DEPARTMENT OF THE INTERIOR

UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR

OHWO
UFIVER
GEP2915

GEOLOGIC ATLAS

OF THE
UNITED STATES

MOUNT STUAR'T FOLIO
WASHINGTON

UNIV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographi ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of surface, called relief, as plains, plateaus, valleys, hill and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, oundaries, villages, and cities.
Relief.-All elevations are measured from mean a level. The heights of many points are accurately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts f the area mapped, to delineate the outline or form or all slopes, and to line the hrol lemor evel, the altitudinal intercal represented by the pee betw lines being the broug each map. These lines are called contours, and the uiform altitudinal space between each two con tours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour matp (fig. 1).

.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice orming a precipice. Contrasted with this precipice the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval is 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet surounds it. In this fre 250 the contours are numbered, and those for 250 and 500 feet and ccentuated by being made heave ond the cons and then the accentuating and numbering of certain of them-say every fifth one-suffice for the heights of others may be ascertained by counting up or down from a numbered contour.
2. Contours define the forms of slopes. Since moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
3. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The smallest interval used on the atlas sheets of the regions like the Mississippi delta and the Dismat wamp. In mapping geal or i liste rlif contour intervals of 10,20, 25,50 , and 100 feet are used
Dramage.-Watercourses are indicated by bl drawn unbroken, but if the channel is the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of vater are also shown in blue, by appropriate co ventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of townships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, drawn to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scal" The scale. may be expressed also by a fratio, The scale may be expressa a which a fraction of which the numerator is a length on the ma and the denominator the correspong leng is there are 63 exp inches in a mile, the scale " 1 mile to an inch" is expressed by $\frac{1}{6,530}$.
a inch" is expressed by $\frac{\text { b.3.30. }}{\text {. }}$
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{20.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6.5050}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{1250}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on the scale of som contains one square degree-i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { is,w, con }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { s.asive }}$ contains one-sixteenth of a square degree. he are of the corresponding quadrangla
1000 , and 250 square miles.
the atlas sheets, being only parts of one ma line United States, disregard political boundar hips. To and to the quadrangle represents is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.- On the topographic of the quadrangle represented. It should portray
ot the observer every characteristic feature of the landscape. It should guide the traveler; serve he investor or owner who desires to ascertain the position and surroundings of property; save the ailways prelminary surveys in locating diteads, provide educational material for schools and homes; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma they are distinguished as igneous, sedimentary, and netamorphic
Igneous rocks.-These are rocks which have ordated from a state of fusio rom time to time ages molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within theso channels--that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called a dike; when it fills a large and irregular conduit the mass is termed a stock. When the conduits for molten magmas traverse stratified rocks they often send off branches parallel to the bedding planes the rock masses filling such fissures are called sills or sheets when comparatively thiñ, and laceoliths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a pac fialy eysare fully ays in ther burs The out har mons. The less por Explowe are usa, panies voleanio eruptions causing eections of duash, and larger fragents. These material whe consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have bee ried to a different place and deposited
The chief agent of transportation of rock débris i water in motion, including rain, streams, and tha water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, or the different materias may be intermingled many ways, producing a great variety of rocks. And; and a The mot characteris of the wind-borne or eol deposits is loess, a fine-orainel euth; the most char deposits is loes, a neg ite ill , he most charmixture of bowlders and pobbles with clay or sand Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are charged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and rocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Cheir upper pars, and pually disting. sol by solls, the solls being organic matter
Metamorphic rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter 'into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the priary to the metamorphic form within a single puartass. Such changes transform sad dify other rocks in various ways.

From time to time in geologic history ignous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals. are developed with their laminæ approximately paralle, in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formahons. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one no of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lep itrary line, and in some cases the distinction An almost entirely on the contained fossils. igneous formation is constituted of one or more bodies either containing the same kind of igneous metamorphic formation may consist of rock of uniform character or of seeveral rocks having commion aracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

hges of rocks.

Geologic time.-The time during which the rocks were made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known!
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by observing their positions. This relationship holds except in regions of intense disturbance; in except in regions of intense disturbance; in such it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.
Stratified rocks often cont
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which hey are found. Onher types passed on from period to period, and thus linked the systems together, fongg a chain of lie from the time of the oldest form for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and colian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have heen produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. T'opographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. I, is an illustration. To this class belong beaches, alluvial plains, lava treall), and moraines (vidges of drift made the edges of claciers) Other forms ard edges of glaciers). Other forms are produced by of the associated material. The sea cliff is an illustration; it may be curved from any To this class belong abandoned river channels, olacial furrows, and peneplains. In the making
glass glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level.
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued back-
ground upon which the areas of productive formations may be emphasized by strong colors. A mine symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to shov these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one nother may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this Trangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

ing a vertical seetio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. These symbols admit of much variation, but the following commoner kinds of rock

Schists

Fig. 3.-Sym
tions to represent diferens.
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the section to correspond to the outcrops of a bed of sand of this bed form the surface. The uptred valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2 , the section is mposed of schists which are trayersed by masses and their
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strata are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the horizontal strata of the plateau rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underyyng formations, and the bending and degradation of the older strata must have and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an uncon formable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of eruptive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds to line ares the ge surface the any ine and from he surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It opresents which occur in the quadrangle. It presents
summary of the facts relating to the characte of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.

The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE MOUNT STUART QUADRANGLE.

By George Otis Smith.

GEOGRAPHY.

Natural divisions of the State.-The State of Washington comprises five great divisions, which are geologically as well as geographically distinct. In the western part of the State the Olympic Mountains overlook the Pacific and, forming apparently the northern extension of the Coast Range of Oregon, are themselves represented northward, beyond Juan de Fuca Strait, in the heights of Vancouver Island.
East of the high mountains of the Olympic group is the Puget Sound Basin, a depression which is very noticeable because of its position between parallel mountain ranges, and which extends beyond the boundaries of the State, southward in the Willamette Valley of Oregon and
northward in the sounds of British Columbia. northward in the sounds of British Columbia.
Its characteristic topography and geology are Its characteristic topography and
described in the Tacoma folio, No. 54 .
The third division is the Cascade Range, a
The third division is the Cascade Range, a
mountain mass having a north-south trend and mountain mass having a north-south trend and
forming the most prominent feature of the State. This line of uplift is a continuation of that of the Cascade Range of Oregon, but the Cascades of Washington deserve further subdivision. From Coshington deserve further subdivision. From Mount Rainier the range resembles the Oregon portion, both in topography and in geology, basaltic and andesitic lavas of Tertiary age constituting the material from which the mountains have been constructed. A portion of the eastern flanks of this type of the Cascade Range is described in the Ellensburg folio, No. 86. Farther north, however, older rocks appear in the Cascade Mountains and the topography becomes more varied than to the south. These geologic and topographic distinctions are sufficiently important to deserve recognition, and on this account the range from the vicinity of Mount Rainier northward to the forty-ninth par-
allel will be termed the Northern Cascades. The allel will be termed the Northern Cascades. The application of this term beyond that parallel is questionable, since there is in this vicinity an abrupt change from rugged peaks to the more
rounded and lower ridges north of the international rounded and lower ridges north of the international
boundary. The area described in this folio is typiboundary. The area described in this folio is typical for the Northern Cascades. The volcanic cones of Adams, Rainier, Glacier Peak, and Baker, that dominate both portions of the Cascade Range in Washington, are of later date than the range itself, and their distribution does not affect the subdivision here proposed.
The fourth
The fourth important feature of Washington is the Great Plain of the Columbia, a plateau region that extends southward into Oregon and eastward into Idaho, and includes approximately one-third f the State. In the Ellensburg forio is describe the Cascade Range.
The mountango.
The mountainous district bordering the Columbia Plain on the north and traversed by the international boundary conslitutes the fifth natural
division of the State. It includes the Colville Mountains, which apparently represent the south Mountains, which apparently represent the south Columbia.
Situation and extent.-The Mount Stuart quadrangle is bounded by the meridians $120^{\circ} 30^{\prime}$ and 121° west longtitude and the parallels 47° and 47° 30^{\prime} north latitude. The area thus included is 812.4 square miles. The quadrangle is situated nearly in the center of the State of Washington and includes portions of Kittitas and Chelan
Relief.-The quadrangle lies on the eastern slope of the Cascade Mountains, and the northern half of the area includes the Mount Stuart massif and
its foothills. Mount Stuart, the most prominent its foothills. Mount Stuart, the most prominent topographic feature of the quadrangle, is the culminating peak of an important spur of the main
Cascade Range, the crest of the main range lying 15 Cascade Range, the crest of the main range lying 15
miles to the west. This secondary range Prof. I. C.

Russell has termed the Wenatchee Mountains. Mount Stuart rises to an elevation of 9470 feet above sea level, and, with its deeply carved spires and crags, more or less covered with snow throughout the summer, is the most striking feature in the
varied scenery of the region. Its wildest and grandest scenery, however, lies hidden within its fastnesses.
The southern face of Mount Stuart is a precipitous slope rising 5000 feet or more above Ingalls Creek. This wall can be scaled at several points, but by only one route has the highest peak been successfully attacked by the mountain climber. This route is along the right-hand side of a welldefined gulch which debouches in a large alluvial cone opposite the mouth of Turnpike Creek. At the head of this gulch begins the true climb west-
ward along the arête with its huge blocks of The summit is about a thousand blocks of rock. ne summit is about a chousand feet above, and, hen reac 1 , peal for a bla he greater part of the available space is taken by he triangulation monument. Below, the northern and western faces are so much more precipitous as
readily to convince the observer that there is only one approach to the summit.
On the north side of
On deep north side of Mount Stuart are broad and deep amphitheaters, in which lie small glaciers Creek. The glaciers immediately below the main peak are mere remnants, often only a few hundred yards in extent, yet as seen from the summit these exhibit the characteristics possessed by larger ice treams; crevasses cross the surface and indicate of the the lines of flow in the lower portions observed. Névé field one terminal moraine was so that they form a chain at the base of the cliff that so effectually protects them. In the Twin Lakes amphitheater there is a much larger glacier, about 2 miles in length. A nunatak rising through this sheet of ice is a conspicuous feature, and the typically rounded surfaces of this glacial basin outlines of the higher parts of the range.
Southward from Mount. Stuart extend the lower peaks and ridges, many of which are hardly less rugged than Mount Stuart itself. The valleys are canyon-like in character, and dissection of he land surface has reached an extreme degree of maturity. There is, however, some variety in the extent to which erosion has been carried. Rocks of varying structure and hardness have caused the details to differ somewhat, but verywhere within this zone the topography is crests The divides are generally narrow, the crests of the ridges being often so sharp as to steep, and high cliff border many of the valleys. The larger streams in this part of the quadrangle The larger streams in this part of the quadrange
have rather broad valleys, although a striking have rather broad valleys, although a striking
feature is the number of types that may be observed in a single valley. Within a few miles a stream will pass from a broad basin down over a series of cascades, then wind through beautiful intermontane meadows, only to again dash down into a deep canyon. Such a succession is found in the valley of Negro Creek, and similar alternations of level almost every other stream. In general the gradient as well as the width of each valley is largely determined by the character of the rock in which it has been cut. The valley of Negro Creek furnishes a good example of this. The upper basin and the lower broad and level portions of the valley are in serpentine and soft sandstone and are separated by cascades. The lower half of the valley is a narrow eanyon cut in igneous rock and hard slate.
The southern half of the quadrangle includes a portion of the sloping plateau which extends from the higher parts of the Cascades on the west to the plain of the Columbia on the east. The gentle
eastward slope of this plateau can be seen in the sky line as one looks southward from the peaks near Mount Stuart. The flat-topped ridge south of jukima Valley, and Lookout and Table mountains graphic feast, are instantly recognized as topothose already quite different in character from like the nort described. This southern region is, but the streams are much farther apart, so that the divides between the drainage lines are broad and level and the plateau character of the region is very apparent. Table Mountain and the Manastash area afford the best examples of the plateau topograp ${ }^{\natural}$ y The nearly level plateau is so wanting in noticeab ${ }_{2}$ features as often to render it difficult to recognize particular localities. The level character of the surface generally continues to the very brink of the canyons, where the stream is several hundred or even a thousand feet below.
The valley of the
The valley of the upper Yakima forms the northern boundary of the western portion of this
plateau, but within this quadrangle the Yakima cuts across the the plateau. Thus, in the southeast corner of the quadrangle, Kittitas Valley, as this portion of the quadrangle, Kittitas Valley, as this portioression in the plateau country. In Kittitas Valley, as well as in the upper valley of the Yakima, extensive terraces border the river, a feature also prominent in the lower portion of Teanaway Valley. Narrow terraces occur along the smaller streams which are tributary to the Yakima, such as Swauk Creek and the three forks of the Teanaway.
A somewhat uncommon topographic form which is very noticeable within the Mount Stuart quadpargle is the landslide. While occurring in almostall parts of the quadrangle and seeming to be in a way most abundant along the northern escarpment of the plateau country, especially on Table and Lookout mountains. Here the masses of rock which have separated from the mountain side are so extensive as to render the resultant topography at the base of the cliffs very conspicuous. The best example of this is at the western base of Lookout Mountain,
where the belt of landslide topography is a mile and where the belt of landslide topography is a mile and
a half wide. Three small lakes occur here in the a half wide. Three small lakes occur here in the have slid down toward the valley. Such undrained basins are characteristic of topography that has originated in this way, and may be found in many localities within the Mount Stuart quadrangle. The landslide areas will probably aggregate a score of square miles within this quadrangle, but it has not seemed best to delincate such areas on the possible to map the correct distribution of the various underlying formations.

Drainage.-The Mount Stuart quadrangle includes parts of two drainage basins. The larger part of the quadrangle is tributary to Yakima River, while nearly one-fourth is drained by streams flowing into Wenatchee River, a few miles north of the northern edge of the quadrangle Both of the
Columbia.
The Yakima here is a stream of considerable size, as it receives just west of the western edge of the quadrangle the waters of Clealum River, the last taries. The flow of the Yakima at Ellensburg may be estimated from measurements taken during the year 1898 at gaging stations in the vicinity of North Yakima. Using this basis, the mean annual discharge is 2500 second-feet; the maximum discharge is about 15,000 second-feet, in February; and the minimum is less than 250 second-feet, in October. The unusually high water of 1899 would give very different results, but the discharge of 1898 is believed to be more nearly normal.
Yakima River has considerable grade-about 15
of 30 to 40 feet. Both rivers when at flood cut into their gravel banks at many points, and mino changes in their channels thus ensue. Next to the area drained by the Teanaway, the basin of Swauk Creek is the most important area, while Reeser Taneum, Wilson, Naneum, and Manastash creeks southern half draining the plateau region in the Manastash creeks enter the Yakima south of the limits of the Mount Stuart quadrangle.
Tr e three streams tributary to Wenatchee River are acicle, Mission, and Peshastin creeks, the last har ing Ingalls Creek as an important feeder. Tr ese are all rapid mountain streams, the branches of Icicle Creek being fed by the small glaciers near the northern edge of the quadrangle, and Ingalls Creek draining the Mount Stuart range. The valley of Ingalls Creek shows abundant traces of former occupation by a large ice stream whic extended down below the junction of this creek the Peshastin
Climate.-This area shares to a small extent the arid climate of eastern Washington, but it is also range immediately to the west. Thus at Ellen range immediately to the west. Thus, at Ellensburg the precipitation averages about 10 inches,
although in 1898 it was only 3.71 inches. Twentyalthough in 1898 it was only 3.71 inches. Twenty-
five miles farther up Yakima Valley, at Clealum, five miles farther up Yakima Valley, at Clealum,
which is only a few hundred feet higher, there is a which is only a few hundred feet higher, there is a
much heavier rainfall. The observations recorded by the Weather Bureau for 1899 , which was an by the Weather Bureau for 1899 , which was an
exceptional year, give a total of 11.87 inches for Ellensburg and 38.47 inches for Clealum. The more elevated portions of the quadrangle doubtless have even greater precipitation than that measured in Yakima Valley. The average annual runoff for the entire basin of the Yakima is nearly 24 inches, which also indicates a much heavier precipitation than that recorded at Ellensburg and other localities in the lower part of the Yakima basin. By far the greater part of the precipitation in the higher parts of the quadrangle is in the form of snow. The summit of Table Mountain is often temporarily whitened with the first snows in September, and in the following months the snowfal is so heavy that deep drifts remain on the flat top of this mountain until the early part of July. Within the elevated area around Mount Stuart snow not uncommonly remains in banks and
extensive fields throughout the greater part of extensive fields throughout the greater part of
summer, and the northern slopes of many of the summer, and the northern slopes of many of the peaks are never wholly free from it.
The mean winter temperature at Ellensburg is The $28^{\circ} \mathrm{F}$., and at Clealum about the same. The mean temperature for the summer months at Clealum. Then a degrees less at two places in 1899 were 96° and - 20°
Vegetation.-The greater part of this quadrangle was originally wooded, but the forests are different in type from those farther west. For the most part the trees are not closely set, but form'open groves through which a horseman can ride in any direc tion. Along many of the stream bottoms, especially in the western half of the quadrangle, vecetation becomes more luxuriant and the thickets of small trees and shrubs somewhat resemble the forest condition on the western slope of the Cascades. The devil's club (Echinopanax horridum), so characteristic of the western slope, is not known in the Mount Stuart quadrangle, although it has been found at several localities within a few miles of the western boundary. The higher peaks have an alpine flora, and the few trees have the stunted and gnarled forms characteristic of growth where the struggle with snow and wind is severe.
Kittitas Valley is timberless except along the ver banks, the sagebrush and other desert shrubs onstituting the prevailing vegetation.
The reports of the forestry division of the Survey show that the yellow pine (Pinus ponderosa), the red fir (Pseudotsuga taxifolia), and the tamarack

Larix occidentalis) are the species that make up the forests of this quadrangle. The wooded area is estimated as 579 square miles, mostly with merchantable timber. The total stand of timber is about 370
yellow pine.
Culture.-The main line of the Northern Pacific Railway traverses Yakima Valley, where the greater part of the population of the quadrangle is concentrated. Ellensburg, the county seat of Kittitas County, lies partly within this quadrangle and in 1900 had a population of 1737 . It is the commercial center for Kittitas Valley and the neighboring region. Roslyn, situated on a branch of the Northern Pacific near the western border of the quadrangle, is the center of the coal-mining industry of the county. Its population in 1900 was 2786. Clealum, at the junction of the Roslyn branch with the main line, had a population of 762 Thorp and Teanaway are small hamlets in Yakima Valley, and Blewitt and Liberty are mining camps. The total population of the quadrangle slightly xceeds 5000 .
The industries are mining, agriculture, and stock raising. There is no lumbering except to supply local demands. Agriculture is confined to the valleys of the Yakima and the Teanaway and everal the Praire, he southern slope of Lookout Mountain, nd other frace creps constitute the anal and other forage crops constitute the principal products are less important in Kittitas Valley tha farther south along Yalima River. Dairying an important industry.
Cattle and horses a
chaps less than before raised to some extent, but ing the summer months bands of thoussands of ng the summer months bands of thousands of of this quadrangle. They even reach the slopes of Mount Stuart. The abundance of nutritious rasses has made sheep grazing very profitable, but his industry has seriously injured the region. Desolate tracts of burnt timber and rocky slopes, where sharp hoofs have cut up the turf, allowing the soil to be washed away, mark the track of the heep herder. Such conditions can not fail to affect the natural storage of the water in the mountain and thus to diminish the supply available in mid summer for irrigation along the lower valleys.

