous, and frequently somewhat ferruginous limestones. The beds are separated by ariable intervals made up of dark-gray or blac hales. The limestones generally weather out on the slopes of the mountains in large slabs, which re found at a lower elevation than the ledges from which they are derived. The ledges are difficult to trace, because they occur on steep slopes of the ountains and are usually covered with sandston debris. The maximum thickness of the zone ma me much as 70 feet, but the individual band The highest beds of the Morow
The highest beds of the Morrow formation are maximum thickness of 50 feet. These wie betwee he Kesler limestone lentl and the Winslow for hation, bine the hinh in bor the mountain they are not usually well exposed.

winstow foraration.

The base of this formation is characterized by he occurrence of conspicuous quartz grains and mall quartz pebbles in the sandstones. Becaus he Mill the formation has tion is composed vary in lateral extent, and it doe oo everywhere carry quartz pebbles. It is found nly on the tops of the higher mountains, excep sme small patches about 6 miles northeast of Fay etteville, in which only the basal portion of the for mation is represented. A fuller section is found in the Winslow quadrangle, near the town of Wins low, from which place the name is derived.
There appears to be an unconformity between he Winslow and the underlying formation, but is not well marked. In the absence of the Kessle Wisher is in the it a Winslow, but in this quadrangle heavy sandstone forming a ledge

history of physical changes.

