DEPARTMENT OF THE INTERIOR
UNITED STATES GEOLOGICAL SURVEY CHARLES D.WALCOTT, DIRECTOR

GEOLOGIC ATLAS OF THE
 UNITED STATES

INDLANA FOLIO
PENNSYLVANLA

UNIV STATE
 GEOLOGIC AND TOPOGRAPHIC ATLAS OF UNITED STATES.

The Geological Survey is making a geologic map of the United States, which is being issued in parts, alled folics. Each folio includes a topographic ogether with explanatory and descriptive texts.

THE TOPOGRAPHIC MAP
The features represented on the topographic map are of three distinct kinds: (1) inequalities of sur face, called rehef, as plains, plateaus, valleys, hills and mountains; (2) distribution of water, calle drainage, as streams, lakes, and swamps; (3) the works of man, called culture, as roads, railroad, boundaries, villages, and cities.
Relief.-All elevations are measured from mea tea level. The heights of many points are accu rately determined, and those which are most mportant are given on the map in figures. It is desirable, however, to give the elevation of all parts f the area mapped, to delineate the outline or form or all slopes, and to line the hrol leme evel, the altitudinal intercal represented by the ew, betwen lines being the each map. These lines are called contours, and the niform altitudinal space between each two conours is called the contour interval. Contours and elevations are printed in brown.
The manner in which contou
frm, and grade is shown in the following sketch and corresponding contour map (fig. 1).

.
The sketch represents a river valley between two hills. In the foreground is the sea, with a bay which is partly closed by a hooked sand bar. On each side of the valley is a terrace. From the
terrace on the right a hill rises gradually, while from that on the left the ground ascends steeply, forming a precipice. Contrasted with this precipice forming a precipice. Contrasted with this precipice the map each of these features is indicated, directly beneath its position in the sketch, by contours. The following explanation may make clearer the manner in which contours delineate elevation, form, and grade:

1. A contour indicates a certain height above 50 feet; this illustration the contour interval 50 50 feet; therefore the contours are drawn at 50 , level. Along the feet, and so on, above mean sea of the surface that are 250 feet above sea; along the contour at 200 feet, all points that are 200 feet above sea; and so on. In the space between any two contours are found elevations above the lower and below the higher contour. Thus the contour at 150 feet falls just below the edge of the terrace, while that at 200 feet lies above the terrace; therefore all points on the terrace are shown to be more than 150 but less than 200 feet above sea. The summit of the higher hill is stated to be 670 feet above sea; accordingly the contour at boo feet surounds it. In this fre 150 contours are numbered, and those for 250 and 500 feet a ccentuated by being made heaver und then the accentuating and numbering of certain then-say every fifth one-suffice, for the heights of others may be ascertained by counting up or down from a numbered contour.
moothly are continuous horizontal lines, they wind noothy about smooth surfaces, recede into all reentrant angles of ravines, and project in passing
about prominences. These relations of contour curves and angles to forms of the landscape can be raced in the map and sketch.
2. Contours show the approximate grade of any lope. The altitudinal space between two contou is the same, whether they lie along a cliff or on a gentle slope; but to rise a given height on a gentle slope one must go farther than on a steep slope, and herefore contours are far apart on gentle slopes and near together on steep ones
For a flat or gently undulating country a small contour interval is used; for a steep or mountainous country a large interval is necessary. The mallest interval used on the athas sheets of 1 . regions like the Mississippi delta and the Dismal wamp. In mapping geal Tor in liste rlif contour intervals of 10,20, 55,50 , and 100 feet are used
Dramage.-Watercourses are indicated by bl drawn unbroken, but if the entire year the line of the year the line is broken or dotted. Where tream sinks and reappears at the surface, the sup posed underground course is shown by a broken lue line. Lakes, marshes, and other bodies of water are also shown in blue, by appropriate conventional signs.
Culture.-The works of man, such as roads, railoads, and towns, together with boundaries of town ships, counties, and states, are printed in black. Scales.-The area of the United States (excluding Alaska and island possessions) is about $3,025,000$ square miles. A map representing this area, draw to the scale of 1 mile to the inch, would cover $3,025,000$ square inches of paper, and to accommodate the map the paper would need to measure
about 240 by 180 feet. Each square mile of ground about 240 by 180 feet. Each square mile of ground
surface would be represented by a square inch of surface would be represented by a square inch of
map surface, and one linear mile on the ground would be represented by a linear inch on the map. This relation between distance in nature and corresponding distance on the map is called the scal" The scale. In this case it is The scale may be expressa also thaction of which the nuna the corgth on and the denominar the correspo ing leng there are 6360 inches in a mile, the scale " 1 mile an inch" is expressed by $\frac{1}{6,3,50}$.
n inch" is expressed by $\frac{\text { ․․5ㅇ }}{}$.
Three scales are used on the atlas sheets of the Geological Survey; the smallest is $\frac{1}{250.000}$, the intermediate $\frac{1}{150,000}$, and the largest $\frac{1}{6 . \frac{1}{2050}}$. These correspond approximately to 4 miles, 2 miles, and 1 mile on the ground to an inch on the map. On the scale $\frac{1}{2}$ a square inch of map surface represents about 1 square mile of earth surface; on the scale
 about 16 square miles. At the bottom of each atlas sheet the scale is expressed in three waysby a graduated line representing miles and parts of miles in English inches, by a similar line indicating di
fraction.
Allas sheets and quadrangles.-The map is being published in atlas sheets of convenient size, which represent areas bounded by parallels and meridians. These areas are called quadrangles. Each sheet on he scale of sam contains one square degree-i. e., a degree of latitude by a degree of longitude; each sheet on the scale of $\frac{1}{\text { isw,wn }}$ contains one-fourth of square degree; each sheet on the scale of $\frac{1}{\text { s.and }}$ contains one-sixteenth of a square degree. .the are of the corresponding quadrang.
1000 , and 250 square miles.
a che parts of one map lines Unted Stan, disregard political boundary hips. To each sut, to the quadrangle represents is given the name of some well-known town or natural feature within its limits, and at the sides and corners of each sheet the names of adjacent sheets, if published, are printed.
Uses of the topographic map.- On the topographic of the quadrangle represented. It should portray
o the observer every characteristic feature of the andscape. It should guide the traveler; serve positiontor or owner who desires to ascertain the position and surroundings of property; save the ailways, preliminary surveys in locand ditch provide educational material for schools and home; and be useful as a map for local reference.

THE GEOLOGIC MAPS.

The maps representing the geology show, by colors and conventional signs printed on the topo graphic base map, the distribution of rock masses on the surface of the land, and the structure sections show their underground relations, as far

kinds of rocks

Rocks are of many kinds. On the geologic ma they are distinguished as igneous, sedimentary, and netamorphic
Igneous rocks.-These are rocks which have ordated from a state of fusio rom time to of all, ages molten material has fissures or channels of various shapes and sizes to or nearly to the surface. Rocks formed by the consolidation of the molten mass within these channels-that is, below the surface-are called intrusive. When the rock occupies a fissure with approximately parallel walls the mass is called the mass is termed a stock. When the conduits fir molten magmas traverse stratified rocks they ofte send off branches parallel to the bedding planes the rock masses filling such fissures are called sills or sheets when comparatively thin, and lacco liths when occupying larger chambers produced by the force propelling the magmas upward. Within rock inclosures molten material cools slowly, with the result that intrusive rocks are generally of crystalline texture. When the channels reach the surface the molten material poured out through them is called lava, and lavas often build up volcanic mountains. Igneous rocks thus formed upon the surface are called extrusive. Lavas cool rapidy in the air, and acquire a glassy or, more often, a par but are more fully cyalline in ther in bions the outer af law flow more or less poron. Explowe are usu, panies volenie eruptions, cousing ejections of dit ash, and larger fragents. These material wht consolidated, constitute breccias, agrolomerates, and tuffs. Volcanic ejecta may fall in bodies of water or may be carried into lakes or seas and form edimentary rocks.
Sedimentary rocks.-These rocks are compose of the materials of older rocks which have been broken up and the fragments of which have been ried to a different place and deposited.
The chief agent of transportation of rock débris i water in motion, including rain, streams, and th 3 water of lakes and of the sea. The materials are deposit part carried as solid particles, and the are gravel, then said to be mechanical. Such dated into sand, and clay, which are later consolismaller portion the materials are carried in sol smaller portion the materials are carried in solu-
tion, and the deposits are then called organic if formed with the aid of life, or chemical if formed without the aid of life. The more important rocks of chemical and organic origin are limestone, chert, gypsum, salt, iron ore, peat, lignite, and coal. Any one of the deposits may be separately formed, . the different materias may be intermingled many ways, producing a grea variety of rocks. And; and lid a The mot characterstic of the wind-borne or eolis deposits is loess, a fine-orainel euth; the most char deposits is loes, a fine ite ill , ho most charmixture of bowlders and pebbles with clay or sand Sedimentary rocks are usually made up of layers or beds which can be easily separated. These layers are called strata. Rocks deposited in layers are said to be stratified.
The surface of the earth is not fixed, as it seems to be; it very slowly rises or sinks, with reference to the sea, over wide expanses; and as it rises or
ubsides the shore lines of the ocean are chat ged. As a result of the rising of the surface, marine sedimentary rocks may become part of the land, and ocks.
Rocks exposed at the surface of the land are acted upon by air, water, ice, animals, and plants. They are gradually broken into fragments, and the more soluble parts are leached out, leaving the less soluble as a residual layer. Water washes residual mateial down the slopes, and it is eventually carried by rivers to the ocean or other bodies of standing water. Usually its journey is not continuous, but it is temporarily built into river bars and flood plains, where it is called alluvium. Alluvial deposits, glacial deposits (collectively known as drift), and eolian deposits belong to the surficial class, and the residual layer is commonly included with them. Their upper par, wher plans, constine soins and subsols, he solls being organic matter
Metamorphie rocks.-In the course of time, and by a variety of processes, rocks may become greatly changed in composition and in texture. When the newly acquired characteristics are more pronounced than the old ones such rocks are called metamorphic. In the process of metamorphism the substances of which a rock is composed may enter into new combinations, certain substances may be lost, or new substances may be added. There is often a complete gradation from the primary to the metamorphic form within a single quart iss. Such changes transform sulify other quartzite, limestone in

From time to time in geologic history igneous and sedimentary rocks have been deeply buried and later have been raised to the surface. In this process, through the agencies of pressure, movement, and chemical action, their original structure may be entirely lost and new structures appear. Often there is developed a system of division planes along which the rocks split easily, and these planes may cross the strata at any angle. This structure called cleavage. Sometimes crystals of mica or other foliaceous minerals are developed with their laminæ approximately parallel; in such cases the structure is
schistosity.
As a rule, the oldest rocks are most altered and the younger formations have escaped metamorphism, but to this rule there are important exceptions.

formations

For purposes of geologic mapping rocks of all the kinds above described are divided into formacions. A sedimentary formation contains between its upper and lower limits either rocks of uniform character or rocks more or less uniformly varied in character, as, for example, a rapid alternation of shale and limestone. When the passage from one nind of rocks to another is gradual it is sometimes necessary to separate twq contiguous formations by lepritrary line, and in some cases the distinction An almost entirely on the contained fossils. igneous formation is constituted of one or more bodies either containing the same kind of igneous rock or having the same mode of occurrence. A form character or of seeveral rocks having commion haracteristics
When for scientific or economic reasons it is desirable to recognize and map one or more specially : developed parts of a varied formation, such parts are called members, or by some other appropriate term, as lentils.

ages of rocks.

Geologic time.-The time during which the rocks vere made is divided into several periods. Smaller time divisions are called epochs, and still smaller ones stages. The age of a rock is expressed by naming the time interval in which it was formed, hen known
The sedimentary formations deposited during a period are grouped together into a system. The Any aggregate of formations less than a series is called a group.

As sedimentary deposits or strata accumulate the younger rest on those that are older, and the rela-
tive ages of the deposits may be determined by tive ages of the deposits may be determined by except in regions of intense disturbance ; in regions sometimes the beds have been reversed, and it is often difficult to determine their relative ares from their positions; then fossils, or the remains and imprints of plants and animals, indicate which of two or more formations is the oldest.

Stratified rocks often contain the
imprints of plants and animals which, at the time the strata were deposited, lived in the sea or were washed from the land into lakes or seas, or were buried in surficial deposits on the land. Such rocks are called fossiliferous. By studying fossils it has been found that the life of each period of the earth's history was to a great extent different from that of other periods. Only the simpler kinds of marine life existed when the oldest fossiliferous rocks were deposited. From time to time more complex kinds developed, and as the simpler ones lived on in modified forms life became more varied. But during each period there lived peculiar forms, which did not exist in earlier times and have not existed since; these are characteristic types, and they define the age of any bed of rock in which they are foun. Other types passed on from period to period, and thus linked the systems together, foning a cham of life from the time of the oldest fosm for other and it is impossible to observe their relative positions, the characteristic fossil types found in positions, may determine which was deposited first. Fossil remains found in the strata of different areas, provinces, and continents afford the most important means for combining local histories into a general earth history.
It is often difficult or impossible to determine the age of an igneous formation, but the relative age of such a formation can sometimes be ascertained by observing whether an associated sedimentary formation of known age is cut by the igneous mass or is deposited upon it
Similarly, the time at which metamorphic rocks were formed from the original masses is sometimes shown by their relations to adjacent formations of known age; but the age recorded on the map is that of the original masses and not of their metamorphism.
Colors and patterns.-Each formation is shown on the map by a distinctive combination of color and pattern, and is labeled by a special letter symbol.

