DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
CHARLES D. WALCOTT, DIRECTOR

GFOLOGIC ATLAS
 OF Tre

 UNITED STATES

 UNITED STATES}

CASSELTON - FARGO FOLIO

NORTH DAKOTA-MINNESOTA

CONTENTS

DESCRIPTIVE TEXT
TOPOGRAPHIC MAPS

ARTESIAN WATER MAPS

UNIV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parn of the area mapped, to delineate the outline or form or all slopes, and to line the hrol in evel, the altitudinal intercal represented by the el, between lines being the dhogho each map. These lines are called contours, and the niform altitudinal space between each two contours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
rim, and grade is shown in the following sketch and corresponding contour map (fig. 1).

.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice orming a precipice. Contrasted with this precipice the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet surounds it. In this fre numbered, and those for 250 and 500 feet a ccentuated by being made heaver Cors, then the accentuating and numbering of certain fhem-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
2. Contours define the forms of slopes. Since moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
3. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones.
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping greal mown For iste tie contour interval of 10,20, 25,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. Thild be represented by a linear inch on the
Thion between distance in nature and corresponding distance on the map is called the scale The scale may be cappressed also by and. The scale may be expressca a a fraction of which the numerator is a length on the m. and the denominator the correspong leng in are 63 exp inches in a mile, the scale " 1 mile to an inch" is expressed by $\frac{1}{6,3,50}$.
n inch" is expressed by $\frac{1}{6,5350}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{20.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the cale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Atlas sheets and quadrangles.-The map is being published in atlas sheets of con venient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of som contains one square degree-i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of a square degree; each sheet on the scale of $\frac{1}{\text { tasivile }}$ contains one-sixteenth of a square degree. The area of the corresponding quadrangs.
1000 , and 250 square miles.
the atlas sheets, being only parts of one ma lines United States, disregard political boundar hips. To each sut, to the quadrangle represents is siven the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.-On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating diteads, provide educational material for schools and homes and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far
known and in such detail as the scale permits. kinds of rocks
Rocks are of many kinds. On the geologic ma hey are distingu Ine
Igneous rocks.-These are rocks which have on from a state of fusio rom time to time been forced material ha fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called the mass is termed a stock. When the conduits fir molten magmas traverse stratified rocks they ofte send off branches parallel to the bedding plane the rock masses filling such fissures are called sills or sheets when comparatively thiñ, and lacco liths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a par fialy eysare fully ays in ther tions. The outer af law flow ions. The pors por Explotions are usu, panies volenic eruptions, cousing ejections of dit ash and lare fragments. These matelib, whe consolidated, constitute breccias, arglomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited.
The chief agent of transportation of rock débris is water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. wind; and the The mot chareterstic of the wind-borne or eolis deposits is loess, a fine-prained erth; the most char deposits is loess, a ine-g.ite ill, he most charmixture of bowlders and pebbles with clay or sal. Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chatged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Their upper par, whor plants, constue soins and subsols, he solls being organic matter.
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the primary to the metamorphic form within a single purt Susch changes transform sudify other quartaite, limestone in

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals. are developed with their laminæ approximately paralle, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lepritrary tine, and in some cases the disl fossils. An almost entirely on the contained fossins. incous formation is constituted of one or more bodies either containing the same kind of igneous metamorphic formation may consist of rock of uniform character or of seeveral rocks having common haracteristics.
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other
appropriate term, as lentils. appropriate term, as lentils.

hges of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by observing their positions. This relationship holds except in regions of intense disturbance; in regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are found. Onher types passed on from period to period, and thus linked the systems together, forso a chan of frem the time of the oldest for for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it.
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thary or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by 'the eroding action of waves, and sand spits are built up by waves. T'opographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. I, is an illustration. To this class belong beaches, alluvial plains, lava of till) and moraine (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any rock To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal
geology, thus printed, affords a subdued backgeology, thus printed, affords a subdued backtions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Trangement is called a structure section
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner kinds of rock

Schists.

Massive and bedded igneous rocks.

Fig. 3.-Symbol sections to
of rocks.
The plateau in fig. 2 presents toward the lowe land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sand of this bed form the surface. The intermediate valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such breaks are terme
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is omposed of schists which are trayersed by masses and the

inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
The horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underyng formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds po a a the surface of any mineal, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents a
summary of the facts relating to the characte of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF CASSELTON AND FARGO QUADRANGLES.

By Charles M. Hall and Daniel E. Willard.

geography.

Position and extent.-The Casselton and Farg quadrangles lie between the meridians of $96^{\circ} 30$ and $97^{\circ} 30^{\prime}$ west longitude and between the parallels of $46^{\circ} 30^{\prime}$ and 47° north latitude, and cove bout $34 \frac{1}{2}$ miles long from north to south and a ttle less than 24 miles wide from east to west and together they have an area of about 1640 quare miles. These quadrangles embrace portion of Cass, Richland, and Ransom counties, N. Dak., and Clay and Wilkin counties, Minn. Fargo, ity of about 10,000 inhabitants, the largest city of North Dakota, and the center of trade for the Red River Valley, is located in the eastern part of he area, where the main lines of the Northern Pacific and Great Nerthern railways cross the Red River intô North Dakota.
The area is of special importance, as it represents typical section across the so-called valley of the Red River, including a small extent of prairie pland on the west. It also includes the easter gr fing formations rise to within, 200 to 300 et of the sure and most evily studie of the surface, and are most easily stadie. row exhibits the characteristic features of the Qua brary artesian well areas so frequently found within the Cretaceous basin in the Red River Galley. Within it are also found the water horions yielding only tubular or dug wells, which cons yielding only tubular or dug wells, which a large part of eastern North Dakota and western Minnesota. The description of these wate resources applies to a large extent to the entir area from Bigstone Lake to the international boundary line.

RELIEF.

Red River Valley. - The Red River Valley ncludes the greater part of the Casselton and Farg quadrangles. During the latter part of the Gla cial epoch it was a lake which has been called the Glacial Lake Agassiz, and which has been described by Mr. Warren Upham in Mon. U. S. Geol. Survey, Vol. XXV. The topography therefore is exceedingly simple, two-thirds of the area being level plain. From the middle of the valley, if this plain may be called a valley, he view is interrupted only by the groves planted by the early settlers the streams. This plain is so level that in many as the priding and tree are the horizon, no physiographic feature being great mough to be detected by the eye. This flatness i due to the fact that this region is one of topographi youth and has not been eroded (See Topographi Atlas U. S. folio 1, "Physiographic Types" U. S. Geol. Survey).

The general altitude of the level plain is about 900 feet above tide. On both sides of the Red River, which flows from south to north across the plain, the land rises with a gentle slope of from 1 to 4 feet per mile. Toward the western border of the old lake bottom the surface rises in a series of north-south ridges-the beaches of the old lake a its different stages. In the northern part of the area there is a rise of 200 feet in about 5 miles to the upper or highest level of the old lake. Beyond this the rolling prairie merges into the low morainic hills just west of this district. The highest part of the area discussed is in the northwest corner of the Casselton quadrangle, where the elevation is 1200 feet.
In the southern half of the Casselton quadrangle there is a sudden rise of about 60 to 70 feet within 2. or 3 miles from the lake bottom to a sand plain plain as from little north of the Maple River plain ext the southern boundary of the pudrangle. It is broken by the Maple and Sheyenne val-
leys. The Sheyenne River has eroded a gorge | both sides. As a result there are between the river from 100 to 140 feet deep across the plain. On both sides of the Sheyenne Valley is a series huge mounds 130 feet high
The great depression or level plain through which the Red River flows was the pre-Glacial valley of a large northward-flowing stream. The xcavation of this great valley began atter the pposition of the Cretaceous sediments, probably rt the great post-Mesozoic upla m dry land. The pre-Glacial Red River Valley herefore probably was eroded after the close o he Cretaceous period and during the Tertiary uplift. This old valley was deeply mantled with rift, borne southward by the moving mass of ice, nd the present river flows on the top of this, nany feet above the level of the older river. After he ice retreated this mantle of drift became the
bitom of the Glacial Lake Agassiz.
The Manitoba escapment, which limits the Red cous shas valley to the east. If these strata once continued ver the whole southern portion of the Red River Valley in North Dakota and Minnesota, as seems probable, they have been largely removed by erosion. In the axial portion of the Red River Valley, in the latitude of Fargo, the shales and sands do not generally have a total thickness of more than 150 feet, as determined by borings. However, in the western portion of the Casselton quadrangle, their thickness is unknown, as the eepest borings, which do not exceed 600 feet in Casselton quadrangle and 800 feet or less in he adjoining quadrangle to the west, have no reached the gra
shale and sand.