GENERAL GEOLOGY

geologio history.

General features.-It is believed that the Mount Stuart quadrangle is exceptional for this province in the completeness with which the geologic record exhibited. It is thus a representative area for the geologic province of which it is a part, and conains both the oldest and the youngest rocks thas Hount Stuart masaf and the lower but Tugel Mount Stuart massif and the lower but rugged peaks encircling it constitute an area of the older
or pre-Tertiary rocks, while to the south and east are strata of Tertiary age, under which the older formations are buried.
This separation of the rocks of the Mount Stuart quadrangle into the older or pre-Tertiary and the younger or Tertiary is at once natural and most obvious. The difference between these two groups is apparent to any close observer. The but all are more or less altered, and the age of no ormation among them is definitely determined Above, fossil plants afford a basis for the exact ge determination of several formations. Among the formations of pre-Tertiary age, intrusive igneous rocks predominate-that is, the rocks are such as were formed at a considerable depth below the race of the earth, consolidating from bodies of elow. On the other hand, the Tertiary rocks are chiefly of the kind formed at the surface, sediments and volcanic deposits. These are sandstones, for the most part, and shales, deposited as sands and uuds in large inland lakes, or lavas and beds uff erupted from openings in the earth's crust.
The difference in age between these two group解 and been carved by streams into hills and valleys when the first deposits in the Eocene waters were
hid down, over an uneven surface composed of meant when it is said that there is at the base of the Eocene sandstone a marked unconformity, representing an erosion interval. In the following portions of this descriptive text the geologic history of the region will be outlined and all of these formations, both pre-Tertiary and Tertiary, will be described in more detail.

Pre-Tertiary Periods.

Formation of the oldest rocks.-The oldest rocks in the quadrangle are probably of Paleozoic age As will be shown more fully later, these rocks are in large measure metamorphic-that is, they have been altered from their original condition. Yet,
sufficient remains of the original characters to show that the schists, slates, and greenstones of the Easton, Peshastin, and Hawkins formations represent both sediments and products of volcanic activity. The record furnished by these older rocks ndicates that the conditions of sedimentation and of volcanism were remarkably similar to those prevailing at approximately the same time in the Rocks strikingly similar to those of Moun Stuart area are also found in the Bue Moun of Ore oregon and in the orey hese relations is that during a portion of Paron time the Pacific coast region from Britich Columb California constituted a single geologic provine The absence of Mesozoic sediments in this centre Washington region surests that it become a lan Wea during Mesozoic time. The existence of thick mass of Cretaceous rocks in the Northern Cascades immediately south of the international boundary shows the extension of the Cretaceous sea southward from British Columbia, while rocks of similar age in the John Day basin and Blue Mountains of Oregon mark the southern limit of his central land area. Later formations conceal hese older rocks over large areas, but future geologic study may furnish data for a description of the Paleozoic and Mesozoic geography, which can only be touched upon now.
Igneous intrusions.-The next recognized chapter in the geologic history is that of the injection of large masses of molten rock in these older rocks. The schists, slates, and greenstones had been folded and uplifted from their original positions when the intrusions of igneous rock began. The earlier of these was that of the extremely basic magma which crystallized to form the peridotite, now argely altered to serpentine. The masses of older ock were separated by large bodies of this intrusive ock, often nearly a mile across. Smaller bodies of he Peshastin formation were broken off and completely engulfed in the molten magma, so that now any blocks of this foreign material are foun Striking as was thi fi
Striking as was this display of the power of earth forces, the next exhibition of igneous intrusion was a mass of intrusive oranitic rock mesuring tand square miles in orea, in fact, the limits of its extent qorthward beyond the Mount Stuart quadrangle bave hot yet been determined. The petro not yet been determined. The petrographic charache cooling mass werted upon the adjacent rects, favor the view that this intrusion was essen tially deep seated, although its exact depth below the surface can not be stated. The Mount Stuat granodiorite now forms the core of the Wenat hee Mountains, and its intrusion may have initiated the uplift of this minor range. Prior to this, however, as noted above, the older rocks had been subjected to mountain-building forces, and, as will be shown later, the Wenatchee Mountains owe their present elevation to movements during Tertiary time.
Erosion.-Nothing definite can be stated regard ing the age of these igneous intrusions. The neares date that can be fixed is the beginning of the Eocen but at that time the granodiorite, serpentine, and older rocks had suffered a considerable amount of crosion. The cover under which the granitic mass had consolidated had been removed and the rocks, of varying hardness, had been carved so as to form region of bold relief. This interval of time during which atmospheric agencies accomplished so
much is measured by the great unconformity
between the older rocks and the earliest of the
Tertiary sediments.
Tertiary sediments.

Tertiary Period.
eocene eroch.

eocene eroch.
Early sedimentation.-Conditions favoring the eposition of the waste from the eroded rock mas began early in the Eocene epoch. The coarse rocks accumulated near their present ledges and were successively covered with finer sediments deposited in the rising waters of the Eocene lake. The rugged topography caused the coast line to be extremely irregular, so that inclosed lagoons and narrow inlets doubtless occurred in close proximity to bold headlands. Variety in the sediments resulted, and fine muds and coarse granitic sands may have been laid down contemporaneously in adjoining areas. The higher portions of the mass of granitic rock appear to have been exposed to ctive weathering agencies, since the larger part of the Swauk formation is composed of fresh arkose, plainly derived from the Mount Stuart granodiorite. Basaltic eruptions.-Elevation accompanied by me epoch of sedimentation he epoch of sedimentation. Eroson immediately began its work and had truncated certain of the has and tuff took place The soure of this volas. nd he surfee through humbed of vets. Cvaksi he surace throgh. Cracks in he sandstone, serpentine, slate, and even the by the extremely fluid magmo which thus sece passage inward to the surface For the most part the lava spread out in oreat sheets, while in certain localities the presence of steam in the molten rock appears to have caused explosive eruptions, thick beds of basaltic tuff being intercalated with the lava sheets.
Later sedimentation.-The violent volcanism was succeeded by quiet sedimentation in the waters which soon covered the basaltic rocks. The sands and muds deposited in this later Eocene epoch composing the earlier Eocene sediments. Vegetal matter, which was present in the earlier formation now became prominent, and during the later part of the epoch, represented by the Roslyn formation, the conditions of sedimentation were such as to allow the deposit of several beds of carbonaceous material, which now furnish workable seams of coal. Sedimentation during Locene time appears to have taken place in basins which were neither extensive nor permanent. The Swauk water body was doubtless larger than the Roslyn, while the latter basin appears to have had a position well coward the southern edge of the Swauk basin. The Roslyn waters, however, did not extend far to the south, since the Manastash formation, which is of late Eocene age, is foun to have its basal sediments resting directly upon the pre-Tertiary schists. The Mhastash basin was thus soutn of the Roslyn basin, sedimens sediments were deposited. This southward migration of the lake basins in Eocene time very probMount huart masif to the onere by
 period Thech contin of the period. The deposito of the sands and muds tash formation, closed the Eocene selimentation, far as the record is known.
miocene efoch.
Basaltic eruption. - The stratigraphic break between the Eocene and Miocene epochs indicates time of erosion in this area. The rocks of the Manastash formation were somewhat folded after lowed, and time. In the Juhn Day region of Oregon, where definite correlations can be made with the late Eocene and Miocene formations of this area, this erosion break is represented by a thick mass of sediments, the John Day formation. This time of erosion was terminated by a recurrence of voleanic activity, the Eocene basaltic eruptions being only prelude to the volcanism of Miocene time.
This eruption of basalt during the Miocene epoch constitutes one of the greatest of volcanic phe-
extend beyond the boundaries of the State of Washington, is measured in terms of thousands of cubic miles, and the transfer of so great an amount of material from the earth's interior to the surface ever, these eruptions were for the most part unmarked by violence and of the nature of a quiet upwelling of the fluid lava from a number of vents. Dikes representing the old conduits can be seen where the older rocks underlying the basalt are exposed. These dikes, however, are not so numerous as those which fed the Eocene basalt flows. These lava flows were poured forth over a region having considerable relief, but the surface inequalities were soon obliterated by the floods of molten rock, which filled the deepest depressions and lapped over the higher portions of the old surface. Eventually the region, which before had been diversified with verdure-covered hills and valleys, became a monotonous waste of black rock.
Sedimentation.-Even before the last flow of basalt was erupted sedimentation began again in this area. These late Miocene sediments form the Ellensburg formation, and their characters give a clue to the history of that time. They show plain deposited their down on to the lava-covered plain deposited their loads of sand and gravel on the basalt surface. The coarseness of much of the material thus laid down and the presence of stream volum that and gato lid not lans and but the in a feature deposits is the uniform petrographic char these the material constituting them. Both the la bowlders and the finest particles appear to have been derived from one source-a mass of volcanic material of fairly constant composition. The evidence is that in some adjacent region, presumably to the southwest, there were eruptions of andesitic lava at this time, from which the eastward-flowing streams brought down pebbles and bowlders, together with finer sand and silt. These eruptions were altogether different in character from the fissure eruptions of the basalt, as is shown by the abundance of finely comminuted volcanic glass and of large pieces of very light pumice in the andesitic material thus transported by the streams. Such volcanic explosions furnished material readily swept away by the streams, which became overloaded wherever there was even a slight decrease in grade. Thus the stream deposits were spread out in wide alluvial fans over the generally level basin of basalt. Some of the beds of finest volcanic material may be of colian origin, showers of volcanic dust having covered the flood plains and overloaded the streams with silt.

pliocene eroch.

Uplift and erosion.-It seems probable that the basin in which the gravels and sands of the Ellensburg formation were deposited included only a portion of the Mount Stuart quadrangle. Along the borders of the depressed area rose higher country, and here the rocks had been exposed to of this in parts of hocene time. Portion ing parts of Eaced, had been eroded even during parts of Eocene time, since the Locene water Now further aplift attack, and this degradation of the land by attack, and this degradain of the land by cessation until the whole region was reduced to a lowland.

owlan

This approximately level plain, or peneplain, probably of Pliocene age, is excellently preserved
immediately south of this quadrangle, and is fully described in the Ellensburg folio. In the Mount Stuart quadrangle traces of the peneplain can be seen along the southern slopes of Table and Lookout mountains and on the mesa between Yakima River and Dry Creek. In these localities the surface slopes in the same direction as the dip of the basalt sheets of Ellensburg strata, but at a smaller angle with the horizon. This surface represents the peneplain, which was developed on both basal and sandstone, and was later uplifted so as to have the present slope to the south. Subsequent erosion has not been sufficient to
these peneplain remnants.
Main uplift of the Cascades.-The later uplift of
connected with the birth of the present Caseade Range. This was perhaps the closing event of the Tertiary period. To this uplift must be attribute he marked differences in the present physio north and south of Lookout Mountain. Variation in degree of uplift has strongly influenced the late cologic history. Farther south, along Yakim River, ridges were uplifted to their present eleva ion of 3000 to 4000 feet above sea level, but there the aridity of the climate has prevented crosion from destroying the traces of the older opography thus deformed. As stated in the preceding paragraph, the uplifted surface has been also preserved on the southern slope of the LookoutTable Mountain ridge. North of this, however, the uplift appears to have been sufficient to raise the surface to an elevation where climatic conditions were more favorable to active erosion.
This uplift may have reached its maximum near Mount Stuart, so that the axis of this later arch aay be considered as that of the transverse rang which has been termed the Wenatchee Mountain. This arch becomes less prominent eastward from Table Mountain, but in its higher western por ion is fairly comparable to the broader uplift of the main range. The eastern portion of the Mount Stuart massif exhibits a broad bench between 8000 and 8500 feet high, a feature that suggests the old urface which elsewhere has been deeply dissected by glacial and stream erosion. Above this, Mount Stuart itself rises as a monadnock over 1000 feet high, and with its total elevation of 9460 feet is probably the highest peak in the Northern Cassades, except the later that 8400 feet is. Thus ande mesure of the thift of the lowland approx long the We fully equal the change of fally equal the change of elevation in the main ient to enable erosion to attack very effectively the rock masses. This explanation of the ruged topog raphy of the northern portion of the Mount Stuart pudrangle is somewhat conjectural but it is the ne which appears best in accord with the facts.

euaternary Period

Development of present topography.-The present nowledge of the later history of this area is too incomplete to warrant a sharp separation betwee ontained in the Ellensburg sandstone definitely fix is age as late Miocene, but no exact date can be iven for the events succeeding the deposition of hese sediments. It has seemed most plausible to fix the date of the peneplain as Pliocene. The sub equent uplift of the Cascade Range inaugurate the present cycle of topographic development, and he commencement of this widespread deformatio night be considered as marking the end of the Tertiary. It seems equally possible, however, that his warping and uplift were events of late Plioce me which continued into the Pleistocen
Whatever subdivision of post-Miocene time is dopted, the active degradation of the elevated egion began with the uplift, and the work of sculpturing the mountains into their present forms was largely accomplished in Quaternary time. The Plioms that constitute the drainage system on the
 cter of the different stream valleys; of thes acter of the different stream valleys; of these the which the stream had to excavate its valley, and the relation of the stream to the deformed surface Modifications in the drainage system resulted as the work of dissection proceeded The master stream have doubtless maintained their old positions and herefore may be characterized as antecedent to the uplift. The best example of this is the course of Yakima River from Teanaway to Dudley, where it has cut a canyon across the uplifted basalt Another, but smaller, stream which shows an evident independence both of the rock distribution and of the warping of the region is Ingalls Creek. This large tributary of Peshastin Creek, while heading in the serpentine area, cuts directly across the ranodiorite and also across what appears to have been the axis of the Wenatchee Mountains uplift. This lack of dependence is also noticed in the case f Peshastin Creek itself.
Other streams in this area exhibit a certain Mount Stuart
dependent relation to the deformed surface. The drainage from the slopes of Table and Lookout may be termed illustrates in, and such stream case of larger streams, such as Swauk Creek and North and Middle forks of Teanaway River, there is a similar conequent relation to what is believed to have been the slope of the uplift, but the evidence uggests the possibility that these streams, like the Yakima, have maintained for the most part course established before the uplift began. This somewhat complex relationship of drainage and deformation is believed to have resulted from the fact that the later or post-Pliocene warping followed to some extent lines of earlier deformation, so that streams which had adjusted themselves to the earlier tructure might appear to be consequent upon the warped surface, although in reality they are anteedent to the later warping.
Drainage modification by piracy has been effected to some extent within this quadrangle. The most noticeable example of this capture of the headwate of one stream by another is on the southwestern slope of Table Mountain. Green Canyon represent the channel once occupied by a tributary of Dry Creek. This stream drained several square mile of Table Mountain and was of sufficient power to
carve this deep gap across the hard basalt. First carve this deep gap across the hard basalt. First
Creek, although a smaller stream, had the advantge, however, of flowing across soft sandstone, in its upper course at least, and here it rapidly cut back until it tapped Green Canyon Creek inmediately Swauk Creek This capture was of so recent hat the former drainage conditions have been i part restored with moderate conditions have been in part of the water of First Creek has the greater hrough Green Canyon by an artificial ditch and conducted down into Kittitas Valley, where it i used for irrigation purposes.
In a similar way, Horse Canyon may possibly represent the channel once occupied by Swauk alluvium is believed to indicate that Teanaway River once flowed on the northeast side of Lookout Mountain and reached the Yakima through the canyon now occupied by Swauk Creek. The bowlders which occur in the Swauk Prairie alluvium plainly came from the headwaters of Teanaway River. In the light of these relations, it appears a plausible hypothesis that at the time the lower fom the east the Roslyn san tone, was hater First Creek beheaded Green Canyon Creek. Following such a capture of Swauk Creek the upper part of Teanaway River itself was captured by
tributary of Yakima River, which also too a tributary of Yakima River, which also took development. The law of all these captures appear he same and is based upon the geologic structure The work of maintaining the gaps across the basalt scarpment during the later stages of uplift gave the advantage to the larger stream, which was able to corrade a deeper channel in the basalt, and whose tributaries, by development along the strike of the parallel streams. Thus the Teaded the smaller parale stans. Thus the Teanaway capture Yakion f bert Canyon i ctriny to be expinel the celt sapture by such a process, while it apeas probab that Horse Canyon and the lower Sw Con represent the roban her of Swauk and Teanaway River respectively, Swauk Creek till occupying the canyon cut by Teanaway River Glaciation-Evidences of glacial action are fined to the northern third of the Mount Stuart quadrangle. The two existing olaciers north and ast of Mount Stuart have already been described These are the remnants of larger glaciers for which hese high mountains formed the center. The argest of these former glaciers was one which occupied the valley of Ingalls Creek, receiving the now and ice from the southern slopes of Mount Stuart. This glacier headed against the group of peaks immediately west of Mount Stuart and flowed directly east until it reached the valley of Peshastin Creek, where it turned northward. It was a valley glacier of the alpine type, and in the amphitheater at its head has polished and scoured its bed and left morainal deposits.

