DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY
CHARLES D.WALCOTT, DIRECTOR

GEOLOGIC ATLAS
 OF NE
 UNIT'ED STAT'ES

HURON FOLIO
SOUTH DAKOTA

UND STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called retief, as plains, plateaus, valleys, hill and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts f the area mapped, to delineate the outline or form or all slopes, and to line the mol lemation evel, the altitudinal interval represented by the pre between lines being the each map. These lines are called contours, and the niform altitudinal space between each two conours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contour
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

.
The sketch represents a river valley between two hills. In thereground is the sea, with a bay which is partly closed by a hooked sand bar. On terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice is the gentle slope from its top toward the left. In the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along 200 feet, and so on, above mean sea ove. Along the contour at 250 feet lie all pointace that he contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet bove sea; accordingly the contour at boo feet surounds it. In this her are numbered, and those for 250 and 500 feet are ccentuated by being made heaver cons, then the accentuating and numbering of certain fon them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
2. Contours define the forms of slopes. Since moothly are continuous horizontal lines, they wind noothly about smooth surfaces, recede into all about prominences. These relations of contou curves and angles to forms of the landscape can be raced in the map and sketch.
3. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones.
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The mallest interval used on the athas sheets of the regions like the Mississippi delta and the Dismal wamp. In mapping s.al or i liste rlif contour intervals of 10,20, 25,50 , and 100 feet are used
Drainage.-Watercourses are indicated by bl drawn unbroken, but if the channel is the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground map surface, and one linear mile on the ground
would be represented by a linear inch on the map. would be represented by a linear inch on
This relation between distance in nature and corresponding distance on the map is called the scale The scale. In this case it is 1 mile to an inct." The scale may be expressa alo by a fraction, of which the numer the resth on the ma. and the denominar the correspong leng in nawe exp inches in mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,3,50}$,
a inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{20.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.

Atlas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of som contains one square degree -i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { as,juld }}$ contains one-sixteenth of a square degree. .he are of the corresponding quadrangls.
1000 , and 250 square miles.
a line United States, disregard political boundary hips. To each sund to the quadrangle it represents, is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographice map.- On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailway prelminary surveys in locating ditads, provide educational material for schools and homes and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far
known and in such detail as the scale permits.
kinds of rocks
Rocks are of many kinds. On the geologic ma hey are distinguished as igne Inco
Igneous rocks.-These are rocks which have Through roeks of all ages from time to time been forced upward is fissures or channels of various shapes and sizes, to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called the mass is termed a stock. When the conduits fir molten magmas traverse stratified rocks they ofte send off branches parallel to the bedding plane he rock masses filling such fissures are called sills or sheets when comparatively thiñ, and lacco liths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pac fialy ane fully aydine in ther but the out har tions. The pors prople panies volenic eruptions, cousing ejections of dut ash and lare fragments. These material, whe consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited.
The chief agent of transportation of rock débris water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and lind. The mot characteristic of the wind-borne or olim deposits is loess, a fine-orainel euth; the most chr deposis is loes, a nederist ith, host charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layen or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and ocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper pars, whor plans, constine soins and subsols, he solls being organic matter.
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter 'into new combinations, certain substances nay be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single quartzite limet into marble, and modify other rocks in various ways.
From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately paralle, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lepritrary line, and in some cases the distinction An almost entirely on the contained fossis. igneous formation is constituted of one or more bodies either containing the same kind of igneous metamorphic formation may consist of rock of uniform character or of seeveral rocks having common aracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

hges of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentany deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance; in such regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often contan is the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are foun. Other types passed on from period to period, and thus linked the systems together, fongg a chan of lie from the time of the oldest fors the Whe other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

Thery or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color color assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava streall, and (soranes (ridges of drift made the edges of placiers) Other forms are prode by edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corresp
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formaground upon which the areas of productive forma-
tions may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features.

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Triangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectic
landseape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner kinds of rock

Schists

Iassive and bedded igneoous rocks.

 sections toof rocks.
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sandof this bed form the surface. The uptred valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is omposed of schists which are trayersed by masses and their

inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, lik those of the first set, are conformable
The horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently youmer deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When younger rocks thus rest upon an eroded surface
of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds por 1 ares the the surface of any mineal, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents
summary of the facts relating to the characte of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE HURON QUADRANGLE.

GEOGRAPHY.

eneral relations

Eastern South Dakota lies on the Great Plains, in the broad, indefinite zone in which these plains merge into the prairies of the Mississippi Valley. It is comprised within the area of glaciation and most of its surface features show the characteristics
of a drift-covered region. The country is largely level, but presents long, rolling slopes rising 300 to 800 feet above the broad valleys. The principal eleements of relief are massive ridges, or mesas, which are due to pre-Glacial erosion and which are often crowned or skirted by lang ranges of low hills due to morainal accumulations left by the ice along lines merking pauses of glacial advance and retreat. Further diversity of topography has been produced by the excavation of the valleys, especially that of the Missouri, which has cut a trench several hundred feet deep, mostly with steeply sloping sides Between the moraines there are rolling plains of till and very level plains due to the filling of glacial lakes. The upper James River Valley prese
notable example of this lake-bed topography.

location.

The Huron quadrangle is hocated between longiudes 98° and $98^{\circ} 30^{\circ}$ west and latitudes 44° and $44^{\circ} 30^{\prime}$ north, embracing portions of Beadle, Sanborn, and Jerauld counties, and has an area of
about 857 square miles. It lies in the valley of James River, which has a general southward course aeross the eastern half of the quadrangle.

topography.

The region is in general flat, and its features are, with few exceptions, those of very subdued glacial topography, the basins being shallow and widely separated, and the swells very low. Rougher areas separated, and the swells very low. Rougher areas occur in the morainic regions, which are shown on
the areal geology map. At some points the swells rise into hills from 15 to 25 feet high, which are, more fully described under the heading "Moraines."
The upland surface varies in altitude from 1280 to 1485 feet above sea level, the average being western boundary, in Dale Township. The lowes altitude, about 1220 feet, is in Union Township where James River leaves the quadrangle.
Fully 120 square miles of the quadrangle have an altitude of less than 1300 feet above, the sea,
and as large an area is below 1320 feet. Along and as large an area is below 1320 feet. Along
the eastern margin of the quadrangle the elevation the eastern margin of the quadrangle the elevation to 1330 feet near Cavour, while on the western boundary, which crosses the range of knobby hills, it varies from 1330 to 1470 feet, the higher altitudes being toward the north. There are no imporont elevations within the quadrangle, the low range of morainic hills in the southern half near the westIn boundary being the most conspicuous. These rise to 1480 feet.

drainag

In general the drainage is simple. The streams belong entirely to the James River system. They disturbing effects of the Pleistocene ice sheet.
James River is the most important though n the oldest stream in the quadrangle. It follows a fairly direct course from north to south. It is a sluggish stream, at ordinary stages 50 to 100 fee wide and 3 to 10 feet deep, and has a fall of only 20 feet in crossing the quadrangle. Because of steep muddy banks and soft bottom it is rarely fordable. It is subject to high floods, particularly in the spring. The sides of its trough vary much in height at different points; sometimes they are 80 feet high, as in Jackson Township (108 N., R. 61 W.), but very often they are less than 50 . The alluvial bottom land is usually half a mile wid nd the stream lies 8 to 10 feet below it.
Besides James River, Firesteel, Sand, Marsh Creek is evidently the oldest stream in this quadran-
gle. It crosses the western boundary 11 miles from
its southern extremity, and runs almost directly south to a point 11 miles east of the southwest cor ner of the quadrangle. In this distance it has a fal of about 10 feet. Its flood plain averages about half mile in width. On its eastern side is an abrupt bank 30 to 40 feet in height, and on the west is a gentle slope verging into an ill-defined plain. It contains no running water during most of the year
Sand Creek is a remarkable stream in several espects. It is unusually crooked, and the size of is valley varies greatly. It enters the quadrangle Beadle miles north of the southern boundary of miles County and flows southeastward. For 5 or eet dos it fows southeastward in a valley 25 to 45 Ithough at some points it has a width of ane wide ile. The some points it has a width of one-hal a poorly defined valley to the middle of Warre Township. At the eastern side of this township it turns southeastward and begins to cut a narrow trench, which gradually deepens in the last 12 mile its course, above the point where it enters Jame River at Forestburg. A little south of Alpena is a miles in tributary which has a length of about 12 nies in a southeast direction. Another peculiarit the mal of deep, well-arke, hat-botom Between the west boundary and the middle of Warren Township there are four of these. They were formerly outlets through the third moraine Still another peculiarity is the amount of sand found along its lower course, and from this phenomenon the stream derives its name. "Long Lake" west of Forestburg is an extensive, well-defined flat which was formerly a continuation of Sand Creek. Marsh Creek flows into James River from the ast near the boundary between Beadle and SanPern counties. It runs in a deep, winding trench valley to James River. Its lower course is remark able for several fine springs. Cain Creek enter the quadrangle from the west near the northwest corner. It keeps a nearly, straight south-southeas alley 20 more than 13 miles, with a flat botom alf mile to 30 feet deep and in some places one and with wide. It then turns a little north of east, raight a narrower and deeper valley follows hue Course for 8 or 9 miles to James River wreek occupies a narrow, deep ravine in the ames from the of the quadrangle. It enters the or 6 miles Besides these quite well-marked wate ourses, there are several yery shallow, ill-define hannels draining the northern half of the quadrangle. One of these channels passes Broadland Huron. A neandering course enters the James uuare miles east of Huron northward to about 5 fare miles of Hursin Naine Crek. Anor hor Nains south asthard to the mouth of Cain Creek. hem exeep Perl Creek, whih hem prings in the lower 4 or 5 miles of its course, Sand Creek, which receives much seepage from and through which it flows in the lower part of its course. All the stream beds contain vigorou streams in the spring or in a rainy season, and some occasionally become impassable torrents.