Patterns composed of parallel straight lines are used to represent sedimentary formations deposited in the sea or in lakes. Patterns of dots and circles represent alluvial, glacial, and eolian formations. Patterns of triangles and rhombs are used for igneous formations. Metamorphic rocks of unknown origin are represented by short dashes irregularly placed; if the rock is schist the dashes may be arranged in wavy lines parallel to the structure
planes. Suitable combination patterns are used for metamorphic formations

The or of igneous origi

The patterns of each class are printed in various are used to indicate age, a particular color colors assigned to each system. The symbols by which formations are labeled consist each of two or more letters. If the age of a formation is known the symbol includes the system symbol, which is a capital letter or monogram; otherwise the symbols are composed of small letters. The names of the systems and recognized series, in proper order (from new to old), with the color and symbol assigned to each system, are given in the preceding table.

surface forms.

Hills and valleys and all other surface forms have een produced by geologic processes. For example, most valleys are the result of erosion by the streams that flow through them (see fig. 1), and the alluvial plains bordering many streams were built up by
the streams; sea cliffs are made by the eroding the streams; sea cliffs are made by the eroding action of waves, and sand spits are built up by waves. Topographic forms thus constitute part of the record of the history of the earth.
. Some forms are produced in the making of deposits and are inseparably connected with them. The hooked spit, shown in fig. 1, is an illustration. To this class belong beaches, alluvial plains, lava of till) and (s (ridges of drift made the edges of placiers) Other forms are producel by edges of glaciers). Other forms are prodaced by of the associated material. The sea cliff is an illustration; it may be carved from any To this class belong abandoned river channels, To this class belong abandoned river channels,
glacial furrows, and peneplains. In the making glacial furrows, and peneplains. In the making
of a stream terrace an alluvial plain is first built and afterwards partly eroded away. The shaping of a marine or lacustrine plain, is usually a double process, hills being worn away (degraded) and valleys being filled up (aggraded).
All parts of the land surface are subject to the action of air, water, and ice, which slowly wear them down, and streams carry the waste material to the sea. As the process depends on the flow of water to the sea, it can not be carried below sea level, and the sea is therefore called the base-level of erosion. When a large tract is for a long time undisturbed by uplift or subsidence it is degraded nearly to base-level, and the even surface thus produced is. called a peneplain. If the tract is afterwards uplifted the peneplain at the top is a record of the former relation of the tract to sea level
the various geologic sheets.
Areal geology map.-This map shows the areas occupied by the various formations. On the margin is a legend, which is the key to the map. To ascertain the meaning of any colored pattern and
its letter symbol the reader should look for that its letter symbol the reader should look for that color, pattern, and symbol in the legend, where he mation. If it is desired to find any given formmation. If it is desired to find any given formaits color and pattern noted, when the areas on the map corresponding in color and pattern may be map corres
traced out.
The legend is also a partial statement of the geologic history. In it the formations are arranged in columnar form, grouped primarily according to in columnar form, grouped primarily according to
origin-sedimentary, igneous, and crystalline of unknown origin-and within each group they are placed in the order of age, so far as known, the youngest at the top.
Economic geology map.-This map represents the distribution of useful minerals and rocks, showing their relations to the topographic features and to the geologic formations. The formations which appear on the areal geology map are usually shown on this map by fainter color patterns. The areal geology, thus printed, affords a subdued background upon which the areas of productive A min
tions may be emphasized by strong colors. A min symbol is printed at each mine or quarry, accompanied by the name of the principal mineral mined or stone quarried. For regions where there are important mining industries or where artesian basins exist special maps are prepared, to show these additional economic features

Structure-section sheet.-This sheet exhibits the relations of the formations beneath the surface. In cliffs, canyons, shafts, and other natural and artificial cuttings, the relations of different beds to one another may be seen. Any cutting which exhibits those relations is called a section, and the same term is applied to a diagram representing the relations. The arrangement of rocks in the earth is the earth's structure, and a section exhibiting this arrangement is called a structure section.
The geologist is not limited, however, to the natural and artificial cuttings for his information concerning the earth's structure. Knowing the out the relations among the beds on the surface, he can infer their relative positions after they pass beneath the surface, and can draw sections representing the structure of the earth to a considerable depth. Such a section exhibits what would be seen in the side of a cutting many miles long and several thousand feet deep. This is illustrated in the following figure:

wing a vertical sectio
landscape beyond.
The figure represents a landscape which is cut off sharply in the foreground on a vertical plane, so as to show the underground relations of the rocks. The kinds of rock are indicated by appropriate symbols of lines, dots, and dashes. Thes symbols admit of much variation, but the following commoner kinds of rock:

Schists

Fig. 3.-Sym
tions to represent diferent.
The plateau in fig. 2 presents toward the lower land an escarpment, or front, which is made up of sandstones, forming the cliffs, and shales, constituting the slopes, as shown at the extreme left of the section. The broad belt of lower land is trav ersed by several ridges, which are seen in the sec sion to correspond to the outcrops of a bed of sandof this bed form the surface. The uptred valleys follow the outcrops of limestone and calcareous shale.
Where the edges of the strata appear at the surface their thickness can be measured and the angles at which they dip below the surface can be observed. Thus their positions underground can be inferred. The direction that the intersection of a bed with a horizontal plane will take is called the strike. The inclination of the bed to the horizontal plane, measured at right angles to the strike, is called the dip.
Strata are frequently curved in troughs and arches, such as are seen in fig. 2. The arches are called anticlines and the troughs synclines. But the sandstones, shales, and limestones were deposited beneath the sea in nearly flat sheets; that they are now bent and folded is proof that forces have from time to time caused the earth's surface to are broken across and the parts have slipped past are broken across and the parts have slipped past
each other. Such breaks are termed faults. Two each other. Such oreaks are termed
kinds of faults are shown in fig. 4.

On the right of the sketch, fig. 2, the section is omposed of schists which are trayersed by masses and their
 and (b) a thrust fault.
inferred. Hence that portion of the section delineates what is probably true but is not known by observation or well-founded inference.
The section in fig. 2 shows three sets of formations, distinguished by their underground relations. The uppermost of these, seen at the left of the section, is a set of sandstones and shales, which lie in a horizontal position. These sedimentary strat are now high above the sea, forming a plateau, and their change of elevation shows that a portion of the earth's mass has been raised from a lower to a higher level. The strata of this set are parallel, a relation which is called conformable. The second set of formations consists of strata which form arches and troughs. These strata were once continuous, but the crests of the arches have been removed by degradation. The beds, like those of the first set, are conformable
the upturned, eroded edges of the beats rest upon the upturned, eroded edges of the beds of the second set at the left of the section. The overlying
deposits are, from their positions, evidently younger deposits are, from their positions, evidently younger
than the underlying formations, and the bending than the underlying formations, and the bending and degradation of the older strata must have occurred between the deposition of the older beds
and the accumulation of the younger. When and the accumulation of the younger. When of older rocks the relation between the two an unconformable one, and their surface of contact is an unconformity.
The third set of formations consists of crystalline schists and igneous rocks. At some period of their history the schists were plicated by pressure and traversed by eruptions of molten rock. But the pressure and intrusion of igneous rocks have no affected the overlying strata of the second set Thus it is evident that a considerable interval elapsed between the formation of the schists and the beginning of deposition of the strata of the second set. During this interval the schists suffered metamorphism; they were the scene of erup tive activity; and they were deeply eroded. The contact between the second and third sets is another unconformity; it marks a time interval between two periods of rock formation.
The section and landscape in fig. 2 are ideal, but they illustrate relations which actually occur. The sections on the structure-section sheet are related to the maps as the section in the figure is related to the landscape. The profile of the surface in the section corresponds to the actual slopes of the ground along the section line, and the depth from the surface of any mineral-producing or water be measured by using the scale of the map.
Columnar section sheet.-This sheet contains a
concise description of the sedimentary formations which occur in the quadrangle. It ppresents which occur in the quadrangle. It presents a
summary of the facts relating to the character of the rocks, the thickness of the formations, and the order of accumulation of successive deposits. The rocks are briefly described, and their characters are indicated in the columnar diagram The thicknesses of formations are given in figure which state the least and greatest measurements, and the average thickness of each is shown in the column, which is drawn to a scale-usually 1000 feet to 1 inch. The order of accumulation of the sediments is shown in the columnar arrangementthe oldest formation at the bottom, the youngest at the top.
The intervals of time which correspond to events of uplift and degradation and constitute interrup tions of deposition are indicated graphically and by the word "unconformity."

CHARLES D. WALCOTT,

Revised January, 1904.

DESCRIPTION OF THE INDIANA QUADRANGLE.

By George B. Richardson.

FIG. 1.- Diagraun showing triangulation stations on which
the survey of the quadrangle is based.
marked by stone posts $42 \times 6 \times 6$ inches, set about 3 feet in the ground, in the center of the top of which are cemented bronze tablets marked "U. S. Geological Survey-Pennsylvania."
kinkik, indiana county.

On land owned by Philip Kunkle; about 3 miles north of Creekside post-office, near western end of a high
ridge having seattered trees on the eastern end. Latiridge having seattered trees on the eastern end. L
tude, $40^{\circ} 42^{\prime} 28.78^{\prime \prime}$. Longitude, $79^{\circ} 12^{\prime} 14.09^{\prime \prime}$. olibman, indiana county
In White Township, aboat 2 miles west of Indiana, on land owned by D. Coleman. Reference marks: Stone sunk 2 feet below surface
of ground in direction of Kunkle station; distant 10.2 feet to cross on stone. Stone sunk 18 inches below surface of ground in direction of Warner station; distant 12.3 feet to cross on stone. Latitude, $40^{\circ} 38^{\prime} 09.95^{\prime \prime}$. Longitude, $79^{\circ} 11^{\prime} 02.71^{\prime \prime}$
p, indiana county.

On a high hill on land owned by W. S. Rowland; Township, and near the line between North Mahoning and South Mahoning townships. Latitude, $40^{\circ} 36^{\prime}$ and South Mahoning townships.
$29.07^{\prime \prime}$. Longitude, $79^{\circ} 11^{\prime} 32.36^{\prime \prime}$
warner, indiana county.
the high ship, on the highest part of a bare, round-top hill, on
land owned by Mr. Warner. Latitude, $40^{\circ} 36^{\prime} 29.07^{\prime \prime}$. Longitude, $79^{\circ} 13^{\prime} 10.5 \theta^{\prime \prime}$.

$$
\begin{aligned}
& \text { noLo, indiana county. } \\
& \text { urth mile north of Nol }
\end{aligned}
$$

About one-fourth mile north of Nolo post-office, on and owned by Mr. McCaffery, on high ground, but not
he highest point.
round, with cross on top, and set on line with Evans and McCoy ; distant 10 feet from station. Latitude, 40° $34^{\prime} 28.50^{\prime \prime}$. Longitude, $78^{\circ} 57^{\prime} 41.33^{\prime \prime}$. strong, indiana countr.
In Cherryhill Township, about 2 miles southwest of Greenville village, on the highest hill in the immediate vicinity, on land owned by H. B. Strong. There is a $40^{\circ} 35^{\prime} 58.92^{\prime \prime}$ Longitude $79^{\circ} 03^{\prime} 1439^{\prime \prime}$, Latuale
nevans, indiana county.
On Evans Hill, Brash Valley Township, on land owned by John Evans, on highest part of hill, cleared 1The Indiana quadrangle is included in the area surveyed
by W. G. Platt in 1877, and his report on Indiana County
(HHHH), published by the Second Geological Survey of Pennsylvania, has been frequently consulted in the preparation of this folio.
of timber with the exception of two small chestnut trees Latitude, $40^{\circ} 34^{\prime} 13.27^{\prime \prime}$. Longitude, $79^{\circ} 05^{\prime} 06.43^{\prime \prime}$ (Not occupied.)
Station mark: Cupola of Normal School Building. widow, ixdiana countr.
In Blacklick Township, about 6 miles east of Blairsville, on the Blairsville and Ebensburg pike, on a bare
hill about 20 rods south of the road, on land owned by the heirs of J. W. Thompson. Latitude, $40^{\circ} 26^{\prime} 57.89^{\prime \prime}$ Longitude, $79^{\circ} 09^{\prime} 54.27^{\prime \prime}$.

watt indiana coentr.