drainage

Red River.-The Casselton and Fargo quadranles are drained by the Red River and its tribu taries-the Buffalo on the east and the Wild Rice, Sheyenne, and Maple on the west. The Red River approximately in the center of the Red Rive Valley. It enters the Fargo quadrangle from the south, at an altitude of 900 feet above tide, and lows in a tortuous course, the general direction of hich is a 360 feet In its quadrangle it has an altuace length of not less than 80 miles in the quadrangle, and it has a fall of not over 6 inches to the mile The channel is from 200 to 300 feet broad and rom 20 to 60 feet deep, and, like all meandering streams, usually has one steep bank and one more been built up by silt deposits and there is a gentle sope for a short distance away from them. The channel of the main stream is sufficient in ordinary easons to carry off the drainage of the land, the usual capacity at Fargo being not far from 25,000 cubic feet per second. However, when the melting of deep snows is hastened by rainfall, the present channel is entirely inadequate and the river bon known to overflow its banks and to read places a width of 15 miles. In recent years
oods have occurred in 1897, 1893, 1882, and 881. They ceur the melting, nows in April, when the water is highest. At times heavy June or July rains will cause a rise in the river, but usually the midsummer floods do no serious damage. The spacing of the tributaries of the Red River seems to have been determined by the streams which entered the valley as the water of the lake receded. All of the perennial
streams tributary to the Red River have their urces outside the area of ancient Lake Agassiz and usually show every evidence of having been receive the draing from only a narrow area
both sides. As a result there are between the river
broad areas which have little or no definite drainage The only drainage ways in the areas between the principal rivers are coulees from 20 to 40 fee deep near the river and a mile or two in length
These carry water only after heavy rains or while the snow is melting, remaining dry at other times. This arrangement of the streams is due oo the extreme youth of the drainage system.
When the erosion of the lacustrine deposits begins, it proceeds rapidly. In 1895 a wagon oad was graded east of the Red River between secs. 30 and 31, Oakport Township (T. 140, R 8), for a distance of about 6 miles. The farmer t once began to drain their fields into the road side ditch, which was deepened and broadened by rosion so rapidly that within four years the road ad been destroyed for nearly a mile from the rive nd a channel 80 feet wide and 25 feet deep had een cut.
The three perennial streams, the Buffalo, Wild Rice, and Sheyenne rivers, rise outside of the Red River Valley, but within the valley bottom their channels and meandering courses are not unlike ed to lhe mus low he low ered to their
the lake. lake.
Buffalo River.-This stream rises in the lak he Red River Valley 1 miles south. It enter the Red River Valley $1 \frac{1}{2}$ miles south of Muskoda beds of the upper Herman beach and the delta of its own deposit. It enters the Fargo quadrangle $3 \frac{1}{2}$ miles east of Glyndon, and about 3 miles north est of Glyndon is joined by the North Branch It then takes a meandering course nearly parallel with the Red River, which it enters at Georgetown, miles north of the quadrangle. The stream is seldom affected by floods, except in the spring, when all watercourses are congested. It is not nuch affected by rains on account of the sandy oil and the lake region at its source, but it mainains a fairly good flow during dry seasons, being d by numerous springs along its sides.
Wild Rice River.-This stream has its source mong the morainic hills near the southern bound ry of North Dakota. It enters the Red River Valley in eastern Sargent County, crossing the irect line It receives little or 24 miles in rainage in this region. It enters the Fargo drainage in this region. It enters the Fargo quadRed River and flows north parallel with the the tream realy 20 mice before entering it In the pring the river is full, but after the Jun and July rains it is often completely dry The fall rains start the flow again, but in winter the stream usually freezes to the bottom in many places.
Sheyenne River.-The Sheyenne River is most interesting stream of the region. It has it ource southwest of Devils Lake and flows 180 miles before entering the valley of the Red River It occupies a valley varying from one-fourth of a mile to one mile in width and from 75 to 150 feet in depth.
After entering the valley of the Red River the Sheyenne flows northeast in a serpentine course for nearly 40 miles before joining the wan stream. Although it has a drainage area of over 4000 square miles above its junction with the Maple, it is not subject to floods and does not seriously endanger the lands along its lower course, for ite hannel within the the Red Rive Valley is large enough to hold the water as fast as
it descends from the tortuous channel of the upper it descen
stream.
When the Glacial Lake Agassiz had its greatest xtent it obtained its water chiefly from the ice Maple rivers, While the lake was at its and stages and had an outlet toward the south into the Minnesota River, the waters of the Sheyene were
rried in that direction and sediment was deposted along the margin of the lake. The diversion the present Sheyenne River into Bigstone Lake and the Minnesota River, as a preventive floods in the Red River Valley, is entirely nepracticable, as
During most of the Glacial epoch Sheyenne River entered the lake about 12 miles south of the southern boundary of the Casselton quadrangle The amount of sediment brought into the lake was ery great and the deposit thus formed is known the Sheyenne delta. According to Upham timate, this delta has an area of 800 squar miles and the deposit has an average depth of 40 feet and a -volume of 6 cubic miles (Mon. U. S. Geol. Survey, Vol. XXV).
The portion of the Sheyenne delta included in these quadrangles is shown on the areal geology maps. The finer clay sediment was carried far out into the lake and the coarser sandy material deposited near shore to form the delta. As the lake receded the vast delta of sand was uncovered and
 barkel by the for beach which is oproximateyvile the delta-and before the river had cut a chanel across the delta the lake was receiving much less vater and sediment than during its highest stases because the water from the melting ice was diverted from the sources of the Sheyenne to other channels. If this had not been so the delta would have extended farther into the Red River Valley in northeast Barrie Township.
During. and immediately following the McCauleyville stage of the lake, the Sheyenne doubtless flowed almost directly east, across the Red River Valley, as is shown by its sharp bend to the east where it enters the valley in the southeast corner of sec. 11, Barrie Township. The old channel is again marked in secs. 8, 9, 10, and 14, Walcott Township. The volume of water could not have been great, else the stream would have followed the course first taken. On account of the levelness of the land, the river was easily diverted to the north, in which direction it flows more than 30 miles almost parallel with the Red River before finally tering it.
The Sheyenne River flows during the summer months, being supplied with water by springs, but thas been known to become completely dry. It lain ry few tribs, and sand plain mere reen a mile from the stream. It is believed ta w it for the great it eroded by the wers it not for the great channel the 4000 square miles of its drainage basin would be an area of undeveloped drainage, like the Devils Lake region and a large area between the Sheyenne and James rivers.
Maple River-Another stream resembling the Sheyenne in origin and history is the Maple River, but its drainage area is much smaller and its valley not so deep. Like the Sheyenne and the other tributaries of the Red River already mentioned, the Maple turns northward after it enters the Red River Valley. It unites with the Sheyenne 10 miles above the junction of the Sheyenne and the Red. During dry years the bed is usually almost or entirely without water
Near the Maple River is a peculiar topographic feature the discussion of which, because of its apparent connection with this river, has been deferred to this point. Beginning at the east side of section 19, Maple River Township, near the point where Maple River debouches into the level hat follows in geral hor 15 ho high Biver It an be paply 20 miles It an hadly be in any way conveted with a beach line of the retreating lake for it seens
to be independent of the general topography and its crest is 945 feet above tide at the southern end and is nowhere less than 910 feet above tide. In
Maple River Township the ridge contains much Maple River Township the ridge contains much
sand, and several sand and gravel pits have been sand, and several sand and gravel pits have been
opened. In each case there is less than 5 feet of opened. In each case there is less than 5 feet of
sand and gravel. Farther north, in Durbin, Harsand and gravel. Farther north, in Durbin, Harmony, and Raymond townships, this ridge offers attractive sites for farm buildings, but in most borngs for water quicksand is at a depth of 1
While below the surface
While the origin of this ridge is obscure, the ggession is perhaps waranted that it was ormed water Maple River entering compiacively shats first ine quicksand in the more gently moving current farther out from shore. It resembles in every respect an esker or osar, but what could confine a current in a shallow lake in one course long enoug to deposit such a prominent ridge is not clear.
general geology.

Pre-Quaternary Rocks.
 ancient grantte.