GENERAL GEOLOGY
The surface of eastern South Dakota is in larg part covered with a mantle of glacial deposits, con sisting of gravel, sand, silt, and clay, of varyin the heading "Pleistocene deposits."
The formations underlying eastern South Dakota are seldom exposed east of Missouri River, thoug hey outcrop in some of the hills where the drift hin and in the banks of a few of the streams. Th however, furnished much information as to th nderground structure. There are extensive sheet f clays and sandstones of Cretaceous age lying on an irregular floor of granite and quartzite of Archean
nd Algonkian age. Under most of the region helow of bed rock" is over a thousand feet face to the east. There is also an underground quartzite ridge of considerable prominence that extends southwestward from outcrops in southwest ern Minnesota to the vicinity of Mitchell, S. Dak The lowest sedimentary formation above th quartzite is a succession of sandstones and shale of wide extent, termed the Dakota formation, whic frnishes large volumes of water for thousands of wells. It reaches a thickness of 300 feet or more in portions of the region, but thins out and does not continue over the underground ridge above eferred to. It is overlain by several hundred feet of Benton shales, with thin sandstone and limestone layers, and a widely extended sheet of Niobrara formation, consisting largely of chalkstone to the south and merging into calcareous clays to the north. Where these formations. appear at the urface they rise in an anticlinal arch of considerble prominence along the underground ridge of quartzite, but they dip away to the north and wes and lie several hundred feet deep in the north entral portion of the State. In the Missouri Val he surface in succession, the Dathen and real nally outcropping in the isin. S. Cits, naly and southward. The Pi thick mantle into eastern South Dakota, lying onder the drift in the greater portion of the refin, xcept in the vicinity of the higher portions of the anticlinal uplift above referred to It was m doubt once continuous over the entire area, but was extensively removed by erosion prior to th Glacial epoch. Doubtless the Fox Hills and Laramie formations once extended east of Missour River, but they also have undergone widespread rosion and few traces of them now remain in the extreme northern portion of the State. Tertiary deposits appear to have been laid down over part of the region, as is shown by small patches still remaining in the Bijou Hills and other higher ridges.
The Huron quadrangle is covered with glacia arift, with the exception of the alluvial flats along the streams. The underlying stratified rocks are not exposed, but data concerning them have bee obtained from numerous borings made in sinking rtesian wells. These rocks have a nearly horiontal attitude and include representatives of th Cretaceous system and probably the Algonkian Because of the relation of these underlying rocks to the water supply of the area and the bearing
hey have on its geologic history they will be briefly considered here.
archean and algonkian rocks.
The basement rocks within this quadrangle eached only in borings, probably consist mainly light-colored granite of Ar age, win po of red quartzite. The quartzite the oldest sedimentary rock known in this region, is called the Sioux quartzite, from its type locality along Pi Sioux River, South Dakota. It is of Algonkia age and consists for the most part of intensely com pact and durable red or purplish quartzite. It is extensively exposed a few miles south of the quad rangle, both on Wolf Creek and on James River and probably extends under the Cretaceous deposits into this quadrangle, but has not positively been dentified in the deep borings. The basement rock have been struck in wells at Wolsey and Huron, and while they are known in only a few borings, they doubtless underlie the whole quadrangle Observations in adjacent territory indicate that hese rocks probably occur at an altitude of 400 to 475 feet above sea level along the southern margin of the quadrangle, or at a depth of 800 to 1000 feet below the surfage. From this point their upper surface dips very gently to the north into a an urface rises gently. The configuration of this sur surface rises gently. The configuration of
face is shown on the artesian water map.

The only places where crystalline rocks are reported to have been struck in boring are Wolsey and Huron. At Huron crystalline rock was eported at 1090 feet in city well No. 3 and at 1080 feet in a well in the northeast part of the talline The samples preserved are coarse white cry te (carbonate of iron). In well No. 4 clear evidence of granite was found at a depth of 1138 feet At Wolsey a "very hard rock" was struck at depth of 928 feet, apparently on the summit of ridge of granite which has been traced farther northeast. If this interpretation is correct this rock marks the limit below which it is useless to drill in search of water, but without examining pecimens of the material it is impossible to say that the "hard rock" is not merely a hard cap rock to a lower stratum of water-bearing sand. The granite found in the Budlong and Motley wells northeast of Hitchcock and only a short disance outside this quadrangle, as well as in some ells 5 or 6 miles north of Farmer, in Hanson County, is a fine-grained, light-gray rock abound ng in transparent feldspar
drate is usually easily recognized when encount , inguish qua
The quartzite generally is intensely hard, but smetimes it is a loose or lightly cemented sand tone, as in borings at Mitchell and at Elmspring It frequently has a delicate pink or purplish tint although it is sometimes a light gray blotehe with darker gray. It may be distinguished from pyrite, which is of about the same hardness, by the act that layers of the pyrite are rarely more than few inches in thickness. Its great thickness also erves to distinguish it from some of the hard lay 4 or 5 feet thich. The Dakota sandstones, more over, are cemented usually by carbonate of lime which effervesces with acids, or by iron oxide o arbonate, which is of a darker or rusty color, while the quartzite is uniformly of a light shade. How ever, in some cases a compound microscope is nece ary to detect the difference. When so examine he quartzite is recognized by the presence of lusters of sand grains cemented so firmly together by silica that the fractures usually divide the original grain as easily as the cement between them.
The quartzite sometimes occurs in thin beds, and ometimes contains layers of pipestone or red slate few feet in thickness. At such times the water from the drill is blood red.

paleozoic rocks.

This quadrangle and the surrounding area are remarkable for the entire absence of rocks of Paleooic age. This absence is indicated not only by tions made in the adjoining regions, for the Paleooic form that ang ore flank of the Pocky Mountains do not apear ny point around the outcropping All appear and Ary point around the outcropping Algonkian and Minnesota. The nearest Paleozoic rocks known have been found in deep drill holes at Ponca, Nebr., and Sioux City, Iowa. Doubtless, therefore, this quadrangle and the surrounding region were dry land throughout the long ages during which the coal fields of eastern United States and the great limestone beds in the central States were forming. This is further attested by the uneven surface of the quartzite, which, so far as revealed, is deeply trenched, indicating long exposure above sea level.

cretaceous system

Of the subaqueous rocks above the Sioux quartz, apparently only the upper Cretaceous is repreated in the Huron quadrangle, but it is possible Lakotare are also present the equivalents of the Black Hills region, which are of shales of the age. The Jurassic is almost certainly absent, for its area of deposition was far to the west. The

Dakota, Benton, Niobrara, and Pierre have all |the sources of artesian water further light will be been recognized in drilling.
dakota formation.
Tho Dakota formation is the principal wateryielding horizon of the region and supplies the and South Dakota. In this quadrangle it nowhere comes to the surface, though it has been encountered in a number of the deeper wells.
The formation as exhibited in
The formation as exhibited in the rim of the and massive below, but thinner bedded above, and massive below, but thinner bedded above,
having an average thickness of 100 feet. It varies from fine- to coarse-grained and usually is only moderately compact. In eastern South Dakota the formation lies on the quartzite, but in the vicinity of Mitchell it abuts against the higher portions of the quartzite ridge, on which the Ben on shales and sandstones overlap. The Dakota terminates at this overlap in an old shore line which has considerable irregularity in outline and altitude, the latter due to local variations in amount of uplift. From this old shore line along the quartzite ridge the Dakota sandstone slopes in all directions. It is believed that this shore line is nearly intact, for probably there was but little
the sources of artesian water further light will be given on the number, thickness, an
of the sand strata in this formation. In stud sing the section it should
In studying the sections it should be remembered section is based, are indefinite in, upon which the The drill commonly used is a hydraulic machine, in which a jet of water is used to bring up the borings; hence the exact character of any particular portion can not be very definitely learned, as ular portion can not be very definitely learned, as
the rock brought to the surface is usually pulverthe rock brought to the surface is usually pulver-
ized and is mixed with mud from several different strata. Moreover, unfortunately, the driller is usually not disposed to examine the deposit with much care, nor to measure carefully the exact position and thickness of many strata which would be of special interest to a geologist. The driller is interested chiefly in the water-bearing strata, and in only such of them as produce a flow sufficient for his purpose. When asked for a record of a particular well, he is apt to remember only the depths at which water was struck and at which the greatest resistance was encountered. It may, thereore, safely be concluded that the deeper sandstones re often thicker than is represented in the sections. The Dakota formation is considered by some