About 1 mile southwest of Tannery post-office and 13 point of the western one of two hills abont the same height and 1 mile apart. The land is owned by Thomas Watt. Latitude, $40^{\circ} 36^{\prime} 02.99^{\prime \prime}$. Longitude, $79^{\circ} 16^{\prime}$ $45.32^{\prime \prime}$.
broadview, indiana coụnty.
About $3 \frac{1}{2}$ miles north of Shelocta and a few rods east of the Armstrong-Indiana county line, on a high, bare hill, with some rimber on the south hest slope. The land is owned by John Russell. Latitude, $40^{\circ} 41^{\prime} 16.95^{\prime \prime}$. Longitude, $79^{\circ} 17^{\prime} 28.00^{\prime \prime}$.
arafain, armstrona coonty
About 1 mile east of Blanket Hill post-office, on a bare ridge of cultivated land owned by the Graham
heirs and rented by W. A. Blose. Reference marks: A. Ahestnut
eter, magnetic bearing S. $23^{\circ} \mathrm{W}$, distant $415{ }^{\circ}$ in diamdead chestnut tree 18 inches in diameter, S. $86^{\circ} \mathrm{W}$ W., disant 257 feet. Latitude, $40^{\circ} 46^{\prime} 17.28^{\prime \prime}$. Longitude, $79^{\circ} 24^{\prime} 50.74^{\prime \prime}$.
m'cov, indiana couttr.
About 1 mile southeast of Taylorville post-office, on a bare, round-top hill owned by James McCoy. Latitude, xame
palmer, indiana county.
About $2 \frac{1}{2}$ miles south of Rochester Mills post-office, in Grant Township, on a very high, partly cleared ridge, on land owned by Mr. Palmer.
ground, with cross on top, in line with stations Rowlan of and McCoy ; distant 10 feet from station. Latitude, 40° $47^{\prime} 40.71^{\prime \prime}$. Longitade, $78^{\circ} 58^{\prime} 32.74^{\prime \prime}$.
spirit leveling, data.
blatrsville, along penvsylvania railroad, to
Blairsville, Pennsylvania Railroad passenger
station station; northeast corner of, on foundation
offset, Pennsylvania Railroad beneh mark
No. 60, a square chiseleded No. 60, a square ehiseled mark...............
Blairsvile, Walnat street bridge, northeast
wing wall of, on coping stone, aluminum
 Blairssile, Maple street crossing; top of rail 1 at
Turner station, top of west rail at........... Tunnel station, top of west rail foet north of; in a cut
stone, chiseled mark.............
 Smiths station, 1.5 miles north of, bridge ove
small small stream, chiseled mark nom Blacklick station, opposite; top of west rail.....
Blacklick station, 900 feet north of; west side of rairoad, rock, chiseled mark............ of railroad. rock, chiseled mark...........
Blacklick station, 6 miles north of, railroa
bridge corner of south abutment Creek; southwe bronze tablet, marked " 981 PITTSBE URG",

$\underset{G}{\mathrm{So}}$ anth Graceton, oroaded crossing; top of rail at....
Graceton, opposite station to Traceton, 1.8 miles north or of station ; smal
eulvert, top stone chiseled culvert, top stone, chiseled mark
Homer, 1 mile south of small culvert, north
east coping stone chiseled east coping stone, chiseled mark........
Hoimer, 60 feet south of station; bridge Homer, 60 feet south of station; bridge ore
Yellow Creek; northwest
coping
cong wall, on Yellow Creek; northwest wing wall, on
coping stone, aluminem tablet, marked.
" 1019 PITTISBUGG"................... homer, along pennsylivania rallboad, to ind Homer, opposite station; top of rail........... 1,0
Homer, 1 mile north of; small culvert, chiseled
 Wo wick,
Two Lick Creek south of station; bridge ove
north west wing wall, eopin stone, chiseled mark.

1,011.908
$1,003.076$
1,010
1,010
1,100
1
$\underset{\substack{1,090.98 \\ 1,04}}{1}$
${ }_{967}^{968.05}$
972.05
980.509

1,009
$1,028.5$
1
1,019

$1,020.37$
$1,063.0$

1,060
$1,042.20$
1,014.36
,019.092
1,023
$1,047.08$
1,04.08
$\underset{T}{T \mathrm{Tw} \text { wo }}$

(ank.

Indiana, School street crossing; top of rail... Indiana, opposite station, ctop top of west rail.....
Indiana, 75 foet west of station; stone set in
street, chiseled mark.
street, chiseled mark.........................
ndiana, 1.7 miles northwest; south side
road, nail in root of chestnut tree
Indiana, 2 miles northwest of; summit, on
root of large double chestnut tree, paint
root of
marked
Indiana,
road,
coal pro
ana, 2.25 milies west of on west side of road, on robt of oak tree, "No. 24" made by
coal prospectors ...t.................

Indiana, 2.5 miles northwest of nail in root of | oak tree. |
| :---: |
| Indiana, 2. |

2.7 miles north west of; on east side of road, nail in root of large oak tree. .t. $1 . \ldots .$.
diana, 4 miles northwest of; pole
crekside, $1 . ~$ over Crooked Crieek, sonthwest wing wall,
coping stone, chiseled mark coping stone, chiseled mark......................
Creekside, M. . eluroh, entrance to in south-
west corner stone, copper tablet, marked "Est corner stone,
Creekside, 1.75 miles north of; covered bridge
northeast abutment, coping stone, chiseled
mark mark $\ldots . .$.
Chambers
Chambersville, 1 mile south of over Crooked Creek, southeast wing wall, coping stone, chiseled mark
Chambersville, 300 feet south of post-ofice; on east side of road, rock, chiseled mark..$\ldots \ldots$....
Chambervilie, 1.24 miles north of
south of schoold south of schoolhouse, at road leading wes Gaili in root of oak tree.....................
Gaiblon, nile sonth of post-ffice, east side
of road, rock, ehiseled mark............ of roan, rock, chiseled mark
Gaibleton, 600 feet south of post-ofice, doublearched, stone briage, west side of road, on
coping stone, north areh, aluminum tablet,
marked ""1077 PITTSBURG" marked " 1097 PITTSBBUG"
 of road, rock, chiseled mark
Tanoma, Tanoma House
 Canoma, chiseled mites south of; ouk tree standiug
in road, nail in root of
 mark.................................$~$
Tanoma, 4.2 miles east of covered brige,
sonthesta wing wall, coping stone, chiseled mark Penn Run, 2 miles west of post-offlef; south
side of road, rock, ehiseled mark..........
Penn Run, 1 mile west of post-office on rock Penn Run, 1 mile west of post-office; ; on rock
under wid cherry tree, chiseled mark... under wild cherry tree, cyiseled mark
Penn Run, Presbyterian Courch, on lower stone step of;
PITTSBURG
 Pikes Peak, 2.2 miles southwest
 ehiseled mark.....
Brush Valley, 300 f
nail in root of oak thorthenst of post-office,
Brush Valley, Union House, entrance to; in
sounth end of top stone step of, bronze tablet,
marked " 1448 P ITTTS south end of top stone step of. bronze tablet,
marked "1448 PITTSBUURG"..........
Brush Valley, 1.5 miles west ond Brush Valley, 1.5 miles west of; nearly opposite
chestnut tree on nortt side of road; south
side of road, rock
B road, by log house, rock, chiseled mark.....
Homer, 2.25 milese east of; north side or road,
under large white oak, rock, chiseled mark. under large white oakt, rock, chiseseled ar mark,
Homer, 2 miles east of; on west side of road
rock,
Homer
stone
$\underset{\substack{\text { Feet. } \\ 1,057.4}}{\text { Fen }}$ 1,109.27都 1,120 1,127.7 1,137.11 1,145.5
1,149

1,163

Appalachian province.-The Indiana quadrangle lies within the Appalachian province-a welldefined area whose different parts have a closely related history. This province extends from the Atlantic Coastal Plain on the east to the Prairie Plains of Ohio and Indiana and the lowlands of the Mississippi River on the west, and from New York to Alabama. Both topographically and geo logically the Appalachian province is naturally divided into three longitudinal belts. Fig. 14 on the Illustration sheet, shows these divisions for the northern part of the province.
Piedmont Plateau.-The easternmost division of the Appalachian province is the Piedmont Plateau, which in Pennsylvania is a hilly region of complex structure. It is underlain largely by crystalline rocks of pre-Cambrian age. The western limit of the plateau is formed by the Blue Ridge, which extends into Pennsylvania nearly to the Susque hanna River, where it is known locally as the South Mountain. Eastward the Piedmont Plateau reache southwest direction through Philadelphia and Trenton, and marks the eastern boundary of the crystal line rocks and the western limit of the flat-lying sediments of the Atlantic Coastal Plain.
Appalachian ridges and valleys.-The central belt of the Appalachian province is characterized ridges and intervening valleys The rocks of this ridges and intervening valley. The rol Paleozoic age and include limestone region are of Paleozoic age and include limestones,
sandstones, and shales, which have been much folded and faulted. As shown by fig. 14, this region occupies central and northeastern Pennsylvania.
Allegheny Plateaus.-On the west the Appalachian ridges generally are sharply limited by the Allegheny Front. This is a bold southeastwardfacing escarpment, which defines the eastern
termination of the third great division of the Appalachian province-the Allegheny Plateaus. The Allegheny Front is not prominent among the ridges of the anthracite belt in northeastern Pennsylvania, but farther south the escarpment become more pronounced. It is well marked where it is crossed by the Pennsylvania Railroad at the Horse shoe Curve, and thence continues southwestward across Maryland into West Virginia and Tennessee, where the Allegheny Front is represented by th eastern escarpment of the Cumberland Plateau.
As implied by the name Allegheny Plateaus, the general topographic character of the western division is that of a plateau-an upland contiguous on the one hand to the Prairie Plains and the lowlands of the Mississippi, and on the other hand to the Appalachian ridges and valleys. This region is underlain by Paleozoic sedimentary rocks and The structure of the Allegheny Plateaus is field The structure of the Allegheny Plateaus is simple compared whe trata of centy hppaciana is broken only by small faults and by low, broad folds.
Topographically the western division of the Appalachian province is composed of a number of plateaus of different altitude, the surface feature of which are dissimilar.

The most pronounced plateau is along the easter limit of the division and extends practically the entire length of the Appalachian province. In entral Alabama the surface of this plateau has an elevation of 500 feet above sea level. The altitude acreases to 1700 feet at Chattanooga, 2400 feet a Cumberland Gap, 3500 feet at New River, an probably 4000 feet at its culminating point in cen ral West Virginia. From this point it descend 0 about 2800 feet on the southern line of Penn ylvania and to 2000 or 2200 feet in the central art of the State. North of this region the plateau character of the surface is widely developed n the northern counties of Pennsylvania and anges from 2000 to 2400 feet. The surface s. est preserved as a plain in Alabama and TenThis feature is fairly well developed as far as the Kentucky line, but whe dorthward stream dis entucky line, ben thed ar as to sreatly he character and the former extent of the plain. Still, there are many areas of high land, as far orth as southern New York, that seem to mark ormer more or less even surface
The flat-topped surface of this plateau slope estward, and it is generally separated from the next lower plateau by a more or less regular west ward-facing escarpment. This escarpment is most pronounced in Tennessee, where it has a height of 1000 feet and separates the Cumberland Plateau on the east from the Highland Plateau on the west. Toward the north the height of the escarpment diminishes to 500 feet in central Kentucky, and orth of Ohio River its development is so indis inct that no traces of it have been recognized. In outhern Pennsylvania the escarpment become ore pronounced where the hard rocks of Chest ut Ridge rise abruptly above the plains formed the soft rocks of the Monongahela and Alle heny valleys, but there the surface of the uppermost plateau is so greatly dissected that it can be ecognized with difficulty. Toward the central part of the State the plateau surfaces that are sually separated by this escarpment approach each ther and the escarpment is merged in a mass rregular hills which seem to represent all that
ains of the higher plateau.
A second plateau surface is well developed as separate and distinct feature in Tennessee and kentucky. It is k. Plain. Thi and in Kentucky as the Lexingto lain. This second Kars it Ititude throughout these States of a cout 1000 feet above sea level. In the territory north of Ohio River this plateau was developed on harder ocks than in Kentucky and Tennessee and th esult is that the surfice is less regular and it position is more difficult to determine. The plateau ppears to rise from an altitude of 700 or 800 feet In Indiana to 1000 feet in Ohio, 1200 to 1300 feet southwestern Pennsylvania, and probably 1600 1800 feet throughout the northern part of the Sate and the southern part of New York. The surface features of this plateau are variable, but here is not so much diversity as in the higher one. In Kentucky and Tennessee this lower plateau preserved in large areas as a nearly featureles plain, but in other States it was less perfectly developed, and it has suffered greatly from dissection since it was elevated. ${ }^{1}$

TOPOGRAPHY.