At no place in the Casselton and Fargo quadrangles is there an exposure of the stratified rock underlying the drift, and knowledge of these rocks is therefore derived entirely from borings. Deep wells have penetrated the hard granite at depths of $252,255,256,266,286,295,298$, and 475 feet in the Fargo quadrangle, and at depths of 411,450 ,
470 , and 490 feet in the Casselton quadrangle. 470, and 490 feet in the Casselton quadrangle. The only pre-Quaternary sedimentary formation
found in these wells above the granite is a shale found in these wells above the granite is a
containing layers of sand of Cretaceous age.
The granite basement is of unknown thickness. Little is known of its character in this area because
few borings penetrate it. It is deeply buried and it does not seem likely that it will ever yield either it does not seem likely that it will ever yield either
water or valuable minerals. Its surface is shown o be somewhat uneven by the difference in depth at which it is struck in well borings, but no very curate description of the uneonformity betwee he old granite and the much later shale can given.
The
The occurrence above the hard granite of white to 50 feet, and in the clays, at a depth of from 5 depth of 105 feet, shows that the granite has been decomposed and much altered and was long exposed to the action of atmospheric agencie before the submergence of the old land surface.
paleozoic rocks.
Paleozoic strata have not been encountered in orings in the upper portion of the Red River Valley, which includes the Casselton and Farg quadrangles, but have been observed in deep borings down the valley toward the north. At Grafton, 100 miles north of Fargo, an artesian well Ordovician, and 288 feet of Cambrian shales and clays (Upham). How far these strata extend outhward in the Red River Valley has not been determined. Between Grafton and Fargo are sev eral artesian wells obtaining their water supply penetrate deeper.
cretaceous rocks.
The sedimentary rocks of the eastern portion oluding the Casselton and Fargo quadrangles, vere deposited in the great inland sea which dur ing Cretaceous time occupied a large area in the interior of the continent. In the Casselton and Fargo quadrangles all the strata encountered in borings, except the granite and the surficial depos its, are shales and sandstones deposited as sediments in this great sea. The depth at which these trata are encountered westward in artesian wells hows a dip westward toward a syncline which has its western limits on the flanks of the Rocky Mountains and its southern limits in the Black Hills. The Cretaceous shales and sandstones rest unconformably upon the granite. The great ice sheet passed over the surface of the Cretaceous strata,
and the till overlying these was deposited by and the till overlying these was deposited by water from the melting ice. The upper stratified
layers shown in the section of fig. 1 must not be confused with the Cretaceous formation, as the
are of much later date. They were deposited upon the bottom of the Glacial Lake Agassiz at the tim of the melting away of the great ice sheet, and are Below the lacustrine deposits water-bearing sand Below the lacustrine deposits water-bearing sands Casselton tered at various depths throughout the ing table of well records). The deeper sands hav been generally referred to the Dakota. It is some what problematical whether or not the Benton River Valley 5 fors River Valley. No fossils have been obtained in he two quadrangles from borings, and the the rocks do not outcrop. The exact ag drift can therefore be only provisionally stated the The Pierre shale is excellently Manitoba escarpment, 70 to 100 miles north the Casselton quadrangle, where numerous small treams, descending to the Red River Valley from the west, have eroded deep canyons into the soft shale. This escarpment rises more than 400 feet bove the level plain of the ancient lake bottom a few miles south of the international boundary, and 100 miles north of the latitude of Fargo and Casselton has an elevation of 1500 feet above sea outhward to approximately 1200 feet above se evel where it crosses the western portion of the Casselton quadrangle.
About 10 miles south of the Casselton quadran gle, near the point where the Sheyenne debouches ito the Red River Valley, shale outcrops in the sides of the Glacial Sheyenne Valley. It has been provisionally referred by Upham to the Benton Shale penetrated in deep borings at several points
in the upper Red River Valley, including a part in the upper Red River Valley, including a par of these quadrangles, has been provisionally
referred to the Benton by the same authority Mon. U S. Be Benton by the same authority The "second chy" Gey, Jol. XXV, p. 92). he Fargo quadrangle at depths of less than 300 feet. Clays described by drillers as "light green," "decided green," "white and chalky," and "putty like," are reported at depths of 208 to 250 feet and in the deep well at Moorhead, at 370 feet. These clays in every case extend to the hard grane which begins at a depth of 252 to 298 feet, and in the Moorhead deep well at 475 feet. In the 1901 feet.
In the Casselton quadrangle the "second clay" struck at depths of 200 to 300 feet, and deepe clays, "third clay," with layers of hardpan and gravel, at depths of 300 to 520 feet. White clay reported in the Casselton quadrangle at 292 , 300 , and 420 feet, with hard granite below; and ard granite at 411, 450, 470, and 490 feet. In he Fargo quadrangle flowing wells are not obtained from a fine white sand rock, the eastern limit of the Cretaceous artesian basin crossing he east half of the Casselton quadrangle. However, deep wells yielding water from a fine white and rock are common in the Fargo quadrangle in which the water rises nearly to the surface. If these sands are provisionally assumed to be Dakota ion of the Cretaceous and ast continuairth of the Cretaceous artesian wate-bearing sand ite, it would then be natural to correlate the "ssec ond clay" of the Farqo and Casselton with the Benton shales farther west Until fulle field records have been obtained to the south and vest and correlated with those of these quadrangles it seems of doubtful utility to attempt to definitely assert the age of the clays and sands underlying of the Red River Valley now being considered. That Cretaceous sediments were laid down in a shallow sea is shown by thin beds of coal in the andstone which overlies the granite and which has been provisionally referred to the Dakota.

Quaternary Deposits.

Brief hislory of Lake Agassiz.-In the last grea period of the earth's history preceding the present, he northern part of North America, including Minnesota and North Dakota as far west as the Missouri River, was deeply buried beneath a great sheet of moving ice. This ice sheet was not unlike
the one covering Greenland to-day, and for centuthe one covering Greenland to-day, and for centu-
ries was engaged in leveling the rugged surface of a
drainage basin that occupied the position of the present Red River Valley, and in adding the debris to the material already gathered farther to
he north and east. This débris was deposited a he border of the ice sheet, and formed the grea hills of the terminal moraines of the Coteau de rairies and the Coteau du Missouri.
The close of this important period was marked y some change in the elevation of the land, by a change of climate, and by a gradual melting and埗 was not sudden, or even continuous, but was
marked by a suceession of pauses. Each pause was long enough to allow débris to accumulate along he margin of the ice sheet, so that, when another retreat began, a row of hills, called a terminal moraine, marked the line of the preceding pause. None of the later pauses allowed the accumulation of nearly so much material as was deposited at the southernmost margin.
Seven moraines were left by the retreat of the ice sheet before the epoch in which the surface eology of the Red River Valley was determined he seventh moraine, known as the Dove, north and west along the line of hills near White Kock, S. Dak., to near Lidgerwood, Lisbon, Mil nor, and thence in general along the course of the Sheyenne River to Devils Lake.
As the ice melted the water filled the basin o he pre-glacial Red River Valley until it covere n area nearly as large as all of the Great Lake ombined. This lake is called Glacial Lake Agasiz. The continued melting of the ice caused the asin to overflow and an outlet naturally was formed at the lowest point of the rim. The outle hannel formed was through Lakes Traverse and the last recession of the ice sheet preceding the he last ression of the
Gu.g Lake Agassiz
of the wind and wave fomed lake the action hose on the flow like and oravel were accumulated in plaees into and ridges. The cutting down of the outlet and the ilting of the land during this period cave rise to he formation of several well-marked beach lines unning nearly parallel. Those in the upper part of the lake were five in number, called the Her man, Noreross, Tintah, Campbell, and McCauleyville, from towns of these names in western Minesota, located on these respective beaches. After the formation of these beaches the lake found an outlet to the north as a result of the recession of the ice sheet, and many other beaches were formed ntil, on the final disappearance of the ice, the Re iver Valley was left approximately as it is to-day During its highest stage the water was 250 fee deep where the city of Fargo now stands. Grea cebergs could thus float down from the north and would strand where they were driven by the preailing winds after dropping their burden of bowl ders, many of which are observed along the east de of the valley. The streams flowing into the ke, vastly larger than those in the region to-day brought a great deal of sediment. Where these formed, like the delta of the Sheyenne. Here the sandy sediment was dropped near the mouth of he stream, the finer materials being carried out to the middle of the lake. In this way the level bot tom was built up to a thickness of 60 to 70 feet.
general character of the deposits.
The waters of Lake Agassiz covered the Casselon and Fargo quadrangles, with the exception of he northwest corner of the Casselton quadrangle, ame character as that lying beneath the stratified lacustrine sediments. The bowlder clay is composed in part of materials transported for greater
or less distances by the ice, but is mainly the pulverized materials ploughed up along the course of the moving ice, as is shown by the similarity of he drift clay to the stratified clay shale below evealed in the records of well borings.
The surface deposits, except the small area in he northwest corner of the Casselton quadrangle, re drift materials modified by the action of the waters of Lake Agassiz. Below the modified lake deposits is the till, similar in character to that of the rolling prairie beyond the area covered by the
lake. The total depth of the Quaternary deposits, determined from well borings, ranges from 150 feet in the western portion of the area to 200 to 250 feet in the axial portion of the valley. The depth varies considerably owing to the uneven pre-Glacial surface. Four types of Quaternary
deposits occur. These are (a) the rolling prairie deposits occur. These are (a) the rolling prairi ith low morainic hills; (b) the reworked drift epresented in the beach ridges and other shor deposits; (c) the fine sediments deposited in the deep waters of the lake and known as lacustrine
silt; and (d) the delta deposit made by the Sheysilt; and (d)
enne River.