The second or upper member of the Coloradol said to have been taken from a depth of several group is the Niobrara chalkstone, named from its feet on the east side of James River $1 \frac{1}{2}$ miles north prominence near the mouth of Niobrara River. of Elmspring
It is usually of a drab color except where it has Nobrara formation. - The most characteristic more weathered. If lige chalkstone, but no considerably in composition, often carrying a large proportion of clay. Owing to its variable composition it is not always clearly distinguishable from the Benton shale below. The purer chalk seems to be limited to lenses of large extent, merging into clay. In some exposures chalk may be found at one point and a few rods away its place may be taken by gray clay.
Benton formation.-In this quadrangle the Benton includes a relatively larger amount of sandstone han is common to it elsewhere. It is not exposed at any point in this quadrangle, but the data
derived from wells indicate that it is composed of the following strata: Beginning at the top there is immediately below the chalkstone" a stratum of
plastic clay or shale. This seems to be extremel variable in thickness, ranging from 1 to 50 feet Beneath this clay is a layer of rusty sandstone which is exposed farther south and which varies from 10 to 100 feet in thickness. Below the sandstone is a thick layer of shale in which, near the
doubt considerable deposits of clay should be considered as included in it. As the formations both
below and above are clay, the areal distribution of the Niobrara can not be very sharply defined in this drift-covered region. It is especially difficult to recognize the different beds in wells, for there the chalk has not been exposed to atmospheric action, and has a leaden color, closely resembling the gray clays of the Benton. Well drillers do not always recognize chalkstone, so that there is considerable uncertainty in the records of borings, a fact which should be borne in mind in considering the well sections (figs. 2 to 6). The best means of distinction between the chalkstone and the shale is that when pulverized the chalkstone does not become plastic and sticky like the shale. The chalkstone behaves more like a sandstone, from which, however, it is readily distinguished by its softness and lack of grit. Features observed farther south in the James River Valley indicate that the chalkstone may have been formed in part contemporaneously may have been formed in part contemporaneously
with clay. Clay with a very little calcareous mat-

Fig. 1.-Sketch section across the Huron quadrangle along a line through Woonsocket and Huron, showing the artesian wells in the vicinity extending to the Dakota water-bearing sandstone

crosion before the deposition of the Benton. The luscan fossils which are occasionally found in it dip of the sandstone is more rapid near the quartz- are of a few distinctly fresh-water species. These ite ridge, and gradually diminishes away from this have been observed mainly near Sioux City, Iowa ridge until the rock lies nearly horizontal. In this quadrangle the Dakota formation is a sheet of sandstone mantling the "bed-rock" surface already discussed.

Associated with the sandstone are shale beds wich resemble those of the overlying formations, and, like them, contain calcareous concretions which may be mistaken for limestone strata. Sometimes, also, there occur concretions of pyrites large enough to hinder the drilling. The different layers of sandstone are often harder near the top, and this has given rise to the expression "cap rock." Frequently the drill has to penetrate several feet of hard rock before it reaches the water-bearing strata. The Dakota sandstone is variable in thickness, but, as few borings have gone to its bottom, precise figures are available only for some limited areas. If the second principal sandstone below the chalk be taken as the top of the Dakota, a deepest boring. It is possible is indicated by the ecpest boring. It is possible that 50 or even rystalline rock is struk in the potion the quadrangle. The Dakota is of uniform thie ness over the whole quadrangle exeept in the ness over the whest corner, where it seems to be thinner
The structure section (fig, 1) and well
figs. 2 to 6) exhibit the character and thickness of These features are also traceable in southeaster the formation in detail, and in the discussion of South Dakota.
aiddle, there seems to be a thin stratum of sand \mid ter has been found within a few feet horizontally sufficiently continuous to carry water, which flows of typical chalkstone. when tapped by wells. The whole formation has
a thickness of 450 to 500 feet, as nearly as can be judged from well records.
The sandstone contains sharks' teeth and traces of vegetation where it outcrops, and a stratum of fossiliferous limestone 580 feet below the surface in the vicinity of Woonsocket. The most definite knowledge comes from a well 2 miles north of that town, from which fragments of a fossiliferous limestone were frequently thrown out from time to time. Some of these were submitted for examination to Dr. T. W. Stanton, who reports that at least three different species were represented, one of which is a small Nucula with striated surface that may be the young of N. cancellata M . and H .;

nother is possibly a young Mactra; and the third, the most common form, is probably a Lucina. The specimens were too imperfect to permit more
definite determination. They were found 250 feet definite determination. They were found 250 feet
below the chalkstone and about 100 feet above the below the chalkstone and about 100 feet above the
main water flow. These fossils are distinctly main water flow. These fossils are distinetly
marine in character and indicate that this stratum marine in character and indicate that this stratum
is a part of the Benton. This fossiliferous horizon seems to have a considerable extent around Woonsocket. Other Benton fossils were found in the
Ashmore and Farwell wells, in the Alexandria Ashmore an
quadrangle.

quadrangle

From a black clay above the sandstone, north of Mow A large characteristic fragment of Prionotron
has been found within a few feet horizontally The chalk is much
in the southern half of the quadrangle recognized northern half, where most drillers fail to identify it

FIG. 5.-Section of E. Sehmidt well. See. 14, T. 108, R. 64. There it may be so clayeythat it is in distinguishable from the overlying Montana. The chalkstone is nearly horizontal and seems to be conformable with the Benton beneath. In the southern part of

Fig. 6.-Section of L. Feistner well. See. 2, T. 106, R. 63.
some cases it seems to have been removed in part by erosion.
denalkstone frequently contains fish teeth and scales, mostly of bony fishes, although sharks'
teeth are also found. Occasionally nearly perfect specimens of bony fishes have been found in the is the small oyster, about an inch in length, called Ostrea congesta. These shells are frequently clustered on fragments of larger bivalve shells, either of Pinna or Inoceramus, which are rarely found except in fragments, even where there are good exposures.
montana group.
The Montana group is elsewhere made up of two formations, the lower being the Pierre, so named bluffs at Fort Pierre, and the upper the Fox Hills, so named from its occurrence in the hills of that name north of Big Cheyenne River. Only the lower portion of the Pierre is present in this quadrangle.
Pierre shale.-As developed here the Pierre shale consists almost entirely of dark plastic clays, sometimes hardened into shale, with occasional calcareous concretions, and perhaps some thin layers of sand or sandstone. This formation probably underlies the whole quadrangle immediately above the chalkstone. It is comparatively thin, however, particularly along the southern boundary, where its not over 16 to 20 feet thick. As the lower formations dip toward the north, the Pierre imum thickness of 150 to 200 feet along the imum thickness ofl feet along the northern boustone it bell drillers do not repor water horizon it seems probable that there is a water horizon it seems probable that there is a
thin sandy stratum, or possibly a bed of porous thin sandy stratum, or possibly a bed of porous been obtained from this formation in this quad-
rangle, unless those from the wells near Woonsocket shall prove to be such.
Well sections showing the character and relations of the Cretaceous formations in different portions of the quadrangle are given in figs. 2 to 6
quaternary system.
The formations thus far described are sedimen tary, and with the possible exception of the Dakota are of marine origin. To these the Pleistocene deposits present a marked contrast, not only in their origin but in their mode of occurrence.
They are the products of glacial action, and overThey are the products of glacial action, and overlie all earlier formations without respect to altitude, forming a blanket over the whole quadrangle with the exception of a few square miles that are covered by alluvium or occupied by outcrops of the older rocks. The deposits include till or bowlder
clay, morainic material, and stratified or partially stratified clays, sands, and gravels formed along abandoned river channels and terraces. The bowlder clay forms a great sheet, spreading over rial occurs in a series of rough, knobby hills and ridges that cross the quadrangle from northwest to southeast and occupy its northeastern half. The channel and terrace deposits are found in valleys and over flat areas, mainly near the morainic ridges.

It is not certain that there are in this quadrangle any post-Cretaceous beds of pre-Glacial age. Near the southwest corner there are certain water-bearing beds below the till which may be distinctly older. From wells in that area have been obtained pieces of peat and numerous fresh-water shells which may come from a pre-Glacial marsh deposit that
may have been connected with the flood plain of the pre-Glacial James River.
Till or bowlder clay.-The till presents here the features common to the deposit found elsewhere, as in central Minnesota, Iowa, and Illinois. It is an unstratified mixture of clay, sand, and worn pebbles and bowlders, the latter sometimes attaining a diameter of several feet. In it are local developments of stratified sand, sometimes mere pockets, sometimes portions of channels of considerable length, and sometimes sheets that locally separate the bowlder clay into two or more members. The that found farther east much more clayey than that found farther east, perhaps 90 per cent being
clay. This is because of the long distance the ice moved over and deeply eroded the darl-cole moved over and deeply eroded the dark-colored clays of the Cretaceous. For the same reason the
erratics are perhaps less frequently striated and erratics
The
yellowish diere, as elsewhere, exhibits an upper lower blue portion. The upper clay is simply the
oxidized or weathered form of the lower, and the eparation between the two is not very clearly tions, but not always. The blue clay is apt to be confused by well drillers with the underlying Cretaceous clay of similar color, so that in their reports part of the Cretaceous clay may be included in the Pleistocene formation
No distinct traces have been found of a general subdivision of the till into different members, as in some other localities, and the whole is believed to
have been formed by the Wisconsin ice sheet. It should be noted, however, that even if there be division there is little likelihood that it would be reported by well borers, for the Pleistocene is not often the source of water supply, and hence the drillers are less critical in their observations of it than of the underlying rocks. Occasional fragments of wood have been reported from it, but in
every case they proved to be isolated pieces and every case they proved to be isolated pieces and ot parts of a "forest bed."
The surface of the till shows the characteristic irregularity common to it elsewhere. There are many small, irregularly placed hills or knolls and minor basins without outlet. These features are
fainter than usual, and the general fainter than usual, and the general surface is almost within the principal the quadrangle lies entirely within the principal moraines. The pre-Glacial surface had been acted upon by the ice for a long somewhat uniform in el more evenly than character, it was planed down consideable mon flling of the minor bain with silt, laid down by waters the minor basins ice soon after the deposition of the till and the in more recent times, with wash, resulting from rain and the melting of snow. In some localities considerable silt has been deposited by the wind, but this influence has not modified the till of this region much, so that its surface is now nearly as it was left by the ice sheet. Around Huron there seems to have been, during the recession of the ice, a shallow lake which covered perhaps 100 square miles. A lake of almost equal extent which was formed a little earlier occupied the area around Woonsocket. In both regions there are now grea hat plains marking the sites of these lakes.
The thickness of the till in this quadrangle i estimated to average about 70 feet. In a few cases as at the extreme southwest corner and in the bottoms of the principal channels, it is less, sometimes falling below 20 feet. In the vicinity of moraines, which are discussed later, it may reach more than 100 feet. In the low land around and east of Woonsocket it is from 80 to 90 feet. In the similar flat land around Huron it is about 50 feet.
The till of the entire quadrangle lies within what is known as the second or Gary moraine, which is
described below. Both the moraine and the were formed by the Wisconsin ice sheet.
were formed by the Wisconsin ice sheet.
Moraines.-The moraines of this quadrangle are shown upon the areal geology map. With a few exceptions they are not a conspicuous feature Generally they consist of a low, broad swell show
ing the usual surface of the till except that occa ing the usual surface of the till except that occa-
sional scattered peaks rise abruptly 15 to 25 feet above the adjoining surface. The swell may have an altitude of 20 to 30 feet above the till within and without, into which it insensibly merges.
The moraines are composed of material sis
to that of the till, but the ridges are more stony They contain numerous bowlders and considerable masses of gravel.
The moraines of this quadrangle include differ ent members of two principal moraines, which are commonly known as the Gary and Antelope