Physiographic relations.-The two characteristic plains of the Allegheny Plateaus described abov re represented in the Indiana quadrangle, but their fatures are so indistinct as to be almost unrecog izable. Chestnut Ridge represents the escarpment which elsewhere divides the lower, western plateau from the higher plateau on the east.
West of Chestnut Ridge rounded hilltops and divides, ranging in elevation from 1250 to 1400 feet, are thought to mark the lower, western plateau is supposed that they are the remnants of a mo less even surface which was produced by long nearer sea level than now, probably in Tertiary
 Pemnsy vania and kout
ica, vol. 14 , pp. 277.296 .
ime. Later uplift and exposure to subaerial conditions have caused such erosion of the country a reave in western Pennsylvania only the
The traces of the old surface of denudation.
The top of Chestnut Ridge is the sole remnan Remnants of this plateau are strikingly apparent in the area lying eastward, in the evenerested sky ine formed by the tops of Dias Ridge and Laurel Hill as seen from the top of Chestnut Ridge. It is thought that this sky line marks an old land urface which once constituted an extensive an pproximately flat low-yying plain. The geologic re of which are now his plas, the nown, but posibly whe detailed mappin that nown, but, possibly, when detailed mapping shal Coast this dio list, him phys g phe slage an with a similar stage
Surface relief.
Chestnut Ridge is the most prorangle. The ridge enters in the southiana quar and extends northeastward across the quadrangle It is a narrow highland belt, the distance from valley to valley on either side being only about 5 miles. The western slope is the steeper, there being a change in altitude of 800 feet from the to of the ridge to Two Lick Creek, while on the east the fall to Brush Valley is only about 500 feet The ridge is dissected, but within the limits of the guadrangle is crossed by only one stream, Yellow reek, which flows in a narrow gorge. The top of the ridge is characterized by a number of knobs, ranging in elevation from 1700 to 1900 feet hichnut Ridge marks the position of an anticline eavy sandstered the the and make the region difficult of acces
Dias Ridge, sometimes called Nolo Ridge ccupies a small area in the southeast corner the quadrangle. It is similar to Chestnut Ridge, from which it is separated by a gently undulating alley formed in shale and drained by Brush Creek. West of Chestnut Ridge the country is mor pen and the topography is less rough. The region is occupied by thee sontwestward-lowing treams, Two Lick and Crooked creeks, which hav at broad and well-pronounced valleys in the general upland surface, and the South Branch of f the leek, whin the corne reek form low, ill defined ridges the tops of re marted by isolated, rounded knobs outhwest corner of the quadrangle the hilltop ange between 1250 and 1400 feet in levation The divide been Two Lick and Crooked cree a higher area, much of which is above 1500 feet, and a number of hilltops reach 1600 feet Between Crooked Creek and the South Branch of Plum Creek the surface is lower, the hills averaging only about 1400 feet.
The area adjacent to the town of Indiana haracterized by gently undulating topography, stretch contrasts strongly with the This ope rounding country, and doubtless accounts for the act that this part of the country was settled early, the relatively fertile, gently rolling country bein aturally more attractive than the ridge
Drainage.-The drainage of the Indiana quad rangle passes entirely into Allegheny River. Th nain waterways are Two Lick, Yellow, and Brusk reeks, which flow southward to join the Alleghen by way of Black Lick Creek and Conemaug River, and Crooked Creek, with its tributary, South Branch of Plum Creek, which, flowing westward, reaches the Allegheny by a more direct route The northeast corner of the quadrangle is but ew miles from the divide between the Atlantic an West Branch of Susquehanna River approach thos of Two Lick Creek.
An interesting feature of the local drainage is M McKee Run and Crooked Cree headwate f Makee Run and Crooked Creek. Branch of McKee Ruin headng near Grove Chat have flowed into Crooked Creek, and some tributari frooked Creek in the vicinity of Tanoma and Onberc likewise are reversed Between Ouberg and Tanoma, Crooked Creek flows northward,
while its branches flow southward. These facts uggest that in an earlier stage of stream development in this region the drainage of the are between the towns of Indiana and Dixonville wa different from the existing system. There seems to have been a reversal of drainage, in consequence of which certain streams which formerly were ributary to Two Lick Creek now flow into Crooked Creek. For some reason, streams drain ing into Crooked Creek had the advantage ove hose which flowed into Two Lick, whereby th rooked Creek dranage was enabled o cat ba he divid fally expose of the Two Liok drain of Tho Lis whe than urued into Crooked Creek

GEOLOGY.
stratigraphy.
Carboniferous system
Character and thickness.-The rocks exposed at the surface in the Indiana quadrangle, except the Carboniferous in the creek bottoms, are all of heet, shows the extent of the northern portion of the Appalachian bituminous coal field and the position of the Indiana quadrangle, from which it is seen that the area under consideration is within he coal field, though it lies just outside the region of the Pittsburg coal.
The surface rocks belong chiefly to the Cone naugh and Allegheny formations, but where Tw Lick and Yellow creeks and Allen Run en through Chestnut Ridge the Pottsville formation if exposed, and on Yellow Creek, for a short distance probably, the Mauch Chunk shales also outcro rom the lowest geologic horizon to the highes, only about 1100 feet of rocks in vertical thicknes intervene. These rocks are shales, sandstones, thim mestones, and coals, whose sequence is shown
The different sections illustrate the variability The different sections illustrate the variability of the quadrangle maygh a section in one part ess and general have approximately the thickion in another part, it is likely to show many ninor variations This is very apare in field On attempting for instance to a tone which at one loeality is thick and prom it may be found that it som beomes mose and less prominent and finally may lose its dis tinctive fatures and pass into a soly sher even into a shale with no sand admixture. Farther along the same horizo the sandy phase may reappear, so that the horizon may again be marked by a prominent sandstone. The strata therefore frequently occur as lenses, and just as a sandston merges into a shale, so limestones and shales pass by transition into one another from point to point. Any phase may be strongly developed locally and elsewhere may fade out or merge into some hing else. Such changes are characteristic of these Upper Carboniferous rocks.
Too much emphasis, however, must not be laid upon this irregularity. Over widely extended regions uniform conditions prevailed and sedimentation resulted in strata which occur without much variation at the same horizon in large areas, an which can be traced many miles. Such horizons serve very useful purposes in determining the geoogic position of a series of rocks, and they make convenient division lines in mapping. The Pittsburg coal, the Upper Freeport coal, and the Pottsille sandstone are examples of strata that an persistent and distinguishable over wide areas.
Some idea of the character of the rocks which underlie the Indiana quadrangle, but which do not outcrop within it, is furnished by the records of deep wells that have been sunk in search of gas. The records of severa wells are sho wers that the hos wher e value of such records varies with the card the value of such records varies with the care exerrecords is accordingly only tentative
The following record of the McGara well, near Chambersville, gives a detailed section of the nderlying rocks of the Indiana quadrangle. The well began about the horizon of the Upper Free-

1520 feet are composed of a series of sandstones and shales about which very little is known.

Record of the Mc(rara well, near Chambersville (No. 11.) Thickness Depth in feet. in feet.		
Drive pipe (passing through	Upper	
Freeport coal).	${ }_{4}^{34}$	
Limestone.	11	${ }^{45}$
Slate.	12	57
Limestone	2	59
Slate	25	84
Yellow sand	15	${ }^{99}$
Coal		105
Limestone		113
Slate.	55	
Fire clay.		176
Slate and shells.		${ }^{276}$
Coal.	${ }^{3}$	279
shale	75	354
Sand	20	374
slate		424
Limestone		434
Slate	30	464
Salt sand		720
Slate ..		730
White sand.		${ }_{74}$
Gray sand, hard		${ }^{773}$
Slate	10	783
White sand		
Red rock	,	921
White sand	87	1008
Siate and shells		1053
Gray and white sund, hard	70	1123
Slate and shells.		1203
Dark-gray sands		1227
Slate and shells.		1307
slate		1313
Slate and shells.	. 80	1393
${ }^{\text {Gray sand. }}$		${ }^{1405}$
Slate and shells.		1450
Red rock		1474
Blue sand	${ }^{6}$	1480
Red rock		1700
Slate and shells		1760
Gray and white		1805
Slate and shells.		1815
White sand.	20	${ }^{1835}$
Slate and shells.		2150
White sand.		${ }^{2157}$
Slate shells.		2971
Gray sand ..	. 15	2236
Slate and shells.. White sand hard		${ }_{2360}^{2345}$
Slate and shells..		${ }_{2410}^{2010}$
Sand	12	${ }_{2423}$
Slate and shells.	.. 128	2550
Dark sand and shells		2590
White flaky sand.		18
Slate	${ }^{32}$	2640
Gray and white sand, little gas.	18	2658
Slate with oceasional shells....		2758
slate	${ }^{75}$	${ }^{2833}$
Slate, shells, colored sands.		${ }^{2863}$
Shells, very hard...	... 110	${ }^{2973}$
Slack slate.		${ }_{3010}^{2985}$
Slate and shells, hard	25	3035
Slate with finer shells		3220

All the wells which go deep enough show a conspicuous series of red shales and sandstones, he top of which lies between 1400 and 1500 feet thickness in this region is about 350 feet These rocks probably constitute a part of what formerly was called the Red Catskill, but as a distinct bed they are not known in outcrop, and consequently they have not received a specific name.
An interval of about 550 feet above the top of the Devonian red beds is shown by the different records to be occupied by a series of rocks which is largely shaly, but which includes several beds of sand. In one of these sandstones, lying about 1100 feet below the Upper Freeport coal, natural gas in paying quantities has been found, a fact which will be referred to more fully under the heading "Mineral resources." The exact stratigraphic horizon of this series.can not now be stated, but it is near the base of the Carboniferous and the top of the Devonian.
Immediately above this horizon a conspicuous but not very thick band of red shales and sandstones about 900 feet below the Upper Freeport horizon has been reported in a number of well records. These red rocks average 50 feet in thickness in the area under consideration. They outcrop at Patton, on Redbank Creek, from which occurrence Campbell has named them the Patton shale. David White has found fossils in the Patton shale which show that it is a member of the Lying above the
Lying above the Patton shale, and averaging in thickness about 450 feet, is a great mass of sandwell drillers call the "Big Injules, which the well drillers call the Mauch Chuth at Of tho forpan. the surface in the Indiana quadrangle the Mauch Chunk shate is the oldest, though very little known of it within this area The records is
deep wells show an interval of shale at the Mauch Chunk horizon between the Pottsville formation shales are reported red and in others no mentio of the color is made. The thickest occurrence recorded in this vicinity is in the Pickels well, on Chestnut Ridge, in Burrel Township, where 114 feet of red sands and shales are reported at the Mauch Chunk horizon. Northwestward the thick ness diminishes considerably.
This scanty representation of the Mauch Chunk is interesting because of the well-known westward thinning of the formation and of the erosional unconformity which separates the Pottsville from underlying rocks. Farther northwest, in the vicinWhite have recently shown that the Pottsville rest directly on the Pocono, with no intervening Mauch Chunk.

Along Yellow Creek where it crosses the Chest nut Ridge anticine there is sufficient interval for the Mauch Chunk to occur unless the Pottsville is unusually thick, but the rocks underlying the normal thickness of Pottsville in the Yellow Creek gorge are concealed by a talus of heavy sandstone
blocks. Inasmuch as in the region immediately blocks. Inasmuch as in the region immediately south and southwest of the Indiana quadrangle the Mauch Chunk shales are well represented, and because within this area some red material has been reported at the Mauch Chunk horizon in deep-well records, the presumption is that these rocks do outcrop in the Indiana quadrangle. This was th determination of the Second Geological Survey of Pennsylvania, and the Mauch Chunk is mapped accordingly.
Pottsville formation.-The Pottsville formation in this general vicinity consists of two beds of sandstimes carries a bed of Indiana quadrangle, because of poor or incomplete exposures, no exact sections can be measured mof of the records of deep wells within the quad rangle do not show distinctly this three-fold 100 feet for the formation.