The rocks which outerop in the quadrangle wer aid down as beds of sand, mud, and ooze on th ea bottom, and later, under the pressure of super ere solidified into sumper lim tones. The earliest reord we have of these protones. The erses with the quadrange is toward the close he earlier half of Ordovician time. The cond ion which prevailed during the deposition of the lowest beds was that during The lowest deposit was a limy ooze, which is now he Yellville limestone. Following this a great bed of white "saccharoidal" sand was spread by he action of the water. This is not now present in any of the outcrops of Ordovician deposit within the borders of the Fayetteville quadrangle but some of it remains in certain quadrangles far her east. Its removal here occurred prior to the deposition of the Devonian beds, and it doubtles arnished the geater part of the materiat that situtes the very similar basal sandstone of the Chattanooga formation. The additional beds, if ny, which were deposited in the Ordovician se he rocks were subjected to erosion. This is shown
are
by the uneven upper surface of the Yellville limestone and by the abrupt variations in thickness, or the total absence in certain. localities, of th Sylamore sandstone. Where present this Devo nian sandstone is the first deposit following the Yellville limestone, and its stratigraphic relations iderable hollows in the limestone, and thus paved he way for the more evenly spread and thus pavel There is no record presul within the quale le of sedimentation in the Silurian period nor in gle of sedimentarier parts of the Devorion period, nor is probable that the Ordovician rocks during the time formed the surface of a great land area in th Ozark region and were wasted away under atmos pheric agencies.
Toward the close of the Devonian period the sea gradually encroached upon the land, and a bed of mud, preceded by an uneven bed of sand, wa deposited. These beds are now known as the Chat tanooga shale and the Sylamore sandstone member The Carboniferous period began with a compa atively brief, and perhaps local, recession of the sea. This is indicated by the general absence of deposits representing the earlier stages of the Kinderhook group. However, before the close of the Kinderhook, the land to the north was again submerged. In consequence of this advance, and the deepening of the sea occasioned thereby, the distance from this area to the shore was increased, and Thimentation changed from mud to limy deposits This condition prevailed for a long time, and the sediments The what is known as the Boone for lime, and now constitute the St . Joe limestone mu ber, After this there was an admixture of sili which gave rise to the cherts of the upper part of the Boone formation.
After the deposition of the Boone formation the sea retreated once more. This retreat is indiated by the restriction of the next following deposit, the Moorefield shale, to areas south and
east of the Fayetteville quadrangle. The sea retreated at this time also from a large part of the Mississippi Valley, the erosion of the correspondingly increased land being indicated nearly everywhere by the absence of certain deposits and by the unconformable contact formed between the old land surface and the first deposits resulting from the next submergence. In this area, presumably, land conditions prevailed during the whole of the epoch, submergence and sedimentation being resumed only about the beginning of the Chester epoch-the Patesville sandstone, which rests on the Boone, being of the latter age. It seems probable, however, that this sandstone marks merely the beginning of the submergence of this area, and With the not laid down over the whole of it. bed of black mud, which on solidifying came a shale known as the Fayetteville shale. During the course of the deposition of this shale slight
have been true despite the fact that the north hore of the Pitkin sea, as is indicated by th general thinning and local absence of the lime tone in that direction and by the wider distribu ion of the preceding shate formation, was located nearer this quadrangle than was the corresponding hore of the Fayetteville sea.
According to the evidence of the fossils the Pitkiu formation is the highest of the Mississippian series
Prior to the deposition of the next succeeding strat rior this the the Pitkin was elevated above the se level and subjected to erosion that at certain point sufficed to remove the greater part if certain poin of the limestone. Elevations of land surfaces and corresponding restrictions of water areas like those which introduced this erosion interval in norther Arkansas occurred over a large part of America at this time. In consequence, the contact betwee the Mississippian and Pennsylvanian formation is nearly everywhere in this country appreciably unconformable.
The Pennsylvanian series is represented in the ayetteville quadrangle by sandstones and shales with some thin lenses of limestones. The Morro formation, which is the lowest of this series, exhib its frequent alternations in the character of its sed ments, for at one stage shallow-water conditions prevailed, with local land areas, which permitted the growth of a layer of plant material that is now found in the form of a coal bed. The youngest rocks in the quadrangle are known as the Winslo formation. They consist of sandstones and shale the lower sandstone beds carrying some quartz peb les i sof withi the limits In the Boston Mountain, fevther soth, the . hreat thickness of which belong to the Wi low, but they have been so eroded that within the Fayetteville quadrangle the lower beds only reme o form the tops of the higher mountains.
Since the Paleozoic era no additional subaq
formations have been deposited, or if so there now no evidences of them. The next stage in the history of the area, the record of which can be read with certainty, is in late Tertiary time. Land conditions had evidently prevailed for a long period nd the higher formations in the northern part of he quadrangle had been eroded and the surface onded o nearly even lowland plain that corre ace of the considerable degree to the upper sur nearly horizoone formation. On account ant character of the rocks of the Boone this plain is partially preserved as the present time and con forms to the generally even horizon of the uplands, The semimountainous portion of the quadrangle was somewhat more extensive than now and stoo a relatively higher elevation.
Subsequent elevation of the Ozark region ha transformed the lowland into an upland, and the expose the Ordovician rocks, so that at the pres-
stone. It should be taken into consideration, however, that its upper surface has been largely eroded, so that its full thickness is not represente all places, and that its lower limit is generally exposed in local anticlines. From the geologic long the eastern long the eastern border of the quadrangle, from Springdale to Elkhorn Mount
very slightly toward the west.
In the southeast corner of the qudrat it
In the southeast corner of the quadrangle it lie of the faulting and displacement which ha result place. The occurrence of the areas of Ordovicia rocks indicates local doming and diveroent dip but no definite system of folds can be made out from a study of them. The faults and folds which occur in the southern part of the quadrangle, how ever, indicate two structural lines; viz, N. 30° to 40° E., and N. 60° to $80^{\circ} \mathrm{E}$. The former is the direc tion of the Chambers Spring syncline and the Price Mountain fault and syncline; the latter, of the White River fault
Chambers spring syncline.-The axis of thi yncline enters the quadrangle in sec. 21, T. 16
N., R. 33 W. It passes through Cincinnati, which lies just beyond the western border of the quad rangle. It extends through an area of the Fayette ville shale and Wedington sandstone, which preserved as a result of the structure. The fold is a very shallow one and does not affect the dip of the rocks very far on either side of the axis.