The Gary or second moraine is named from Gary Dak., where it is a prominent feature. It is conveniently divided in this quadrangle into three or four members. The first or oldest enters the quadrangle from the west near the north line of Jerauld County, where it rises more than 100 feet above the valley of Firesteel Creek, which closely follows Township (108 N It is finely developed in Dale Township (108 N., R. 64 W.). Farther south it
gradually declines in altitude until near the southgradually decines in altitude until near the south1 or 2 miles in width, with its a than 40 cet member diverres from the first in. The second corner of Dale Townhip widens still more than the first, and becomes a little rougher than the region within or eastward.
A third member, not very closely connected with those already described, enters from the west,
on the divide between the two branches of Sand Creek, though it is not well developed. Rough uance southeast across Sand Creek to its continuous ridge known locally as Pony Hills. These hills begin with scattered peaks in the eastern part of Franklin Township, become a single ridge in sec. 13 of that township, and extend southeastward into sec. 9 of Twin Lake Township (T. 106 N ., R. 62 W.). In its highest portions, 3 miles west of Woonsocket, this moraine rises 50 or 60 feet and in some places over 80 feet, above the level ground east of it. Farther southeast and east it is broken into knolls and knoll ridges. It seems to have formed the barrier on the south which held the waters of the temporary lake between Woonocket and Artesian.
The Antelope or third moraine is represented ainly by an outer member consisting of a low swell surmounted by occasional peaks or low ridge and by a faintly developed series of irregular knobs lying a few miles to the north, within the second The
The outer member appears about a mile west of Wolsey in the shape of a conspicuous north-south Wige 30 to 40 feet in height. It lies mostly beyond the western boundary of the quadrangle, ship (T, 110 N P 64 W) Fron ship (T. 110 N., R. 64 W.). From this point it orth side of the north branch close along the where it is about 2 miles in width. It passes north of Alpena, taking a direction. It passe east, so that the southern line of Beadle County coincides with its axis nearly to James River Cain Creek follows its northern margin, while the north branch of Sand Creek marks its outer margin above Alpena.
East of James River the principal part of the moraine lies south of Marsh Creek, although the north as Pearl Creek
The in
Cattered areas lying north of Cain and Pearl creeks and approximately parallel with the first member. In the western part of Broadland Township (T. 112 N., R. 63 W.) and in Richland Township (T. 110 N., R. 60 W .) south of Cavour these peaks become elevated into ridges.
Ancient channels and terraces.-Throughout the quadrangle are numerous abandoned channels and terraces, the locations of which are shown on the areal geology map. Usually, though not always, these are clearly separable from the present drainage lines, and are evidently much older. In some of the shallower chamnels the oldest deposits can origin, clearly distinguished from those of recen included under this head The ancient baven correspond generally with the present waterways, which are the puny successors of the old streams, although in some cases the direction of drainage has been reversed. This is particularly the case in the western portion of the quadrangle, between Virgil and Woonsocket, where in a places the same channel was occupied more than once, and not always by streams flowing in the same direction.
These channels vary from shallow, flat-bottomed depressions, through which streams passed for
comparatively short time, to a trough 20 to 40 fee deep that contains an abundance of coarse material ${ }_{2}$ showing that it was long occupied by a vigorous stream. The coarser deposits are usually largely covered with finer material. Where the channel deposit has been cut through by the deeper trenching of a later stream, similar differences in the cases the of channel deposit is at a height of 50 to 60 feet above the present stream. In many cases, however, the old deposits have been slightly trenched, as the later drainage has passed off in Thether direction.
The older channels connect with the terraces of the present streams, particularly along James Huron the terraces are abo present. East o the stream. They are not to 60 feet above the stream. They are not always distinctly
marked, but may merge into one another. The usual sign of such a terrace is the sharp, stony edge capping the river bluff and the senerally flat edge capping the river bluff and the generally flat
surface extending for many rods back from the stream. This stony edge is sometimes transformed by subsequent erosion into a conspicuous stony ridge, higher than the portion lying farther back.

A notable case of this sort may be seen east of
Forestburg.
channels served to carry off the The from the ice sheet at its different stages evidence of the former presence of glaciers in the region. The size and course of some of the channels and the amount of coarse material found in hem can be explained in no other way.
Ancient lakes.-In this quadrangle are areas which may conveniently be called ancient lakes. This does not mean necessarily that they were ever wholly occupied at any one time by sheets of war. It is possible that as the ice receded kes the north the southern portion of these lakes in each case was first occupied by water the streams draining the adjacent ice sheets, an hat successive areas were filled in a similar way until the region became a flat plain covered with sand or clay, with points of the underlying till rising above it like islands and with shallow channels winding about irregularly upon it. In some cases these plains seem to have be
period by shallow bodies of water.
period by shallow bodies of water.
One of these lakes has been discussed in the Mitchell and Alexandria folios. It extends int he Huron quadrangle and includes nearly th portions of Lesmang Woonsocket townhips, portions of Logan and Union townships, and the western portion of Onda Lace the south also the southern half of Warren Township and few square miles in of Warren Cownship and a surface is poorly drained and ever his area he surface is poorly drained and covered largely by
sand, marking the position of deltas or low alluvial fans. In places this sand now forms dunes. In other portions the surface is covered by gumbo, i. e., nearly pure, dark-colored clay. The gumbo
ind seems to overlie the sand where they come together, and underneath the sand is found the till, which in this area extends to a depth of 60 or 80 and sometimes 100 feet. An attempt has been made on the map to outline the sandy areas. As before stated, the higher points of the till frequently rise bove the surface of the sand and gumbo. North east of this area and outside of the third moraine in the northeastern part of Oneida Township, the surface is rougher and is occupied by numerou small lake basins. This roughness is probably caused by the burying of numerous small ice blocks at the time of the recession of the ice sheet. An extensive area around Huron presents similar features. It has, however, a much more varied surface than that near Woonsocket, but on the whole is very level and evidently had very slug-
gish drainage when first vacated by the ice. In Clyde Township (T 110 by the ice. In Clyde Township (T. 110 N., R. 62 W.) and portions of ajacent tow ins is a level area with more fhan of 6 foth in which drain ore than 5 or 6 feet in depth, which drain as a whole eastward. In this region, especially in the 60 feet thick, but about 30 feet below the till io 0 feet thick, but about 30 feet below the surface is water-bearing. This seems to be the bottom of a lacustrine basin, which subsequently probably while the ice was near at hand, was filled with pebbly clay.
Scarcely separated from this basin on the northwest is a level area which covers most of Theres Township (T. 111 N., R. 67 W.), Valley Township (T. 111 N., R. 61 W.), and Custer Township (T 110 N., R. 61 W.$)$, and portions of the adjacent townships. In this region the till has a thicknes of 50 to 60 feet. Here, at a depth of about 30 feet, is a similar sheet of sand, which is especially wel developed in Custer Township. Farther north it does not seem to exist, though there is very fre quently a deposit of sand lying at the surface especially in the channel-shaped depressions which In Valley present.
In Valley Township and the northern part of
Custer Township is a Custer Township is a peculiar network of channels leading northward. These are connected with Hallow basins in a way that suggests that they ere the lines of drainage from ice blocks tha were detached from the ice sheet as it receded Moreover, certain peculiar kuolls and hillock
which at first appear to be of morainic origin ar hich at first appear to be of morainic origin ar they watise they were accumulations of dubris, somewhat like
alluvial cones, around the margins of these ice blocks. They have a very irregular arrangement and can not be correlated with any of the moraine that have been recognized.

It should be remembered that James River followed its present course from the time when the ice withdrew from this region, and that at first it flowed near the level of the general surface, into which it has cut its present trough. It was in this earlier stage that the terraces were formed along its banks and the lakes outlined above were filled. For some time after the ice had left the borders of this area the James and some of its longer tributaries were flooded and heavily laden with sediment. The erosion of its present trough began at he time when the melting of the ice sheet co tributed largely to the vigor of the streams.

recent defosits.