The Pottsville formation
ities in the Indiana quadranglops in three local Creek where it emerges from Chestnut Ridge, in Allen Run, and along Yellow Creek where crosses the Chestnut Ridge anticline
On Two Lick Creek the Pottsville occupies a small area near water level, the presence of the formation being made conspicuous by large blocks of sandstone in the creek. On Allen Run for about a mile large blocks of sandstone near water leve are thought to mark the outcrop of this formation Along Yellow creek sandstone is there well devel-
is greater. A heavy sand oped, but the exposures are poor for detailed study. The hill-slopes from the top of the formation down to the creek are strewn with huge blocks of a fine textured, compact, whitish sandstone. Here the Pottsville measures about 100 feet.
Allegheny formation.-Overlying the Pottsville is the Allegheny formation, which is widespread in its occurrence and distinct in its definition. The Allegheny formation has been called the Lower Coal Measures, but in conformity with the custom of denoting formations by geographic names it has gheny River, where it is prominently exposed gheny River, where it is prominently exposed the Upper Freepric col and the formation is delim ited below by the Pottsville sandstone.
ited below toy
most widespread formation of this quadrangle the most widespread formation of this quadrangle, and coal beds. The map shows these rocks to outcrop in areas crossed by anticlinal axes along Chestnut Ridge, Rayne Run, Crooked Creek, McKee Run and the South Branch of Plum Creek.
The thickness of the Allegheny formation in the Indiana quadrangle is about the same as in adjoining regions. Although there are striking differences in stratigraphy, yet the total thickness
of the formation is rather uniform. About 300 feet is the average, as the following well records
show: The Winsheimer well, $2 \frac{1}{2}$ miles west of Homer, gives a thickness of 285 feet, while the diamond-drill hole near Graceton records 318 feet without certainty that the top of the Pottsville was reached. A diamond-drill hole near Gettys-
burg, about 7 miles northeast of the quadrangle hows a thickness of 303 feet for the Alleghen Plum Creek below Willet, about 300 feet; the Clair well, a mile south of Indiana, 301 feet; and the Lawrence well, in Blacklick Township, a few the Lawrence well, in Blackick Township,
miles southwest of the quadrangle, 300 feet.
The Allegheny formation is extremely variabl in its composition and no single section can represent, except in a general way, the sequence of the
rocks. This fact is strikingly shown by numerou diamond-drill sections located within short dis ances of one another. An inspection of those hown on Columnar Section sheet 1 gives an idea of the constitution of the Allegheny formation i he Indiana quadrangle
The formation consists of shales, sandstones, a few thin limestones, and several beds of coal, some of which are of considerable economic importance The Upper Freeport coal lies at the top of the for mation and is rather persistent in its occurrence. This stratum is, however, subject to variations, which will be discussed under the heading "Mineral from 0 to 40 feet the Freeport limestone and Boli var fire clay members are often present, and thes also will be referred to again. Then, after an interval of from 20 to 80 feet of dark shales, another coal sometimes occurs, which is called the Lower Freeport. Below are drab or dark-colored shales or sandy shales, sometimes a thin bed of limestone, and occasionally a heavy sandstone. This sandstone shows a thickness of 63 feet in bore hole o. 1, near araceton, where its iop ocurs 100 fee elow the Upper Freeport coal
About the middle of the Allegheny formation metimes occur two or three beds of coal which are called the Kittanning coals. Only one of Indiana quadrangle. This occurs about 200 feet below the Upper Freeport and is called the Lower Kittanning coal. Drill records show in places a heavy sandstone above this coal, and also one below. Thus, in a drill hole north of Yellow Creek, near the east side of the quadrangle, a heavy sandston Upper Freeport coal; and drill hole No. 1, near Graceton, shows 54 feet of sandstone about 30 feet below the Lower Kittanning coal.
In places limestone occurs associated with these coals. A bed of impure limestone 8 feet 9 inches thick was found in a drill hole on Ramsey Run 175 feet below the Upper Freeport coal; and in ccur 238 feet below 5 inches of gray limestone ormer occurrence is noteworthy because the limestone appears in the horizon of the Vanport
(Ferriferous) limestone member. West of the (Ferriferous) limestone member. West of the an important key rock. Eastward it thins out In the Indiana quadrangle the presence of the Vanport limestone member is recorded in only this diamond-drill hole, and its outcrop is found at only one locality-along the axis of the Chest-
nut Ridge anticline, on the north slope of Yellow nut Ridge anticline, on the north slope of Yellow
Creek. Here fragments of limestone were found Creek. Here fragments of limestone were found
80 feet above the top of the Pottsville and 20 feet below the Lower Kittanning coal.
From the horizon of the Naport limeston ember to the base of the formation the rocks ar usually shales, among which one or two thin
unimportant layers of coal sometimes occur. Conemaugh formation.-The rocks belongin the Conemaugh formation, which directly overlies the Allegheny, have been called the Lower Barren
the Measures because they rarely carry workable coal and they lie between formations which do contain valuable coal beds. But for the sake of uniformity in geologic nomenclature the rocks have been crop along Conemaugh River. The Conemaugh formation is widespread in its occurrence and is vell defined. It is delimited above by the Pittsburg coal and below by the Upper Freeport, both oals being excluded from the formation.
The Conemaugh formation, as shown by the geologic map, extends over most of the Indiana quada few other districts where the Allegheny formation outcrops, Conemaugh rocks are every where exposed t the surface. The entire thickness of the formation is not present in the Indiana quadrangle. In the
region to the southwest of the area under consider of from 600 to 700 feet but there his thickness increases The best interpretation that can be civen to severa iamond-drill records in the southwestern part he Indiana quadrangle, toward the center of the Latrobe syncline, places the Upper Freeport coal an elevation of 650 to 680 feet, while adjacent hills on which the Pittsburg coal has not bee found rise to a little more than 1300 feet. Thes gures call for a thickness of over 600 feet for the Conemaugh formation, an estimate which is borne out by facts in the territory to the south. A deep vell at the Columbia Plate Glass Works at Blairsville gives an approximate thickness of 675 fee or the Conemaugh. The Lawrence well on Grey Run, about a mile south of the southwest corne of the Indiana quadrangle, shows a thickness of a least 680 feet for the Conemaugh formation whe here is added to the well record the thickness of rocks on an adjacent hill on which the Pittsburg oal does not outcrop
As a whole the Conemaugh formation is composed largely of drab and reddish shales, but it is iso characterized by the occurrence of importan eds of sandstone. Minor beds of limestone and There are also included within the formation.
There are four principal sandstones, but these occur as lenses or beds of limited extent and of local thickness instead of uniformly persisten trata. They therefore form members of the Cone naugh formation rather than distinct formation by themselves. The names given to these sand the Con those -adopted in olue localties where osition or brely the wh tity in ap approximate the same. Actual idenf the beds. In litholy of the deposis as traceable位s. In lithologe co closely that they can not e distinguished, but their stratiowaphic positio erves to identify them. They range from hard, compact, fine-textured white or buff sandstones to friable and coarser-textured, much iron-stained sand stones. Locally these rocks become conglomeratic, the pebbles of quartz occasionally attaining the ize of beans. The sandstones vary in thickness from a few feet to 60 or 70 feet. A common meas 20 and 30 feet.
The Connellsville sandstone member in this quadrangle is thin bedded, drab, and micaceous. It occurs about 80 feet below the Pittsburg coal, though in the type locality this interval is only about 50 feet. The Connellsville sandstone member outcrops in the Indiana quadrangle on only
ew hills in the southwest corner, adjacent to th Pittsburg coal area.
The Morgantown sandstone member occurs abou 500 feet above the Upper Freeport coal and is usu aly well developed. It is present on the hills west of Homer, on White, Coleman, and Warner hills, nd between Grove Chapel and Tanoma.
The top of the Saltsburg sandstone member is about 200 feet above the Upper Freeport coal. This sandstone outcrops at several localities in this uadrangle and occasionally is strongly developed, expected the sandstone phase is not present. The Saltsburg sandstone member occurs at Homer, at dgewoo, a d oll Dias Ridge in the southeast corner of the qued bangle. It in cears the bend in the road between ngle. It appears an the ben in thead betwee Creek, and arain on this road a little lower down he dip of the east flank of the Latrobe syncline hort distance north of the creek. Thence south westward it forms a bench along the hillside to the ailroad cut south of Reed station. It shows in the vestern limb of the Latrobe syncline on the road ang McCartney Run a half mile west of Reed, where it has been quarried. This occurrence of the Saltsburg sandstone member is mentioned in detail because it gives a surface demonstration of The base of the Cing sandstone member occurs at the resent within this quadrangle, and its outcro eing contiguous to that of the Upper Freeport coa the position of the Mahoning can be easily followed
on the map. This sandstone is prominent on Chestnut Ridge, about Kckee Run, and between Chamnot present at its horizon in Dixon Run and in the South Branch of Plum Creot It is recoled in everal diamond-drill records, though in others it is bsent A striking example of change in selimes tation, characteristic of the Coal Measures, is well hown by the distribution of the Mahoning sandtone member. It is strongly developed as a mas ive conglomeratic sandstone on the ridge north of Pemn Run and east of Two Lick Creek, but in the nearby valley of Dixon Run is scarcely recogniznearby

Drab shales and sandy shales, occasionally interedded with bluish and reddish shales, are the most abundant rocks of the Conemaugh formation. They occur between the sandstones that have just een mentioned and replace them where they are not developed. Locally the reddish shales attain prominence. For instance, the small hill east of he freight station in Indiana shows such a local levelopment. These shales are about 350 feet bove the Upper Freeport coal.
Only a few outcrops of limestone were observed in the Conemaugh formation. On the hillside east of the road between Cherry Run and Two Lick Creek, about $1 \frac{1}{2}$ miles southwest of Homer, is a hin bed of limestone carrying brachiopods. This bed occurs about midway in the Conemaugh formaion and probably represents the Ames (Crinoidal) limestone member. Another exposure of what is believed to be this limestone occurs near the road forks at the head of Mudlick Run. In Brush Valley, about three-quarters of a mile northwest of hico, underlying a coal which is there locally This oal ime lime wasid This coal and limestone are thought to belong to feet above the Upper Freeport coal.
The Conemaugh formation carries several coal beds, some of which within the Indiana quadrangle locally attain workable thickness. These coals are not persistent and their occurrence is most irregular. They will be considered under the heading "Mineral resources."

quaternary system

Alluvium-The flood plains of the streams are composed of alluvium, consisting of sand, clay, and ilt. This material is made up of disintegrated ock particles which have been washed down from he hillsides and deposited in their present positions in times of high water. The most conspicuous ccurrences are along the larger creeks and are napped, but similar deposits too small to be shown on the map occur along all the streams. The alluvium is fine grained and where well developed makes valuable farm land.

structure.

The Indiana quadrangle, situated as it is in the northeastern part of the plateau region not far from the Allegheny Front, conforms in geologic ructure with the Allegheny Plateau. The rocks re bent into a series of low folds, which decrease in magnitude westward.
Structure contours.-The structure of the Indiana quadrangle is shown on the Structure and Ecoomic Geology sheet, by means of red contour lines. This method of representation may not at first be how or in the The structurg the position of the rocks, the Upper $\dot{\text { F }}$, eing 100 feet and the datum plane sea love deally everywhere along any contour line the coal is at the same elevation, and everywhere along the next contour above the elevation of the coal is 100 feet higher. The intersection of surface contour and structure contours of the same elevation marks the position of the outcrop of the Upper Freeport coal. Where the elevation of the surface at any point is greater than the elevation of the coal at that point, as shown by contiguous structure conours, the approximate depth of the coal below the surface may be found by subtraction. Where the elevation of the surface is less than the corresponding elevation of the coal the latter has been removed Suppose, for instance, the position of the Upper

Freeport coal is desired at the bridge crossing Two Lick Creek in the northern part of the town of Homer. It will be seen by the map that the elevation of the surface at this point is a little under 1020 feet and that the bridge is a little above the 800 -foot structure contour. The Upper Freeport coal, therefore, is here about 1020 m
or about 220 feet, below the surface.
about 220 feet, below the surface
These structure contours, from the nature of the data on which theyiare based, can not be mad absolutely accurate, and this fact must be borne in mind. Nevertheless, the more facts used in their In the region southwest of the Indiana quadrangle in the Connellsville basin, there is quadrangle mine data giving instrumentally determined eleva tions of the coal. Structure contour lines con tructed on this basis are very accurate and show that the main folds are complicated by many minor ariations. In the Indiana quadrangle there are o such available data, and the broadly curve contour lines illustrating the structure of this region represent only the main features. Doubtless here, as in the region farther south, the rock structure is intricately warped, but the details of hese fluctuations can be determined only by actually following any one stratum over a considerable area, as in coal mining
The structure contours of the Indiana quadrangle are based on the position of the Upper
Freeport coal, determined by its outcrop and by he records of a number of diamond-drill and deep well borings. ${ }^{1}$ Moreover, the roads within the quadrangle have been traversed and the positions of the different rocks noted. This nformation, taken in connection with the records of the drill holes, often gave valuable data regarding the position of the Upper Freeport coal hori zon. But over much of the quadrangle the surface rocks are shale, sandy shale, and shaly sandstone having little individuality, so that in many places information on which to draw structure contours is
very meager. It is believed, however, that the very meager. It is believed, however, that the main structural f
een determined.
Chestnut Ridge anticline.-The most persisten and pronounced fold within the quadrangle is the hestnut Ridge anticime. his is one of the ron lan be fraced for miles The axis Platea an be with the 1 ne corresponds with crest line of Chestnut rige and crosses the southeastern part of the rom Conemaugh River to the southern lim the Conea under consideration the pitch of the Chestnut Ridge anticline is northward, causing the levation of the Upper Freeport coal along the axis fall from a reported altitude of 2300 feet on Conemaugh River to 1700 feet in the southern part of the Indiana quadrangle. This descent of he axis continues for a short distance in the are under consideration and then rises, bringing the oal again above 1700 feet on the road between Mechaniesburg and Indiana. Northeastward the xis continues to rise, so that the coal occurs above 800 feet near the road between Indiana and Pike Peak. Farther northeast the axis falls again, until bout halfway between Penn Run and Two Lick Creek the coal on the axis is below 1600 feet Thence the axis rises, and where it leaves the quadangle the Upper Freeport has an elevation of hearly 1600 feet. The slope of the flanks of the Chestnut Ridge anticline is generally steeper on the west, and the height of the fold is most pronounced in the southern part of the quadrangle. Here there a rise of over 1000 feet in the position of the Upper Freeport coal from the trough of the synine west of Chestnut Ridge to the crest of th nticline at the top of the ridge. Toward the north this difference in elevation decreases to 600 fet and less. On the eastern slope of the ant ane there is an interval of from 400 to 700 fee coal at the base of the ajacent trough
Bresh base of the agacent trough
By east of the Chestnut Ridge anticline immed

${ }^{1}$ I am especially indebted to Mr. Robinson and Mr. Arms, of the Rochester and Pittsburg Coal and Iron Co.; to Mr. Hinterleitner, of Spangler, Pa.; to Mr. MeCreary and Mr Bierer, of the McCreary Coal and Coke Co.; to Mr. Clements, of the Indiana Gas Co.; to Mr. Stuart, of the Conemaugh Gas Co., and to Mr. Mullen, of Indiana, for much valuable