Other glaciers, much less extensive, originated at the head of Fortune Creek, on the headwaters of North Fork of Teanaway River, and on Stafford reek. These extended only short distances down the valleys and were less important factors in the modification of topography than the valley glaciers of northern Washington or the ice streams which Connected with this epoch of placiation deposition of the gravels which are described in a later section. The increased precipitation which is believed to have characterized this epoch greatly augmented the general degradation of the region, and large quantities of rock detritus were contributed to the streams. This loading of the transporting waters was so complete that when the gentler grades of the lower valleys were reached the streams were unable to move the whole of their load and thus began to aggrade their beds. These gravel deposits are much more extensive along the upper course of the Columbia, yet in Yakima Valley they cover many square miles.
Landslides.-An important element in the topography of central Washington is the occurrence of landslide areas. In these areas large masses of rock have become detached from steep cliffs and have pushed downward until they came to rest in the valley below. The most extensive of these landsides border the escarpments of Lable and Lookout nountains, where the nearly horizontal sheets of basatuic lava and tuff furnish especially favorable ather or Tour Sree noll Pa Will Mar fom bu por liff fringed with the deny which lie in confion bew, but above parallin the present escarpment, can be seen raping cracks which mark the first stage in the development of future landslides. These landslide blocks are to be distinguished from talus. The masses involved in landslides, though they may sometimes be only a few feet in diameter, are often several acres in surficial extent. Indeed, some of the landslide areas measure several square miles, representing perhaps a succession of several distinct displacements.
he characteristic topography that results from escarpment of is best exhibited below the wester small ponds occupy the hollows behind large block that have been displaced. The amount of vertical displacement of one of these downthrown blocks near Little Lake is 700 feet. Apparently these landslides are not so recent as some below Table Mountain, where vegetation has not gained a foothold on the displaced block. Near Little Lake, on the contrary, the landslide block is bordered by a river errace belonging to the earlier stage of gravel deposition, and therefore within the Glacial epoch. of the Pleistocene and that along Table Mountain ereche and that ans caburred recently and may be expected to occur in the future The occurrence of landslides is not conf the basalt cliffs, although, as has been noted, the onditions are especially favorable there. Between the two 1 an and wrbel thal la la urbed and the typical landslide topography xtent of sur to explain such displacements. It dine as very gentle dips not exceeding 5° Landslides has very gente dips, rocks, the slate and the serpentine but there they are neither abundant nor extensive. North of Thorp is an area of between 100 and 200 acres where the Ellensburg sands and gravels have fallen from the edge of the mesa-like ridge between the river and Dry Creek. Behind one of these there is a small pond, which is shown on the topographic map. On the areal geology map these landslide areas are not outlined. In no place have these phenomena cealed the geologic structure; therefore the displaced masses have been mapped as though they represented rock in place.

descriptions of formations.

Pre-Tertiary Rocks

Succession.-While the absolute age has not been
tions, their relative age is determined by their geôlogic relations, and they will be described in that order. The oldest formations in this region are the Easton schist, the Peshastin slate and, the Hawkins volcanic rocks. Of these, the first is a metamorphic rock, probably of sedimentary origin; the others, while somewhat altered, are
plainly sedimentary and volcanic respectively. plainly sedimentary and volcanic respectively
The intrusive igneous rocks are the peridotite, now largely altered to serpentine, and the Mount Stuart granodiorite.

stox scerist

Areal extent.-This formation occupies two small aras in the southwestern part of the quadrangle. The larger of the two includes a portion of the ridge between Yakima River and Taneum Creek Here the formation is a quartz-mica-schist, a typical metamorphic rock. Though occupying only a few square miles in the Mount Stuart quadrangle, this schist extends westward into the Snoqualmie quadrangle, forming the southern wall of Yakima Valley as far as Easton, from which town the formation takes its name. Southwest of Clealum the Easton schist extends southward from the edge of the valley across the ridge, which rises 2500 feet at this point above the valley, and down across the forks of Taneum Creek. South of this point the chist is hidden beneath later formations, but reappears several miles farther south on South Fork Manastash Creek
Description.-Where best exposed the Easton schist is a silvery-gray or green rock, with thin layers of quartzose material separated by micaceous minerals-sericite and chlorite. The rock is quartz veins and string gashed and seaned with quarz quartzen their occurrence These are amphiblites-schists composed largely of green hornblende, which probably have been derived from a dioritic or more basic igneous rock, dikes of which cut the rock now met amorphosed into the quartz-mica-schist. Other associated schists have epidote as a prominent constituent.
Immediately west of the base of Clealum Point he schist shows an appare stratification and includes green and blue amphibole- (glaucophane-) schists and a jaspery quartzite, both the glauco-phane-schist and the quartzite containing considerable magnetite. These rocks appear to be metamorphosed sediments. Their occurrence close to the intrusive rock of Clealum Point suggests a possible cause of the metamorphism.

mand

Type occurrence.-The typical exposure of this formation is along the canyon of Peshastin Creek near the mouth of Negro Creek. The rock is generally. a black slate, and a great thickness is
exposed here. Cherty bands and fine grit or conexposed here. Cherty bands and fine grit or con-
glomerate also occur, but only in relatively small glomerate
amount.
In the northwestern part of the quadrangle, between the headwaters of North and Middle forks of Teanaway River, there is another area of the Peshastin forma. There black chert is again found interbedded with the slate, and lenses of light-gray limestone are dar wore blow arely measure more than few yards in length Argillaceons
 schistose.

In the region between these two larger areas of the Peshastin formation there are several smaller exposures of the slate and associated rocks. In some cases these areas are too small to be represented. "Nickel ledge."-One exceptional phase of the Peshastin formation and its mode of occurrence should be mentioned. At a number of localities on the headwaters of North Fork of the Teanaway and on the tributaries of Peshastin Creek, may be seen narrow belts, or even ledges only a few feet across, of a bright-yellow or light-red rock. Such occurrences are locally known as the "nickel ledge" or porphyry dike. The universal characteristic of the rock is its bright color, by which it can be recognized at considerable distance. The rock is usualy very hard, and its weathered surface is
extremely rough or ragged. These yellow or red
"ledges" occur within the peridotite or serpentine areas or in the areas of Peshastin rocks near the "ontact with the serpentine. In the latter case the "ledge" is much less homogeneous and includes thin beds of slate and conglomerate. In another locality where the "ledge" occurs within the serpenine area it is associated with a bed of chert. Examned microscopicaly the rock exnits no sto that afford any clue to its origin, and the only conChemically it is a cheor doric how by the following anlysis mode by W. F. Hillebrand:

Two explanations of the origin of this "nickel edge" might be given. The bands or ledges, which have a general east-west trend, may represent mineralized zones in both the serpentine and
the slate, or they may have been originally calthe slate, or they may have been originally calcarenיs beds or lenses belonging to the Peshastin tormation, in part included within the intru-
sive peridotite, in part situated along its contact, sive peridotite, in part situated along its contact, and thus subject to alteration by this mag-
nesia-rich igneous rock. The latter hypothesis is the one which is better supported by the rela is the one which is better supported by the relafor by this hypothesis occur within the Peshastin areas, though they are not known at the serpentine contact, where, however, the peculiar magnesian rock does occur. At the western edge of the quadrangle, on the ridge next south of Hawkins Mountain, a ledge of magnesian rock, is, however, parallel with a bed of limestone within the slate series. In this area at least, the relationships plainly point to the altered condition of the former rock being directly dependent on the nearness to the serpentine, with which it is partly in contact. The enrichment of the calcareous rock with magnesia may have occurred at the time of the intrusion of the peridotite or later.
The association of chert and slate with the magnesian rock is believed to justify the mapping of the latter as also belonging to the Peshastin formation. The principal occurrences of this rock are on the northern edge of the western area of the Peshastin formation and within the serpentine area in the upper basins of Beverly, Fourth, Stafford, Cascade, Fall, and Negro creeks. Other outcrops,
too small to be represented on the map, may be too small to be represented on the map, may be seen near Blewitt and near the junction of Ingalls and Peshastin creeks.

hawkins pormation.

Description.-The rocks included in this formaion are breccias, tuffs, and amygdaloids. The reccia is a dark-colored rock, somewhat banded in places, but more frequently composed of pink or purple angular fragments, often with the texture of pumice, in a greenish matrix, and thus having all he 1 makes up the rugged peak known as Hawkins In other localities green tuffs and thrgdadrangle.
 associated with the breccia, or the rock is dark green and aphanitic, having little resemblance to
an igneous rock. Everywhere these rocks have a marked influence on the topography, extremely rough slopes with pinnacles and spires along the rough slopes with pinnacles and spires along the
crest lines being characteristic features. The small crest lines being characteristic features. The small tooth-like peak east of the basin at the head. of
Fourth Creek, and the crags of Sheep Mountain south of Blewitt, afford the best examples of this, topography.
Under the microscope all these rocks are found to have the textures of lavas and other volcanic deposits. While there has been considerable production of secondary minerals, such as calcite,
epidote, chlorite, añd quartz, through alteration of
the original minerals, yet remnants of augite and the original minerals, yet remnants of augite and plagioclase crystals show the approximate composition of the lava, and abundant traces of diabasic
texture in the rock give additional evidence as to texture in the rock give addition
the character of the original rock.
relations of pre-tertary formations.
Of the three formations described above, the Easton schist is characterized by the greatest degree of metamorphism. Although it has associated with schist can hardly be correlated with the Peshostis schist can hardly be correlated with the Peshastin
sorthern part of the quadrangle. In view of the evidence exhibited by this crumpled rock of having suffered a much greater amount of dynamic metamorphism than the rocks of the Peshastin and Hawkins formations, it may be well provisionally to consider the Easton schist as the oldest rock in the Mount Stuart region.
The Peshastin and Hawkins formations are intricately mingled in some of the areas, making separation difficult in some cases and impossible, as far as mapping is considered, in others, and in such places the predominating rock only is shown on the map. The two formations with their several areas often widely separated by the intrusive rocks are shown by the geologic map to have a general east-west trend, which in the western area of slate, chert, and limestone corresponds to the strike of the strata. The strata are usually vertical or have steep dips and at only one locality are the relations of the two formations such as to indicate their relative age. On Sheep Mountain, the upper portion of the peak is composed of the volcanic rocks of the Hawkins formation, with black slate and planes having a low dip to the planes having a low dip to the northeast. This younger of the two formations the that sounger of the tho remants of these pre Tertiey strata as exposed to the north and west of this point is synclinal, although the folding is of close that doubtlese minor folds are included within this syncline. The evidence is far from conclusive however, since at Sheep Mountain the fold may be overturned, and in fact, a few miles west of this quadrangle, relations were observed which indicate strongly that the Peshastin is younger than the Hawkins with the Easton schist plainly older than either.
There is no evidence of any marked unconformity between the Hawkins and Peshastin formations, and, taken together, they have a strong resemblance to the Carboniferous rocks of Columbia (Cache Creek series) and to the rocks o the same age in the Sierra Nevada (Calaveras forfailed age of the Pesh tossis, by mixht be fixed The extension of Mountains may furnish data for a definite age determination of these rocks as well as for their correlation with the rocks of adjoining regions, but at present they can be described only as pre-Tertiary
prridotite and serpentine.
Areal importance.-Bordering the Mount Stuart range on the east, south, and west are two belts of peridotite. These belts are roughly parallel and are connected at a few points by dikes, one of which, at the head of Turnpike Creek, is large enough to be represented on the geologic map. The northern area is the larger and within this quadrangle width in its width in its widest part. Together the two These belts extend both to the north and to the west, so that the total area of peridotite in this region may exceed 100 square miles.
Description.-The rock which is referred to as peridotite is largely altered to serpentine and hows the greatest possible variation in color and in general appearance. In one part of the area the serpentine may be reddish brown and locality the rock is bright green and somewhat schistose in structure. In the one case the steep slopes are covered with angular bowlders weighing tons, and in the other the rock weathers into a fine shingle resembling broken glass. Bluish black, dark green, light red, and yellow are other colors
frequently noticed. A common occurrence of the rock is in bowlders a foot or less in diameter, not
well rounded, but with convex surfaces which often intersect in sharp interfacial angles. The surfaces are usually striated and polished (slickensided), so that Except where markedly schistose the sunligh. Except where markedly schistose, the serpentine luster. In the massive phases it has a porphyiti luster. In the massive phases it has a porphyitic erystals in the dull aphanitic ous crystals may also be seen on breaking open These the slickensided bowlders. The clis sening one is bastite, an alteration product of enstatite, and this, with the occurrence of the mineral serpentine which is plainly derived from olivine, shows the altered rock to have been originally an olivineenstatite rock, the variety of peridotite to which the enstatite rock, the variety of peridotite to which the
name saxonite has been given. The only rocks with which the serpentine might be confounded in this region are certain phases of the Hawkins volcanics, described above, and the gabbro and basalt, which will be considered later. The serpentine however, may be readily distinguished from all of these by its greater softness, being easily scratched with the pick or hammer
Examined microscopically, some specimens of this rock are found to contain remnants of the original constituent minerals, showing that the alteration of the peridotite to serpentine has no been complete in all cases. Olivine occurs surrounded by serpentine. The olivine is clear, but the cores are bordered with fine grains of magnetite,
which has separated out in the course of the alterawhich has separated out in the course of the altera-
tion of the olivine into serpentine. Mesh structure tion of the olivine into serpentine. Mesh structure
is present in the rock where this alteration has been is present in the rock where this alteration has been completed. Enstatite is a less abundant constituent, and is commonly found altered to bastite, ye in a few cases it occurs unaltered. There are phases fiallage which are almost entirely composed of dallage. Such a rock belongs to the pyroxenites shows it to en cimply a varion in shows it to represent simply a variation in the petuent, 1 in grains. Pyrite and calcite occur in some specimens of the serpentine
The following analysis, by Dr. W. F. Hillebrand, is of serpentine from the Three Brothers. This becimen is typical of the altered rock, which show derivation from peridotite:

asctual condition of sulphur not known,

The best exposure of serpentine is in the group of high peaks which forms the divide between th of Ingalls, Fortune, and Icicle creeks. Here both the massive and the sheared phases of serpentine ocurs in the crests, and the jointed charmining deep portions of the anentine mass so influencing the topography as to render its so infuencing the would be expected in an are rock serpentine. The slopes of these peaks are very serpentine. The slopes of these peaks are very
steep and are usually masked with heavy talus. In the eastern portion of the serpentine belts the schistose and sheared phases of the rock prevail Here it is more difficult to trace the distribution of the serpentine, as irregular apophyses of the igneous rock extend into the older formations, the
Peshastin slate and the Hawkins volcanic Smaller areas of these older rocks are also inclosed by the serpentine, and even larger blocks ar included within the mass of the intrusive rock. It is noticeable that the serpentine areas are here char
phy than farther west. Gentle slopes and rounded divides covered with fine sand indicate the presence of serpentine, while the older rocks form the The features.
The age of the peridotite is readily fixed as younger than the three formations already described. In the northern area the peridotite now in great part altered to serpentine, was intrusive
in the slates and tuffs, and in the southwestern tho shat an southwester part of the quadrangle small dikes of serpentin Theen found in the Easton schist.
The alteration which the peridotite has undergone is not of the nature of surficial weathering, but more deep seated in character. Chemically it
has resulted in the loss of some of the magnesia, has resulted in the loss of some of the magnesia,
the gain of water, and the further oxidation of the the gain of water, and the further oxidation of the
iron. Incident to such chemical change is a coniron. Incident to such chemical change is a con-
siderable increase in volume, to which undoubtedly siderable increase in volume, to which undoubtedly
must be attributed the development of the many zones of sheared material within the serpentine mass, as well as the production of the slickensided bowlders described above
The alteration process was hydrothermal in its nature and the source of the heated waters may perhaps be the intrusive granodiorite which described in the following paragraphs. The time of this extensive serpentinization is plainly preTortary, since the basal conglomerate of one of the Locene sandstones, as will be shown later, is found to contain the peculiar bowlders of serpentine such as occur on the surface to-day. The crushed and jointed condition of the serpentine, therefore, is the evidence of dynamic movements or metamorphi evidence of dynamic move
action in more recent time.

mount stuart granodiobite.