Since the retreat of the glaciers there has been very little deposition in this quadrangle. The present streams and the winds are, however, making some changes in the surface deposits, The gravels of the ancient channels and lake is in part dust deposited from the air.
Alluvium.-All of the streams that
Alluvium.-All of the streams that traverse the
region are subject to sudden floods, cansed not region are subject to sudden floods, caused not
only by occasional excessive rainfall but by the only by occasional excessive rainfall but by the
apid melting of abundant snows. The streams at rapid melting of abundant snows. The streams at is deposited as the water recedes, forming alluvial plains. The alluvial plain of James River is about half a mile wide. Some portions of it are dry and are well adapted to cultivation; other parts are marshy, and all are more or less subject to occasional floods. The alluvial deposits are from 10 o 20 feet thick, the upper 3 to 5 feet being usually fine black loam, and the lower portion sand.

GEOLOGIC HISTORY

The earliest phases of the history of the region of which this quadrangle is a part may be stated very briefly. At some stage preceding the formation of the Sioux quartzite a land surface composed of granite and slate occupied central Minnesota, and o this land mass probably belonged the granite encountered in the deeper wells of this quadrangle. From that land area material was derived, both by the action of streams and by wave erosion along the occupied by the Sioux quartzite. The deposits lly hy comprised thin cord of the hicke town southestward from vicinity Pipestone, Minn, and Sioux Folls, S. Dak After this period of deposition there seems to have been an epoch of volcanic and igneous outflow, as is shown by the occurrence of a dike of basic eruptive rock in the quarries at Sioux Falls and of olivinediabase in borings at Yankton and Dover, S. Dak and of quartz-porphyry near Hull, Iowa.
Through silicification the sandstone was changed to an intensely hard and vitreous quartzite, while some local clay beds were transformed to pipestone and more siliceous red slate, as at Palisade. Microscopic examination shows that this silicification was effected by the crystallization of quartz around the separate grains of sand untilthe intervening paces have been entirely filled. The material of the quartzite was laid down in the sea, and at first may have included scores, or even hundreds, of feet of material above that which is now found. In time the region was lifted above the sea, and during some part or all of the long Paleozoic age it was a peninsula. It may at times have been bey have been have received other deposits, but hey have been eroded. That it was not far from the ocean, at least during a portion of the time, is attested by the occurrence of Carboniferous rocks nd Trina, Nobr., a siol in Bla, Hills it nd Triassic rocks are found in the Black Hills, repeatedly crossed the State some distance to the west.
With the beginning of the Cretaceous period the ea began to advance over the land; in other words, his quartzite area began to subside relatively. As carried away finer material and left well-washed ands spread as more or less regular sheets extend ing from the eastern shore line across the shallow sea to the Rocky Mountains. From time to time the activity of the erosion diminished and finer material, or mud, was deposited, or both the sands nd the mud may have been laid down contemporaneously in different areas. It is not unlikely also that strong tidal currents, sweeping up and
down the shallow sea, may have been important in distributing so uniformly the sands and clays. Where the currents were vigorous, sands mainly vould be laid down; where they were absent or ably these tidal currents would shift from time to ime by the variable warping of the sea bottom and the shore. At any rate, several continuous sheets of sand lie over this region and are more or less perfectly separated by intervening sheets of clay The process resulted in the Dakota formation. The fossils found in the Dakota formation are trees, like the she lis lave of dens trees, like the sassafras, the willow, the tulip tree, and the eucalyptus.
Dine Citido and still furthe conditions p willed and the region wa ably as far east as central Minnesota was probDuring most of this time only clay was deposited in this quadrangle but calcareous deposits accumu lated in the form of chalk during the Niobrara poch, when the ocean currents brought less mud into the region.
nto the region.
During these
Ding reptilese sopochs the sea abounded in swimhave been found at several points; also sharks and great variety of other fish, although the remains of these are not abundant at most points.
After the Cretaceous period the sea seems to have receded rapidly toward the northwest, and all eastrn Dakota again became dry land.
During the early Tertiary, according to the prevalent view, large rivers deposited widespread sediments in the region to the west and southwest, but this area received little material and probably abounded in vegetation and animal life which
exhibited features not markedly different from exhibited features not markedly different from
those of the present age. Probably the climate those of the present age. Probably the climate
was then much warmer and moister. During the later part of the Tertiary there was doubtless large stream somewhere near the present position of James River, flowing southward. Into this White River probably came through the basin of White Lake and the valley of Firesteel Creek. These vers doubtless had many small tributaries, which surface. Thint the composing the part of Davidson County may be souded a part -ant of the old divide south of White River This older James River seems to have itself a large valley, which was much wider than the valley of Missouri River. Apparently it did hot cut down to the depth of the present Jame River.
During the Pleistocene epoch the great ice sheet moved down James River Valley, entering it probably from the north and northeast. It advanced slowly, preceded by waters from the melting ice, which gradually spread a mantle of sand and gravel ver nearly the whole pre-Glacial surface. This
ice sheet flowed according to the slope of the preGlacial surface, moving more rapidly on the lower and more open portions of the valley, and becoming almost stranded on the higher elevations. It certainly extended as far as the outer, or Altamont, moraine. Some geologists are confident that it extended down the Missouri Valley and became Minnesota and Des Moines valleys, both the extending into Kansas and central Missouri. How ver that may be, during the formation of the Alta mont moraine the ice filled the whole James River Valley and extended westward at different points to the present channel of Missouri River, near Andes Lake, Bonhomme, and Gayville, so that the ridge or system of stony hills around the edge of the ice sheet of that epoch, except where it was removed or rearranged by escaping waters. Morainal deposits of, this stage are not found in this quadrangle.
In course of time the strength of the ice curren until perhaps a portion of this quadrangle was uncovered. It is barely possible that the marsh deposits near the southwest corner of the quadrangle, before referred to as possibly of pre-Glacial age, are to be referred to that time, but as no till is nown to occur under them, and so far as known date the coming of the ice.
After this period of retreat the ice sheet read vanced and formed the first member of the Gary moraine. At that time the southwest corner of
his area was uncovered, and the drainage from
the west side of the ice passed through the valley areck. A little later the second member of this moraine was formed a short distance the third member the west inee receded to form drained down the channel west of the Pony Hills. While the Antelope moraine of the Pony Hills. he north fork of Sand Creek, fed by several streams from the ice sheet, washed much débris into the basin east of Woonsocket. At the same time Redstone Creek sustained a similar relation on the east side of the James. Eventually the ice in place have become staguant and to have melted in place. Apparently it lay in extensive blocks in The bas River Hurn. 1 in true even alt perhaps with icy banks a portion of the bain north of Huron seems to have been more open and to have received much sand and silt from the melt ing ice sheet farther north, not only through the James, but by a channel which led past the present location of Broadland.

After the retreat of

their present courses, and the streams occupied their present courses, and though at first they were affected the surface of the country little except to deepen the channels which were occupied by permanent water. It is believed that James River had cut nearly to its present depth before the ice had disappeared. The main change since the disappearance of the ice has been the formation of soil by the accumulation of alluvium along the principal streams, by the deepening of fine material over the general surface through the burrowing of animals, by the wash from the hillsides and by the settling of dust from the atmosphere.

ECONOMIC GEOLOGY.
This quadrangle contains no deposits of valuable mineral or of coal. The few samples which are sometimes submitted as "mineral" are invariably iron pyrites, which has no value unless found in sometimes found in the drift, ine of coal are till, but they have been brought by the ice or by treams from the northern part of the James Rive Valley, in which are found beds of lignite-the so-called coal of North Dakota.

bullding stone.

The most abundant stone in the quadrangle i that brought by the glaciers of the Pleistocene. It is in the form of bowlders, which are scattered over most of the country, but are much more abundant in the morainic areas. These bowlders consist mainly of granite, other crystalline rocks, and
limestone. They are not easily prepared for nary building purposes, because of their hardness and toughness, and thus far they have been used principally for foundations. Red quartzite, which quadrangle

CLay.

Although the till is composed largely of clay, it so mixed with gravel, and especially with calareous matter, that it has nowhere been successfully used for economic purposes, not even in the manufacture of brick. Deposits of clay of economic value are not certainly known to exist in this area. Diligent search might disclose beds of silt near James River, or of gumbo in the lake basins, in ufficient quantity to be of some local value in making brick, but there is apt to be so much lime ably bricks will not be manufactured extensively.

sand and grayel

Plastering sand and gravel suitable for ordinary purposes are found at many points, especially along he ancolls hans.i.
water resources.
Under this head is included an account of the most important natural resources of this quadrangle, water, which may be divided into surface included lakes, springs, and streams, and under underground water the sources which furnish shallow wells, artesian wells, and tubular wells.