by the valley of Brush Creek and is called the rush Valley syncline. The exact position of th axis and the depth of this fold are not well known, ut from the information at hand the relation Upper Freeport coal lies beneath the surface in Brush Valley within the Indiana quadrangle This coal has an elevation of less than 1200 fe in the middle of the basin north of Rico, and hence southward gradually rises, with the axis o 1200 f , as to half a mile south of the quadrangle.
Nolo anticline.-East of the Brush
Nolo anticcine.-East of the Brush Valley synrine, occupying the southeast corner of the quad
rangle, is the northwestern flank of the Nol anticline. This fold was so named by W. G. Plat hecause its axis passes near the town of Nar Within the Indiana quadrangle the Nolo anticlin topographically marked by Dias Ridge. Th Upper Freeport coal is not brought to the surface within the quadrangle by this fold but by outcrop in the valleys of Blacklick and Little Yello creeks, and by the occurrence of recognizable sand tone on the ridge it is known that the Uppe Freeport horizon rises from approximately 1200 feet in the Brush Valley syncline to over 1800 feet on the Nolo anticline.
Latrobe syncline.-West of Chestnut Ridg there is a well-marked syncline which has bee amed from the town of Latrobe, in Westmor and County, where it is well developed. This fold has been traced from Indiana to Scottsdale and its southward continuation is known as the Uniontown basin. Between Blairsville and Ind na the Latrobe syncline rises and flattens out Along the axis of the syncline on Conemaug River the elevation of the Upper Freeport coal horizon is about 300 feet above sea level, while outh of the town of Indiana the position of this coal along the same axis is over 1000 feet. A mile Latrobe lina ins a end of the axis. North of the town the syn line pitches downward for a short distance, only to se again toward Crooked Creek. In the regio between Indiana and Crooked Creek there is little o indicate the geologic structure, but northeast outhward-plunging anticline whose axis extend along Rayne Run. The axis of the eastern fork of the Latro yncline passes between Dixon and Rayne run port coal, which on the axis near Tanoma in elevation of about 1100 feet, on the same axi in the northeast corner of the quadrangle has an elevation of nearly 1500 feet.
The western fork of the Latrobe syncline is not well marked. Its axis passes east of Kellysburg and rises northward gradually
Richmond anticline.-The axis of the anticline which divides the Latrobe syncline extends from Rayne Run northeastward between the towns of ear the town of Richmond, on Little Mahoning Creek. This fold rises sharply northward, so that he Upper Freeport horizon, which at the mouth of Rayne Run has an elevation of about 1150 feet, o he highland northeast of the Indiana quadrangle is over 1700 feet above the sea.
Jacksonville anticline.-In the southwestern par of the quadrangle the rocks of the western flank of the Latrobe syncline rise gradually westward to he crest of the next succeeding fold, the Jacksonville anticline. Consequently the Upper Freeport coal, which in the trough of the Latrobe synclin eet feet, on the ar 1200 ars andine ha alled the oter 120 feet. Tol aled the Saltsburg anticline, but it is thought anticline The fold is well dever wown form aulto Pun, iles from the western elge the Iviza quid angle. The use of this local name seems prefer ble because it is not yet known whether the fold is the same one that crosses the Conemaugh above Saltsburg.
The so-called Indiana anticline.-The structure erly supposed very different from what was for
needs a word of explanation. The map of Indiana County issued by the Second Geological Survey of Pennsylvania shows the Indiana anticline extend
ing in a straight line across the county and passing through the town of Indiana. This supposed fold has been thought to be continuous on the southwest with the Fayette anticline in Westmoreland County, and on the northeast with the Richmond interpre, but it has been whed hat this Fayette anticlis pitches southwestward and the latter pitche for eastward, and the area between Conemaugh Pive and Crooked Creek along the extension of the ase of these folds is occupied chiefly by the Latrobe sym cline. It is an odd coincidence that the axes of the Richmond and Fayette anticlines fall in line with each other, and it is not surprising that these folds have been thought to be continuous, for in the inter vening region surface exposures are poor and the tructure can be deciphered only by detailed work The present determination is fully proved by the records of about 50 diamond-drill holes lately put down by the Rochester and Pittsburg Coal and Iron Company
McKee Run anticline.-A low anticline which rosses McKee Run and which, therefore, may be called the McKee Run anticline, causes the Upper Freeport coal to outcrop for a short distance along that run. This anticline was formerly supposed to be a continuation of the Jacksonville anticline but diamond-drill records indicate that the axes he Jacksonville and Mckee Run anticlines do not oincide, and the structure has accordingly been so epresented on the map. The Jacksonville fold merges into the next syncline to the west about miles west of Indiana, and the axis of the McKe Run fold strikes into the northwest flank of the The McKee Run the vicinity of Edgewood.
The McKee Run anticline is a low, gentle fold which makes itself apparent by bringing the Upper 1100 reep coal to the surace at an elevation of abou 1. Kly , an wor rosses thisaty the sul dalfway
 ion is the This aticline i. , phain. Ths ane is importa west flank in the vicinity of Creekside
est hank in the . Weeksid.
Elinn Ridgesyncine.-West of the McKee Ru but it probably extends a little to the east of Date Hollow Run and rises gradually northenstwar This syncline is a continuation of that whi carries the Pittsburg coal on Elders Ridge and which, therefore may be called the Flders Ridg yncline. The depth of this basin in the India quadrangle is fairly well fixed by a diamond-dril hole about 2 miles west of Creekside, which shows hat the elevation of the Upper Freeport coal is there below 900 feet; and the depth of this synline is also indicated by the deep well on the Little farm, about $1 \frac{1}{2}$ miles northwest of Chambersville, which shows the coal horizon to be at an elevation of about 1040 feet.
Roaring Run anticline.-In the northwest corner of the Indiana quadrangle the fold next suc ceeding the Elders Ridge syncline is an anticline whose axis has been found to coincide with th of the anticline which extends along Roaring Rua in Armstrong County. The axis of this foll crosses the South Branch of Plum Creek less than half a mile outside of the western edge of the quadrangle and extends northeastward, apparently rossing Sugarcamp Run about 1 mile above its mouth. The Roaring Run anticline causes the Upper Freeport coal to outcrop at an elevation of a difference in elotion ane, a diference in elevation of only about 40 feet it passes under the creek near Willet. This anticline is important because of the many gas wells that are located along its axis.

MINERAL RESOURCES.
The mineral resources of the Indiana quadrangle inde coal, natural gas, clay, sandstone, limestone water, and soils.

COAL
Coal is the most important of the mineral
years a number of small banks, to supply local demands, have been in operation. Up to the present time, however, little active mining has een carried on within the area. Only two mines, hose of the McCreary Coal and Coke Company at Graceton, are now (July, 1902) being operated on a large scale. There are, however, indications of approaching greater activity. A number of
diamond-drill holes have lately been put down to diamond-drill holes have lately been put down to test the deep-lying coal, and the Buffalo, Rochester nd Pitsburg Railway is extending its road to Indiana from Punxsutawn

purpose of opening mines.

Te Pitsburg coal outcrops a short distance to the south, but is not present in the Indiana quadcroded from the surface. There are a few hills in he southwest corner of the quadrangle that are just high enough to carry this coal if the Conemaugh formation had its usual thickness of 600 feet; but, as already stated, there is evidence of a local thickening of the Conemaugh, which would account for he absence of the Pittsburg coal.
The Pittsburg being absent, the coals of the ndiana quadrangle are limited to those which ccur in the Conemaugh and Allegheny formations. Country banks show the presence of coal of ocalitie thickness in the Conemaugh in a few belong to the Alleghen formation.
In this connection it may be observed that some misconceptions exist regarding the occurrence and names of coals in this formation. The common opinion that the Allegheny coals are very regular is probably due partly to the fact that a number of generalized sections have been published show ing a definite number of coal beds, and that these sections have been wrongly assumed to have wide application
The generalized sections of this formation in the Allegheny Valley contain seven coals, which have been named Upper Freeport, Lower Freeport, Upper Kittanning, Middle Kittanning, Lower Kittanning, Clarion, and Brookville, while in the sections representing the formation in the first
 been designat by 1 respectively. These coals are all found some here, smply thir relative poition It is erwor simply their relacive positions. It is an error, everywhere throughout the area in which the for mation is found.
Some worker
Some workers in the field, not thoroughly realizing the facts as to the distribution of the coal, ally continuous over wide areas, and that wherever a coal is found in the Allegheny formation it must be correlated with one of the coals in the general section. But a careful consideration of the records of diamond drills that have pierced the entire fornation or a study of complete natural exposures shows that often fewer than seven beds of coal occur in the Allegheny formation, and that when neighboring sections are compared the coals in one can not always be correlated with those of the other
It is important to draw attention to these conditions, but at the same time it is by no means asserted that none of the coals of the Allegheny formation have a widespread and continuous distribution, for the Lower Kittanning in particular is remarkably persistent. When this variability is orne in mind it-becomes evident that it should not be lightly assumed that the presence of a bed of coal in one locality in the approximate stratigraphic position of a coal in another locality necessarily mplies that the two coals are identical. Such identity appears to be tacitly assumed in the wide application of the same names for the coal beds of proof of continuity it would seem to asence or proof of continuity it would seem to be preferable to have it understood that these names signify only coals, rather than identity. It is in this sense that he names of the cols of the Alleghy foumation will be used in the present folio.
coals in the allegheny formation.
The Allegheny coals of workable thickness within the Indiana quadrangle, so far as known, are the Upper Freeport, Lower Freeport, and
the Structure and Economic Geology sheet. The whole area of the quadrangle is indicated as under lain by workable coal except the valley portio

The Upper Freeport is the most important coal in the quadrangle. Numerous openings have been in the quadrangle. Numerous openings have been the drill holes which have penetrated its horizon the drill holes which have penetrated its horizon have struck coal. Though it occurs generally
throughout the area under consideration, it is throughout the area under consideration, it is
not everywhere of equal importance, and locally not everywhere of equal importance, and locally
it is either absent or becomes so thin as to be of little use. The Upper Freeport coal outcrops in little use. The dpper reeport coal outcrops in
six more or less distinct areas in the Indiana quad rangle. These areas are along Chestnut Ridge, on rangle. These areas are along Chestnut Ridge, on
Dixon, Rayne, and McKee runs, on Crooked Creek, and along the South Branch of Plum Creek. Chestnut Ridge.-Chestnut Ridge is the most extensive of these areas, and numerous country the map.
The principal coal workings within the quad rangle are those of the McCreary Coal and Cok Company at Graceton. This company operate two mines in the Upper Freeport coal and manufactures coke. The mines are located on the out crop, favorably for gravity drainage. The dip of the coal is regular, being about $8 \frac{1}{2}$ per cent towar the mouth of the mine. In mine No. 1 the sectio in fig. 2 was measured:

FIG. 2.-Section of the Upper Freeport
The coal averages 6 feet in thickness and i parted about $3 \frac{1}{2}$ feet from the base by shale, which varies from 4 to 12 inches. The upper bench carries considerable sulphur and only the lower bench is used, after washing, for making coke. An analysis, by Dr. E. T. Allen, of the United State washed) from Graceton gave:

	Upper beech.	Lower
Moisture		61
Volatile combustible matter..	27.72	27.14
Fixed carbon................	61.73	${ }^{63.89}$
Ash.	9.95	8.36
	100.00	100.00
Sulphur	${ }^{5.23}$	${ }^{2.38}$

The coke is bright, hard, and has well-devel oped cell structure. The entire product of the mines is used by one company in making steel, and the coke is said to have a good reputation Following is the average result of several analyse made for the company, of coke from mine No. 2 Analysis of coke from McCreary mine No. 2, Graceton, Pa.

$$
\begin{aligned}
& \text { Ash......... } \\
& \text { Shulhur... } \\
& \text { Phosphorus }
\end{aligned}
$$

.9 .82
\cdots
\cdots
.0 .017
0

The only other mine with railroad connection in this quadrangle is a small one on the Upper Freeport coal, operated by the Glenmore Coal and Cok Company, near the mouth of Tearing Run. A yet this coal has not been coked. A measurement in the mine is given in fig. 3 .

FIG. 3.-Section of the Cpper Freeport coal in the mine, near the mouth of Tearing Run.

A number of openings have been made on the Upper Freeport coal on Chestnut Ridge, in the southern part of the quadrangle, and measurements
show that in this region there is little variation in the thickness of the coal. Thus at a bank on the
farm of John L. Henry, on the road between Homer and Heshbon, $1 \pm$ miles east of Graceton, shows the following section (fig. 4):

FIG. 4.-Section of the Upper Freeport coal in the Henr
coal bank, $1 \ddagger$ miles east of Graceton. In the

mine.
Similar measurements are reported in DeArmy, Brown's, Oberdorff's and other coal banks in this vicinity.
Farther north there are fewer openings on th Upper Freeport coal. Where exploited in the vicinity of Evans Hill the bed is reported to be of little value. This, however, appears to be only
local, for on Two Lick Creek southeast of Indian ocal, for on Two Lick Creek southeast of Indian coal is well developed. W. G. Platt reported the section shown in fig. 6 in these mines.

Fig. . . - Section of the Upper Freeport. coal in McHenry an
Agey coal banks, on Two Liek Creek, southeast of Indiana.
Northward the Upper Freeport coal again de creases in thickness. On the top of the ridge in the vicinity of the road between Indiana and Greenville, openings on the farms of William section (fig. 7)

FIG. 7 .-Section of the Upper Freeport coal in Barnet an
Ralston coal banks, between Iddiana and Greenvile.
In the several coal banks near Greenville there is further evidence of thinning. W.G. Platt reported the following measurement in this vicinity (fig. 8) :

North of Greenville the Upper Freeport coal ppears to be unimportant within the quadrangle
It is inconspicuous beneath the massive andstone which forms the ridge north of Penn sandstone which forms the ridge north of Penn of the map about 2 miles north of Greenville the Upper Freeport has not been found. A sandstone thought to be the Mahoning caps this hill, and a hin bed of coal supposed to be the Lower Fre port occurs below the limestone on the hillside.
The Areal Geology sheet may be misleading h because the boundary line between the Allegheny and Conemaugh formations commonly marks the outcrop of the Upper Freeport coal, whereas here he boundary line, which is drawn at the supposed horizon of the Upper Freeport, does not mark the paration of the two formations. This is show on the Structure and Economic Geology sheet by the absence of the heavy line representing th

Upper Freeport coal along the boundary in the orthern portion of the area.
Dis the -In the valley of Dixo Probably this statement is coal is unimportan Rayne Run area also, but there the stratigraphic position of the workable coal is not yet determine as will be set forth more fully under the heading "Lower Freeport coal." The uncertainty of the Upper Freeport in this region is indicated by the fact that a diamond-drill hole put down betwee act that a diamond-drill hole put down between
Dixon and Rayne runs, $1^{\frac{1}{2}}$ miles northeast of Tanoma, shows no coal at this horizon.
Crooked Creek.-Between Chambersville an Gaibleton the McKee Run anticline causes the Upper Freeport coal to appear a few feet above water level for about $1 \frac{1}{2}$ miles along Crooked Creek The Mahoning sandstone is well developed and the reeport limestone has been quarried at a fey localities. Several small openings have been made on the coal in this region. At Simon Fisher bank, close to the level of the creek, opposit Chambersville, the section shown in fig. 9 is exposed

ction of the Upper Freeport cooal at S.
coal bank, opposite Chambersville.
The general character of this coal is indicated by the following analysis, by McCreath, of a sample
rom the Brady mine: fom the Brady mine

Water Volatile matter
 Fixed carb Sulphur

Coke, per eent, 67..630.
Color of ash, dirty gray
South Branch of Plum Creek.-Along the South Branch of Plum Creek and its tributary, Sugaramp Run, a coal is exposed which is thought ee the Upper Freeport, although the Mahoning sandstone is not present. The coal is underlain by
limestone, and the deep wells in this vicinity strik the gas sand at the same distance below this coal a do the wells near Creekside, where the coal is known to be the Upper Freeport.
Openings have been made at several places along the outcrop, which is not far above water level. In t Brown bank 33 inches of coal were measure Run, the coal and Trusal banks, on Sugarcart y a 1 -inch band of shale 5 inches from the base W. G. Platt reports a thickness of 3 feet 4 inches, ncluding a 1 -inch shale parting near the base, in the Marlin bank near the mouth of Sugarcamp Run A sample of the coal from the main bench of he Marlin bank was reported upon by McCreath, of the Second Geological Survey of Pennsylvania as follows:

Coke, per cent, 67.01. Color of ash, cream.