Description.-Mount Stuart is a rugged peak hich owes its prominence in great measure to the hared This is rock from which it has been sculp tured. This is a gray granular rock, granitic in appearance. Being generally fresh and unaffected to be white fellopar, black mie and homblende with a few proins of quartz. Although the resembling graite in quart. Although thu position, the Mount Stuart rock is more closely allied to a roek type common in the Sierra Nevad which has been named granodiorite.
The granodiorite of Mount Stuart is thoroughly massive and nowhere shows any gneissoid texture It is, however, everywhere jointed and sheeted, and to this feature are due the spire and minaret details so characteristic of the crest line of Mount Stuart. The jointing also determines the angular characte of the talus blocks on the lower slopes, where the surface of the rock itself has been rounded by glacial action. The granodiorite is not very uni form in its appearance. It shows considerable variation both in grain and in color, and aplitic dikes and dark segregations are common. In a few places there is a slight reddening due to alteration, but nowhere are there any indications of the subsequent introduction of any metalliferous minerals.
The granodiorite is undoubtedly the rock in this region which is most resistant to erosion. This i shown by the freshness of glaciated surfaces which have been long abandoned by the ice. On exposed summits the rock is subjected to rigorous frost action throughout the greater part of the year, and here it crumbles into a coarse sand. Examination of this sand where it has accumated in crevices of the rock shows that the disintegration of the rock has been purely mechanical, since the mineral of the rock itself.
The principal area of granodiorite included within the Mount Stuart quadrangle is roughly semicircuthe Mount Stuart quadrangle is roughly semicircuthe northern edge of the quadrangle. The northern limit of the Mount Stuart massif, however, is several miles beyond, so that the granodiorite as maped here reyresents only a part of a much larger me A small area of granodiorite occurs on the east side of the valley of Peshastin Creek, but this narrow, low ridge of granodiorite projecting through the sandstone presents few, if any, of the bold feature seen in the Mount Stuart range.
Under the microscope the granodiorite is seen to have the typical granitic texture, the feldspars, quartz, and darker constituents forming a closely
interlocking mosaic. The rock varies somewhat in indicate that it represents some rock presurab a rrain, but generally the constituent minerals are rom 1 to 3 mm . in diameter. The most abundan the plagioclase, belonging to the acid end or me-soda series. This feldspar is often zonal, an he more basic core shows a greater tendency leratio. The por poth in ploctitial ahedra The orthoclase plates niform however in its distribution, and probably makes up over 8 per cent of the'rock Quatr although inconspicuous in the hand specimen, is seen under the microscope to be an essential constituent of the rock, occurring in small irregula grains. The ferromagnesian constituents are some what more abundant than is commonly the case in ranitic rocks. Both biotite and green hornblende re found in this granodiorite in slightly varying proportions, with perhaps, as the rule, the biotite the more important of the two. The hornblende hows a greater tendency to idiomorphic development. Magnetite, apatite, and titanite are accessory constituents commonly present, and augite interTwo chemical analyses of thised in one section. Dr. H. N. Stokes, of the Survey were made below. I is the analysis of a rock from the south eastern slope of the Mount Stuart range, a rath ight-colored phase of the granodiorite, while II i the analysis of a darker variety of the rock occur ring on the southern wall of the canyon of Ingalls Creek, between Hardscrabble and Cascade creeks, near the edge of the granodiorite mass. This ock appears megascopically to be much poorer in quartz and has more of a dioritic appearance. The analyses, however, show the two phases of the granodiorite to be remarkably similar in composito the Cypical grane the typical granodiorite as defned by Linder, cepters in the abundance of the ferro expresses itself in the abundance of the ferrohe soda, while together the alkalies exceed the lime. The rock is therefore of an intermediate we. with the potash feldspar less imporneda ype, with the potash feldspar less important than allow this rock to be included among the diorites It has therefore been temed here a cranodiorite which approaches closely a quartz-diorite. In the quantitative classification of Cross, Iddings, Pirs son, and Washington, based upon the chemical analyses, this rock is a tonalose.

Analyses of Mount Stuen

The age of the granodiorite is shown by the ccurrence on the western flank of Mount Stuart of dikes of the granodiorite intrusive in the adjacent serpentine. Elsewhere along the contact the elations between these two rocks could not be determined, but fortunately the evidence at the one ocality is conclusive, and thus the granodiorite is known to be younger than the serpentine, which in turn has been shown to be younger than the other pre-Tertiary formations described.

contact schist

The granodiorite is also in contact on both the ek western slopes of Nount Stuart with ock quite n. This rock is in part mica-schist and in part position it resembles a diorite, and might be considered simply a peripheral phase of the granodiorite were it not for the fact that dikes of serpentine as well as of granodiorite are found in the schist. Although no characteristic metamorphic minerals were found in this schist or gneiss, the field relations Mount Stuart.
indicate that it represents some rock, presumably as
old as the Peshastin or Easton formations, which old as the Peshastin or Easton formations, which
was intruded by the peridotite and later metamorwas intruded by the peridotite and later metamor-
phosed by the intrusive granodiorite. This explanation is supported by the occurnce ne ontact or small inclusions of Peskastar serpentine, while the schit
In several places along the contact the granodiorite stands high above the serpentine or schist making an escarpment so noticeable as to suggest a fault. The presence at these same points of pophyses of granodiorite which can be traced from he main mass into the serpentine and schist shows, faulting along this contact.

cid dikes.

Relation to granodiorite.-In the serpentine belts ncircling Mount Stuart there occur numerous dikes of a light-colored porphyritic rock. These kes are not prominent features in the geology of he region, but are important rather from their conIn no with the granodiorite mass just described raced into, however, could any of these dikes be although the granodiorite mass of Mount Stuart, mmediately west of that peak. Int in the area f granodioritest of that peak. Intrusive masse and on Peshastin and Negro creeks. These art mapped with the same color as the Mount Stuart granodiorite.
The rock of these dikes and small intrusive masses varies considerably in its appearance. In the intrusive masses it is a rather coarse-grained rock, often beautifully porphyritic. Such a phase of the rock occurs on the Peshastin above Blewitt, and on Negro Creek. In the dikes the rock finer grained, plainly porphyritic, light gray or and in general resembles a diorite-porphyry rather than a granite-porphyry
The prominent phenocrysts in these rocks are mostly feldspar, an acid plagioclase which is usually zonal. Green hornblende occurs in good-sized respect the porphyritic rock shows a marked contrast to the granodiorite. Quartz and orthoclase also are not common as prominent constituents although in one dike on Peshastin Creek the quartz phenocrysts are abundant. The groundmass is finely granular, sometimes with a decided tendency to the granophyric texture. In a few dikes, near the head of Negro Creek, the rock is andesitic in appearance and is also characterized by phenocrysts of a brown hornblende.
The mineralogic composition of most of these rocks points to a close relationship with the Mount Stuart granodiorite, and the chemical analysis of a typical rock of this class affords further evidence of this, showing it to be a tonalose, like the granodiorite. The specimen is from a dike on the divide between Ingalls Creek and a branch of Icicle Creek just west of Mount Stuart. The analysis, by Dr. H. N. Stokes, is as follows:

Tertiary Rocks.

mocene rocks

Rocks of Eocene age occupy over one-half of the Mount Stuart quadrangle. Three of the formations, the Swauk, the Roslyn, and the Manastash, Roslyn formations are separated by an extensive series of volcanic rocks, the Teanaway basalt, with which are associated basic dikes. Another rock of Eocene age is the gabbro which occurs intrusive
in the Swauk sandstone and the older formations. These form
their age.

swauk pormation.

Areal extent.--The Swauk formation extends in belt from 3 to 12 miles in width across the northern part of the quadrangle. Stratigraphically the formation is limited below by the marked unconformity where its basal beds rest on the preEocene rocks and above by the overlying basalt The formation receives its name from Swauk Creek, in the basin of which it is extensively exposed. It is also best known from its occurrence in the Swauk mining district. The rocks of this formation are known to extend northward beyond the northeast corner of the quadrangle, across the valley of Wen-
atchee River, and also westward across the head waters of Clealum River to the higher parts of the Cascade Mountains. Thus the total area of the Swauk formation is several times that included within this quadrangle, and it is one of the most important formations in the Cascades.
Description.-Conglomerate, sandstone, and shale are the rocks comprised in the series here termed the Swauk formation. No general section or succession can be given for the formation, since it varies widely in different parts of the area. The conglomerate naturally is confined mostly to the lower portion of the series, but the shale is found interbedded both with the conglomerate near the base of the section and also with the sandstone higher in the series. No limestone beds occur in this formation, although some of the shale may be slightly calcareous. More commonly the shale is black and carbonaceous, and at several localities th contains well-preserved fossil leaves.
The thickness of a formation in which the succession is so different in different parts of the area it is probable that the Swark
 over 5000 feet, while in others 3500 feet may be this sedimentary formation can not be definitely determined, since there was erosion of portions of he uppermost beds soon after their deposition.
The basal member of the formation is usually of localities finer sediments may be found resting directly on the older rocks. In the latter case the sandstone or shale is composed of material plainly derived from the underlying rock, so that greenish yellow sandstone containing fragments of serpentin may be seen resting on the serpentine. In a similar way the coarsest phases of the basal conglomerate are very local in their occurrence, and in their composition often bear a definite relation to the underlying formation. The serpentine conglomerate is composed of slickensided bowlders, such as occur so abundantly in some parts of the peridotite areas, with a scarcely noticeable admixture of small pebbles of slate and other rocks, the whole cemented by finer detritus of the composition of serpentine. Such a phase of the basal conglomerate is found on the east side of the valley of North Fork of Teanaway River, on Negro Creek, in the lower valley of Peshastin Creek, and on the northwestern slope of Tiptop. In all of these rest directly on the serpentine and on Tiptop the serpentine would undoubtedly be found not far beneath the surface. In the first of these occurrences the conglomerate is associated with a shale composed of serpentine and magnetite, representing residual material from the rock directly beneath this Swauk outlier.
A basal conglomerate that is composed almos wholly of granodiorite bowlders occurs on the eas side of Here the blocks of the granitic the wagon roaveral feet in diameter and are embedded in an several feet in arkose matrix. This quartz and feldspar in and inclosing the granodiorite bowlders is well cemented and makes the conglomerate closely resemble the massive granodiorite itself. Indeed, at this locality it is difficult to distinguish always the conglomerat from the parent rock, which is found directly to weathering and thus to have been residual bowlders having undergone little or no transportation. These local conglomerates mark the position of shallow bays where the sediments deposited wer
derived from the region immediately bordering the shore, and thus foreign material among the pebbles is of exceptional occurrence.
The general character of the Swauk sandstone is that of an arkose. It is usually plainly bedded, and interstratified with shaly and conglomerate orains of feldspar and quartz and dark flakes of grains of feldspar and quartz and dark flakes of
mica may be noticed. In the eastern part of the mica may be noticed. In the eastern part of the
area, especially along. Mission Creek and its tribuarea, especially along Mission Creek and its tribu-
taries, the Swauk formation shows a notable chang in character. The shale and conglomerate become insignificant in mont and the sandstone is lighte colored and plainly more purely quartzose. The phase of the sandstone is massive quartzose. less plainly phase of the sandstone is massive and less plainly bedded, and doubtless represents different con-
ditions of sedimentation. In place of sheltered embayments there were exposed beaches where the sediments were subjected to wave action, so that ell-washed quartz sands were formed.
Flora.-The shales of the Swauk formation contain abundant and well-preserved fossil leaves. Tiptop, the placer mines on Swauk Creek, and the ridge between Middle Fork of the Teanaway and Clealum River are localities where such fossils ma be collected. These leaves from the trees that stood on the shores of the lake in which the Swauk sediments were deposited afford data as to the ag of the formation. Dr. F. H. Knowlton report as follows on the Swauk flora:
From the vicinity of Liberty I have characterized about
twenty five species all of which are new. They are distributed ng the following genera:

Lygodi Sanall Myrica

Or heses speles

 nown, this being Ficus planicostata, which is a coumon Denver, and Fort Union species, and on this rather insecur
bass: it is assumed that the age should be regarded a bas: $\begin{aligned} & \text { it } \\ & \text { Eocene. }\end{aligned}$.

Structure.-The Swauk formation has been sub jected to forces which have changed the beds from the horizontal position in which the sands and muds were deposited. The rocks are now folded the folds being usually open, with the beds only slightly inclined. In some parts of the region strata are steeply inclined or vertical, and in one locality even overturned.
In a general way the structure of the Swauk formation may be described as simple, consisting of anticlines or arches and synclines or troughs, the xes of which trend northwest-southeast. Thes folds are rather narrow, and six or eight fold may be traced in the area between Middle Fork of Teanaway River and Mission Creek. In the vicinty of Swank Creek there is a fold with an east-wes trend, and the syncline along Midde Fork of Teanway River has a north-south axis, but the more mon direction is that given above.
The folding of the Swauk rocks was plainly begun soon after their deposition. An examin ation of the contact of this formation and the basalt directly overlying it shows that the sandstone and hales had been folded and somewhat eroded before the Teanaway basalt covered them. This does not, however, preclude the possibily of furker devel pment of these same folds in later time; indeed, in rain cases later action of this kind appears most
 faulted pebbles in the conglomerates, Small fault
 but in ouly one case is the fout of suffient magitude to be shown on the geologic map. On the idge 2 miles south of Hawkins Mountain the sand tone is faulted down so that the edges of the bed but against the serpentine. Both east and west of is point the fault pase into the crushed serpentine, where it can not be detected.

Occurrence.-The area covered by the Swauk ormation is bounded on the south by a belt, on mile or more in width, in which black basaltic lava is exposed. This rock forms the prominent escarpsouth and west, and here it is readily seen that the
basalt overlies the Eocene sandstone. An even better exposure of the basalt is where the belt i crossed by the three forks of Teanaway River. The contacts here show that the basalt is conformably overlain by another Eocene formation, the Rosyln graph.
It is in view of the fact that the age of thi formation is thus determinable that the nam Teanaway basalt has been applied to it. In the reconnaissance surveys of central and southeaster Columbia lava Tussell and others, the name used, including not only basalts of Eocene, Miocene used, inctuais Pliocene age, but also hypersthene andesite of Pleistocene age. In detailed areal mapping, igneous rocks of different ages must necessarily be separated, and therefore the name Teanaway has been applied to this formation, which includes only the basalt flows and interbedded basaltic pyroclastics of Eocene age and which constipyroclastics of thecene age and which constirepresents the products of volcanic activity uninterrupted by any other important geologic process The basalt of Miocene age, to be described later has been termed Yakima basalt.
The Teanaway basalt continues westward beyond the boundaries of the Mount Stuart quadrangle, and occurs again farther south at "Deadmans Curve," west of Clealum, and at two other localities, where small knobs of basalt project above the alluvium of Yakima Valley. A fourth and more
prominent exposure of the Teanaway basalt in prominent exposure of the Teanaway basalt in
this vicinity is the bold, wall-like mass east of this vicinity is
Clealum Point.

Description.-The Teanaway basalt comprises a series of lava flows with interbedded tuffs overlying the Swauk formation. In its easternmost exposure, under Table Mountain, both flows and tuffs are present, although the formation here measures only 300 feet in thickness. Where Swauk Creek has cut through the escarpment below Liberty several canyon walls. Westward and notheard from the point tuffaceous beds become more important in point tuffaceous beds become more important in
the basaltic series and the succession is as variable as might be expected in a series of volcanic rocks On Middle Fork of Teanaway River, the Teanaway basalt can be seen in its greatest development, Green tuffs and the darker lava flows are intermingled as on the slopes of a volcano, while here the lava also best exhibits the parting into prismatic columns so characteristic of basalt. The matic columns solican of volcanic rocks exposed here measures several thousand feet

The Teanaway basalt is black and very compact, readily distinguished from the black shale of the Swauk formation by its greater hardness and higher specific gravity. The presence of iron oxides make the basalt often a rusty brown on the exposed surface, and the soil derived from the disintegration of this rock is red. The lava is frequently porous, and phases of the basalt occur which are typical amygdaloids. Much of the basalt forming the red wall east of Clealum Point is as vesicular as iron slag, and similar red amygdaloid is found at other places in the area of Teanaway basalt.
The minerals contained in the basalt are not visible to the unaided eye. Microscopic examination of the Teanaway basalt shows the most abundant constituent to be plagioclase, which occurs in lath-shaped crystals and microlites and has the optical properties of labradorite. Augite is next in importance, occurring both in stout prisms and in grains. Olivine was not detected in any specimen although its, former presence is suggested by alteration products Magnetite is present in small grains as well as in fine
dust, which renders much of the dust, which renders much of the glassy base almost opaque. The amount of glass in the basalt varie widely, but usually forms a large part of the rock. Kittie ous county line anst a the road from Liberty to Blewett, differs from the typiel to Blew, in the described labradorite and augite. The quartz is an obudan constituent and shows magmatic corrosion with the usual resorption border of glass and augite grains. The larger phenocrysts of feldspar are also corroded and honeycombed with glass.
The following analysis of typical basalt from Middle Fork of Teanaway River was made by Dr.
W. F. Hillebrand. This basalt is black and com pact, with a brown glass base, and contains labrate, which may represent olivine.