alacial till

Unmodified drift.-In the northwest corner of Casselton quadrangle is an area, about 30 quare miles in extent, which lies outside th region covered by the waters of Lake Agassiz, and beyond the limits of what is known as the Red River Valley. This is an area of drift, with the olling and undulating topography characteristi of much of the eastern half of North Dakota wes in ancient lake bottom. The 1100 -foot leve in general the limit of wave action. The artreme northwest corner of the quadrangle has ortude of 1200 feet and is thus 100 feet igher than the crest of the principal line of the all of beach 4 miles to the east. There is Campbell 10 feet in about 40 miles from Morainic islands eastward to the Red River. hke extended beyond the western boundary of the Casselton quadrangle. One mile east of the west rn edge of the Casselton quadrangle, and almost xactly midway between the north and south andary lies, is a hin, about 2 miles in length bieh wang for 10 in igh A . A . outh a similar hill, having a north-south width miles, projectel as a promotory or bedla miles, prop lab of ond width conecting it with the genemal highland ile to the west These elevations are typical orainic hills, being composed of hard bowld lay with oceasional sandy or gravelly layers, and owlders of granite, quartzite, and limestone.
Extending for a distance of 3 miles in a north outh direction between the eastern extremities of hese highlands is a conspicuous gravelly beach idge. This ridge marks the line of the "breakers" between these two highlands at the time of the sec and or lower Herman stage of the lake. Anothe gment of the second Herman beach about 2 miles in length lies 3 miles north of the northern xtremity of the island just described and half wile east and 20 feet lower than the highest Herman shore. Five miles farther north a feebly developed shore line representing the second Her man stage lies about the same distance east of the upper beach and is separated from it by about he same vertical interval.
Lagoons back of the beaches.-The island referred o was an island only during the period in which he lake stood at the level of the upper Herman f the lake the embayment west of the ilman stag the lake the embayment west of the island wa Similar lo igh ridge formed tifferent stas of like. The breaking of the waves where the lower part he rolling mass of water was retarded by the fric tion of the bottom caused the coarser gavel and and to be thrown down in more or less uniform laers, forming the beach ridges which have been escribed. The finer sand and silt were carried ver the crest of the bar and settled in the still water of the lagoon. The soil of these lagoo racts is thus frequently not only composed largely of fine sand and silt but is often impregnated with kali derived from the continued evaporation both before and after the disappearance of the lake.
lake agassiz silt.
The lacustrine silt overlying the till is found ver about one-hall of the Casselton quadrangle ad over all of the Fargo quadrangle except abou 0 square miles. Its thickness is in places 70 fet and is commonly 30 to rine silt consists of the finest particles of rock brought into the lake by streams, or washed from
the wall of ice which formed the northern shore. It was laid down in perfectly stratified layers, th upper portion being blackened and enriched by accumulations of carbonaceous matter from the decomposition of plants and animals which found a habitat in the cold waters of the lake and in the hallow marshes which existed after the disappear ance of the lake. These
turn became dry meadows.
beaches of lake agassiz.
In the northwest quarter of the Casselton quadrangle is a tract having the characteristic topog raphy of a wave-washed shore of a receding sea
It is about 6 miles in width and extends from the northern edge of the Sheyenne delta northward beyond the quadrangle, and has an area of a little more than 100 square miles. The western limit of this tract is the highest level reached by the waters of Lake Agassiz. In the northern two-thirds of the tact, the 1100 - and 1000 -foot contours are only bout 3 miles apart, whereas the 900 -foot contou is about 40 miles to the east near the Red River This slope between the 1000 - and 1100 -foot contours is the eastern face of the Manitoba escarp ment.
The region was covered by the waters of Lake Agassiz during its highest stages, and was uncor red as the lake receded. Well-marked gravelly and sandy ridges formed by the action of the waves and currents traverse the area in a general north-south direction. They are composed of whitish sand with a little clay, and gravelly places re frequent. Sand for building purposes and its. The pits. The eastern slope, or front, of the beache
 lrainage to the lower levels to the east bein prevented by the ridges. The area is oeng reworked drift and lacustrine deposits, the latter

The McCauleyville beach, which marks the lowast stage of the lake while its waters were drained outhward by the river Warren, is very feebly eveloped within this area. It is represented by two fragments, not exceeding a mile each in length in Walburg and Gill townships. It is elsewhere ravel, and traceable continuously for many miles A prominent ridge parallel to Maple River and containing sand, gravel, and quicksand may pos sibly represent a later beach, but its origin seems to be due to other ca
The Blanchard
The Blanchard beach, representing the next and the highest level of the lake after its water had begun to be discharged through a northern outlet, is shown in a low sandy swell of an area of about 16 square miles in Wilkin County, Minn., and by another broad sandy swell in Clay County, Minn., having an area of about 9 square miles, These areas, represented on the map as modified lacustrine deposits, are distinguished from the sur rounding surface by the sandy character of the soil and the frequent occurrence of gravel, as well as y their elevation.
The beaches just described are found on the eastern as well as western side of the lake. Th beaches representing the higher stages of the lake occur on a gentle slope that faces westward and loes not reach the eastern boundary of the Fargo quadrangle. Bowlders occur in great abundance on this slope, and there are a few bowlder-strewn reas in the Fargo quadrangle. Some of these Wders are of imanse sice, and their distribuion along the higher shore lines of the lake sug locks of ice and stranded on the sand bars.
delta sands.
Extent and character.-The great delta plain of
during the stage when the lake was being drained uthward by the River Warren.
Springs of the della.-The loose texture of the delta deposit allows the ready absorption of the waters of rainfall and melting snows. There is little erosion because the surface waters are so eadily taken up by the soil. The waters percolate downward until they are checked by more clayey
strata in the delta or by the hard impervious till beneath the delta deposits. The ready percolation of the waters and the impervious beds of clay make springs common along the delta front and in the springs common along the delta front and in the
deep channels of the rivers. On the lake bottom beyond the delta the hydrostatic presure of the waters derived from higher levels in the delta auses the water table to rise to the surface and onsiderable areas are rendered boggy marshes. The northeast front of the delta, about midway etween the Sheyenne and Maple rivers, near the village of Leonard, is intersected by several deep oulees which have been formed by the action of springs bursting out from the delta. These may fittingly be called "traveling springs," since they travel backward into the plateau as a result of the action of their own waters in removing the erodible materials out of which they emerge. The ame phenomenon is observed in the springs which ad Me comlees along the valleys of the Sheyenn and Maple rivers. The spring half a mile west Leonard village has eroded a gorge 2 miles in ength with a maximum depth of 70 feet. Other coulees in the vicinity formed in the same manner re half a mile to nearly 2 miles in length. Such prings occur in the banks of the Sheyenne Rive Ransom, Barnes, Griggs, Nelson, and Eddy counes, where the river has cut deeply into the sof Cretaceous shales that underlie the drift.

The surface of the Sheyenne delta is marked by

In the western portion of the Casselton quadran le and a large adjacent area the occurrence of ittesian water, supplied from a sandstone forma tion, is due to the synclinal basin which extends westward from the region of the Red River to the Kocky Mountains and southward to the Black Hills. Flowing wells from the Cretaceous sandstone horizon are obtained at depths of 200 feet Casseltor eastern hils of the aresian basin in the Casselton quadrangle, at depths of 400 to 500 fee
 nd will for and west, and at a depth of 1500 feet still farthe The Cretaceous formationes River Tern edge of the Rocky Moutcrops along the Black Hills, and the water is supposed to be lerived from these regions. Here the rains pene trate the porous sandy formation lying at the surace at altitudes of from 4000 to 6000 feet above sea level, and traverse the sandstone layers to the eastern portion of the syncline. At Jamestown and Devils Lake the water-bearing formation is at out sea level. The Cretaceous artesian waterbearing horizon rises to about 700 feet above sea evel on the eastern side of the syncline.
The accompanying cross section (fig. 1) of the Red River Valley shows the structure along the line of the Northern Pacific Railway. It shows he black lacustrine deposit of fine sediment to a maximum depth of 60 to 70 feet in the axial portion of the Red River Valley, and thinning toward the western portion of the lake bottom. Below this occurs the bowlder clay or till to a depth of 150 to 200 feet. Then follow the Cretaceous shales and sands, which rest unconformably upon is grante. The the of ane is very uneven, the surface At the top of the a lays frord chay is often eneount and below thi water enerally obtained. This often rises nearly to the