Surface Waters
Lakes.-Lakes receive their waters directly from
the drainage basins, their depth, and the amount of rainfall. The rainfall of this region varies greatly in different seasons, but averages about 20 inches a year. After a succession of wet years the lake beds over the whole district are full of water, and are usually filled in spring, if there has been much snow during the winter. In the latter part of summer most of the ponds become dry. Within the last twenty-five years some of these lakes have remained throughout a summer with 10 to 15 feet of water, while a few years later they would be dry enough for tillage. One of the largest and most notable is Lake Cavour, about 3 miles northwest of the station of that name. It is channel-like, with abrupt sides 15 to 20 feet in height, and usually has a considerable surrace of open wate.
an me only stream that the year, although 7 or 8 miles water throughout tion of Sand Cree and 3 or 4 miles of the porportion of Pearl Creek are miely of the lower Since the opening of lare artesion wells few Since the opening of large artesian wells
other watercourses contain running water.
Along Firesteel Creek, the middle portion of Sand Creek, and parts of Cain Creek are ponds which are connected by running water in spring, but in the latter part of summer become separated. There is, however, sufficient movement through the sand in the bed of the channel to prevent their stagnation in many cases. If they are kept free from contamination they are likely to afford good water.
Springs.-Permanent springs are rare, though a few occur. They have their source either in the sands and gravel of the older terraces or in sand beds buried in the till. Springs fed from deeper sources are unknown in this quadrangle. Springs deriving their supply from the first-named source are usually transient and unreliable. There are only two areas in which they are important. In the sandy area west of Forestburg water sometimes comes to the surface in large amounts. Along the edge of the James River Valley copious springs are found at the head of leading to the river Two or the are fors in secs. 6 and 7, Union Township. North of Forestfrom, both east and west of he river, springs arise delta of Redstone Creek S.ige for b
permanent Them buried sand beds are more area about Huron supplies a number of springs. Three of these are found along Pearl Creek, one in the northern part of sec. 18, T. 109 N., R. 60 W., another in the southern part of sec. 7 , and still another in the southern part of sec. 11, T. 109 N., R. 61 W . There is a series of springs where this stratum outcrops along the east bank of James River in sec. 32, T. 111 N., R. 61 W. One is found in the northwest corner of sec. 21, another in the southeast corner of sec. 14, and another in the northwestern part of sec. 12 , in T. 111 N., R. 61 W. These springs furnish clear, hard water, deposit ing in some cases considerable travertine. The limestone ledge thus formed near Huron, and stained with iron, has been thought by some persons to resemble the surface rock found in the vicinity of gold mines, and hence the presence of gold there has been inferred. It scarcely need be stated that such a conclusion is entirely unwarranted.

abterranean Waters

Waters obtained from below the surface by artificial means will be considered under the headings "Shallow wells," "Tubular wells," and "Artesian wells."

shallow wells.

Shallow wells are those supplied by water which has recently fallen on the surface and which can layer. The most common source of impervious layese wells is the water that lies of supply for and seeps through the upper portion of the till and seeps a watercourse wherever portion of the till accumulations of sand that form conduits for it. The water flows slowly through the lower portion of these sand accumulations and appears at intervals in water holes along the upper courses of the more prominent streams. In these it rarely comes forth in sufficient strength to attract attention. Where the surface slopes toward an undrained basin, the water of the yellow till accumulates in the lowest portion. It may be drawn upon by shallow wells, and for a number of years may be
entirely adequate for the demands of neighboring farms, but in time of drought it is gradually exhausted. Where the surface slopes toward a watercourse the water accumulates in larger quan-
tity, but it also flows away more quickly. Shallow wells, therefore, along the ancient watercourse that were occupied by streams of considerable size while the glaciers were present in the vicinity, aford the most copious water supply. When the region was first settled the shallow wells were the few years later water was abundent in these wells few years later, water was abundant in these wells,
 in order to obtain water. in order to obtain water.
and usually obtain water at a depth quadrangle, 30 feet. They do not afford a copious or permanent supply except when located near the bottom of a large depression or near a channel draining a considerable area. The reason for this is that the water comes from the rainfall only, and the region is often subject to continued drought. Only those which are so situated as to draw from a large catchment basin can be counted upon as permanent. If water is not obtained before striking the blue bowlder clay, none will be found until the bottom of the latter is reached.
Permanent shallow wells may be obtained in the extensive flat areas about Huron and Woonsocket In the eastern and southern part of the Woonsocket basin west of Sand Creek a copious supply of water is found in the sand at a depth of from 10 to 20 feet. In the vicinity of the broad meandering channels north and northwest of Huron abundant water is found, except in very dry seasons, at a depth of 10 to 15 feet. In the area southwest of Huron, where the stratum of sand already noted is found about 30 feet below the surface, are permanent wells which may be con-
sidered as belonging to this class. sidered as belonging to this class.

tubular welis.

Under this head will be included simply the deeper wells in which a tubular or force pump is usually necessary. The water frequently rise wells derive water from the sand and gravel at the base of the drift, from a stratum in the Pierre clay above the chalk, and from the sands below the chalk. In many wells the water rises to within 5 to 25 feet of the surface. Some, in fact, are flowing wells, as shown on the artesian water map The approximate depths to the bottom of the till in different parts of the Huron quadrangle are shown in fig. 7. There are many local variations of small amount which can not be represented on a diagram of this character, and, moreover, the sub-till sand sheet is not everywhere filled with water, especially in the more elevated regions Therefore, a boring may pass through the sand to the Cretaceous shales below without obtaining water.
Wells in the bowlder clay.-Below the till is commonly a stratum of sand or gravel which is invariably filled with water. At ordinary levels, as soon as the till has been drilled through, the water rises several feet, sometimes nearly to the surface. The water from this source is heavily charged with lime, and sometimes with iron. It is commonly cool and wholesome. In some places, however, either at first or soon after the well is dug, the water becomes so impregnated with the soluble salts which abound in the bowder clay That it becomes offensive and sometimes injurious. This is especially true of the wells in the plain east and north of Woonsocket. This horizon has area extends from the southeast into the southern part of Floyd Township (T. 108 N, R 60 W) part of Floyd Township (T. 108 N., R. 60 W.). ing "Artesian wells."
ing "Artesian wells."
Wells in Pierre clay.-In the Pierre clay is another water horizon, which is commonly present in the northeastern part of the quadrangle and Huron. It does not appear to lie at a uniform level, but is struck at depths of from 115 to 175 feet, the depth increasing toward the north. Since sand has not been distinctly recognized at this horizon, the water may possibly come from fissures or local lenses of a porous formation deposited in the clay. The water from this source is commonly spoken of as from the "soapstone," and is soft. Judging from wells farther south, it seems probable that what is called "soapstone" is gray chalk

Huron.

Wells in the upper Benton sandstone.-The third and most important pump-well horizon is the upper sandstone of the Benton formation, which throughout the quadrangle seems to lie just below the chalk. It is the source of the most desirable and most permanent wells in the whole southern half of the quadrangle, and is well-known in the northeastern quarter, but in the northwestern portion has not
been found. This is probably due, not to it been found. This is probably due, not to its absence, but to its greater depth and the
supply of water from more accessible strata.
supply of water from more accessible strata.
Since this horizon is an unfailing source of water, which usually rises within a few feet of the water, which usually rises within a few feet of the able detail the depths at which it may be struck Beginning at the southeast corner of the quad rangle, it lies at a depth of 130 to 140 feet. Near Woonsocket it is reached between 140 and 175 Woonsocket it is reached between 140 and 175
feet. Farther west its depth increases as the surface rises, so that at the southwest corner it lies about 400 feet below the surface. Near the northwest part of Franklin Township (T. 107 N., R. 63 W .) it is reached at a depth of a little over 200

The water from this source rises uniformly to early 1300 feet above the sea. Some of the well the lower portion of the plain east of Woon pene reported to have flowed when first pened. The wells in the town of Forestbur re among the oldest flowing wells of the region, and are supplied from this source. Without much dittl wells sunk in the valley of James River Ittle below the top of the bluffs would obtain flowng Th has bend rangle. Thap.
artestan welles.
In drilling wells, a water-bearing stratum in which the water is under pressure is generally poken of as a "flow" and the well is classed as erm artesian to wells in which would limit the pressure to raise the water to the surface. The latter is the usage employed in this folio. Artesian wells are common in the Huron quadrangle and derive their supply mainly from the Dakota sand

Fia. 7.-Sketch map of Huron quadrangle showing approximate depths to the bottom of the till
Water can usually be obtained from sands and gravel at the base of the dritt and kenerally rises many feet in wells.
feet. In the Schmidt well it is struck 350 feet \mid stone. Some wells, however, draw their supply below the surface. In sec. 21, Carlyle Township from Pleistocene sands. 1. 109 N., R. 63 W.), a well nearly 200 feet deep Township (T 110 N R 61 W) it lies of Custer f 230 feet Near Cavour it is found a depth about 200 feet. In the southeastern part of Iowa Township (T. 112 N., R. 61 W.) this horizon is Township (T. 112 N., R. 61 W.) this horizon is the same township it has a depth of 250 feet. About Huron it is found at a depth of 200 to 210 feet. The water from this stratum is uniformily soft, although containing considerable mineral matter. The ingredients probably are salts of soda. It is commonly said to be "soft as rain water," and in some localities is sold for washing purposes.
In the southern part of the quadrangle the wate horizon is frequently spoken of as being in the depth than usual it may have escaped from the sandstone into the overlying chalkstone by way o crevices or more porous strata.

plemistockne artigstan. welis.

The Pleistocene artesian wells derive their waters from the sand underlying the till. There are few vells of this class in the quadrangle. They occupy Township (T. 108 N., R. 60 W .) and the northern part of Oneida Township. This is an extension of the area about Artesian, in the De Smet quadrangle These wells vary in depth from 75 to 100 feet Their flow is copious but their pressure is slight. As scores of wells have been sunk to this horizon the head has been gradually declining. It seems to have fallen 8 or 10 feet in a dozen years. Some wells have ceased to flow and others have been made to continue their flow only by lowering their outlets.
mati artestan supply.