Analysis of Teanaway basalt.	
	Per cent
SiO_{3}	
$\mathrm{Al}_{2} \mathrm{O}_{3}$	12.90
$\mathrm{Fe}_{\mathrm{s}} \mathrm{O}_{3}$	2.64
Feo.	11.28
MgO	2.68
CaO	6.96
$\mathrm{Na}_{5} \mathrm{O}$	2.83
$\mathrm{K}_{2} \mathrm{O}$.	1.40
$\mathrm{H}_{2} \mathrm{O}$ at 110°.	91
$\mathrm{H}_{2} \mathrm{O}$ above 110°.	1.76
TiO_{2}	2.44
$\mathrm{P}_{3} \mathrm{O}_{5}$	45
$\mathrm{V}_{2} \mathrm{O}_{3}$	
MnO	2.5
NiO.	trace
sro	trace
BaO	. 05
$\mathrm{Li}_{2} \mathrm{O}$	trace
FeS.	. 13

According to the quantitative classification, this ack would be termed a vaalose, and chemically close relationship to the diabase from South Afric which is the type valose.
Associated dikes.-As is indicated on the areal eology map, hundreds of dikes of basic rock cut the Swauk sandstone and older rocks. These dike extend to the Teanaway basalt and in many case an be seen to connect with the lower sheets of that ormation. It is evident that these dikes represen the innumerable conduits through which the molte basalt reached the surface. In exceptionally favorble exposures the vertical dike can be traced, as uts the sandstone, to a point where the narro dike abruptly widens out and becomes a part of he horizontal or gently inclined flow. The evidence is conclusive that the Teanaway basalt was
erupted through many fissures rather than from a erupted through man
large volcanic center.
These dikes form one of the most striking feature in the geology of the region, and are also prominen nce largely the detail of relief on ridge tops, bu ce largely the detail of relief on ridge tops, bu points, since many places their position is reper ented by a deep cap in the crest. The dikes occur principally in the Swauk formation and in the peridotite. In the sandstone they show no constant relation to the structure, and few intrusive sheets are asociated with them. They commonly trend some what east of north, but the variation in direction is considerable. Usually the dikes are nearly vertical. In width the intrusive material may measure undred feet or more or only a few inches. With this variation in width there may be a correspondgome casesce in texture, but other factolation com plex. Usually the rock in the wider dikes has a coarser and more diabasic texture than that in the narrow dikes, but in a few cases the finer-g rock has been observed in the wider dike.
While in the Swauk formation the basic dikes are very regular and can be traced for miles, the same dikes change in character as they are fol lowed into the peridotite or serpentine. Here they ary greatly in width and are extremely irregular in trend. This variation is evidently due to the difference in character of the fissures in the sandstone and in the serpentine. In the serpentine, with its many zones of sheared material, there is often a
complex of connecting dikes, large and small, in striking contrast to the regularly arranged dikes in the sandstone.
In their petrographic characters the dike rocks how a certain relationship to the effusive basalt In texture these rocks are holocrystalline and vary fom diabase to diabase-porphyry. The abundan pyroxene. The pe porphyry are feldspar and yroxene. The plagioclase is mainly labradorite, composition. The pyroxene is chiefly augite, with which hypersthene is sometimes intergrown. In ne specimen the hypersthene was found to be more pleochroic. Commonly, however, the hypersthene pleochroic. Commonly, however, the hypersthene
is largely altered. Olivine occurs in much of the is largely atered.
diabase, being of brownish color, but is usually altered to brown and green material resembling iddingsite, which also appears as a decomposition
product from hypersthene. Olive-brown hornblende is present in several of the specimens exan med. Quartz is a noteworthy constituent, not only in the hornblende- and hypersthene-bearing phases The quartz occurs in anhedra and is interstitially he quartz occurs in anhedra and is interstitially associated with micropegmatite. The other constit ents are magnetite and apatite.
Doctor Hillebrand has analyzed a specimen which is representative of these dikes, it having been
collected from the long dike on the east side North Fork of The long dike on the east side of ork showing an elevation of 4248 for benc ock is quatz bearing olivine-diase, rock is a quartz-bearing olivine-diabase, in
which the constituents are labradorite, augite livine, quartz, with orthoclase in micropegmatite magnetite, hornblende, and apatite. The diabase s less basic than the Teanaway basalt, and a quan titative calculation puts the diabase under tonalose rather than vaalose in the quantitative classification There is, however, a well-marked mineralogic and chemical relationship between these two rocks which are also genetically related.

gabbro.
tuar
South east of the Mount Stuat massif there are six areas of gabbro that aggregate square miles. This rock is extremely bserved that are too small to be repressented were the map. The irregular distribution is largely due to the fact that the rock is intrusive in the peridotite and in the Peshastin and Hawkins formations a well as in the Swauk sandstone. Small dike-like masses indicate that probably at greater depth th gabbro mass may extend as far west as North For of Teanaway River. Owing to its massive charcter the gabbro resists erosion well and thus stand up prominently above the other rocks
The gabbro at Camas Land occurs in the form of an intrusive sheet in the Swauk sandstone. The tructure here is a gentle syncline with northwest southeast trend. The gabbro sheet conforms with the sedimentary beds except at one point on the ortheast side, where the intrusive rock break cross the beds and connects the main sheet with bwer and smaller sheet or tongue. The intrusiv rock is probably thickest at the northwest end of the ncline, where it attains a thickness of not les han 500 feet. It is owing to the presence of the gabbro that Camas Land has been protected from he general degradation of the region and is preerved as a remnant of a valley belonging to an Tarier stage in the topographic development.
The other areas of gabbro represent intrusiv Tasses much larger than the sheet just described The essential petrographic identity of the rocks from the different localities appears to be sufficient evidence to justify the correlation of all the gabbro the Swauk formation the Land sheet is intrusiv the Swauk formation the gabbro is considered to e or Eocene age. The occurrence of Locene gabasaltic eruptions during the Eocene is suge extive of relationship be two dikes were observed cutting the gabbro, although hese dikes are shown on the areal meology map in he immediate vicinity of the gabbro areas, whit many dikes of fine-grained gabbro can be trace rom the main mass for short distances into th erpentine. It is possible that the gabbro repre ents slightly later intrusions of the same magma from which the Teanaway basalt had been erupted. Petrographic character.-The gabbro is light gray in color, with either a brownish or greenish
int, and in some places is decidedly purple. Feldspar and pyroxene can be distinguished megascopically, as the rock is medium to coarse in grain.
The texture is both ophitic and granular, the latter being more characteristic for the gabbro of the western areas. Under the microscope the gabbro is seen to be holocrystalline. The most important constituent is the plagioclase, which is basic labra-
dorite in composition, sometimes with dorite in composition, sometimes with oligoclase orming the outer portion of a zonal crystal. In he gabbro fates whas Land augite forms large the more granur ohase dialloge ic telaspar. In the characteristic phare dallage is the pyroxene, although in some individuals which the pat ing in the center it is absent on the rim. Olivine may have been an orical cont of now represented wholly by serpentine at so now represented wholly by serpentine and other
secondary minerals. Bastite is present in some slides, with a structure that strongly suggests its derivation from hypersthene. Brown hornblende occurs intergrown with the augite and diallage and hornblende of secondary origin is also a common constituent. Quartz is found in many of the specimens, occupying interstitial spaces and forming micrographic intergrowths with feldspar, which is probably orthoclase. Magnetite, which occurs often in large masses and is in many cases titaniferous, apatite, abundant in slender needles, and ilmenite are other primary constituents. Some of the specimens from the larger gabbro mass are much altered. Green uralitic hornblende is abundant, as well as chlorite, serpentine, leucoxene, quartz, epidote, actinolite, zoisite, and kaolin. An interesting feature is the selective alteration which has affected the gabbro. This rock which has its feldspar completely replaced with zoisite and its hypersthene epresented by bastite, contains augite that is hardly affected.
Analyses of two specimens of gabbro were made by Dr. H. N. Stokes. - I represents the gabbro of the westernmost area, collected on the high ridge west of Fourth Creek. This rock contains labradorite and diallage, with some hornblende and magnetite. Olivine may have been a constituent, but the only other minerals present-serpentine, II res and and I represe the gabbro of the intrusive shect at lase labra to plago ase, hably quarta, and probably.

In the quantitative classification both of these rocks would be termed hessose. Calculation of the ially similar to those indicated in thfferences essentially similar to those indicated in the above description. The Camas Land phase contains quartz and has a somewhat less basic plagioclase, as well as re sight in thoclase molecte. These diferences
 have been correlated

hoant romaton.

Occurrence.-The Roslyn formation is much less mportant areally than the Swauk. The distribution as shown on the areal geology map includes most all of this formation that is exposed. I nay extend eastward under Table and Lookout formation is concealed by the Miocene basalt. The lluvium of the valleys covers about 25 square miles of the Roslyn sandstone.
On the slopes north of Roslyn and Clealum the Roslyn sandstone is well exposed, and it also forms
low cliffs along the southern bank of Teanaway River. In other localities the soft sandstone is not at all prominent, and in many cases, as along the north side of Swauk Prairie and at the occurrence 3 miles east of Clealum Point, the presence of this formation might not be suspected, so few and obscure are the exposures. Since there is a considerable erosion break between the Roslyn formation and the Miocene basalt which caps it on the south and east, the most eastern exposures of the Roslyn are irregular in outline and variable in thickness, and this formation is not found continuously between the Teanaway basalt and Yakima basal. Under Tabe Mow bed back shale and octed for pected for coal. On First Creek is found a greater which the basalt capping has been only partially which t.
Description.-The greater part of the Rosiyn formation consists of massive sandstones, rather more yellowish in color than the typical Swauk sandstone. but not so well sorted as the eastern
phase of the Swauk. With the sandstone occur shales, both fine-grained clay shales and the coarser arenaceous phase. As a rule, the stratification of these rocks is not strongly marked, and in some localities irregularities of bedding can be seen and local unconformities detected. Conglomeratic beds are not common, pebble bands in the sandstone being the coarsest material usually found in this formation. At the base of the section on Middle Fork of Teanaway River occurs a small amount of conglomerate containing pebbles of the pre-Eocene rocks, with an occasional pebble of basalt. The Roslyn formation appears here to overlie conformably the Teanaway basalt, but with basal sediments that are distinct from the basaltic tuffs. The sandstone is a quartz arkose, but is rather darker than higher beds, a feature possibly due to slight admixture of material derived from the basalt series.
The marked prevalence of landslides in the northern portion of the area of Swauk sandstone makes exact determination of stratigraphic thickness impossible. The upper part of the section is known thoroughly from the exploration work in the coal basin and will be described under the heading "Coal. An approximate estimate of the total thickness of the Roslyn formation as exposed
between Ryepatch and Clealum is 3500 feet, which between Ryepatch and Clealum is 3500 feet, which probably re
The structure of the Roslyn formation is very simple. Along North Fork of Teanaway River the sandstone is nearly horizontal, so that at Ryepatch the basalt is exposed beneath the sandstone
The dip here is only about 2° to the south but The dip here is only about 2° to the south, but
increases to 20° in the vicinity of Roslyn and Clealum. The southern side of the syncline is concealed, but it undoubtedly has steeper dips. The axis of the syncline pitches to the southeast, passing under Lookout Mountain.
Flora.-Doctor Knowlton's report on the collections from the Roslyn formation is as follows:

The first fossil plants seeured within this area were coilicected
by Mr. J . S. Diller in 1892 from the Roslyn coal mine. In 1897
Prof. I. C. Russell made a considerable collection at the Clealum mine, and in the following year 1 made a alarger collection at
he Roslyn mine. The following genera are the Roslyn mine. The following genera are repres
but one or two of the species being new to seience.

$\begin{array}{ll}\text { Salix. } & \begin{array}{l}\text { Fieus. } \\ \text { Myrica. }\end{array} \\ \begin{array}{l}\text { Benzoin. } \\ \text { Aninus. }\end{array} & \text { Sapinus. } \\ \text { Castaua. } & \text { Chrrsophllum. } \\ \text { Quercs. } & \text { Zizyphs. } \\ \text { Jugrans. } & \text { Magnolia. }\end{array}$

species before known are doubtfally referred to Salix angusta and Magnolia californica, both of which have been
found in the Miocene. These, together with the quite modern appearance of certain other forms, indicate that these beds
are younger than the Swauk formation Aparently not are younger than the Swauk formation. Apparently not a
single species is common to both formations. This would
 mall basin and did not survive
Roslyn sandstone was deposited.

The conclusions reached from this study of the flora are quite in accord with the stratigraphic relathe Swauk formation and the Teanaway basalt is indicative of a time interval, while the eruption of the basaltic lavas over this region suggests a further reason for the lack of connection between the Swauk and Roslyn floras.

Occurrence.-The latest of the Eocene sedimentary formations occurs on the headwaters of Manastash Creek and on Taneum Creek. In both of these occurrences the Manastash sandstone rests directly upon the Easton schist, with a well-developed basal conglomerate. Lower on Taneum Creek, about 200 feet of sandstone and
shale are exposed beneath the Miocene basalt, and shale are exposed beneath the Miocene basalt, and the position of this small area is believed to justify the correlation of the sedimentary rock with the Manastash formation. Somewhat less certain, however, is the cetermation of the horzon of some of Clealum Point. These beds rest upon the of Clealum Point. These beds rest upon the schist and dip to the southeast. The presence of the intrusive rock at Clealum Point prevents any deterTeanaway basalt. The knowledge, sained farther Teast, that the Swauk sediments were not so thie west, that the Swauk sediments were not so thick nakes it doubtful that this exposure belongs to the Swauk formation; more likely it is the northern extension of the sandstone exposed 2 miles southwest, on Taneum Creek.
Description.-The Manastash, like the other Eocene sedimentary formations, comprises sandstones and shales. East of Frost Mountain the sandstones are well exposed and become massive and quartzose with pebble bands, white quartz being most abundant among the pebbles. The shale is fine grained and has associated with it seams of bone and impure coal.
The structure in the Manastash formation is a broad syncline resting on the Easton schist. The central portion of this syncline, which has an axis pitching to the southeast, like the Roslyn basin, is concealed beneath the Taneum andesite. Minor parallel folds are included in the broad syncline, and the whole was eroded somewhat before the eruption of the Miocene lavas.
Flora.-The determination of the age of the Manastash formation rests largely upon a small collection of fossil plants from near the head of North Forth of Manastash Creek. Doctor Knowlton's report is as follows:
This collection consists of about twenty-five pieces of matrix,
apon which a large number of beautifully preserved les apon which a large number of beautifullyly preeserved matrix, leaves
are displayed. Their fine state of preservation makes their are displayed. Their fine state of preservation makes their
dentification easy and certain. I am able to recognize the daentification easy and ce
following-named species:

Quereus consimilis Newb. Quereus raymeja Newb. Castanea castanexfolia (Ung.) Kn. Castanea eastaneexfo Laurus grandis Lx. Laurus princeps Lx.
 Laurus grandis Lx. Laurus prinepp Lx. Laurus californica Lx.

Not a single one of these species, or anything closely
pproaching them, has thus far been found in either th approaching them, has thus
Roslyn or Swauk formations.
The two species of Quercus occur also in the Clarno formation of the John Day basin, Quercus Colorado. Theing found also in the Florissant beds of Hollow, California. Upon these considerations the Manastash formation is believed to be of upper Eocene age.

mocene rocks.

The rocks of Miocene age are practically confined to the southern half of the quadrangle. They comprise two lava formations with associated intrusive rocks and one sedimentary formation, the Ellensburg. The Taneum andesite is of only local importance, but the Yakima basalt is the most extensive formation of the State. Except where locally altered, all these Miocene rocks are fresh in appearance, and indeed some of the sands and
gravels of the Ellensburg formation are hardly to gravels of the Ellensburg formation are hardly to
be distinguished from recent alluvium, while some be distinguished from recent alluvium, while some
of the volcanic rock is as fresh as the lava found on of the volcanic rock is as fresh as the lava found on the slopes of modern volcanoes.

tanevm andestrk.