FIG. 1.-East-west

being found in places where the configuration of the shore prevented the accumulation of sand and gravel in ridges.
The highest wave-marked ridge represents the level of the lake at its greatest extent, and is known as the Herman beach. The recession of the lake was not gradual but was by stages of intermittent recession and pause. The next lower beach was the Norcross, which is represented by a ridge about 4 miles in length along the boundary between Eldred and Walburg townships, and another fragment about 2 miles in length in
Wheatland Township. Fragments of beach ridge Wheatland Township. Fragments of beach ridges representing the upper and lower Tintah stage of the lake occur along generally parallel lines enne delta quadrangle. North of Leonard village the Tintah quadrangle. North of Leonard village the Tintah
shore is marked by an escarpment eroded by the waves in the front of the delta. That the Tintah beaches represent two stages or levels of the lake is shown by the fact that the two nearly parallel lines rated by a vertical interval of about 20 feet.
The most conspicuous beach atter the H which delimits the lake area from the rolling drift topography to the west, is the Campbell, which extends in a general northward direction from the point where the Maple River debouches upon the level plain to beyond the limits of the quadrangle. It is in part a well-defined ridge, rising with a sharp slope on the east, or lakeward side, and falling a less amount on the west, or landward side, and in part an eroded cliff or escarpment
formed in the drift clay or till by the cutting formed in the drift clay or till by the cutting action of the waves of the lake. It is the principal boundary between the level lacustrine sediments and the reworked drift which forms the bench" land bordering the old lake bottom Gravel and sand pits have been opened in many
places along it. places along it.
on and Fargo.
the Glacial Sheyenne River, composed of the coarser sediments deposited by this stream, extends over he southern third of the Casselton quadrangle and he southwest corner of the Fargo quadrangle. pham estimates that the delta has an area of 800 quare miles and an average depth of 40 feet. The and Richland eastern front of the delta in Cas feet from the almost perfectly abruptly 60 to 70 lacustrine sediments of the old lake bottom. The eposit is composed of fine sand and fragments of hale with a scant admixture of clay, so that its plain is in general loose. The surface of the Dunes of oreally undulating, places. The plain is intersected by the valley of the Sheyenne River, by which the delta walley formed, and by the valley of the Maple River Both these streams have eroded deep gorges in the delta deposit. The valley of the Sheyenne is eposit as deep as the total thickness of the delt till been observed.
Age.-The steep front of the delta on its north cast side near the village of Leonard is marked by enches or terraces formed by the action of the aves after the waters of the lake had fallen below hese is the Campbell delta also marks the most prominent "bench, forming the line of demarcation between the black lacustrine sediments and the reworked drift of the beach deposits. The existence of this beach along the front of the delta and below its highest level, and the occurrence of the highest or Herman beach along the western or shore side of the delta plain, show that the delta was formed by the
Glacial Sheyenne River during the highest stages Lake Agassiz, or between the Herman stages Camplell stage, or betwen the Herman and the excavated its present deep valley in its own delta
distance from the streams. This material is the fine overflow deposit from the rivers and is slightly oarser than the lacustrine sediments. It is coarser were first deposited. A cross section of the alluvial eposits therefore would show a wedge in which th alluvium is coarsest at the base and graduall becomes finer away from the river as it merge into the lacustrine silts. The land slopes away fom the rivers and, while dry and suitable for arming near the stream, is not infrequently to ow and wet for this purpose at a little distance.
These alluvial soils are among the most proactive of the region. Their looseness render hem capable of more easily taking up the mois are of the summer rains and the drainage from he melting snows and spring rains. It also per hat the il is less impregnated with alkaline, than the lacustrine sediments generally
Subsoils.-The subsoils have the same general character as the surficial soil from which they have been derived by the action of the atmospheric gencies and the addition of organic matter. The absoils, however, show distinctly the mode of the deposition from water, being in definite strata or
layers. Many of these layers are of a fine-grained clay loam, approaching clay in character, but are not so heavy that they are not penetrated by water They are generally sufficiently porous to permi surface water to percolate slowly to lower depth and to allow underground water to rise by capillary action. This quality is favored by the atmospheric and organic agencies which produce soil, and is of reat importance in determining the value of the ands for agricultural purposes, as it renders natural and underdrainage possible and permits the low rising of the waters during dry seasons from the permanent water table below. These stratifie subsoils differ from the unstratified till in th egion outside the lake bottom, and also from the ill underlying the stratified deposits, chiefly in he assorted and stratified character of the ma terials.
The deeper till consists of pre-Glacial soil and the broken and pulverized rock shoved along th bottom and carried in the ice of the moving and. The oravel and sand often occur in locally stratified layers or beds. The clay in its deeper portions is a dark blue, becoming brown nearer the surface, where acted upon by the atmosphere At a depth where it is not penetrated by vegetable roots and burrowing animals, and is beyond the active changes of heat and frost, this bowlder clay is a firm and compact substance, offering a high

Water table.-The permanent water table is hig in this region, owing principally to two causesthe almost complete imperviousness of deeper sul ge, and to reason which the sufveess of flows toward the strean very slowly. The soil and subsoil are sufficiently porous to allow a very slow percolation, and th deeper clay acts as a vast dish holding the water.
Alkali in the soil.-The study of alkali in the soil is of great importance in this area, as in all the adjacent portions of North Dakota and Minnesota. In some localities the alkaline salts in the ontage of salts in the soil is found by The per entage of salts in the soil is found by analysis t acrease with theph. Now wells, but it o highly impregnated with salts as to be unfit for drinking or even for the use of stock or for stean boilers. Therefore water from shallow wells is not commonly used for any purpose.
As the surface water evaporates and deeper round water rises by capillary action alkalin salts are brought to the surface and carried to the treams by melting snow and spring rains wherever there is surface drainage. Through concentra ion from continued evaporation, low places toward which the surface drainage flows and from which he waters can not escape, become in time what are an spos. Gumbo spots" are ottex enarale, the subsoil being so compact that here is practically no underdrainage. The amount of alkali gradually increases and, as a result, these laces become unproductive.
Because of the removal of the soil, alkalies, and
her salts by surface waters, the waters of all he streams contain alkaline and other salts, an ecause there is alkali in all the soils and subsoils, also in the deeper till, all the well waters contain ome mineral impurities. While the waters may rinking, sutable for washing purposes and the deeper wells the amount of alkaline and othe alts does not make the water unsuitable for domes tic and general agricultural purposes.
As all the soils and subsoils are of drift origin, the ultimate origin of the alkaline and other min ral substances was in the stratified rocks of th pre-Glacial land surface. The salts are therefor hose that were carried in the waters of the ancien nally deposited as sediments.
While the alkali in the soils is sometimes a det ment because it makes the water unwholeson on the whole the alkaline and other mineral olt in the soil add areatly to the productiveness of and, as, when present in not too great amount they furnish neeessary plant food.

Water Supply.
 ters.

Streams.-The area considered in this folio traversed by the Red River and several tributaries, ach entrenched in a well-defined channel. The hargest streams are never dry, and the smaller ny during dry seasons, but, owing to the genera luggish during the summer, and the water, whic receives organic matter from the banks along their courses, is therefore not suitable for household pur-
poses without filtering and boiling. It is, however used for stock. The Red Rivèr supplies the citi of Fargo and Moorehead with water for sprinklin treets and lawns, fire protection, and laundry purposes, but not for culinary or drinking purposes, treams supply water to the comparatively fe Fargo and Moorehead probably fully nine f the population is dependent uny wells for water supply for all purposes, while not more than labor and inconvenion upply from streams. The Red River, with i principal tributaries, the Sheyenne, the Wild Ric and the Buffalo, and the secondary tributaries, the Maple, North and South branches of the Buffalo and Deer Horn and Whiskey creeks, are the only perennial streams, an
the intervening lands.
Springs.-In the level bottom of the Red River Valley springs are extremely rare. The water eeping under the heavy lacustrine clays along the borders of the valley is effectually held down by the impervious clay, and furnishes water for the Quaternary tubular artesian wells when the clay is penetrated in drilling. As the river valley become deeper by erosion, springs break forth from the banks bounding the valleys, the waters bein conveyed to the surface along the horizontal layer of porous gravel and sand. Such springs now exist in the deep valleys of the Red River, in the deep
valley of the Sheyenne before it debouches upo valley of the Sheyenne before it debouches upo
the level plain of the bottom of Lake Agassiz the level plain of the bottom of Lake Agassiz
beyond its own delta, and in the valley of the Buffalo.
Springs occur upon the generally level plain whydrostatic the higher ground which causes the water pable to ris to the surface. These two areas are in the eastern portion of the Fargo quadrangle and central por ion of the Casselton quadrangle. In the easter rea the water falls as rain or snow upon the sandy slope of the eastern side of the Red Rive Valley from 8 to 15 miles east of the Fargo quad rangle, and bursts out upon the nearly level surface of the lower land of the lake bottom. In the southestern area a springy tract is due to the water wich soak into the sandy soil of the Sheyen he level plain which borders the delta.
well water.
Sources of supply.-In this area the problem of n adequate water supply from wells is of th
farms, as well as in the smaller towns, all water ve only that caught upon the roofs of building or strictly in cisterns (an amount barely sufficien from wells. The supply for drinking and culinar purposes for the cities of Fargo and Moorehead is Iso derived from deep wells.
Over considerable areas flowing wells can be obtained from shallow depths, and an inexhaust he supply of fairly good water can be obtaine ith but little lift in pumping
The wells of this region may be grouped int our classes: (a) shallow or seepage wells, (b) ored or tubular pump wells, in which the water is raised by pressure, (c) artesian wells deriving drift, and (d) artesian wells deriving their supply fom the Cretaceous sandstone