The main supply of artesian water in this region
sand beds of the Dakota formation, which is the ource of artesian water not only under much of astern South Dakota but in a wide area in adjoin ing States. It owes its efficiency to four factors (1) Its great extent, since it underlies most of the Great Plains from the Rocky Mountains eastward to about the ninety-fifth meridian; (2) its highly clevated western border, which is located in the moist region of the mountains and crossed by numerous mountain streams; (3) its being extensively sealed in its eastern margin by the overlap-
ping clays of the Benton formation, or, where they ping clays of the Benton formation, or, where they are absent, by the till sheet of the Glacial epoch South the cutting of wide valleys, especially in bring the land surface below the pressure height or "head" generated by the elevated western border of the fonmation. From this formation is derived lso a copious pumping supply over wide area where the pressure is not sufficient to produce flowing wells. Water-bearing Dakota sandstones under lie the whole quadrangle. Below this is the "bed rock" of well drillers, the limit of profitable boring; the depths to its surface are indicated in fig. 8 The water-bearing strata seem to lie more nearly horizontal and to have a more regular structure in this area than farther south. There are no marked irregularities to indicate local subdivisions of the water-bearing strata, as elsewhere. On the othe hand, it is impossible to speak as definitely concerning the depth of the different formations in this area as in some others, because artesian wells are not so numerous.
There are three quite distinct water-bearing strata under this quadrangle, and in the north central portion there is probably a fourth. These are known as the first, second, third, and fourth flows, and they correspond respectively to the lower Benton, possibly corresponding to the Greenhornlimestone horizon, and to the first, second, and third sandy strata of the Dakota formation. They seem to be distinct from one another, though observations of the pressur or hor zon are not yet complete enough to make this poin
The
is usually fo flow yields soft water, and the quantity is usually so slight that it is not generally drawn obtain water from this stratum have flowed for obtain water from this stratum have flowed for
several years, and observations made farther south about Letcher, indicate that the flow is unfailing, about Letcher, incicate that the flow is unfailing
The water probably comes from a thin stratum of The water probably comes from a thin stratum of
sand, which may not be as continuous as the thicker ones below. At several localities it either has no been struck or has been overlooked. This flow is not shown on the artesian water map, which show the depth of the lower or main flows. The fol lowing table gives the depths at which this flow has been found.
Depths below average upland level at which the lower Benton

Floyd Township (T. 108 N., R. 60 W.). Pearl Creek Township (T. 109 N. R. 6. Pearl Creek Township (T. 109 N., R. 60 Southwest Grant (T. 109 N., R. 62 W.) Southwest 6 Near Huron At WOIsey. Feet. .50 .757 500 .50 .50 460 650

The next horizon is that which is most fre quently drawn upon. The supply is copious and the water is palatable, although hard. It is struck at a depth below general level of 650 to 750 fee in the southern part of the quadrangle. It occur at about 800 feet near Alpena and at about 750 feet near Huron, while farther north it is 800 fee nd farther west a little more
The third flow supplies the Melville, Riverside The Risdon and White wells, the third city well, and the railnod wells at Huron apparently derive he waters from the horizon still 100 feet deeper Moreover, this lower stratum is thick and may subdivided in some wells
All these depths are estimated for the upland evel. Allowance may be made for the variation of the surface above or below this.
Artesian pressure.-From a superficial study of artesian wells some persons think that all the artesian water in a basin has the same head or rise to the same plane. Such, however, is far from true, particularly in North and South Dakota. In general the pressure declines toward the margin of the water-bearing strata. This fact is readil explained in shallow basins by supposing that the water is moving as a slow current toward outlets or leaks along the margin of the formation, where th
latter laps against the older rocks or where fissures may connect it with the bottoms of streams. Each flow, in general, shows this same decline in pres sure toward the southeast.
The lower flows from the Dakota formation have higher pressures because the leakage along the eastern edge is much less free. On the artesian water map are contours representing the altitude or "head," which, in its downward slope southeast may be regarded as a "hydraulic gradient." It would be impossible to represent the pressure for each water-bearing stratum; therefore the data from the more important wells have been taken, or, in other words, the contours showing altitude of head available and accessible stratum, viz, the first of the Dakota formation. It is not unlikely that in many cases the sinking of wells to lower flows may show considerably increased pressure. For several reasons the pressure at the wells in this quadrangle has not been satisfactorily determined. The first pressure, or that of the first wells opened, was usually much higher than any at present. For example, at Huron the pressure first reported, probably of water from the second flow, was 120 pounds, but at present none of the flow, was 120 pounds, but at present none of the
wells of the city can obtain a pressure of more wells of the city can obtain a pressure of more
than 80 pounds. The pressure registered by the than 80 pounds. The pressure registered by the
railroad well, formerly known as the Wilcox or Syndicate well, is 71 pounds.
The Riverside well, opened last year, gave a sat isfactory pressure of 105 pounds, but only a little farther east, at the poor farm, a pressure of only 85 pounds was obtained.
It seems certain that where wells are multiplied in close proximity the pressure steadily declines, that presssures as high as those first ' reported can not be repeated without closing all the wells at the same time, and that even then days and possibly weeks would have to pass before the water had accumulated to replace the local exhaustion.
In the latitude of Huron the water rises toward the west at the rate of about 4 feet to the mile. This conclusion is arrived at by comparing the earliest reported pressures and by making allowance for the local exhaustion. Toward the south
the pressure declines.
A study of recent wells on the east now shows
a slight rise of pressure in that direction. This a slight rise of pressure in that direction. This for by the withdrawal of water from wells in the James River Valley and the probable wreater leakJames River Valley and the probable greater leakage toward the edge of the Dakota in the valley, of thicker and more perfect cover.
The contours of pressure height on the artesian water map are drawn for the first strong flow, which comes from the third water stratum below the chalk or the first Dakota flow. Some wells,
notably the Risdon well, draw from lower horizons and consequently show greater pressures; others, though drawing from the same, also communicate with the higher horizons, and consequently can give no higher pressures than are found in the latter.
The contour of 1500 feet around Huron may be ascribed to the local withdrawal of the water by numerous large wells, for when wells were first opened there the pressure was considerably above that figure.
Cause of apparent decline in pressure.--It is now generally admitted not only that the amount of water flowing from each well rapidly decreases, but that the closed pressure also declines. This becomes evident without the use of instruments,
first by a shortening of the distance to which the first by a shortening of the distance to which the
water is thrown from a horizontal pipe, and second water is thrown from a horizontal pipe, and second
by the fact that after a time the stream which first by the fact that after a time the stream some cases
filled a given pipe fails to do so. In som a test with the gage shows that there is merely a in pressure It may beacounted for by the depo in pressure. It may be accounted for by the depo pipe in such a way as to cloo the pores of the sand through which the water comes. More commonly however, the pressure itself has been found to diminish. Thus some wells at Huron that once showed a pressure of 120 pounds when closed now fail to reach 80 pounds. Similar facts have been reported from Mitchell, Mount Vernon, and Plankinton.
The unwelcome conclusion derived from these facts has led many persons to search for other reasons than the one first suggested, the partial
exhaustion of the artesian supply. It is claimed,
and apparently correctly, that new wells frequently have a pressure equal to that of early wells suppried from the same source. Since the closed pressures, however, are less frequently taken than allowance must usually be made for leakage, it is difficult to prove the strict truth of this statement.
The first sign of apparent decline is a less copiou low. This is usually due to the clogging of the
well. As wells are usually finished by extendit perf. As wells are usually fimished by extending perforated pipe into the water-bearing rock, it delivery of water to the well is equal to the per forated portion of the pipe as the water coninues to flow, sand gradually accumulates on the uside of the pipe and so diminishes the surface supplying water to the well. Something of the same sort may less frequently occur even when the pipe terminates in the cap rock. Sand gradually works in from the sides, and portions of the cap rock are undermined and drop down, so that free access of the water is considerably diminished.

F1G. 8.-Sketeh map of Huron quadrangle showing approximate depths to the surface of the
"bed rock" of well drillers, which is the lower limit of water bearing strata.
Theoretically the closed pressure should b the same whether the well is flowing freely or not, so long as the head of the water is the same. If the well becomes clogged, as suggested above, he only difference in pressure would be that hen a gage is attached it takes longer to reach he maximum point. As this rise may be very esulted becouse the of rears ${ }^{\circ}$ have doabtles resulted
Another cause of diminished pressure is leakage A_{s} is well known, pipes deteriorate rapidly under Imost impossible to close the joints perfectly Where there is a long pipe, as in the case of the distributing pipes of a city, one can never be sure that all leaks are stopped. This may sometimes explain the apparently diminished pressure in Ider wells.
The diminished pressure in a particular well well not far away. The distance to which this
influence extends will of course be greater where the water-bearing stratum is of coarse texture, and he movement of the water freer. Where water has been drawn freely from several wells, or even from one large well, there is no doubt a local depression in the head, or lowering of pressure, which may not be restored for sometime. This might occur Notwithstanding all the supply.
Notwithstanding all the considerations offered hus far, it seems not unlikely that the rapid ultiplication of wells in any region may really he amount of a few pounds. It is then importat that facts sould be collected to ascerain whether this is the case and if so to determine the amount of diminution. In view of the possibility of ouertaxing the supply it would seem desirable to limit in some way the number of large wells allowed to flow freely. A single housand-gallon-a-minute well would be sufficient to supply 450 wells furnishing 100 barrels a day which would be an adequate supply for an ordinary farm.