Occurrence.-In the southeastern portion of the quadrangle there occurs a grayish-green andesitic rock which has the characteristics of lava. This on the south branch of Taneum Creek and extending south to Frost Mountain, where it rests on the Manastash sandstone and directly underlies the Yakima basalt. To distinguish this lava from other andesites of similar composition, although of
different age, which occur in adjoining quadrangles, the name Taneum andesite is here applied.
The Taneum andesite includes tuffs and tuffbreccias as well as loose-textured lavas. The series
varies greatly in thickness and character within the small area, but probably and character within the small area, but probably has its greater develop-
ment in the northern portion. Under Frost Mountain the lava and tuff measure from 200 to 300 feet in thickness. Here the andesite is pink and green as well as gray and brown in color, and is easily distinguished from the darker and more compact basalt which caps this peak.
Petrographic character-The Taneum andesite is a hypersthene-andesite, with phenocrysts subordinate in amount to the groundmass. The plagio-
clase phenocrysts are zonal and chiefly labradorite. The pyroxene is re zonal and chielly labradorte The pyroxene is represented usually by replacement material, which appears to be iddingsite These pseudomorphs generally show the character-
istic outline of hypersthene, which was without istic outline of hypersthene, which was without
doubt the principal ferromagnesian constituent The andesite generally is considerably altered. Accessory constituents are magnetite and apatite The groundmass is hypocrystalline, showing laths and proundmass is hypocrystalline, showing lath Amygdaloidal and vesicular phases of the lava are

Associated intrusive masses.-Clealum Point is Valley. This bold peak projects beyond the general escarpment line, its prominence being due to a massive rock, distinct from the columnar basalt which caps the ridge. This rock is a gray porphyry in which dull-white feldspars and brown pyroxene phenocrysts can be seen. Several types of the
porphyritic rock can be distinguished on the diferent slopes of the Point, and the rugged character of the mass is due largely to the manner in which these different rocks occur. The relations indicate that the whole mass is intrusive in the schist, sandstone, and Teanaway basalt, while contemporaneous dikes of finer-grained porphyry traverse the mass in several directions.
Microscopic examination of the Clealum Point rock shows it to be closely related to the Taneum andesite. The finer-grained phase is an andesiteporphyry containing brown hornblende in addition to the plagioclaseand hypersthene, while the groundand orthoclase. This rock has an andesitic quartz and is often . Wis rock has an andesitic texture Tanem often vesicular, hus closely resembling the rock may be called diorit phes of the intrive they are medium grained and holocrystalline with they are medium grained and holocrystalline, with phenocrysts of plagioclase, pyroxene, and hornbeing oligoclase, with labradorite within. Brown hornblende and pale-green augite occur with the hypersthene, now altered, with magnetite, apatite, hypersthene, now altered, with mag.
and zircon as accessory constituents.
The Clealum Point occurrence may be regarded, then, as an intrusive mass from the same magma somewhat doubtful whether this represents the conduit by which the lava flows a few miles away reached the surface, since there is no trace of Taneum andesite in the intervening territory, where it might be expected to have been preserved beneath the Yakima basalt.

Areal importance-The Miocene basalt is one of the most extensive formations of the quadrangle, and also perhaps the most conspicuous. Approximately
one-fourth of the area is covered by the Yakima one-fourth of the area is covered by the Yakima
basalt, but this represents only the margin of the vast region characterized by this basalt and extending to the east and southeast even beyond the boundaries of the State. This series of basalt lava flows Miocene age constitutes what is undoubtedly the largest volcamic formation in America.
ment which extends from near Clealum Poin escarpment which extends from Through this black wall of rock Yakima River aid hrough this black wat of rock Yakima River anid Swauk Creek have cut their gaps, so that opportunity is afforded for study of the series of lava
flows. Several sheets of basaltic lava can be distinguished, as they form benches on the canyon sides On the plateau-like areas covered by the basalt its angular fragments of the black dense rock

The lowermost sheet of basalt occurs at differen levations along the escarpment and at other place where the lower contact of the Yakima basalt can be seen. In many localities the relations along this contact are obscured by the presence of land slides. Yet, whether the Yakima basalt rests on the Swauk sandstone, the Teanaway basalt, the Roslyn formation, the Manastash sandstone, or the Easton schist, the contact is more or less irregular and north of Taneum Creek the contact of horizontal sheets of lava with the underlying schist has a vertical range of 1500 feet. These relasurs ince on which the earlier of relief of the land rest. rest. The total thickness of the Yakima within this area probably nowhere much exceeds 2000 farther sou is known to bicke farther sout. In several localities along the northern escarpment 1000 feet is
measure of the thickness of basalt.

On the north side of of basalt

On the north side of Taneum Creek there are of a thin local flow that was erupted after the begin ning of deposition of the Ellensburg sediments. In the area south of this quadrangle similar later flows interbedded with the upper Miocene sediment were important enough to be separated from the main series and given the name of Wenas basalt Within the Mount Stuart quadrangle, however, this flow was detected nowhere else.
The structure of the Yakima basalt is very simple and is similar to that of the Ellensburg formation, as described in a later paragraph. The occurrence of the small outcrop of basalt on Dry Creek is the result of a slight change in the gentle dip of the flexed basalt and sandstone, which has enabled the stream to cut through the sandstone.
The most noticeable feature of the basalt is its columnar structure, by which the sheets of black rock are converted into regular colonnades. Huge prisms, several feet in diameter and scores of feet in length, stand out from the canyon walls in a manner so characteristic of this rock that the term "basaltic structure" is often applied to it. These prismatic columns owe their origin to the contraction of the cooling lava. The joint planes due to this shrink age of the rock were normal to the cooling surface so that now the columnar parting of the rock is vertical wherever the sheets remain in their original orizontal position. Horizontal cracks divide the ere, ever, fit so closely Peneral effect of these rows of column.
black rock compact and heavy The wesalt is surface is often brownish in color and somethered gray, but universally the basalt ss exposed along gray, but unives lye river canyons is dull and the ridges or in the river canyons is dull and
somber. Petrographically the Yakima basalt is a normal feldspar-basalt containing basic plagioclase normal feldspar-basalt containing basic plagioclase,
augite, and olivine, in crystals or rounded grains, augite, and olivine, in crystals or rounded grains,
with varying amounts of glassy base. Examined microscopically, the Yakima basalt is found to microscopically, the Yakima basalt is found to
vary somewhat in the quantitative mineralogi composition as well as in texture. None of the minerals occur as megascopic phenocrysts, but the labradorite crystals are more regularly developed than either the augite or the olivine. The olivine is less abundant than the light-brown augite, and also varies more in the amount present in differen specimens. Apatite and magnetite are accessory constituents, the latter often occurring in delicate skeleton crystals. Some phases of the lava, espe-
cially in the basal or surface portions of a flow, are cially in the basal or surface portions of a flow, are very glassy and masses of pure basalt glass can be found. The glass fragments seen on Table Mountain have a rounded form and undoubtedly represent bombs ejected from a volcanic center. As a
whole the tuff beds and the scoriaceous lavas are whole the tuff beds and the scoriaceo
less common than the compact basalt.
less common than the compact basalt.
A specimen of this basalt from Clealum Ridge about 4 miles southwest of Clealum, was selected a representative of the different flows of the Yakima basalt and it was analyzed by George Steiger This basalt is dark iron gray in color, aphanitic its texture to be frainel, hyparystallin with its texture to be fine grained, hypocrystalline, with stituent is labradorite slightly stituent is labradorite, slighty zonal. Next in prismatic crystals, while the olivine occurs in grains The base is a brown glass containing magnetite in
fine dust and skeleton crystals, as well as slender microlites of feldspar and augite. Slender needles of apatite occur included in the feldspar. Th analysis which follows shows the Yakima basalt to be closely related chemically to the Teanaway basalt. It is much less basic than typical basalt, and would be termed a vaalose in the more exact quantitative classification.

,

Occurrence.-In the southwest corner of the Mount Stuart quadrangle are two small areas of diabase. The larger of these is on the divide between Manastash and Taneum creeks and Taneum andesite and the Manastash sandstone The other occurrence is on the western edge of the quadrangle, being part of a large mass in the adja cent area.
In this vicinity there are several large dikes of diabase which cut the same formations as the intrusive masser just described. The connection of these dikes with the other diabase is very probable, since one can be traced to its junction with the larger mass. The largest of these dikes occurs on the west side of North Fork of Manastash Creek and is unique in that it cuts the lower sheets of Yakima basalt. This occurrence, together with the general distribution of the diabase, justifies the conclusion that the diabase originated from the same magma as the Yakima basalt, the larger masses of diabase representing the intrusive bodies of molten rock which connected upward, through conduits now indicated by the dikes, with the lava flows at the surace. As has been shown in Liensourg Sely (tely south of the Mount stuart quadrangle, wa n importa the Miocene basalt flowing the rupar or
with medium grain, and the diabasic n roc, rexture is pais exhited, especially opit texture is plainly exhibited, especially on the stands erosion well, the outcrops being commond rounded but generally projecting above the rocks with which the diabase is in contact. The dikes which cut the Manastash sandstone are readily distinguished and can be traced for short distances even where rock waste covers the surface generally. The constituents which can be detected megascopically are pyroxene and feldspar. Under the microscope the rock is seen to be composed of plagioclase, augite, hypersthene, olivine, apatite, and magnetite. The plagioclase, chiefly labradorite, is the most abundant constituent, and the crystals are often zonal. The augite is green or brownish, with a faint violet tinge. The hypersthene occurs in phases of the diabase in which olivine is wanting, and, when unaltered, forms stout prisms or anhedral grains. The olivine is less mportant than the augite and is best developed in the diabase of the dike in the Yakima basalt. This rock shows the order of crystallization to have been apatite, plagioclase, olivine, magnetite, and, last of all, the augite, which forms large individuals, often a centimeter in diameter. In some thin sections the olivine is found altered to typical
brown iddingsite with lamellar structure brown iddingsite with lamellar structure. It is probable that some hypersthene has been replaced also by iddingsite. The apatite occurs in long
needles, often grouped in bundles.
eliensburg formation.
-Although the Ellensburg formation has an areal extent of nearly 100 square miles
within this quadrangle, it is not at all conspicuous. Over the greater part of Kittitas Valley a thick nantle of alluvium conceals the sandstone and congomerate of this formation. The best exposure re along the bluffs overlooking the river between Dudley and Thorp. Another locality where ypical section of the Ellensburg formation can be een is immediately east of the Normal School at Ellensburg, where this formation stands above the eneral valley level. Elsewhere the soft character of the formation renders it easily eroded, so that urface wash usually conceals the undisturbed rock
Two smaller areas, separated from the Kittitas Valley areas, occur on the southern slope of Look out Mountain and northwest of Horse Canyon.
The latter exposure measures only 30 feet in thickThe latter exposure measures only 30 feet in thickness, representing the basal beds of conglomerate
nd tuffaceous sandstone resting on the basalt. On baceons sandstone resting on the basalt. On Lookor. Mornin a square wie or more of thickness remains.
Description.-The Ellensburg formation comprises light-colored sandstones and conglomerates, which are so friable and loose textured as to deserve often to be termed simply sands and gravels. The distinctive characters of the formation are its marked variations in grain, the common occurrence of pumice fragments, and the prevailing cross tratification or stream bedding. These make it readily distinguishable from the older sedimentary ormations of the region.
The Ellensburg formation is composed largely of volcanic sediments, which are of foreign origin. Pebbles or bowlders derived from the underlying basalt are only rarely seen, the conglomerate beds being composed of pebbles of light-gray and purple hornblende-andesite and of white pumice of the f the Ellosition, while the sandstones and shales of the Elensburg formation consist of finely comart the andesitic material, which represents in The lava volcanic dust from explosive eruptions. The lava from which these pebbles and bowlders
were derived is not exposed within the Mount Stuart quadrangle, but undoubtedly occurs in the Tountains to the southwest.
The number and thickness of the conglomerate beds and the prevalence of stream bedding indicate that the formation is largely the result of fluviatile ather than lacustrine conditions of sedimentation. South of Horse Canyon are angular bowlders of ndesite measuring several feet in diameter which formation Ther could have he fected only by powerful material The original thickness of this formation streams. The orighal Yasima River several hundred feet f Ellensburg beds are exposed, while a well sunk in Kittitas Valley penetrated about 700 feet without reaching the base of the formation. Farther south in the vicinity of North Yakima, the Ellensburg formation is tnown to be 1600 feet thick, so it is probable that its original thickness in Kittitas Valley was at least 1000 feet.
The deformation to which these beds have been subjected has been slight. The elevations at which the basal bed is found on Lookout Mountain and on Dry Creek indicate a low dip to the south, toward the center of the valley. Beyond the limits of this quadrangle the Ellensburg sandstone is known to dip toward the middle of the valley, so that Kittitas Valley is coincident in position with gentle flexure, forming a basin whose longest diameter measures over 30 miles, from northwest to southeast. The occurrence of the Ellensburg formation northwest of Horse Canyon may be due to a slight fault which has thrown this bed down sufficiently to protect it from erosion.
Flora.-Fossil plants have been found in the Ellensburg sandstone at a quarry just beyond the southeast corner of this quadrangle. This iocality also yielded a few teeth of Hipparion, a Miocene Tepresentative of the horse family
The following report on the fossil plants from this locality has been made by Dr. F. H. Knowlton: he vicinity of Ellensburg, Wash., was obtained by Mr. J. S. Diller in the spring of 1892. This is as a suall collection,
embracing only half a dozen pieces of matrix, and was at a point about 6 miles sontheast of Ellensburg. It contains
several species, the most abundant and characteristic being
and several species, the most
Platanus dissecta Lesq.
In 1893 Prof I
In 1893 Prof. . C. C. Russell obtained from the same locality
species. I have reeently studied thin
present the following list of species:
Salix varians G Gppert.
Salix psendo
Salix psendo argentea KnowIt
Populus glandulifera Heer.
Populus
Alnus sp.
Annss sp.
Ulmus californica Lesquerenx.
Ulmus peano fulva Lesquereux.

Platanus dissectataesquireux.
Platanus aceroides? (GOppert) Hee
Diospyros elliptica Knowlton.
Magnolia lanceolata Lesquereux
The matrix of the specinens is a white, gencrally fine-
The matrix of the specimens is a white, gencrally fine-
grained volcanic ash, identical in appearance with that from
Van Horn's ranch (Mascall beds) in the Jolin Day basin, an Hor
Oregon.
Of the
Of the 10 species above enumerated 6 are found in greater
or less abundanee in the Mascall beds, and 1 do not hesitat o refer the Ellensburg matatealil to to this hand Iorizon. To The Mascall
It may be noted that no formation has been found in this region equivalent to the John Das formation (Oligocene) of the Eastern Oregon section.

PLIOCENE? ROCKS
rhyoutre.
Occurrence.-East and west of Ryepatch there are several areas of rhyolitic lava. This rock weathers white or a rusty yellow and only rarely hows its true character when examined in the outhale that hany places the rock from mineralspring action. Microscopic examination of this rock shows its rhyolitic character, both compact lava and tuff being present. The rhyolite contains scattered phenocrysts of bipyramidal quartz and angular fragments of the same mineral. The groundmass is composed almost wholly of cryptocrystalline aggregates of quartz and feldspar with well-defined spherulitic intergrowths.
The relations of the westernmost and largest occurrence of rhyolite appear to indicate that the rhyolitic flow occurred at the close of the eruption of Teanaway basalt. Elsewhere, however, the distribution of the rhyolite, which directly overlies both Roslyn sandstone and Teanaway basalt, affords conclusive evidence that the rhyolitic lava flowed out over the eroded surface of these Eocene formations, probably in Pliocere time, and in the westernmost locality simply conceals the Roslyn-
Teanaway contact.
Another occurrence of volcanic rock may be mentioned in this connection. In the extreme is capped for an area a few yards in diameter with capped for an area a few yards in diameter with rock. This rock is made up in its finer portions of angular fragments of crystals of purtzo feldsper, anguar fragments of crystals of quartz, feldspar,
and some ferromagnesian minerals. No similar occurrence was observed elsewhere within the quadrangle, but it is very probable that this breccia is an outlier of the late Tertiary lavas that occur on the western side of Clealum River in the adjoining quadrangle.

uaternary Deposits

The glacial deposits of Yakima Valley are directly the result of the overloading of the streams by the glaciers in the headwater tributaries, but purely glacial deposits are not important in this area. Along Ingalls Creek the floor of the valley is in places covered with immense blocks of rock Wich the stream is powerless to move, and a smal moraine has shifted the lower part of Turnpike
Creek somewhat to the east. Small moraines also ccur on Peshastin Creek below Ingalls Creek.

alluvius.