There are comparatively few wells of this class and they are of little interest either from a geologic an economic standpoint. They are, however, of aterest as showing the height of the soil wate able, and the fluctuations in its level during sea nal changes. The water in such wells is often
rongly alkaline and unfit for domestic use. The waters of the shallow wells, however, differ greatly in quality, even in wells separated by very shor distances and differing but little in depth. This ircumstance shows the variability in the structure and character of the material deposited on the bot om of the ancient Lake Agassiz. Frequently, du vells having a gravelly bottom furnish good water When, however, the water is derived from a bed hich contains a mixture of clay, it is very likely o be strongly alkaline and may contain other npleasant or injurious impurities. The examina ion of waters from wells having clay bottoms indiates that the sediments deposited upon the botton of the Glacial Lake Agassiz contained alkaline an ther substances which render the water impure. Two exceptions to the general conditions regard-解 the depth wells are worthy of note. These are ne depth of the wells af Wilkin County Minn the Blanchard beach, delta plain in Pichland County N Dak along the course of the Maple ridge before described On these sandy tracts the surface welts 12 to 20 feet deep and furnish inexhaustible fupplies of very excellent water. The water is usuall obtained in sand or fine gravel, is commonly soft, and is as pure as any water in these quadrangles. This is due to the fact that the sandy deposits act both as reservoirs and as filters for the waters which all upon the surface as rain and snow. The clay which underlies the beach sand prevents the water from percolating to lower depths, and the surface lopes so little that the water is held in the sand eservoir of the beach. On the delta plain clayey layers in the deposit make the downward percola ion of the waters slow. The sands, both of the beach and of the delta, were effectually washed by he waters of the lake during the time of thei deposition, and thus were rinsed of the soluble alts such as impregnate the drift and lacustri deposits generally

pebper tubllar pump wells.

Tubular pump wells are obtained in nearly al parts of the Casselton and Fargo quadrangles, hown on the artesian water maps, and furnish nhabitants By a tubular pump well is mean ne made by boring with an auger the tubes lin ng such holes ranging in diameter from 2 to 30 nches. Frequently a hole is dug with a spade to depth of 12 to 30 feet and then an auger is use till the water-bearing bed is reached.
Tubular wells range in depth from 20 to 200 feet, and the water often rises to within 2 to feet of the surface, and sometimes stands even with it. A generalized section of a tubular well would show black soil from 2 to 8 feet from the surface followed by stratified dark silt layers to a depth of 30 to 70 feet, and below bowlder clay or till. The bottom of the drift is generally reached at depth not exceeding 200 feet, though the horizon between istinguished owing to the similarity between the bowlder clay and clay shale.

The water of tubular wells is derived from layer of sand in the lacustrine deposits, from gravel and sand at the horizon between the lacustrine silt and he till, from gravel and sand strata in the till, from he bottom of the drift, and not infrequently, coording to the drillers' reports, from the "soapstone'
clay.

From whatever horizon the water is derived the ame general conditions prevail-a compact and mpermeable layer or bed of clay overlies the water earing stratum, and no sign of water appears until he bottom of this clay is reached. The wate rushes up the tube often with considerable force and it is reported on good authority that, in wells in which a digging had first been made and a hand ith difficulty that the well digaer is able to ing dow before lifted out of well. The supply of water is practically inex hustible, it ofter being imposibl to lower water in the tube or digeing to any appreciable xtent even with the use of a windmill or steam pump. Sometimes the water can be lowered appre ciably by persistent pumping, the water resuming is original height in the well within a short tim after pumping ceases.
quaternary artesian welles.
Definition.-The difference between the so-called tubular" wells, in which the water rises nearly or quite to the surface but does not flow, and a Quaernary artesian well, in which the water flows ove the top of the tubing, is one of lifting pressure o head merely. The wells in this region show very gradation in head from those in which th water rises very little in the tube, but into which enters very readily, to those in which there is low sustained by good pressure.
Distribution.-Flowing wells are obtained at depths ranging from 40 to 200 feet in several areas
in Clay and Wilkin counties, Minn., and in the in Clay and Wilkin counties, Minn., and in the orthern part of Cass County, N. Dak., and at epth of from 80 to 175 reet in Davenport and ebr townships, Cass County. (See fig. 2.) how is subject to ve wor she rells bive ceased to flow entirely and have to pumped. Ti likely that in may cos the ation has been due to faulty construction in th vell tubing or to infiltration of sand and not to ny real loss of pressure due to the head.
A well in sec 28, Daven
depth of 80 feet, yielded a strong flow of nearl 1000 barrels when first drilled. In the northerin part of the same section a well 120 feet dee ields only a weak flow, and one 87 feet deep ha ceased to flow. A well in the southeast corner of sec. 20 and one 148 feet deep in sec. 34 yiel weak flows. In sec. 11, Leonard Township, a weak low was obtained from a depth of 104 feet, and in sec. 3 , in a well 175 feet deep, the flow was vigo ous at first but soon became very light and furnished barely enough water for household and arm demands.
Character of the water.-These wells vary not only in the depth at which water is obtained but lso in the quality of the water. In most cases the water is fairly good for general purposes, though
often hard. In none of these wells is there the ften hard. In none of these wells is there th haracteristic saltiness which is uniformly present the deeper artesian wells that obtal sup ian wells a bocur in few plese imed est of Coselton quadrangle in B Tow ship. One of these shallow flowing wells is only 37 feet in depth.
Source of the water:-The water in these shallow fowing wells, like that in a great number of tubular wells in these quadrangles, is obtained from bed of glacial gravel and sand. The great variation in ndicates that these wells within shos lie not only at different depths but also in comparatively na row zones or belts, rather than in broad, widel extended sheets. In the area of flowing wells in stern portion of the Fargo qu the wells vary in depth between 40 and 134 feet within a distance of less than 2 miles, and in one section in Spring Prairie Township, in the north east corner of the Fargo quadrangle, three flowing
wells have depths of 100,125 , and 145 feet. This
$\begin{aligned} & \text { indicates that a distinct reservoir supplies the } \\ & \text { water to each well. The marked variation in the to have any injurious effects upon ani- } \\ & \text { mals that drink it, and is agreeable to the taste }\end{aligned}$ water to each well. The marked variation in the
depths of the water beds in tubular wells where the water rises to within a few feet of the surface but does not flow is similarly explained. Four wells in sec. 34, Elmwood Township, are 90, 110, 117, and 201 feet in depth, and the water rises respectively to within $4,9,10$, and 16 feet of the ground. Similar diversities in depth characterize the whole area.
It has frequently been observed that in boring a well within a few rods, or even a few feet, of a well which had furnished an abundance of water but which had choked with sand or otherwise become disused, a thinner gravel or sand bed was encountat about the same depth as the water-bearing bed in the first well, but no water, or but a scanty supply, was obtained. Sometimes no trace of the bed in the second boring. It seems probable, therefore, in the second boring. It seems probable, therefore, over large areas, but thin out rapidly. It would over large areas, but thin out rapidy. It would and the strong head in most of the tubular wells, and the Quaternary artesian wells, that the beds extend for considerable distances in some direction
The higher lands outside the Red River Valley, where frequent sandy and gravelly tracts occur, and where the surface drift is often loose and porous, furnish a suitable gathering ground. Here the rain water penetrates the porous soil and is conducted through the gravel beds to the lower levels. The pre-Glacial valley occupied by Lake Agassiz formed a basin or trough in which the
after one has become used to it. The water is generally not so hard as that obtained from the more shallow Quaternary flowing wells or the tubular pump wells.
The wells vary
The wells vary considerably in depth within courrentances. This seems to be due to the hale. In of alternating layers of sandstone and in the first sand, and in other cases the second sand ayer is penetrated, not infrequently more than one vater-bearing bed is struck in the same boring.
In sec. 10, Walburg Township, two flowing wells
bout 40 rods apart are 265 and 440 feet in depth. Four miles north, in sec. 26, Gill Township, water was obtained first at 262 feet, but insufficient in mount, and another flow in the same boring was
truck at 405 feet. In sec. 32 , Amenia Township ruck at 405 feet. In sec. 32, Amenia Township,
two flowing wells one-fourth mile apart are 350 and 430 feet deep. Five miles southeast in sec 31 , Casselton Township two beds from which water flowed over the surface of the pround were struck t depths of 350 and 425 feet. In the south western part of Walburg Township within a radius of one mile occur 5 flowing wells with depths of 240,414 430,434 , and 460 feet.
Granite has been struck in four places near the eastern edge of the Casselton quadrangle, at depths of $411,460,470$, and 475 feet, and very little water or none at all, was obtained. The records of these borings, so far as obtainable, do not show the occurrence of the characteristic water-bearing sandstone
The pressure of the Cretaceous artesian well