 point. Its direction is N. $40^{\circ} \mathrm{E}$.
Price Mountain fault and syncline.-Just south of Price Mountain there is a fault which has direction of N. $40^{\circ} \mathrm{E}$. The maximum displace ment near Price Mountain is about 300 feet, the downthrow being on the south side. (See fig. 2.) The fault is not in evidence very far to the northcast. To the southwest it follows the contact of sec. 20, T. 17 N., R. 29 W . In this portion of he fault the displacement is evidently between 100 and 200 feet, but it can not be measured accurately. still farther to the southwest the fault has been
abserved at a number of places in connection with ynclinal structure
The rocks in East Mountain dip to the we slightly, and at Fayetteville, in the hill on whic the university stands, there is a low dip to the east The axis of the faulted syncline passes between these two localities. The disturbance is greatest in the northern part of Fayetteville, in the hill on which the schoolhouse stands, and along the deformation are shown by a careful study of the Brentwood limeston and the Window sand the but can not be fully expressed in the mapping The sandstones and shales appear with diverse dip and are considerably crushed. There is some local
here is a fault which is on the same strike with he one above described, and is perhaps a continu tion of it.
In the intervening distance the faulting is not conspicuous or recognizable, because of its occurence in the limestone country, where the surface covered by chert debris. East of White Rive he downth. is probably as much as 20 feet on 100 fect in the same direction. In connection with the development of this fault there is con iderable fexig of the strata. In the are of the Fayetteville shale shown along Anderson Branch nd Hamestring Creek, the structure is in the nature of a shallow syncline
A branch of the White River fault occurs alon the ravine in secs. 21 and 22, T. 17 N., R. 29 W. In this case the downthrow is on the north of the ine of fracture. The fault dies out in sec. 29 As a result of this structure in connection with he main White River fault, a block has been ropped downward, so that the shales which ar oal bearing and small areas of the Winslow ar ound at a much lower elevation than they other wise would be. (See fig. 2.)
In the northern part of the quadrangle there is, ocally, evidence of folding and displacement, but the structure can not be traced very far owing to the surface covering of chert. At certain place the Batesville sandstone is found at a lower ele ation than the Boone limestone of the surround ing area and there are occasional small fault block dinusul dips, but in such cases he exposures On the in Con On of the Desville sandstone within which the rop of rere is syclinal, although it is not very def ite. Two miles northwest of Pea Ridge post ffice there is another small area which exhibits imilar structure At intermediate points the sand tone occurs below the reneral elevation of the Boon limestone. On the road just south of Rago post office a small block of sandstone has been dropped down, so that it abuts against the limestone This is apparently the result of a dip fault nea the axis of the syncline. The direction of the yncline is $\mathrm{N}. 30^{\circ} \mathrm{E}$., which corresponds with the iirection of the Chambers Spring and Price Moun ain structural lines.

MINERAL RESOURCES.
The Fayetteville quadrangle does not regularly supply any mineral products to the general market It, however, contains resources which are of local use. They could be more largely developed, but nasmuch as the same materials are found commonly throughout the surrounding region the cos of freight prevents extensive exploitation. Thes rick, for building and for buning to lime and a thin bed of coal.

FIG. 2. Northwest-southeast structure section in southeastern part of quadrangle, from Price Mountain to Round Mountain.

movements of the earth probably occurred, causing elevation and the production of the coarser siliceous material that now constitutes the Wedingto andstone member of the Fayetteville formation. Evidently an erosion interval followed the depotort of the Fayteville is lolly abes in upper part of the Fayettevile is locally absent in this and djoining quadrangles. Whis emergence and con ively local warping ascillations which firt ontracted and porated at loast the border of basins, and later caused them to sink again beneath he waters of the sea. As the sediments that were accumulated during this later submergence con sisted chiefly of the calcareous matter now forming he greater part of the Pitkin limestone, it is pre sumed that the oscillations occasioned sufficient changes in the relief and drainage of the adjacent land to cause the comparatively quiet- and clearwater conditions that must have prevailed during the deposition of limestone. And this seems to

Fayetteville.

nt time the oldest formations are again the scene

 f geologic activities.
deformation and structure.

The various formations, as originally deposited, were in nearly horizontal position. The main centers of the disturbances which influenced the Ozark area here described and the oscillations from the resulted in but slight inclination of the strate within the Fayetteville quadrangle. Moreover, the successive elevations and depressions have tended to neutralize one another. The final result is that the rocks have a gently undulating struc ture, which in places is accentuated into low dome and folds, and where the tension or stress was to vertical displacement.
The formation which is of widest extent and ffords the best datum for studying the broade structure of the quadrangle is the Boone lime?
displacement at right angles to the axis of this tructure. An example may be seen in the railway cut north of the depot at Fayetteville, at whic place the Pitkin limestone abuts against the Fay
etteville shale.
In sec. 31, T. 16 N., R. 30 W. , at Cato's shop, the Pitkin limestone is seen to have a decided synroad the rocks dip to the southeast conspicuously The ravine in that vicinity lis in the axis of the yne ravine in that Wheline
White River fault.-There is a fault entering N., R. 28 W . It trends westward with some deviation and crosses White River in sec. 22. In sec 20, T. 17 N., R. 29 W., where the White River fault crosses the Price Mountain fault, the dips are diverse. Farther westward, on Hamestring Creek, its trend is along the northern limits of the Fay teville shale area. In the vicinity of Rhea post office, in the east slope of Wedington Mountain,