The general distribution of valley alluvium is shown on the areal geology map of this folio. Several of the principal areas will be described, and of these Kittitas Valley is the largest. This structural basin has had its floor largely modified by stream erosion, and a thick mantle of stream Along the valley margins the coarse detritus has Aoen the valley margins the coarse detritus ha been derived from the basalt-covered slopes above and is very angular in character. The "scab-land" characterized by this material differs hittle from the small fragments of disintegrated basalt, so that and line between areas of alluvium and those that the waste which areas of alce those of rock always very definite. In other places are fine
grained deposits which seem in part to be of windblown material. Lower in the valley fine-grained alluvium becomes of general occurrence.
In the upper valley of Yakima River, north of the basalt escarpment, there are thick deposits of alluvium. On the flood-plain along the river coarse, clean gravels predominate, and there are areas of similar deposits on the upper benches, so that the amount of agricultural land can not be determined from the distribution of alluvium as mapped. Along the Teanaway the areas of alluvium outlined on the areal geology map are chiefly bottom land of fine quality. Swauk Prairie includes several square miles of very fine alluvium, comparatively free from bowlders, so that the area is one especially adapted for wheat raising. The character of the gravels afforded by a few wells indicate the true alluvial nature of the surface deposits over Swauk Prairie Ane orer excentional area of alluvium is Camas Land Here a level prairie of several hundred acres with a rich loam has been preserved by the gabbro barrier on Camas Creek.
A marked feature in the more extensive valley deposits of this quadrangle is the occurrence of deposits of this quadrangle is the occurrence of
well-developed terraces. Below Clealum three well-developed terraces. Below Clealum three
plainly defined levels can be traced for several plainly defined levels can be traced for several way River and Swauk Creek even beyond the limits of the alluvium shown on the areal geology map. The highest of such gravel terraces mark the extent to which the streams filled their old valleys at the close of the Glacial epoch. The extent of this filling is not wholly evident, since only in a portion of their courses have the streams cut away the gravels from the rock Indeed, the results of borings made in the vicinity of Clealum show the presence of several hundred feet of gravels and indicate that the rock floor of the valley at this point is somewhat lower than the river bottom in the basalt south of Lookout Mountain. This feature may be due to landslides at Lookout Mountain or it may indicate changes in elevation.
Stream gravels and large bowlders from the upper Yakima occur at three different levels east of Clealum Point, the highest of which is 3300 feet, and at 2680 feet the bowlders form a distinct terrace. Similar gravels at about 2600 feet were its arved west of Bristol. These high-level deposits are evidence of stram an earrier stage when Yal 1 canyon.

ECONOMIC GEOLOGY.

gold.

histor
The three principal gold-mining districts of central Washington are included in the Mount Stuart quadrangle. The Peshastin placers were discovered in 1860 and have been worked intermittently ever since. The swauk pla hise their discovery located . the Swauk in 1881. The mineral veins of the Negro Creek district constitute a continuation of those in the Peshastin district.
Mining in these districts has been conducted by small owners, and it is impossible to secure any definite data regarding production. The output of gold of Kittitas County for the years 1884 to 1895, as reported by the Director of the Mint, aggregates $\$ 764,163$. About $\$ 5000$ of silver was reported from that county for the same period. The Peshastin district is now included in Chelan County, but during this period it was a part of Kittitas County. The years 1892 and 1895 were seasons of maximum production, and the area prob-
ably would have steadily increased its output ably would have steadily increased its output
had it not been for the exodus of miners to Alaska.. In view of the activity in these districts in the yen In view of the activity in these districts in the years preceding 1884, as well as the production of the an seners, it seems the total In the last five years In the last five years companies with larger capiators, and mining operations will now be conducted more economically and probably with an inceas in the rold production.

jus gravki

Swauk district.-The Pleistocene gravels along wank Creek and many of its tributaries are gold bearing. These alluvial gravels form the terraces, which are especialy prominent and extensive at Boulder and Williams creeks. The gravel deposBouder and williams creeks. The gravel depos-
its are from a few feet to 70 or 80 feet in thickness, and while red or yellow at the surface, the gravel is and while red or yellow at the surface, the gravel is
blue below. The upper portions of the gravel also are less easily worked, since induration of the gravel has followed the oxidation of the cementing material.
While fine gold is found throughout the gravel deposits at some localities, most of the gold occurs close to bed rock and in channels other than those occupied by the present streams. The marked characteristic is coarseness. Pieces several ounces in weight are common, while a number of nuggets weighing 20 ounces or more have been found, and one or more nuggets of about 50 ounces have been reported, the largest nugg.t of the district having a value of $\$ 1100$. These larger nuggets are usually well rounded, but on the tributary streams wire and leaf gold is found. The gold is not pure, containing considerable silver, which materially lecreases its value.
The bed rock, which belongs to the Swauk formation, is usually of a nature to favor the collection of the gold. The inclined beds of hard shale form natural "riffles," and from the narrow crevices in the shale the best nuggets are often taken. The
sandstone beds wear smooth, in which case the bed rock is apt to be barren. The old channels, both of Swauk Creek, and of its tributaries, vary somewhat in position from the present course of the what in position from the present course of the
stream, but only within definite limits. The old stream, but only within definite limits. The old within the wide-terraced valleys of the present, within the wide-terraced valleys of the present,
older channels may be found, now on one side and now on the other. Thus, on Williams Creek and now lower portion of Boulder Creek the old watercourse has been found to the south of the present channel of the stream, and is in other cases below the bed of the creek. On Swauk Creek the deposits worked are above the level of the stream, being essentially bench workings. Here hydraulic plants have been employed, but elsewhere the practice has been to drift on bed rock. While the endeavor is to follow the old channels, it is found that the "pay streak" can not be traced continuously. Ground that will yield $\$ 40$ to the cubic yard of gravel handled may lie next to ground that does not contain more than 50 cents to the cubic yard. In the last few years the operations in the Swauk basin have been on a larger scale. Williams Creek has been dammed and methods have been devised to handle the tailings and bowlders on the lower
courses of Swauk Creek, where the gradient of the courses of Swauk Creek, where the gradient of the
valley is low. valley is low.
The source of the alluvial gold is readily seen to be the quartz veins known to occur in the immediate vicinity. These will be discussed in a following paragraph. The noticeable lack of
rounding of much of the gold shows that it has rounding of much of the gold shows that it has not been transported far, and indeed the limited area of the Swauk drainage basin precludes any very distant source for the gold. It is only along
the Swauk within a few miles of Liberty and on Williams Creek and its tributaries that cold hos been found in paying quantities, and, as will be noted later, this is approximately the area in which the gold-quartz veins have been discovered. From the gold-quartz veins have been discovered. From
the outcrops of these ledges the gold and quartz the outcrops of these ledges the gold and quartz
have been detached and washed down into the beds of the streams, where the heavier metal was soon covered by the rounded bowlders and pebbles with which the channel became filled. The conditions under which the gold was washed into the streams probably differed little from those of to-day, except that the streams were then filling up their valleys. Peshastin district.-The gravel deposits in the valley of the Peshastin are less extensive than in the Swauk district. The alluvial filling of the canyon-like valley of the upper half of Peshastin
Creek is not so deep and does not show the well Creek is not so deep and does not show the wellmarked terraces so prominent in the Swauk Valley. The gravel appears to be gold bearing throughout, and the gold is rather uniform in distribution. The largest nuggets are found on the irregular surface
of the pre-Tertiary slate which forms the bed rock. of the pre-Tertiary slate which forms the bed rock.
While the largest nuggets found in the Peshastin While the largest nuggets found in the Peshastin
placers are less than an ounce in weight, and thereplacers are less than an ounce in weight, and there-
fore not comparable with some of the Swauk gold, fore not comparable with some of the swauk gold,
the Peshastin gold is fairly coarse and easily saved. Mount Stuart.

The gold is high grade, being worth about $\$ 18$ an ounce.
The principal claims on the creek, below Blewet, is hydraulich Mohawk Mining Company, which is hydraulicking the gravels with water from the upper Peshastin and from Negro Creek. Work
which has been done on Shaser Creek shows the which has been done on Shaser Creek shows the
gravels to be gold bearing, and here also the gold is high grade. This fact is interesting, since, while is high grade. This fact is interesting, since, while the same formation as that of the Swauk basin, the the same formation as that of the Swauk basin, the
gold found in the two creeks is quite different, the Swauk gold containing a cousiderable amount of silver.
Stream gravels in other parts of the quadrangle,
notably on North Fork of Teanaway and on Stafford Creek, have been prospected, but no gold has been found to warrant further work.

gold quartz veiss.

Peshastin district.-A few mines in the vicinity of Blewett have been producers for about twentyfive years. The many changes of management and methods of operating these properties, however, make it impossible at the present time to determine accurately the character of the ore that has been mined or to estimate even approximately the product during this period. Much of the ore has been low grade, and the gold has been extracted by weans of arrastres, stamp mills, and a small cyanide The small stamp mill first built in this district wats The small stamp min first of W this district was other mill, with 20 sur hat other mill, with 20 stamps, has lately been
under the Warrior General management.
The best-known property in the district is the Culver group, comprising the Culver, Bobtail, and Wumming Bird claims, and now known as the Warrior General mine. This mine in its geologic of the district. The country rock is the altered peridotite or serpentine, which exhibits the usual variations in color and structure. The Warrior General and the other mines are located in a zone of sheared serpentine, where the mineral-bearing solutions have found conditions favorable for ore deposition. This mineral zone has a general eastwest course, and extends from east of Blewett across the Peshastin, up Culver Gulch, and across to the valley of Negro Creek.
The Warrior General vein has a trend of N. 70° to $80^{\circ} \mathrm{E}$. and is very irregular in width. In the walls the serpentine is often talc-like in appearance, while the compact white quartz of the vein is some-
times banded with green talcose material. Sultimes banded with green talcose material. Sul-
phides are present in the ore, but are not at all promphides are present in the ore, but are not at all prom-
inent. The values are mostly in free gold, which is fine, although in some of the richer quartz the flakes may be detected with the unaided eye.
The workings in this mine consist of a number of tunnels driven at different levels in the north wall of Culver Gulch. These follow the vein for different distances, the vertical distance between of importance (No.5) being about 650 opet, of importance (No. 5) being about 650 feet, and conmections have been made between most of the it has minor irregularities The quartz is 7 to feet in width in some places, but quartz is 7 to 8 In the upper tunnel, No. 5, the ore appeass to be In the upper tunnel, No. 5, the ore appears to be
broken quartz of the same character as that in the lower tunnels, occurring here much more irregularly, although the richest ore has been taken from the upper workings. Some very rich ore bodies have been mined, but they are small and their connections have not been traced. The most extensive work has been done from the lowest tunnel, and the latest work here shows that the serpentine which is so much broken in many parts of this mineralized belt, is here more solid, a remarkably well-defined and regular wall having been followed for over 300 feet.
Other proparties in the same zone as the Warrior General are the Polepick, Peshastin, Fraction, Tiptop, Olden, and Lucky Queen. These have all produced ore which has been worked in the Blewett mill.
An interesting feature in the geology of Culver Gulch is the probable existence of a fault. On the north side of the gulch, at an elevation of about 3750 feet, and near tunnel No. 5, a large basal dike, 25 feet wide, is very prominent. This dike has a trend of N. $26^{\circ} \mathrm{E}$., but its continuation is not seen on the south side of the gulch. Fifty feet lower on the south side of the gulch, however,
similar dike occurs with a trend of N. 50° E., bu
this in turn can not be detected at the point where it ought to outcrop on the north side. If these are been faulting. Such a fault would cross the Culve vein at a low angle a fault would cross the Culve 5 and 6. The broken character of the ore in the upper tunnel indicates that movement has modified the vein at this point, and such movement may be connected with this supposed fault. At the time of the examination of this mine, connection had not been made between tunnels 5 and 6 , and the relations of the dike to the ore body could not be determined. If the dike interrupts the vein, the mineralization is pre-Eocene in age; while, on the other hand, if the vein continues through the 25 feet of basalt, even although it may vary in character with the change in the wall rock, or if the fissure in which the quartz has been deposited follows the plane of the fault which it is believed has displaced the basalt dike, then the period of mineralization is not earlier than late Eocene, and the Peshastin gold-quartz may be of the same age
as the veins of the Swauk district, a description of which is given below.
Negro Creek district.-Although this region is a continuation of the Peshastin mineralized zone, no claims in this district have become producing mines. The region has been prospected for many years and a number of small veins have been located, and some ore worked in a small mill and in arrastres. The ore is mostly quartz with some calcite and sulphurets. The veins are irregular and the wall rock is geneally sempe, the which is been on jo " " "i " have reference ha or math analysis of this rock, which has been considered by many prospectors to be itself an indication of ore Swauk district.-The gold-quartz veins of the Swauk are very different from those in the vicinity of Blewett. They are in part narrow fissure veins of quartz with some calcite and talcose material, the wall rock being the sandstone or shale of the Swauk formation, of Eocene age, or in some cases a diabase or basalt dike may form one wall. Quartz stringers running off from the vein are common, and at one locality thin bands of quartz follow the bedding planes of the sandstone. A peculiar type of vein This oecis locally termed "birds-eye" quartz This occurs in several mines, and may he described of black shate are and calcite. The quartz shows radial crystallization outward from the separated fragments, and often open spaces remain into which the small crystals of quartz project. The walls of such veins are sometimes sharply defined, but in other cases many
small veins of quartz traverse the shattered wall small veins of quartz traverse the shattered wall
rock in every direction, so as to render it difficult rock in every direction, so as to render it difficult
to draw the limits of the vein itself. This transition from the peculiar type of vein into the shattered rock shows the "bird's eye" quartz to be due to brecciation along more or less well-defined zones, followed by mineralization.
Trelaly distributed The ra gold ondery irregularly distributed. The values are mostly in The gold occurs in fine grains within the quartz or next to the included shale frathents quart approximate value of the ore may be readily found by panning while in many case the gold may be by panning, while in many cases the gold may be
seen on the surface of the quartz, in the form of incrustations of leaf or wire gold: and in a specimen from the Gold Leaf mine perfect octahedral crystals of gold lie upon the ends of the quartz crystals. The silicification sometimes extends into the country rock, and some values are found there
The gold of the quartz veins, like that of the gravels, is light colored and contains a considerable percentage of silver. In the Little York this silver is reported as amounting to about 20 per cent. The quartz veins that have been opened in th upper basin of Williams Creek have a general northeast trend, being thus roughly parallel with the basalt dikes. In the Cougar the hanging wall of the vein appears to be a badly decomposed basalt dike, while the Gold Leaf has one vein wholly in sandstone and shale and another in a large diabase dike. The relation of the veins to the dikes is therefore not constant, but it may be noted that the fractures which have been filled by the the fractures in the vicinity which have been fille by the intrusion of basalt. Which have been filled more than one period of fracturing, and that the $\left|\begin{array}{l}\text { more than one period of fracturing, and that the } \\ \text { period of mineralization was not exactly contempo- }\end{array}\right|$
raneous with the time of igneous intrusion, is shown by the occurrence of veins cutting the dikes themselves. It is probable, however, that the two prothat the ore-bearing solutions derived period and and possibly their mineral content from the intrusive and eruptive basalt of the area.

A number of quartz veins on Swauk, Williams, Boulder, and Baker creeks are being prospected the present time and in view of the richness of the alluvial gold which has been derived from the veins in this vicinity it would seem that the pros pecting is well warranted.

copper and silyer.

In the Negro Creek district both copper and silver occur with the gold in the veins already described. Many of the ores are essentially coppe ores, but whether the bodies are extensive enough to warrant their development has not yet been determined. This copper belt extends westward along the headwaters of North Fork of Teanaway River and of Ingalls Creek, but at only one locality has any large amount of ore been mined. The Grand View mine, situated on the east side of Fourth Creek about 3 miles southeast of Mount Stuart, has produced some native copper. The vein is in a zone of sheared serpentine, and, as far as could be determined from an examination of the Weserted workings, the ore body is very irregular With the native copper is the red oxide, or cuprite and the ore is reported to carry varying amounts f gold.
There have been some prospectors at work recently in the vicinity of the forks of Taneum Creek, about 5 miles south of Clealum, and copper ountry rok bor is where more or less seamed with quartz
As has been noted above, the gold of
Astrict is argentiferous, the percentag the Swauk istrict is argentiferous, the percentage of silver
varying with the locality. No other silver ores are known to occur in the Mount Stuart quadrangle.

```
niekel and quicksilver.
```

Nickel is a metal frequently reported in the assays from the Negro Creek district. Its presence ir small amounts in the serpentine which is of such ven me on page 4, and this renders it probable that nd serpel ores may be found. The peridotite iddles, The hreen silicate of nickel, genthite, which or at Riddes, was not detected, however, a guadrangle. The analysis of the "nickel ledge" quadrangle. The analysis of the "nickel ledge" nickel even than that contained in the serpentine itself.
Cinnabar has been found at a few points at the head of Middle Fork of Teanaway River. In a pros pect on the western edge of the quadrangle the cinnabar occurs along a joint plane in the altered rock or the Peshastin formation. The richness of
the ore is evident, but the fact that such bands of the ore is evident, but the fact that such bands of from being of economic importance.
coal.

Roslyn basin.-The most important mineral resource of Kittitas County is coal. The Roslyn he Pacific cost most productive coal bity withil this quadrangle. The coal occurs in the upper part of the Roslyn formation, and the extent of this productive portion, together with the location of mines, shown on the economic geology map. The upper beds of the Roslyn formation have bee roded except in the center of the basin, so that the oal field is limited to the immediate valley of the Yakima between Ronald and Teanaway. The out rop of the Roslyn coal has been traced along the northern side of the basin, so that the outline here accurately determined. On the southern side however, the deep gravel filling of Yakima Valey conceals the rocks beneath, and this boundary of the basin as mapped is based wholly upon data erived from observations of the structure made 10 and 12 square miles of coal lands in the Mount Stuart quadrangle
The structure of the Roslyn basin is simple he dip of the coal beds is low, 10 to 20°, and no pitches to the southeast, and since the fold is
insymmetrical, with low dips on its northerin side, the axis of the basin is nearer the southern edge. Thus the deepest portion of the shallow basin is probably near the line of the Northern Pacific Railway at Clealum.
Several beds of coal are known in this basin, and the section at the Roslyn mine is given in fig. 1.

Frg. 1.-Section of upper portion of Roslyn formation at the Rosign mine.