The soils of this.
The soils of this quadrangle have not been care fully studied and only the more obvious character stics are noted below. They may be divided into
tony soils, sandy soils, clayey soils or " stony soils, sandy soils, clayey soils or "gumbo,"
and loam. Stony soils.-Stony soils are found only in limited areas, mainly upon the rougher surface of the noraines and along the edges of the terraces skirt
ing the principal streams. The morainic nsually carry bowlders on the surface, which must sually carry bowlders on the surface, whic
Bowlders mingled with pebbles are thickly strewn along the terraces, particularly near the farther back, so that they offer more serious hinfrances to cultivation. The slopes of the steeper
diter bluffs along the streams are often covered with bowlders that have either slipped down from the
tratum capping the terraces or have been stranded in times of flood. In some cases the bowldery
tratum has offered such resistance to the erosion, which took place in part, at least, before the close of the Glacial epoch, that they are detached from the terraces and form ridges. A notable example is found east of Forestburg, where a ridge nearly 2 miles in length appears, simulating an osar. The predominance of bowlders may mark andy soil or a loam, more frequently the latter. Sandy soils.-Sandy soils are not very extensive in this quadrangle and are connined to the delta hasins deposits filling the Woonsocket and Huro mouth Th Ja 1 nouths of Sand and Redsone creks. These area long the right bank of Sand Creek It area he northwest corner of Forestburg Township (T 107 N P 61 W) widens to a breadth of 3 mile west of Forestburg and extends beyond the south ern boundary of the quadrangle. In some place near the center of Forestburg Township the sand forms dunes entirely bare of soil. A smaller area occupies about 10 square miles in the eastern part of Forestburg Township, including a prominent landmark known as Belcher's Mound, rising bruptly from the west side of James River, opposite the mouth of Redstone Creek. A considerble grove is found on its eastern slope, though the west slope shows only drifting sand.
A series of sand patches extends along the west side of James River from sec. 25, T. 111 N., R. 62 W., through Huron to the southern part of sec. 19, T. 100 N., R. 61 W. In all these areas the sand is mingled with much humus or black loam and forms fertile soils, except where the breaking of the surface allows the wind to drift the sand.
Gumbo.-The typical representative of soils of this class is a dense, fine, drab-colored clay, sometimes light colored. It is soft and very sticky when wet, and intensely hard when dry. In the latter condition it is seamed with cracks. It prevents almost completely the sinking of rain water into the ground and the rising of moisture from the subsoil in time of drought. While it is damp rasses may flourish upon it, but they wither when he dry season comes. Such soils are found in the botom of lake basins, along some of the alluval lats near the principal streams, and in the northwestern part of the Woonsocket basin, which lies in the northeastern part of the township of that name, and extends southeast into Logan Township T. 106 N., R. 61 W.). Some of the accumulations areas were probably formed during the latter part of the Glacial epoch. It is significant in this conbection that on the gumbo flats northeast of Woonection that on the gumbo flats northeast of Woonfound in the western part of the State.
Loam.-This term may best describe the soils which occur on the upland and rolling surfaces generally and which uniformly cover the till. The action of frost, the leaching influence of surface waters, the mingling of dust from the atmosphere, and the work of burrowing animals have all contributed to produce this kind of soil from the more clayey till. It is fertile, and generally of sufficient depth except upon the highest points of he till. Under this head would fall also most of the alluvial soils, both those upon the flood plains of present streams and those of ancient treams. Some of the best examples are found upon the upper flat portions of the terraces. These soils are characterized by a mixture of clay
and sand, with usually a minor content of calcaand sand, with
reous material.
Spotted areas.-In the rougher morainic areas Spotted areas.-In the rougher morainic areas
and in pitted plains, where small basins are numerous, gumbo is found in the bottoms of the basins, while the surrounding surface is loamy. The differences in soil are not usually great enough to
require special treatment. Ordinary tillage so require special treatment. Ordmary tillage so meneficial On the Woonsocket plain, and in less degres on the parsocket plan, and, in less degree, on the plain around Huron, the clay urface is generally loamy, but small patches of lay, usually only a few feet across, are scattered on it in an irregular way. In many cases the clay eems to mark points where the underlying till cems to mark points where the undqrlying til
ticks up through the water-laid loam or sand In a few cases the clay seems to be lower than the general surface, and may be the result of the solution of silica by alkali minerals. The supposition has not, however, been verified by chemical analysis.

July, 1903.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. ${ }^{\text {t }}$	No.*	Name of folio.	State.	Price. \dagger
			Cents.				Gents.
	Livingston	Montana	25	58	Elmoro	Colorado	25
2	Ringgold	Georgia-Tennessee	25	59	Bristol	Virginia-Tennessee	25
3	Placerville	California .	25	60	La Plata	Colorado	25
$\ddagger 4$	Kingston	Tennessee	25	61	Monterey	Virginia-West Virginia.	25
5	Sacramento	Califormia .	25	62	Menominee Special	Michigan	25
$\ddagger 6$	Chattanooga	Tennessee.	25	63	Mother Lode District	Califomia.	50
\% 7	Pikes Peak.	Colorado	25	64	Uvalde	Texas	25
8	Sewanee	Tennessee	25	65	Tintic Special	Utah	25
$\dagger 9$	Anthracite-Grested Butte	'Colorado	50	66	Golfax	California	25
10	Harpers Ferry	Va.-W. Va.-Md.	25	67	Danville	Illinois-Indiana	25
11	Jackson	California	25	68	Walsenburg	Colorado	25
12	Estillville	Va.-Ky.-Tenn.	25	69	Huntington	West Virginia-Ohio	25
13	Fredericksburg	Maryland-Virginia	25	70	Washington.	D. C.-Va.-Md.	50
14	Staunton	Virginia-West Virginia	25	71	Spanish Peaks	Colorado	25
15	Lassen Peak	California.	25	72	Charleston	West Virginia	25
16	Knoxville	Tennessee-North Carolina	25	73	Coos Bay	Oregon.	25
17	Marysville	California .	25	74	Coalgate	Indian Territory	25
18	Smartsville	California	25	75	Maynardville	Tennessee	25
19	Stevenson	Ala.-Ga.-Tenn.	25	76	Austin	Texas	25
20	Cleveland.	Tennessee	25	77	Raleigh	West Virginia	25
21	Pikeville	Tennessee	25	78	Rome.	Georgia-Alabama	25
22	McMinnville	Tennessee	25	79	Atoka	Indian Territory	25
23	Nomini	Maryland-Virginia	25	80	Norfoik	Virginia-North Carolina	25
24	Three Forks	Montana	50	81	Chicago	Illinois-Indiana	50
25	Loudon	Tennessee	25	82	Masontown-Uniontown	Pennsylvania	25
26	Pocahontas	Virginia-West Virginia	25	83	New York City	New York-New Jersey	50
27	Morristown	Tennessee	25	84	Ditney	Indiana	25
28	Piedmont.	Maryland-West Virginia	25	85	Oelrichs	South Dakota-Nebraska	25
29	Nevada City Special	California	50	86	Ellensburg	Washington.	25
30	Yellowstone National Park	Wyoming	75	87	Camp Clarke	Nebraska	25
31	Pyramid Peak . . .	California.	25	88	Scotts Bluff	Nebraska	25
32	Franklin	Virginia-West Virginia	25	89	Port Orford	Oregon	25
33	Briceville	Tennessee	25	90	Cranberry	North Carolina-Tennessee	25
34	Buckhannon	West Virginia	25	91	Hartville	Wyoming	25
35	Gadsden	Alabama	25	92	Gaines.	Pennsylvania-New York	25
36	Pueblo	Colorado	50	93	Elkland-Tioga	Pennsylvania	25
37	Downieville.	California	25	94	Brownsville-Connellsville	Pennsylvania	25
38	Butte Special	Montana	50	95	Columbia	Tennessee	25
39	Truckee	California	25	96	Olivet	South Dakota	25
40	Wartburg	Tennessee	25	97	Parker	South Dakota	25
41	Sonora	California	25	98	Tishomingo	Indian Territory.	25
42	Nueces	Texas	25	99	Mitchell	South Dakota	25
43	Bidwell Bar	California.	25	100	Alexandria	South Dakota	25
44	Tazewell .	Virginia-West Virginia	25	101	San Luis	California	
45	Boise	Idaho	25	102	Indiana	Pennsylvania	25
46	Richmond	Kentucky	25	103	Nampa	Idaho-Oregon	25
47	London	Kentucky	25	104	Silver City	Idaho	25
48	Tenmile District Special	Colorado	25	105	Patoka	Indiana--llinois	25
49	Roseburg .	Oregon	25	106	Mount Stuart.	Washington	25.
50	Holyoke	Mass.-Conn.	50	107	Newcastle	Wyoming-South Dakota	25
51	Big Trees	California.	25	108	Edgemont	South Dakota-Nebraska .	25
52	Absaroka .	Wyoming	25	109	Cottonwood Falis	Kansas	25
53	Standingstone	Tennessee	25	110	Latrobe	Pennsylvania	25
54	Tacoma.	Washington	25	111	Globe.	Arizona	25
55	Fort Benton	Montana	25	112	Bisbee	Arizona	25
56	Little Belt Mountains	Montana	25	113	Huron	South Dakota	25
57	Telluride	Colorado	25	114	De Smet	South Dakota	25

[^0]Circulars showing the location of the area covered by any of the above folios, as well as information concerning topographic maps and other publications of the Geological Surveg, may bo

[^0]: * Order by number.
 \ddagger Payment must $b e$ made by money order or in cash.
 \ddagger These folios are out of stock..