McKee Run.-On McKee Run the Upper Free port coal outcrops near water level for about half a ile, and several banks have been opened withi following section was measured (fig. 10):

Brothers' mine, on McKee Run.
Inderground occurrence of the Upper Freeport al. - Concerning the underground occurrence and condition of the Upper Freeport coal within
the Indiana quadrangle considerable informatio exists because of the recent diamond-drill explora ons carried on by the Rochester and Pits he courtesy of those in charge the depth of th Uper Freeport hosizo is given to the publie or the first time on Columnar Section sheet 1 , but here is little available information as to the thick hess and character of the coal.
In the Latrobe syncline south of Indiana the Upper Freeport has been rather carefully explored and in general there seems to be a good body of oal. In the continuation of the basin northeast of Indiana not so much exploration has been carried on, but judging from the scanty information vailable the Upper Freeport seems to be variable in its occurrence. It appears to thin out in the northeast part of the quadrangle, where the Lower Freeport is the most important coal.
In Brush Valley very little information exist concerning the character of the Upper Freepor The indications are, however, that the coal decrease in thickness from its development of 6 feet on Chestnut Ridge, but not enough drilling has been done to thoroughly test the region.
Still less information exists concerning the underground development of the coal in the Elders Ridge syncline within the Indiana quadrangle.

Lower frekport coal

The Lower Freeport coal is not persistent nor often very thick in the Indiana quadrangle. Blossoms of this coal were noted at several localities and the bed was penetrated in several drin holes, only in the northeastern part of the quadrangle, in the vicinity of Dixon and Rayne runs.
in the vicinity of Dixon and Rayne runs.
Dixon Run.-In the valley of Dixon Run sevcal coal banks have been opened on a coal which is supposed to be the Lower Freeport. The Mahoning sandstone is not conspicuous in this region, but the workable coal is overlain by limetone and farther up by a thin bed of coal, which re thought to be respectively the Upper Freeport imestone and coal. Moreover, in the adjacent valley of Buck Run, which is just off the northeast edge of the quadrangle, a coal supposed to be the Lower Kittanning occurs about 160 feet below this bed. This interval corresponds very well with measurements made in other parts of the area under discussion, and affords corroborative evidence of the Lower Freeport age of the Dixon Run coal.
This coal is mined by Ed Woodison on the top of the divide between Dixon and Buck runs, about mile north of Two Lick Creek, where a measurement of 4 feet 4 inches of coal was obtained. From this point the dip of the western flank of he Chestnut Ridge anticline carries the coal rapidly down nearly to water level in the valley of Dixon Run. In the banks along the run south of Dixonville the coal varies from 3 feet 6 inches to 4 feet. At the Black bank, half a mile north of Dixonville, it measures from 4 feet 2 ches to 4 feet 4 inches.
Rayne Run.-In the valley of Rayne Run a number of country coal banks have been opened, but whether this coal is the upper or the Lower Freeport is uncertain. The Mahoning sandstone, ifeation of the Freeport coals, is not well deve oed in this region. Locally a limestone occurs ped on the region. Localy a uld tend to show hat it is the Uper Freeport, but on the other hat it is the Upper Freeport, but, on the other he main which implies that the latter coal is the Lower Freeport. If this be so, the limestone would be the Lower Freeport instead of the Upper Freeport limestone, which usually is better Upper Free
developed.
This is an illustration of a difficulty that occasionally besets the correlation of coals. If the Mahoning were well developed here, or if both the Upper and the Lower Freeport limestones were present, or if there were a complete section connectorizon either above or below, there would be no doubt. Or if these questionable coals were separated by a greater vertical interval the general geologic structure would throw important light on
the subject. Again, the presence of fossils would the subject. Again, the presence of fossils would
be important. Occasionally cases of this kind arise,
when the question must be left open for further
light. It is tentatively assumed that the thin upper coal is the Upper Freeport. Fortunately the distance between the coals is so small that the resulting error in mapping, on either supposition, is not great.
At Bottsford's bank, about half a mile north of Rayne post-office, on the road to Marion Center, the coal measures 3 feet 10 inches; and on the farms of John Little and J. E. Manners, in the valley west of Bottsford's bank, similar conditions prevail. That is, the main coal is almost directly underlain by limestone, and about 30 feet above is the outcrop of a thinner bed of coal with no sandstone exposed. In the H. Edwards bank, on Crooked Creek, a mile below Tanoma, there is a bed of coal which measures 3 feet 2 inches; and in the Walker bank, on Crooked Creek, about half a mile below Rayne Run, the coal is reported to be
2 feet 8 inches thick. 2 feet 8 inches thick.

kittanning coals.

The Kittanning coals seem to be represented in he Indiana quadrangle by only one principal bed. this is shown by the few diamond-drill records that give the thickness of the entire Allegheny forfirm their testimony. The records, however, show firm their testimony. The records, however, show ing to the Kittanning group, and it is possible that further drilling will reveal a greater thick ness of these coals.
The principal K
feet below the Upper Freeport and is considered to be at the Lower Kittanning horizon. The occurrence of this coal at the surface is limited to the deeper valleys of the Chestnut Ridge region, and the map shows the approximate line of outcrop. This line has been checked by the location of several country banks, but in the intervals between local mines the outcrop line is based on structure contours.
Several old banks have been opened on this coal in the southern part of the quadrangle, but measurements could not be made in them. Along Furriers Run southwest of Evans Hill there are two old openings, on the farms of Mrs. Douglas and William Lewis, where the coal is reported to range from $3 \frac{1}{2}$ to 4 feet thick.
Along the flanks of the ravine of Yellow Creek where it cuts through Chestnut Ridge there are several banks on this coal. At Fetterman's, near Yellow Creek, west of the road which passes just east of Moose and Strongs hills, the coal is said to measure 3 feet 8 inches; and at Campbell's bank, at the head side 8 , Hill, the coal is 4 feet thick. This is the Hin, road passing southward from the Indiana-Greenville pikse to the Yellow Creek ford northwest ville pike to
Moose Hill.

Two Li

Pur Creek between Sample Run and Ram-
sey Run flows approximately parallel to the strike of

the rocks, and in this interval several openings have been made on the Lower Kittanning coal. Between there are three coal banks in which the coal has approximately the section shown in fig. 11
Along the Indiana-Greenville pike near the Two Lick Creek bridge are two old openings on opposite sides of the stream, where this coal measures about $3 \frac{1}{2}$ feet. Farther up the creek several old openings are passed before Lydick's, just above the mouth of Allen Run, is reached. Here there is the unusual section shown in fig. 12.
On Penn Run and its tributaries there are several banks opened on the Lower Kittanning coal. At Green's, near the road extending northwestward from Greenville to Penn Run, the coal measures 3 feet 10 inches; and at Atherson's, on
north fork of Penn Run, $1 \frac{1}{2}$ miles due north of

Greenville, this coal is mined and is sa
from 3 feet 10 inches to 4 feet 3 inches.
Several other openings have been made on this coal in Two Lick Valley, in the eastern part of the

FiG. 12. - Seetion of the Lower Kittanning coal at
quadrangle, but the banks are not being work nd measurements in them could not be made The underground extension of the Lower Kit tanning can be inferred from the records of only few drill holes, but these indicate that the horizon is a persistent one. A drill hole near Graceton The pescoll 1 for 4 inch The presence of a coal 1 foot 4 inches thick at the
base of the Allegheny formation is also shown by the drill at Graceton.
In Brush Valley, although the results of diamond drilling thus far are not very promising for the discovery of thick deposits of the Freeport coals there is indication that one at least of the Kittanning coals is well developed. Thus far only two drill holes in the valley have reached the lower coal horizon, and these did not penetrate the base
of the Allegheny formation. The records of these drills show the presence of a bed of coal about 170 feet below the Upper Freeport horizon. A further reason for expecting that these lower coals may be present in Brush Valley is that along Blacklick Creek at Vintondale, only a few miles from the Indiana quadrangle, active coal mining in the Kittanning horizon is being carried on. The exact stratigraphic position of this Blacklick coal has not yet been determined, but diamond-dril sections furnished by Mr. C. R. Claghorne show the general occurrence of two of the Lower Alle gheny coals about 35 feet apart and measuring 2 feet 6 inches and 4 feet.
coals in the conematug formation.
Records of diamond-drill holes show much variability in the number, position, and thickness of coal seams in the Conemaugh formation. The number of coals present in a vertical thickness of 300 feet above the Upper Freeport horizon varies from none to five. Generally these coals measure only a few inches. There are, however, at a few localities in this quadrangle, occurrences of Conemaugh coals of workable thickness. These areas are in
the vicinity of Gaibleton, south of Onberg, and in the vicmity of
Brush Valley.

About Gaibleton there are two coals above the About Gaibleton there are two coals above the Upper Freeport horizon. The lower of these has been exposed in an old bank on the east side or is thought to be on the same coal has been which near the roadside a mile southeast of Gaibleton This coal is reported to be about 2 feet thick and it is estimated to be 60 feet above the Upper Free port coal. The higher coal in the neighborhood of port coal. The higher coal in the neighborhood of
Gaibleton is exposed in a few banks along Brush Run and on the hills west of Rayne Run. This Run and on the hilss west of Rayne Run. This
coal is reported to be about 3 feet thick, and it is estimated to be 130 feet above the Upper Freeport. On the headwaters of Crooked Creek, between Onberg and Ideal, there are also several banks opened on coal in the Conemaugh formation. The following section (fig. 13) was measured in one bank:

1a. 13.- Section of coal in the Conemaugh for
bank between Onberg and Ideal
It is reported that this coal averages about 3 feet in thickness. The coal clearly lies above the Mahoning sandstone, which is well developed toward Two Lick Creek. It is estimated that the interval between this coal and the Upper Freeport horizon is about 100 feet. There is no present
evidence that this coal is continuous with that on evidence that
Brush Run.