The Roslyn seam as worked at Roslyn contains feet 6 inches of clean coal, while the seam worked at Clealum has a thickness of 4 feet 2 inches. The correlation of the Clealum cois been sombation. The Clealum coal differs in character slightly from that mined t Roslyn, and on this account chiefly it wa thought that they are separate seams and that the Clealum overlies all of the five coal beds cut by the Roslyn shaft. There is evidence now, however, hat the two coals belong to the same seam. In the distance between the two mines the coal migh be expected to exhibit differences in character especially in view of the fact that east of the Clealum shaft the coal changes rapidly. Recently the outcrop of the coal has been traced from the one mine to the other, thus definitely fixing the orrectness of the correlation. The coal is 640 feet beneath the surace at the Roslyn shaft and 250 feet at the Clealum shaft, but there is so nearly the me difference in elevation of the two shafts tha
 ect at . At herm the ein to be determined, but on the map it area i pproximately outlined. The "Big Dirty" fet in thickness, occurs 200 feet above the Roly ol, and represents reserve supply, although the uality of this col is such as to render it practicall valueless under present conditions.
The Roslyn coal is a coking b
The Roslyn coal is a coking bituminous coal, is an excellent fuel for locomotives, and over one half of the product of this field is sold for railroad consumption. The cleanness of this coal and it high percentage of lump make it well fitted for hipment. Naval tests have shown that the Roslyn coal ignites quickly, combustion being rapid and horough, the coal swelling slightly on the surface f the fire. The percentage of ash is moderate, and he clinkers formed do not cling to the grate bars, except with forced draft. The amount of soo formed and the high temperature in the uptake a he only objectionable features of this coal.
The following analyses of samples of coal col lected in the Roslyn mine have been made in the United States Geological Survey laboratory by Mr George Steiger. I represents the "run of the mine, different parts of the mine
These analyses indicate a remarkable uniformity
valuable character of the coal is its low content of \mid seams thus prospected is in close proximity to a sulphur. Comparative boiler tests of Roslyn coal large basaltic dike, which would cut off the extennd of a high-grade Pennsylvania bituminous coal sion of the bed.
have been made by the Northern Pacific Railway
Company, and these show the former coal to have 0 per cent of the efficiency of the eastern coal under a stationary boiler, and 78 to 80 per cent in locorespectively. These figures indicate the value of

s of coal from the Rosiyn mine.			
	1.		III.
Moisture	${ }_{\substack{\text { are cent. } \\ 2.15}}$	(ter cent.	Per cent.
Volatile matter.	40.93	42.54	${ }_{41.69}$
Fixed carbon.	44.03	42.91	${ }^{43.84}$
Ash	12.89	12.96	12.78
	100.00	.00	00
Sulphu	44	. 40	. 49
Coke.	good	good	good

the coal for steam-raising purposes. It is extensively used for gas making in Washington cities, yielding $4^{\frac{3}{4}}$ cubic feet of 18 -candlepower gas per pound of coal. The bright, clean character of this coal and the small proportion of fine coal make it well adapted for domestic use. The product of his field is largely used by the northern transconnental railroads, and its market inchudes, in adition to the large cities of the State, San Francisco
and Honolulu. nd Honolulu.
The mines of the Northwestern Improvement Company at Roslyn and Clealum constitute the has not been connected with the Roslyn shaft, has not been connected with the Roslyn shaft,
miles distant, and the intervening ground repre miles distant, and the intervening ground repre-
sents the reserve coal supply of these mines. The sents the reserve coal supply of these mines. The
seam as worked measures over 4 feet in thickness, and the coal is shipped just as it leaves the breasts. The daily capacity of this colliery with present equipment is estimated as 5000 tons, and the management is now working with the purpose of enlarging the plant to obtain a greater output. The output of the Mount Stuart quadrangle in 1902 was $1,240,935$ tons.
Coal has also been mined about 2 miles north of Clealum by the Ellensburg Coal Company at a point near the outcrop. Here the coal wa
hick and dips S. 10° E. at an angle of 16°
L. S. Storrs, geologist for the Northwestern Improvement Company, has made analyses of the amples of the Roslyn coal from a series of openings extending from the Clealum mine through the Roslyn mine to the northwestern extremity of the basin. These analyses, which are given below, show the change in this seam from a lignitic, non-cokin oal to a fairly good coking coal. The order of the samples is from the open part of the fold toward its more steeply inclined portion, beyond the edge of the Mount Stuart quadrangle, and the change in he coal may be considered as an expression of the influence of the increasing dynamic action as the Cascade Range is approached.
sampled
the basin

Work has also been done on a coal prospect on he west escarpment of Table Mountain where the of clay withation is represented by . This bed dips 32° to the east. Similar coal prospects are seen in the Roslyn formation at the head of First Creek. Here massive sandstone occurs with the shale, but the coal seams are very impure, and the surface displacements prevent any determination o heir extent
The black shales in the Swauk formation have been prospected somewhat for coal on Camas Creek, but without success. More extensive exploration has been made in the Manastash formation, whic contains some carbonaceous beds. On Taneum Creek coal seams occur, but the work done here has not shown them to be of sufficient value to warrant further development. The conditions are similar on Manastash Creek, where prospect tunnels have been opened on the coal at several localities. The quality of the coal is very poor and quite
unlike that of the Roslyn coal. One of the larger

stove.

Building stone.-The sandstone of the Swauk and Roslyn formations is fairly well adapted for construction work. The Swauk sandstone is more horoughly indurated than the Roslyn sandstone, but the more massive beds occur in localities which portion of the Roslyn formation has been used omewhat in building, but no quarries have beed opened. The tuffaceous sandstone of the Ellensburg formation has been used in buildings in Cllensburg, being obtained from a quarry a few miles beyond the southeast corner of the Mount Stuart quadrangle. Usually this stone is too soft nd friable for use as a building stone
Road metal.--The alluvial gravels of the valleys have in many cases favored the construction of good roads in this region. In some localities, on the other hand, the clayey beds in the valley deposits have rendered the roads almost impassable hrough part of the year. Except in rare cases no attention has been given to the use of better mateial for road constraction. The best of road metal, The Yalim bse whach of the area the upper Yosm Valley and edge of Kititas Valley is a rock which wing its har Kict Now which, rial for this purpose. This basalt is too high mat the floor of the upper valley to be easily obtained, but the small areas of Teanaway basalt which proiet through the alluvial gravels would furnish similar naterial. The exposure of this rock at "Dead mans Curve," on the railroad 3 miles "Deuth of Roslyn, is well situated for a supply of road metal for the country road between Clealum and Roslyn, road which is more traveled than any other in the county. A place where this basalt may be btained already prepared for use is near the upper road on the south side of the valley about $2 \frac{1}{2}$ miles outheast of Clealum. A pit has been opened in this crushed basalt near the schoolhouse, and some of the rock seems to have been used on the road in the vicinity. This exceptional deposit of road material can be very easily worked, and at comparatively small expense the roads of this vicinity could be greatly improved.
In Swauk Valley two sources of material are vailable for fitting the roads for heavy teaming The basalt through which the road is cut below Liberty is well adapted for road constraction, when broken into small fragments, while above Liberty dikes of similar basalt outcrop at several points by
The Northern Pacific Railway Company has perated a rock crusher in the canyon under Lookout Mountain. The cliffs above furnished a supply of broken basalt wich was conted into a hig grade of ballast for the railroad.

solus.

Agriculture within the Mount Stuart quadrangle is confined chiefly to the soils of alluvial origin. These areas of alluvium are outlined on the areal geology map. They include the terraces and ottom land bordering the larger streams, and the wider area of alluvium in Kittitas Valley. In such tracts the alluvial soils exhibit considerable variation in texture. Coarse, well-washed gravels occur in some localities, and these are comparatively barren. Fine silts, easily cultivated and very of the district. Camas Land and Swauk Prairie are such areas, where very fine-grained soils occur On the southern slope of Lookout Mountain and on Thorp Prairie there are tracts under cultivation where the soil is derived possibly from the Ellensburg formation, which underlies these areas. In the nain, however, the agricultural land of this quadrangle may be said to lie within the areas of alluvium.
water supply.

A glance at the map shows that the quadrangle is well supplied with perennial streams. Only Kittitas Valley are seasonal streams found.
On Swauk and Thorp prairies, on Lookout Mountain, and in Camas Land wheat is raised without irrigation. At all these localities the soil is either alluvial or of a similar character, and if the spring rains are not exceptionally light sufElsewhere irrigation is necessary for all good crops.

As has been stated above, the rivers and streams of this region have good grades, so that irrigation is easily accomplished. Teanaway Valley is irrigated by local ditches from the river, and this stream also contributes to the irrigation of the valley of the Yakima east of Clealum. The waters of Swauk Creek and its tributaries and of the Peshastin are
and arrastres.
Kittitas Valley has a number of ditches. The argest, the "town ditch," starts from the east bank of Yakima River near Thorp, and furnishes water for the region about Ellensburg and lying to the southeast. The lands to the north of Ellensburg re in part irrigated by local ditches from Reeser and Wilson creeks. First Creek, a tributary of Swauk Creek, waters a small area near McCallum, but its headwaters are diverted and made to help irrigate the Reeser Creek area. On the west side of Kittitas Valley, ditches from the Taneum and the Manastash and smaller creeks afford an abundance of water.
The supply
The supply of potable water is good generally throughout the Mount Stuart quadrangle. In addition to that afforded by the larger surface streams, which maintain their flow throughout the summer months, the ground water is in most places availGeologic relations eithern wells or through springs. Geologic relations govern the avalabity of this heds are nar the Whe warrying alluvial sands and cravels surfuce well or the draw the wells are close to the stream, it is probable that the well water is derived from the underflow or underground portion of the stream.
For irrigation purposes water is obtained from Yakima and Teanaway rivers and from the smaller streams tributary to Yakima River. The supply of water can be increased by the construction of arger ditches and longer canals, but the amount of and where water is needed is not large except in Kittitas Valley, which is partly included in this quadrangle. The need of water here
This broad valley has the basin structure, and from its great extent it appears well suited to the accumulation of underground waters. The waterbearing beds extend up on the slopes of the inclosing ridges, and must receive contributions from the precipitations over a large area. In the central part of the valley these beds lie at a depth of several hundred feet. Some years ago an experimental well was put down about 2 miles northwest of Ellensburg to a depth of about 700 feet. When abandoned it had water at 40 feet below the surface. The evidence which it afforded was unfavorable, yet it is possible that this well, like many others, was drilled inefficiently and that the record is untrustworthy.
In the Clerf
In the Clerf Spring, at the east end of the valley, water with considerable pressure is found flowing upward through the basalt. In the summer of 1900 the drilling of a well was commenced in the immediate vicinity of this artesian spring and about 10 feet higher, and it seems probable that not far the sum wher which can be used to augment the stream already issuing crom the in the sand and the hone frombed basalt beneath. It has a temperature of 62° and may be derived from. interstratified sandstone beneath an upper sheet of basalt. If an considcrable flow of water is developed in this locality it can all be used to rood advantage in the eastern part of Kittitas Valley
The gap where Yakima River cuts through the rim of Kittitas Valley, 5 miles below Ellensburg is, of course, the critical point in the structure of the basin. The exposures of the Ellensburg sandstone are poor at this locality, but they are sufficient to show that the lower beds are sharply upturned. Immediately south of the edge of the valley a transverse fault gives further evidence of marked dynamic action on this side of the basin. Whether this is sufficient to prevent tapping the artesian basin can not be definitely stated. The possibility that a true artesian basin may be found here appears, however, sufficient to encourage the
drilling of another experimental well in Kittitas dring of another experimental well in Kittitas Valley, unless larger irrigation canals taking
water from upper Yakima River are built, which will obviate the necessity for artesian water in this valley.
May, 1903.

U.S.GEOLOGICAL SURVEY

$\frac{0}{2}$	Formation Name.	Sxamor.	Columinar Section.		Character of rooks.
	Ellensburg formation.	Teb		$1000-$ 1500	Light colored sandstone, shale, and conglomerate, usu ally very friable, with many pumice fragments and pebbles, and exhibiting stream bedding.
	Yakima basalt.	Ty		$\begin{aligned} & 1000 \\ & 2000 \end{aligned}$	Black lava, weathering gray or brown, compact or scoriaceous, with typical columnar partings common. Tuffs present, but not important.
	Taneum andesite. UNCONFORMIITY.	Tta		200-300	Loose-textured lava, with tuff and tuff-breecia, pink, green, gray, and brown in color.
$\left\|\begin{array}{c} \frac{u}{2} \\ 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$	Manastash formation.	Tm		$1000+$	Massive, light-colored sandstone and pebbly conglom erate, with shale and seams of bone.
	Easton sehist.	et	Kak		Described in table of intrusive and pre-Tertiary rocks.

GEORGE OTIS SMITH

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price.t	No.*	Name of folio.	State.	Price. \dagger
			Gents.				Cents.
1	Livingston	Montana	25	54	Tacoma	Washington.	25
2	Ringgold	Georgia-Tennessee	25	55	Fort Benton	Montana	25
3	Placerville	California.	25	56	Little Belt Mountains	Montana	25
$\ddagger 4$	Kingston	Tennessee	25	57	Telluride	Golorado	25
5	Sacramento	California.	25	58	Elmoro	Colorado	25
$\ddagger 6$	Chattanooga	Tennessee.	25	59	Bristol	Virginia-Tennessee	25
$\ddagger 7$	Pikes Peak.	Colorado	25	60	La Plata	Colorado	25
8	Sewanee	Tennessee	25	61	Monterey	Virginia-West Virginia	25
$\ddagger 9$	Anthracite-Grested Butte	Colorado	50	62	Menominee Special	Michigan	25
10	Harpers Ferry	Va.-W. Va.-Md.	25	63	Mother Lode District	California	50
11	Jackson	California	25	64	Uvalde	Texas	25
12	Estillville.	Va.-Ky.-Tenn.	25	65	Tintic Special	Utah	25
13	Fredericksburg	Maryland-Virginia	25	66	Colfax	California .	25
14	Staunton	Virginia-West Virginia	25	67	Danville	Illinois-Indiana	25
15	Lassen Peak	California.	25	68	Walsenburg	Colorado	25
16	Knoxville	Tennessee-North Carolina	25	69	Huntington.	West Virginia-Ohio	25
17	Marysville	California	25	70	Washington	D. C.-Va.-Md.	50
18	Smartsville	California.	25	71	Spanish Peaks	Colorado	25
19	Stevenson	Ala.-Ga.-Tenn.	25	72	Charleston	West Virginia	25
20	Cleveland.	Tennessee	25	73	Goos Bay	Oregon	25
21	Pikeville	Tennessee	25	74	Coalgate	Indian Territory	25
22	McMinnville	Tennessee	25	75	Maynardville	Tennessee	25
23	Nomini	Maryland-Virginia	25	76	Austin	Texas	25
24	Three Forks	Montana	50	77	Raleigh	West Virginia	25
25	Loudon	Tennessee	25	78	Rome.	Georgia-Alabama	25
26	Pocahontas	Virginia-West Virginia	25	79	Atoka.	Indian Territory	25
27	Morristown	Tennessee	25	80	Norfolk	Virginia-North Carolina	25
28	Piedmont.	Maryland-West Virginia	25	81	Chicago.	Hllinois-Indiana	50
29	Nevada City Special	California	50	82	Masontown-Uniontown	Pennsylvania. .	25
30	Yellowstone National Park	Wyoming	75	83	New York City	New York-New Jersey	50
31	Pyramid Peak	California	25	84	Ditney	Indiana	25
32	Franklin	Virginia-West Virginia	25	85	Oelrichs	South Dakota-Nebraska	25
33	Briceville.	Tennessee	25	86	Ellensburg	Washington.	25
34	Buckhannon	West Virginia	25	87	Camp Clarke	Nebraska.	
35	Gadsden	Alabama	25	88	Scotts Bluff	Nebraska	25
36	Pueblo	Colorado	50	89	Port Orford	Oregon	25
37	Downieville.	California	25	90	Cranberry	North Carolina-Tennessee	
38	Butte Special	Montana	50	91	Hartville	Wyoming	25
39	Truckee	California.	25	92	Gaines	Pennsylvania-New York	25
40	Wartburg	Tennessee	25	93	Elkland-Tioga	Pennsylvania	25
41	Sonora	California	25	94	Brownsville-Connellsville	Pennsylvania.	25
42	Nueces	Texas	25	95	Columbia	Tennessee	25
43	Bidwell Bar	California	25	96	Olivet	South Dakota	25
44	Tazewell	Virginia-West Virginia	25	97	Parker	South Dakota	25
45	Boise	Idaho	25	98	Tishomingo	Indian Territory.	25
46	Richmond	Kentucky.	25	99	Mitchell	South Dakota.	25
47	London.	Kentucky	25	100	Alexandria	South Dakota	25
48	Tenmile District Special	Colorado	25	101	San Luis	California	
49	Roseburg	Oregon.	25	102	Indiana	Pennsylvania	25
50	Holyoke	Mass.-Conn.	50	103	Nampa	Idaho-Oregon	25
51	Big Trees	California	25	104	Silver City	Idaho	25
52	Absaroka	Wyoming	25	105	Patoka	Indiana-Illinois	25
53	Standingstone	Tennessee	25	106	Mount Stuart	Washington	25
	* Order by number. \dagger Payment must be made by money \ddagger These folios are out of stock.	der or in cash.					