FIt 2.-Map showwing underground water resources of Fargo and vicinity.
na and western boundarie
Scale: 1 inch 8 miles.
glacial materials were deposited, and thus porous increases toward the west. In the zone of the tracts of gravel and sand may have been so placed as to afford conduits or underground channels which convey the water from the higher lands outside the valley to the lower levels beneath the lake floor. The compact and impenetrable clay above and below the porous sandy or gravelly layers effectually prevents the dispersion of the waters, nd ther a reang leve ake floor passes through the compact clay into the aturated sands and layers immediately rises.
he granite and no considerable amount of water was obtained. This is explained by the narrow areal extent of the water-bearing layers, such borings having penetrated no beds of gravel or sand of such extent as to contain any large amount of water, or those penetrated did not extend to the surface so as to receive a supply from rainfall.
cretaceous artbsian wells.

The western two-thirds of the Casselton quadangle lies within the Cretaceous artesian basin. In this part of the quadrangle strong flows are obtained at depths ranging from 250 to more than 500 feet, as shown on the artesian water maps, The water is obtained in all cases from a fine grained, loose sand. It is generally believed that the formation from which the water is obtained is the Dakota.
The water in these wells is generally salt and $\begin{gathered}\text { The water in these wells is generally salt and } \\ \text { not suitable for irrigation purposes, though it is }\end{gathered} \left\lvert\, \begin{gathered}\text { The following notes on wells not already deseribed are } \\ \text { given for the sake of the aid they may give in loeating addi- }\end{gathered}\right.$ shallower wells of this class, those having depths
ranging from 200 to 300 feet, the pressure is not reanging from 200 to 300 feet, the pressure is not han 5 or 6 feet above the surface. As the depth t which the water is obtained becomes greater toward the west, the pressure increases. In about which the calculated height to which a zone in wight the calculated height to which the wate ressures, is 1000 ase 15 to 20 feet above the surface. The 1000 -foo 5 to 20 feet above the sully the 1000 -oo of 300 to 400 feet depth. The 1100 -foot contour raverses nearly midway the zone of wells of 400 to 500 feet depth and lies about 5 to 6 miles west of and nearly parallel with the 1000 -foot contour The height of the land in this zone averages about 1050 feet above sea level, and the water rises approximately 50 feet above the surface. From 3 to 5 miles farther west is the 1200 -foot ontour, which, in a general way, runs parallel with the 1100 - and $1000-$ foot contours and is near the western limit of the Casselton quadrangle. The western boundary of this district coincides roughly with the 1100 -foot contour, though its northern end is 40 to 50 feet higher. Thus, in the western portion of the Casselton quadrangle the calculated height to which the well pressure would raise wate is from 50 to nearly 100 feet above the surface.
tional wells. Since the distribution of the water horizons, does not seem possible to generalize this material, though the ecords have in each case a local value.
In see . 7 , T. 177 N, . 46
W.,., water was obtained at 216 feet, of rises to within 6 feet of the surface. An accarate 109
of this well could not be obtained, but it was reported that green clay was struck at 208 feet, and hard granite at 258 feet. No samples of rock were preserved from this well, bu
the hard rock at the bottom seemed, from the description, to the hard rock at the bottom seemed, from the description, to
be granite, and the green clay is thought to represent an
overlying mass of decomposed granite. The water, which is overlying mass of decomposed granite. The water, which i
of poor quality, is derived from a layer of coarse gravel and sand in the upper layers of rotten granite. The water penetrates through the porous drift on the highland lying east
of the Red River Valley, and is conveyed in the weathered of the Red River Valley, and is conveyed in the weathered
granite underneath the heavy drift clay to the lower plain o granite underneath the heavy drift clay to the lower plain of
the lake bottom. The hydrostatie pressure is sufficient to
 mile from then of
given below.

 Gray clay........ Seocnd bue clay Green clay (deci
 Green clay (decided Granite at 266 feet.
 | $8-60$ |
| :--- |
| $\begin{array}{l}80-128 \\ 188-160 \\ 160-215 \\ 21-268\end{array}$ |

No water was obtained in this well. The occurrence of
bowlders down to 128 feet indicates that the drift extends t to tis depth. The first 60 feet of clay represents the lacustrin to 215 feet can not be determined with certainty. The
"clay" between 215 and 266 feet is deseribed by the driller ca "deeideetly green,", and is probably yecounposed granite.
In sece. $34, \mathrm{~T} .140 \mathrm{~N} .$, R. 47 W ., a well not completed at date visit had been drileal to a depth of 140 feet. Water wa The log is as follows:

$$
\text { Log of weel in see. s1, प: } 140 \text { N., R. } 47 \text { W. }
$$

Clay.....................................
Gravel, varying coarse and fine, with
water all the way................. $\begin{gathered}\text { Feet. } \\ 0-100 \\ 100-140\end{gathered}$
The upper portion of the clay is a lacustrine deposit and
the lower portion is till. The gravel is probably drift, and not the Cretaceous sand.
The log of a well in see. 15, T. 138 N., R. 47 W., is shown in
fig 3 .

 FIG. 3.-Section of well in W $\frac{1}{2}$ see. 15 , T. T. 138 N., R. 47 W . The water in this well rises to within one foot of the sur-
face. The first 70 feet of clay is probably formed of lacustrine sediments. The gravel and clay from 70 to 120 feet are
drift deposits, and the bottom of the drift may be repre sented by the water bed. The similarity between the ritil and
the shale, when mixed and ground by the drill, is so rreat the shale, when mixed and ground by the drill, is so greai
that they can with difficulty be distinguished. The water in the well rises to within one foo of the surface, also 3 miles
年st and 4 miles north of this well are flowing wells of low
pressure and moderate flow pressure and moderate flow.

Fig. 4 -Section of well in N. $\frac{1}{\text { see. }} 34$, T. 138 N., R. 47 W. From the log shown in figy. 4 it is impossible to distinguish
he clay of the lacustrine silt from the underlying till, and his from the underlying shale. These altogether have a shale" may represent Cretaceous sand and rotten granite mixe by the drill.
In see. 31 T. 137
In sece. .31, T. .137. $\mathrm{N} . \mathrm{R}$. .47 W ., a well 150 feet in depth pene
rated only clay and quicksand, according to the log reported
Log of well in sec. 31, T. 137 N., R. 47 W.
Clay.........
Quicksand.
Feet.
$0-100$
$100-150$
Water was struck at a depth of 150 feet. The
Fig. 5 shows a log of a well in sec. 36 , T. 141 N., , 48 W .

解 The hard layer containing stones (125 -130 feet) is probably the bottom of the drift, and the underlying sand and
ravel may be considered the Cretaceous sediments overlying he granite.
The old city well at Fargo (T. 139 N., R. 48 W.) has a depth of 209 y feet, water being obtained from 50 feet of sand, which
overies a white chalky rock at the bottom. The chalky rock vas penetrated to a depth of 3_{3} feet only. The water from
his well is softer than that from many wells of lesser depth his well is softer than that from many wells of lesser depth
nd is not as hard as that from a bed which was struck in and is not as hard as that from a bed which was struck in in
his boring below hardpan at 96 feet. This sand is inter-
preted to be the same as that from which flowing wells are
btained farther west, in the district of the shallower Creta obtained farther west, in the district of the shallower Creta-
ceous artesian wells, the white chalky rock perhaps repreceous artesian welis, the white chalky rock perhaps repre
senting the Benton. The water rises nearly to to te surface
and its estimated yield is 1000 barrels per day. This well is one from which water is supplied to city consumers for
domesti domestic use, the water being pumped and hauled away in
wagons to be deli ivered about the city. As much as 500 bar-
rels rels per day are report
is the log of this well:

```
Log of old city well at Fargo, T. 139 N., R. 48 Feet.
[Material not reported]................
Hardpan with small bed yielding water
                                    \({ }^{\text {Feet. }} 0\)
at 9 feet.
[Material not reported].
```


The log of the new eity well at Fargo (T. 139 N, R. 48 W .)
is as follows:

Yellow clay	
Quicksand and alkali wa [Material not reported].	22-26
Waterial not reported].	