Soil.-The upland of the larger part of the quadrangle has a soil which is residual from the decay of the Boone limestone, and contains an admixture of organic matter from the decay of vegetation of he woodlands and prairies which existed before arms were laid out. It is a strong soil, well papted to gusil is usually a geal thi prodicky when wet and where the mperfect the ground is apt to be coll and ductive; but this can be easily modified by ditching and cultivation. In places there is a admixture of sand from the small remnants of the Batesville formation. Along the valleys of the numerous small streams which dissect the upland the surface is largely covered by chert, the soil having been washed away. The transportation of the soil conributes to the enrichment of the valleys, and where they are level enough to be cultivated there are ood farms. The valleys of White River and the Illinois, and even of the smaller streams, contai
fields which are constantly enriched and renewed and tiling，but the cost of operating is too great by the overwash from the hills．Where the Chat－considering the present local demand and the con－ tanooga and Fayetteville shales outcrop the soil dition of the general market．
would be poor and thin if it were not for the addi－ tion of material which has been transported from neighboring hills．
In the area of the sandstones of the Morrow for－ mation the soil is usually a light，sandy loam． The presence of the limestone lentils where they form heavy ledges modifies this character consid erably，since the washing of the surface water diss from the decay of these limestones In desompulting ing the sholes which are ins．Intifed，reses such an admixture of sand from the higher receive that they do not form a distinct class of soils．The areas of alluvial soil are the richest farming lands， but they are of limited extent，since none of the but they are of limited extent，since none of the
streams have extensive flood plains．This class of soil is found principally along White and Illinois
rivers．
Clay and shale．－Brickkilns have been operated to supply the local trade，but their production has never been large，owing to the facility with which building stone can be procured．Thus far only the surface soil and clay have been used in the kilns． In the southern part of the quadrangle shales are available which could be utilized in making brick ping that is convenient for quarrying and ship－
obtained from the more massive upper beds of the erable depth they penetrate the magnesian lime－ Boone formation，which are here free from chert． Another kiln is in operation at a point about $1 \frac{1}{2}$ iently situated and the product of the kiln is said to be of excellent quality．The stone used i limestone of Kinderhook age that here forms the basal part of the St．Joe member of the Boone formation．
Coal．－The coal which is mined in secs． 20 and 21, T． 17 N．，R． 29 W. ．，in the vicinity of Lem－ mons bank，is a hard，lustrous，bituminous coal． The bed is only 14 inches thick，and its thinness prevents its being worked on any large scale，but Mines are also operated near the the local trade inson Mountain，where the same formation and the coal there is of similar character and thick ness．There is little prospect that beds of com mercial importance will be developed with the quadrangle．
uadrangle．
Prospects，
Prospects，drill holes，and shafts．－Considerable
noney has been spent in drilling wells，with the hope of finding oil or gas，and a number of shafts have been sunk in prospecting for lead and zinc． The records of the drill holes conform with the general section of the rocks as exposed within the quadrangle，and where the holes reach a consid－
stones of the Ordovician rocks．Oil or gas has， however，not been found．In passing through the Chattanooga shale，which is usually about 50 feet fetide cuttings of the drill commonly give of tetid odor，and this has been an encouragement ever，not known to be oil bearing，and the rocks above and below can not be expected to contain either oil or gas．
The Boone limestone，which is so widely distrib－ uted over the quadrangle，is the formation which contains the lead and zinc deposits of southwestern Missouri，and the finding of small quantities of lead and zinc has induced many people to prospect with the hope of finding larger bodies of ore．
Thus far no one has met with success．Usually the prospects have not been located with respect to fault lines or fissures．Judging from results obtained in neighboring mineralized regions，it may be worth while to prospect some of the local－ may be worth while to prospect some of the local－
ities in the quadrangle in which the rocks have been disturbed．The conditions which brought about the deposit of lead and zinc in southwest－ ern Missouri do not，however，seem to have pre－ vailed in this quadrangle．