In Brush Valley, on a hillside three-quarters of a mile northwest of Rico, there is an old bank in解期 the coal is reported to be $3 \frac{1}{2}$ feet thick and be of a bed of limestone. This outcrop seens the clue furnished but it is interesting beaus Valley syncline. The relation of the coal and limestone, taken in connection with the records of a few drill holes in this valley, suggests that this coal may be referred to the Elk Lick horizon, which generally occurs somewhat over 300 feet above the Upper Freeport.
Another coal, reported to be 3 feet thick, occur in Brush Valley in an old opening on the wes fork of Brush Creek about $1 \frac{1}{2}$ miles southwest of Mechanicsburg. The best evidence available makes
it probable that this coal is a little less than 200 it probable that this coal is a
feet above the Upper Freeport.
It is thought that the coal near water level at the
Ine abore ther Id Oberdorff mill, about 200 rods above the mouth of Brush Creek, is the Upper Freeport. This coal by limestone, but absolute correlation has not yet been established.
natural gas.
Occurrence.-Natural gas has been successfully exploited in two localities within the Indiana quad rangle, about Creekside on Crooked Creek and in the vicinity of Willet on the South Branch of Plum Creek. Wells have been drilled elsewhere as shown on the map, but, although gas has been
reported from some of them, no wells within the quadrangle outside of the two areas named have produced gas in paying quantities. Oil has not been found in the quadrangle.
General relations.-The position of the two gas-producing areas is shown by the locations of the wells on the Structure and Economic Geology map. The Creekside field is a small, isolated one, while the Plum Creek area forms the northern end of a larger producing field known as the Willet field. It is interesting to note that these two gas fields lie among the most easterly in the entire producing area. East of Chestnut Ridge no importan occurrences of gas or oil have been found, the producing area being confined to the region of gently folded rocks that lies to the west of that ridge Eastward the rocks have been too much folded and broken to favor the retention of whatever oil or gas they may once have contained. The relation of these areas to the oil and gas fields of the northern Appalach
Relation to structure.-The relation between the ructure of the rocks and the occurrence of gas nd oil in the Appalachian field has long been recog nized. By far the largest proportion of gas wells re locates well up hans axes of nelins, the flanks of ncines. These relations are explainable by supof the liquids and gases which exist in the gravity, ices formed by the loosely fitting rock particles For instance, suppose a folded bed of sandstone to e permeated by oas, oil, and water; the heavier water would tend to seek the low-lying troughs of the synclines, while the lighter oil would ascend the flanks of the synclines, and the still lighter as would tend to seek the arches of the anticlines The occurrence of gas within the Indiana quadrangle is no exception, the wells in the vicinity of Willet being along the flank of the Roaring Run anticline, while those of the Creekside field extend along the McKee Run anticline. Two deep wells have been drilled on the west flank of the Chestnut Ridge anticline, the Phillips well, on Yellow Creek $1 \frac{1}{2}$ miles northeast of Homer, and the Porterfield, on Two Lick Creek east of Indiana. While no important amounts of gas were obtained it is interesting to note that some gas was found in the extreme eastern locality and that gas now
escapes from the Phillips well. No wells have escapes from the Phillips well. No wells have
been put down along the Richmond anticline within the quadrangle.
Stratigraphic position of the gas sand.-Gas in paying quantity has been found at only one geologic horizon within the Indiana quadrangle, though some of the deep wells report the presence of a sand in this region horcurs about 1100 feet belos the Upper Freeport coal and about 400 feet above
the top of the red beds previously described as marking the upper part of the Devonian system. These intervals are remarkably constant, varying only by a few feet in all the records examined. From the proximity of the fields and the constancy of the intervals between recognizable rock horizons it is probable that the same bed of sandsone carries the gas in both the Willet and the Creekside field, but with the present information is impracticable to correlate this gas sand with that of other fields. While it is recognized that the familiar names of gas sands used by the driller: constitute a serviceable terminology, it should be nderstood that the names indicate only approximate geologic position instead of actual identity of sandstones. The gas sand in the fields under consideration has approximately the position of the Murraysville sand.
Willet field.-The gas-producing area of the Willet field within the Indiana quadrangle is lim Gas to a few square miles in the vicinity of Willet Gas was discovered in this region in the Kelly No. 1 put down. In 1891 , and other wells were soon put down. In 1891 gas was piped to Indiana, Willet field by the Indiana Gas Compreny from have been made to find a narth Company. Effort this producing area, but thus far without success To the southwest, however, there are a number of good wells, some of which contribute to the Indiana supply, while gas from other wells is piped to Pitts burg. Of the nine wells put down in this general vicinity within the Indiana quadrangle, six produce gas and three are failures. Thus far not one of the producing wells has been exhausted. No very systematic records have been kept of the pressure but it is said that the Kelly No. 2 well, near the creek, not far from the northwestern edge of the quadrangle, had a rock pressure of 275 pound when the well was drilled in 1891 and a minute ressure of 125 pounds through a $5^{\frac{8}{8} \text {-inch casing }}$ In 1901 the rock pressure in this well had decreased 100 pounds. One of the best wells in the Plum Creek field was drilled in 1901 on Dutch Run bout 4 miles southwest of the point where the outh Branch of Plum Creek leaves the Indiana quadrangle. This is the Boyer well, which is eported to have had a rock pressure of 350 pounds nd a minute pressure of 245 pounds in a $6 \frac{1}{4}$-inch casing.
The g
.
The gas sand in the Willet field varies from 15 to 25 feet in thickness and is a uniform, moderately compact, light-gray sandstone, admirably adapted or the storage of gas.
Creekside field
Creekside field.-The gas-producing area of the square mile alon α Crooked Creek in the vicinit square mide This pool was first struck in March 1900 and in the fall of 1901 the wells came int 1900, and the ge wa piped to Indian Sen welly the unk in this field. Four of these are reported to be good, or fairly good, and three are dry. Rock ressure in the best Creekside well is dry. Rot have been 325 pounds, and the minute pressure 105 pounds in a 4-inch casing.
The Creekside gas sand, while thought to belon to the same horizon as that in the Willet area, is of much coarser texture, being sometimes conglomer atic.

brick-making material

This is widely distributed in the Indiana quadangle, but it has not received much attention consists of shale and fire clay. These are of dimentary origin and are composed of fine-texared, more or less decomposed rock fragments. ositions and often are persistent over considerable areas.
Shale
Shale.-Fine-textured and homogeneous deposits of shale are of widespread occurrence in both the Conemaugh and Allegheny formations and outcrop ver a large part of the area under discussion. These shales are not utilized except for the man facture of building brick on a small scale in the wn of Indiana, nor have they been well tested, but they seem to offer a field worthy of investigation. Homogeneous deposits of fine-textured oderately fusible, and fairly plastic clay shales ar bricks but for making paving bricks and for many
other uses to which clay is applied. In conjunction The principal beds are the Connellsville, Morgan-
with associated beds of limestone these shales also might be used in the manufacture of cement. Fire clay.-Fire clay is clay that will resist a high degree of heat. It is utilized in the manufacture of fire brick and other articles for which
clay is adapted. Valuable beds of fire clay are clay is adapted. Valuable beds of fire clay are
present in the Allegheny formation, the most present in the Allegheny formation, the most
famous being the Bolivar clay, which is extensively famous being the Bolivar clay, which is extensively
worked at Bolivar, on Conemaugh River. At worked at Bolivar, on Conemaugh River. At
the type locality it occurs from 10 to 20 feet below the type locality it occurs. from 10 to 20 feet below
the Upper Freeport coal. Another valuable deposit the Upper Freeport coal. Another valuable deposit
of fire clay often occurs below the Lower Kittanof fire clay often occurs below the Lower Kittan-
ning coal. This bed is extensively worked at New ning coal. This bed is extensively worked at
Brighton, near the mouth of Beaver River. In the Inana quadangle no attenps have records show several beds of fire clay in the Allegheny formation, as may be seen by referring to Columnar Section sheet 1. An outcrop of homogeneous, fine textured hard drab fire clay, reported to be from 6 to 8 feet thick, was observed at the Bolivar horizon, on the property of J. S. Ralston, Bolivar horizon, on the property of J. S. Ralston,
just south of the Indiana-Greenville road, near the just south of the Indiana-Greenville road, near the
summit of Chestnut Ridge. Other outcrops should be sought on the hill slopes of the Allegheny forme sought on the hill slopes of the Allegheny for-
mation going down from the Upper Freeport coal, mation going down from the Upper Freeport coal,
likely horizons being a few feet below the Upper Freeport coal and below the Lower Kittanning coal.
sANDStone.
Sandstone suitable for building purposes occurs in many localities within the Indiana quadrangle Indiana.
deposits of shale is a possible source of crude material for the manufacture of cement.

water

The Indiana quadrangle is well supplied with water. A number of creeks and runs make flow ing water widely accessible, springs are frequent, and water for domestic use is easily obtained from hallow wells.
Deep-seated underground water is also available.
The different beds of sandstone receive water at
their outcrops, and being pervious and commonly overlain and underlain by relatively impervious shales, the sandstones are saturated with water and
constitute reservoirs. Since there are several constitute reservoirs. Since there are several synclinal basins within the Indiana quadrangle artesian water thus becomes available. That is, if places, water will rise in the holes to different places, wa wint ime the holes to differen the artesian head. This artesian head is determined by the difference in height between the elevation of the outcrop of the sandstone and its elevation in the well. Promising localities for artesian water are in synclinal areas where sandstone outcrops along adjaynclinal areas where sandstone outcrops along adja-
cent anticlines. In the basin of the Latrobe syncent anticines. In the basin of the Latrobe syn-
cline west of Homer, for instance, artesian water has been found in the Mahoning sandstone which outcrops on Chestnut Ridge. Large supplies of artesian water, however, should not be expected.
Seven wells were drilled in Indiana between 1883 and 1891, from which the town was supplied with water. But in 1899 this source proved insufficient and recourse was had to Two Lick Creek,
which now supplies water of a much inferior quality. One of these wells was put down 3300 feet in search of gas, having been located along the supposed Indiana anticline; the other six range in depth from 175 to 350 feet. Water in them is derived from both the Mahoning and Saltsburg sandstones. In five of these wells the water is reported not to have risen above the horizon at which it was struck, but in two it rose 20 feet.
There are also three successful deep wells in use at the State Normal School in Indiana. These were sunk from 190 to 210 feet below the surface.
Some water is derived from the Saltshurg sand ome water is derived from the Saltsburg sanding. In the main supply comes from the Mahoning. In these wells the water is reported to rise 0 feet above the water-bearing horizon.
soils.
Excepting the alluvium in creek bottoms the soils of the Indiana quadrangle are derived from the immediately underlying rocks. Being the of sandstones, shales, and thin limestones, more or less mixed with the remains of animal and vegetable life, the soils of the area under consideration are mostly sandy and clay loams. The gently undulating topography of the greater part of the quadrangle causes farming to be an important industry, and with intelligent care the soils give profitable returns. Chestnut and Dias ridges, however, are forest areas. Their steep slopes are trewn with sandstone blocks and the soil is lean July, 1902.
CHARIES D. WALCOTT, DRECTOR

GGUMMNARESETIDN SHETI

Fia. 14.-RELIEF map of the northern appalachian mountains.

Fig. 15.-MAP showing the extent of the northern part of the appalachian coal fielo. The position of the Indiana quadrangle within the coal field is shown by the rectangle,

Fig. 16.-map of the oil and gas producing areas of the northern appalachians. Compiled from map by the Second Geological Survey of Pennsylvania, with additions by
F. H. Oliphant, I loo2. Black areas, oill shaded areas, gas.

PUBLISHED GEOLOGIC FOLIOS

No.*	Name of folio.	State.	Price. \dagger	No.*	Name of folio.	State.	Price. \dagger
			Cents.				Cents.
1	Livingston	Montana	25	52	Absaroka	Wyoming .	25
2	Ringgold .	Georgia-Tennessee	25	53	Standingstone	Tennessee	25
3	Placerville	California	25	54	Tacoma.	Washington.	25
$\ddagger 4$	Kingston	Tennessee	25	55	Fort Benton	Montana	25
5	Sacramento	California	25	56	Little Belt Mountains	Montana	25
$\ddagger 6$	Chattanooga	Tennessee	25	57	Telluride	Colorado	25
$\ddagger 7$	Pikes Peak.	Colorado	25	58	Elmoro	Colorado	25
8	Sewanee	Tennessee	25	59	Bristol	Virginia-Tennessee	25
$\ddagger 9$	Anthracite-Crested Butte	Colorado	50	60	La Plata	Colorado	25
10	Harpers Ferry	Va.-W. Va.-Md.	25	61	Monterey	Virginia-West Virginia	25
11	Jackson	California	25	62	Menominee Special	Michigan	25
12	Estillville	Va.-Ky.-Tenn.	25	63	Mother Lode District	California	50
13	Fredericksburg	Maryland-Virginia	25	64	Uvalde	Texas	25
14	Staunton	Virginia-West Virginia	25	65	Tintic Special	Utah	25
15	Lassen Peak	California	25	66	Colfax	California	25
16	Knoxville.	Tennessee-North Carolina	25	67	Danville	Illinois-Indiana	25
17	Marysville	California	25	68	Walsenburg	Colorado	25
18	Smartsville	California	25	69	Huntington.	West Virginia-Ohio	25
19	Stevenson	Ala.-Ga.-Tenn.	25	70	Washington	D. C.-Va.-Md.	50
20	Cleveland.	Tennessee	25	71	Spanish Peaks	Colorado	25
21	Pikeville	Ternessee	25	72	Charleston	West Virginia	25
22	McMinnville	Tennessee	25	73	Coos Bay	Oregon	25
23	Nomini	Maryland-Virginia	25	74	Coalgate	Indian Territory	25
24	Three Forks	Montana	50	75	Maynardville	Tennessee	25
25	Loudon	Tennessee	25	76	Austin	Texas	25
26	Pocahontas.	Virginia-West Virginia	25	77	Raleigh	West Virginia	25
27	Morristown	Tennessee	25	78	Rome	Georgia-Alabama	25
28	Piedmont.	Maryland-West Virginia	25	79	Atoka	Indian Territory	25
29	Nevada City Special	California.	50	80	Norfolk	Virginia-North Carolina	25
30	Yellowstone National Park	Wyoming.	75	81	Chicago.	Illinois-Indiana .	50
31	Pyramid Peak	California.	25	82	Masontown-Uniontown	Pennsylvania	25
32	Franklin	Virginia-West Virginia	25	83	New York City	New York-New Jersey	50
33	Briceville.	Tennessee	25	84	Ditney	Indiana	25
34	Buckhannon	West Virginia	25	85	Oelrichs	South Dakota-Nebraska	25
35	Gadsden	Alabama	25	86	Ellensburg	Washington.	25
36	Pueblo	Colorado	50	87	Camp Clarke	Nebraska.	25
37	Downieville.	California	25	88	Scotts Bluff	Nebraska.	25
38	Butte Special .	Montana	50	89	Port Orford	Oregon	25
39	Truckee	California .	25	90	Cranberry	North Carolina-Tennessee	25
40	Wartburg	Tennessee	25	91	Hartville	Wyoming	25
41	Sonora	California	25	92	Gaines	Pennsylvania-New York	25
42	Nueces	Texas	25	93	Elkland-Tioga	Pennsylvania	25
43	Bidwell Bar	California	25	94	Brownsville-Connellsville	Pennsylvania.	25
44	Tazewell	Virginia-West Virginia	25	95	Columbia	Tennessee	25
45	Boise	Idaho	25	96	Olivet	South Dakota	25
46	Richmond	Kentucky	25	97	Parker	South Dakota	25
47	London.	Kentucky	25	98	Tishomingo	Indian Territory.	25
48	Tenmile District Special	Colorado	25	99	Mitchell	South Dakota	25
49	Roseburg	Oregon	25	100	Alexandria	South Dakota.	25
50	Holyoke	Mass.-Conn.	50	102	Indiana	Pennsylvania	25
51	Big Trees	California	25				

* Order by number.
† Paymmen mumber. bem made by money order or in cas
\ddagger These folios are out of stock.
Circulars showing the location of the area covered by any of the above folios, as w