[Material not reported]................
26-147
Water and gravel at 147 feet.
Sand and stones.......................14i-216

The water is derived from gravel at a depth of 147 feet,
sand and stones oceurring below this to a depth of 216 feet. sand and stones oceurring below this to a depth of 216 feet.
No record has been obtained of the rock penetrated from 26
to 147 feet, but it may be presumed that it was lacostrine to 147 feet, but it may be presumed that it was lacastrine silt
and till, and that the horizon of the water supply is at the and till, and that the horizon of the water supply is at the
bottom of the drift or in the upper layers of the Cretaceous
sand. sand. One of the most remarkable feats of driling recorded in
is region is the Moorhhead. Minn. (T. 139 N., R. 48 W.), deep well, drilled in 1888 and shown in fig. 6. According. to
the log kept by Mr. Andrew Holes, a citizen af Moorhead the log kept by Mr. Andrew Holes, a citizen of Moorhead,
hard granite rock was struck at a depth of 475 feet, and,
despite the oninion despite the opinion of geologists that all the odds were
against the probability of any large water supply being against the probability of any large water supply being
obtained in the hard granite, the drilling was continued to
the great depth of 1426 feet into the hard granite, or to the great depth of 1426 feet into the hard granite, or to a
total depth of 1901 feet from the surface. total depth of 1901 feet from the surface.
The section derived from the notes of Mr. Andrew Holes
and from rock samples secured by him is shown in fig. 6 .

IG. 6.-Section of deep well at Moorhead, Minn., T. 139 N.,
R. 48 W. The bottom of the drift is marked by 25 feet of clay (195 to
220 feet) containing bowlders. Below this is 155 feet of clay nd sand, which represents the entire thickness at this point Sottom of thases series strata. Twenty thive five feet of sand at the of sedimentary origin
The light.green clay, 370 to 475 feet, probably represents the decomposed upper portion of the granite. Therefore, in this
axial portion of the Red River Valley the total depth of the

boring penetrated more than 1500 feet of granite. The water-bearing gravel struck in the drift, at 110 to 135		420 feet a white substance was struck that gave a milky appearance to the water. At 450 feet hard rock, thought to	
		be granite, was encountered. At the Detmer farm, 10 miles southwest of Addison, a well	
	${ }^{\text {ramemer }}$	was drilled to a depth of 491 feet. Two hundred feet of sand and gravel with thin layers of hardpan are reported to	
feet, also furnishing soft water, which would have been a recompense for the drilling thus far. The bed of salt water		have been penetrated. A small flow was obtained at 332 feet. Soft rock was passed through from 332 to 490 feet. One foot	In sec. 26, T. $139 \mathrm{~N} .$, dirty water at 262 feet.
sout 1700 feet has been noted in the log. sec. 29, T. 138 N., R. 48 W., five holes h		of hard rock, thought to be granite, was penetrated at 490 feet. Above the hard granite was a layer, 40 feet, of what	
d. and			
			orsmo
$\stackrel{\text { V. }}{\substack{\text { v. } \\ \text { rem }}}$		lost, and the well abandoned. On the Hocking farm, sec. 34, T. 141 N., R. 53 W., a well	
	 Wiater beerining bece at asab feet	\log is as follows:	
		隹	
		为	
		(1is white enat,	
	${ }^{\circ}$		
- ${ }^{\text {a }}$	Koa	be.	
			520 feet, from sand, wa Soft rock below 390 fee
			April, 1904.
${ }^{2}$ \% mas.			
			report was writen.

U.S.G

Well records of the casselton and fargo quadrangles.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price.t	No.*	Name of folio.	State.	Price. \dagger
			Gents.				Cents.
1	Livingston	Montana	25	60	La Plata	Colorado	25
2	Ringgold	Georgia-Tennessee	25	61	Monterey	Virginia-West Virginia	25
3	Placerville	California	25	62	Menominee Special	Michigan	25
$\ddagger 4$	Kingston	Tennessee	25	63	Mother Lode District.	California	50
5	Sacramento	California	25	64	Uvalde	Texas	25
$\ddagger 6$	Chattanooga	Tennessee	25	65	Tintic Special	Utah.	25
$\ddagger \downarrow$	Pikes Peak	Colorado	25	66	Colfax.	California	25
8	Sewanee	Tennessee	25	67	Danville	Illinois-Indiana	25
$\ddagger 9$	Anthracite-Grested Butte	Colorado	50	68	Walsenburg	Colorado	25
10	Harpers Ferry	Va.-Md.-W.Va	25	69	Huntington.	West Virginia-Ohio	25
11	Jackson.	California	25	70	Washington	D. C.-Va.-Md.	50
12	Estillville	Ky.-Va.-Tenn.	25	71	Spanish Peaks .	Colorado	25
13	Fredericksburg	Virginia-Maryland	25	72	Charleston	West Virginia	25
14	Staunton	Virginia-West Virginia	25	73	Coos Bay	Oregon	25
15	Lassen Peak	California	25	74	Coalgate	Indian Territory	25
16	Knoxville	Tennessee-North Carolina	25	75	Maynardville	Tennessee	25
17	Marysviile	California	25	76	Austin	Texas	25
18	Smartsville	California	25	77	Raleigh	West Virginia	25
19	Stevenson	Ala,-Ga.-Tenn.	25	78	Rome	Georgia-Alabama	25
20	Cleveland	Tennessee	25	79	Atoka	Indian Territory	25
21	Pikeville	Tennessee	25	80	Norfolk	Virginia-North Carolina	25
22	McMinnville	Tennessee	25	81	Chicago.	Illinois-Indiana	50
23	Nomini	Maryland-Virginia	25	82	Masontown-Uniontown	Pennsylvania.	25
24	Three Forks	Montana	50	83	New York City	New York-New Jersey	50
25	Loudon	Tennessee	25	84	Ditney	Indiana	25
26	Pocahontas	Virginia-West Virginia	25	85	Oelrichs	South Dakota-Nebraska	25
27	Morristown	Tennessee	25	86	Ellensburg	Washington.	25
28	Piedmont.	West Virginia-Maryland	25	87	Camp Clark	Nebraska	25
29	Nevada City Special.	California	50	88	Scotts Bluff	Nebraska	25
30	Yellowstone National Park	Wyoming	75	89	Port Orford	Oregon	25
31	Pyramid Peak	California	25	90	Cranberry	North Carolina-Tennessee	25
32	Franklin	West Virginia-Virginia	25	91	Hartville	Wyoming	25
33	Briceville.	Tennessee	25	92	Gaines	Pennsylvania-New York	25
34	Buckhannon	West Virginia	25	93	Elkland-Tioga	Pennsylvania.	25
35	Gadsden	Alabama	25	94	Brownsville-Connellsville	Pennsylvania.	25
36	Pueblo	Colorado	50	95	Columbia	Tennessee	25
37	Downieville	California	25	96	Olivet.	South Dakota	25
38	Butte Special	Montana	50	97	Parker	South Dakota	25
39	Truckee.	California	25	98	Tishomingo	Indian Territory	25
40	Wartburg	Tennessee	25	99	Mitchell	South Dakota	25
41	Sonora	California	25	100	Alexandria	South Dakota	25
42	Nueces	Texas	25	101	San Luis	California	25
43	Bidwell Bar	California	25	102	Indiana	Pennsylvania.	25
44	Tazeewell	Virginia-West Virginia	25	103	Nampa	Idaho-Oregon	25
45	Boise	Idaho	25	104	Silver City	Idaho	25
46	Richmond	Kentucky	25	105	Patoka	Indiana-Illinois	25
47	London	Kentucky	25	106	Mount Stuart	Washington	25
48	Tenmile District Special	Colorado	25	107	Newcastle	Wyoming-South-Dakota	25
49	Roseburg	Oregon	25	108	Edgemont	South Dakota-Nebraska	25
50	Holyoke	Massachusetts-Connecticut	50	109	Cottonwood Falls	Kansas	25
51	Big Trees	California	25	110	Latrobe	Pennsylvania	25
52	Absaroka	Wyoming	25	111	Globe	Arizona	25
53	Standingstone	Tennessee	25	112	Bisbee	Arizona	25
54	Tacoma.	Washington.	25	113	Huron.	South Dakota	25
55	Fort Benton	Montana	25	114	De Smet	South Dakota	25
56	Little Belt Mountains	Montana	25	115	Kittanning	Pennsylvania.	25
57	Telluride	Colorado	25	116	Asheville	North Carolina-Tennessee	25
58 59	Elmoro Bristol	Colorado	25 25	117	Casselton-Fargo .	North Dakota-Minnesota	25

* Order by number.

Thayment must be made by

- These folios are out of stock. money order or in cash.

Circulars showing the location of the area covered by any of the above folios,
application to the Director, United States Geological Survey, Washington, D. C.