February， 1905.

generalized section for the fayetteville quadrangle． SGALE： $1 \mathrm{INCH}=200$ FEET．							
妾安	妾	Formatiox Name．	Sxwooc．	Columnar SECTION．		Character of rocks．	Character of topographt and Solls．
		Winslow formation．	Cwl	\square	${ }^{100}+$	Brown sandstone and variegated shale；fine quartz pebbles near the base in certain localities．	Mountain tops． Stony and sandy soil．
		（Kessler limestone lentil．） Morrow formation （Brentwood limestone lentil．） UNCONFORMITY			$200 \pm$	Gray and yellowish shale，and carbonaceous shale，with thin coal bed and zone of thin lenticular limestones． Thin beds of limestone and shale，underlain by sandy shale．	Mountain slopes and irregular surfaces． Soil sandy，with small amount of elay．
		Pitkin limestone．	$\mathrm{CP}^{\text {p }}$	号	$0-15$	Gray fossiliferous limestone of variable texture．	Forms a ledge and contributes lime to soils lower on slopes．
		（Wedington sandstone nember．） Fayetteville formation．	（Crat）		20－350	Heavy brown sandstone with thin yellow shale locally at the top． Black，fissile，carbonaceous shale containing calcareous concretions， with thin lenses and beds of dark limestone near the base．	Tops of low mountains or hills and on mountain benches． Sandy soil． Exposed near the bases of slopes． Soil poor except where covered with overwash．
		Batesville sandstone． UNCONFORMITY	Cbr	，	0－90	Yellowish and gray thin－bedded sandstone，locally shaly and very calcareous．	At bases of slopes and on small flat areas． Soil sandy．
		Boone formation． （St．Joe limestone member．）	Cb n （Csi）		$325 \pm$ （20） 80 15	Light－gray siliceous limestone，cherty limestone，and beds of chert． Light－gray，even－bedded，noncherty limestone．	Generally level surface，broken by stream valleys． Good limestone soil，but often stony． In ledge at bases of valley slopes．No soil retained
㟔		Chattanooga formation． （Sylamore sundstone member．）	$\begin{gathered} c_{c} \\ (08) \end{gathered}$		$\underset{(0-75)}{20-145}$	Black，carbonaceous，fissile shale，with joint structure． White to light－brown friable sandstone in massive beds，locally con glomeratic．with chert，limestone，and phosphatic pebbles．	In valley slopes．Poor soil． In valley slopes and floors．Sandy soil．
年		Yellville formation．	Oy		100＋	Light．to dark gray magnesian limestone and dolomite，even bedded and locally siliceous or cherty．	In stream valleys，usually as bluffs．

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. \dagger
			Cents.				Cents.
1	Livingston	Montana	25	61	Monterey	Virginia-West Virginia	25
2	Ringgold	Georgia-Tennessee	25	62	Menominee Special	Michigan	25
3	Placerville	California	25	63	Mother Lode District.	California	50
$\ddagger 4$	Kingston	Tennessee	25	64	Uvalde	Texas	25
5	Sacramento	California	25	65	Tintic Special	Utah.	25
$\ddagger 6$	Chattanooga	Tennessee	25	66	Colfax.	California	25
$\ddagger 7$	Pikes Peak	Colorado	25	67	Danville	Illinois-Indiana	25
8	Sewanee	Tennessee	25	68	Walsenburg	Colorado	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	69	Huntington.	West Virginia-Ohio	25
$\ddagger 10$	Harpers Ferry . .	Va.-Md.-W.Va.	25	70	Washington.	D. C.-Va.-Md.	50
11	Jackson.	California	25	71	Spanish Peaks	Colorado	25
12	Estillville	Ky.-Va.-Tenn.	25	72	Charleston	West Virginia	25
13	Fredericksburg	Virginia-Maryland	25	73	Coos Bay.	Oregon	25
14	Staunton	Virginia-West Virginia	25	74	Coalgate	Indian Territory	25
15	Lassen Peak	California	25	75	Maynardville	Tennessee	25
16	Knoxville	Tennessee-North Carolina	25	76	Austin	Texas	25
17	Marysville	California	25	77	Raleigh	West Virginia	25
18	Smartsvill	California	25	78	Rome	Georgia-Alabama	25
19	Stevenson	Ala.-Ga.-Tenn.	25	79	Atoka	Indian Territory	25
20	Cleveland	Tennessee	25	80	Norfolk	Virginia-North Carolina	25
21	Pikeville	Tennessee	25	81	Chicago	Illinois-Indiana	50
22	McMingville	Tennessee	25	82	Masontown-Uniontown	Pennsylvania.	25
23	Nomini	Maryland-Virginia	25	83	New York City	New York-New Jersey	50
24	Three Forks	Montana	50	84	Ditney	Indiana	25
25	Loudon	Tennessee	25	85	Oelrichs	South Dakota-Nebraska	25
26	Pocahontas	Virginia-West Virginia	25	86	Ellensburg	Washington.	25
27	Morristown.	Tennessee	25	87	Camp Clark	Nebraska	25
28	Piedmont.	West Virginia-Maryland	25	88	Scotts Bluff	Nebraska	25
29	Nevada City Special	California	50	89	Port Orford	Oregon	25
30	Yellowstone National Park	Wyoming	75	90	Cranberry	North Carolina-Tennessee	25
31	Pyramid Peak	California	25	91	Hartville	Wyoming	25
32	Franklin	West Virginia-Virginia	25	92	Gaines	Pennsylvania-New York	25
33	Briceville.	Tennessee	25	93	Elkland-Tioga	Pennsylvania.	25
34	Buckhannon	West Virginia	25	94	Brownsville-Connellsville	Pennsylvania.	25
35	Gadsden	Alabama	25	95	Columbia	Tennessee	25
36	Pueblo	Colorado	50	96	Olivet.	South Dakota	25
37	Downieville	California	25	97	Parker	South Dakota	25
38	Butte Special	Montana	50	98	Tishomingo.	Indian Territory	25
39	Truckee.	California	25	99	Mitchell	South Dakota	25
40	Wartburg	Tennessee	25	100	Alexandria	South Dakota	25
41	Sonora	California	25	101	San Luis	California	25
42	Nueces	Texas	25	102	Indiana	Pennsylvania	25
43	Bidwell Bar	California	25	103	Nampa	Idaho-Oregon	25
44	Tazewell	Virginia-West Virginia	25	104	Silver City	Idaho	25
45	Boise	Idaho	25	105	Patoka	Indiana-Illinois	25
46	Richmond	Kentucky	25	106	Mount Stuart	Washington	25
47	London	Kentucky	25	107	Newcastle	Wyoming-South-Dakota	25
48	Tenmile District Special	Colorado	25	108	Edgemont	South Dakota-Nebraska	25
49	Roseburg	Oregon	25	109	Cottonwood Falls	Kansas	25
50	Holyoke	Massachusetts-Connecticut	50	110	Latrobe	Pennsylvania.	25
51	Big Trees	California	25	111	Globe	Arizona	25
52	Absaroka	Wyoming	25	112	Bisbee	Arizona	25
53	Standingstone	Tennessee	25	113	Huron	South Dakota	25
54	Tacoma.	Washington.	25	114	De Smet	South Dakota	25
55	Fort Benton	Montana	25	115	Kittanning	Pennsylvania.	25
56	Little Belt Mountains	Montana	25	116	Asheville	North Carolina-Tennessee	25
57	Telluride	Colorado	25	117	Casselton-Fargo.	North Dakota-Minnesota.	25
58	Elmoro	Colorado	25	118	Greeneville.	Tennessee-North Carolina	25
$\begin{aligned} & 59 \\ & 60 \end{aligned}$	Bristol. La Plata	Virginia-Tennessee Colorado	25 25	119	Fayetteville	Arkansas-Missouri	25
				.			

* Order by number.

Payment must be made by money order or in cash.
These flios are out of stock.
Circulars showing the location of the area covered by any of the above folios, as well as information concerning topographic maps and other publications of the Geological Survey, may be had
application to the Director, United States Geological Survey. Washington, D. C.

