


As the South Carolina Geological Survey (SCGS) enters its 198th year
of operation, the importance of addressing its backlog of historical
maps and drill logs has become increasingly evident. The process of
scanning and digitizing paper products can be incredibly time-
consuming, depending on the complexity of the material at hand. Up
until this point, all historic map digitization at SCGS has been done
heads-up, by hand, click-by-click. Traditional raster-to-vector
conversion tools have presented their own challenges in their inability
to distinguish the desired features of a document (ex. contact lines)
from the undesired ones (ex. topographic lines, such as those that
may be present in a basemap). The process of digitizing drill logs has
similar obstacles; of the logs that are handwritten, many are sloppy
enough to be undetectable by traditional optical character recognition
(OCR), and the wide variety of differently-formatted log sheets over
the years rules out many options for automation. Spurred by the
ongoing conversation surrounding artificial intelligence (AI) online and
in the media, SCGS has explored a range of AI-driven tools with the
potential to enhance our digitization workflow. The results, while
imperfect, remain promising nonetheless.

From Paper to AI: Improving Geologic Mapping Workflows
Robert Clark, Jerry Krieger, and Darby DeBruhl — South Carolina Geological Survey

Preface

Deep Learning
Creating a pixel classification algorithm with ArcGIS Pro’s 

Deep Learning toolset to digitize contact lines

Amazon Textract

ArcGIS Pro's Deep Learning toolset, which was initially released in 2019
as a part of the Image Analyst extension, utilizes convolutional neural
networks (CNNs) to perform various image analysis tasks. A CNN is a type
of neural network specifically designed for processing and analyzing visual
data that is inspired by the organization and functioning of the human
brain. After being trained on a human-validated dataset with known
outcomes, the CNN is able to recognize patterns within the training dataset
and can use this knowledge to calculate the probability of a certain
condition being true or untrue — even if it has never been encountered
before. ArcGIS’s Deep Learning toolset offers four major applications for
this technology: object detection, object classification, pixel classification,
and point cloud classification. The tools are commonly used to identify
objects or group them into classes within the context of satellite or aerial
imagery, such as when extracting building footprints or identifying certain
types of structures. SCGS’s application is slightly unique — single-band,
monochromatic imagery does not make for ideal training data; however, in
spite of this limitation, the model’s results are surprisingly accurate.

Google Vision API
While using ChatGPT and Bard as coding assistants

Amazon Textract is an Optical Character Recognition service provided as part of the Amazon
Web Services (AWS) suite of cloud computing platforms. Textract uses machine learning
algorithms pooled from various AWS services to help extract text and structured data for
various types of documents. What sets Textract apart is its ability to analyze documents that
do not follow a predefined template, such as a form or simple set of paragraphs. Instead, it
leverages machine learning to extract text and data that align with a user-specified query,
including typed or handwritten text. This feature is particularly useful for scenarios like
processing handwritten drill logs we have collected at the South Carolina Geological Survey.

The Google Cloud Platform is another powerful suite of tools that provide organizations with everything from now-ubiquitous Google Drive and Google Docs, to data analysis
and AI. Among its many products, we utilized the Google Cloud Vision API, one of a few powerful AI-based tools offered in Google’s suite. This service provided us with deep
image analysis capabilities, which we used to detect specific text within scans of our old paper geologic maps. This AI tool helped us extract specific text from scans of paper
geologic maps, such as map units and their explanations, in order to fill in related fields within a corresponding DescriptionOfMapUnits file geodatabase table located in a
GeMS-compliant geodatabase for that quadrangle. Google provides support for their service through a wide variety of programming languages, including Java, Python, and
C#, however, we chose to use Python due to the ease of integration with ArcGIS’s ArcPy Python module used to populate the geodatabase. To compensate for the lack of an
in-house programmer, we heavily relied on web-based AI chatbots powered by large language models (LLMs) such as Google’s Bard and OpenAI’s ChatGPT. Despite
OpenAI's lack of association with Google and ArcPy being a proprietary package, ChatGPT demonstrated a strong knowledge of coding and module-specific tasks.

The Lowndesville 7.5 minute quadrangle, located in western South
Carolina’s Abbeville County, was digitized manually and used to train the
model.

It is the only digitized
part of a larger map
series; we planned to
test the efficacy of the
finished model by
digitizing the rest of
the series and
comparing the results
to Lowndesville.

Stylistically speaking, the
Lowndesville quadrangle
is representative of many
of our other 60s-era
paper maps — which
could then be digitized
with the finished model, if
successful.

1. Processing the image

2. Training the model

3. Vectorizing the classified raster

We found that running any of the steps in section 2 with files on a network or via a
remote connection can yield unpredictable errors; we highly recommend storing all
files and running all processes on your local machine.

Below: Image chips of
the same area, using
SCGS’s chosen tile size
(left, 128px x 128px) vs.
ArcGIS’ default size
(right, 256px x 256px).
Notice the difference in
scale between the two
sizes. The default setting
generated 8,192 chips,
while the 128px setting
generated 33,632 — a
drastic increase in detail,
but also in processing
time.

The workflow can be summarized as a three-step process, with each step
creating the input for the next.

Before starting, the user should be aware that they need to manually install
the required Deep Learning packages, which are updated with each
ArcGIS release and are not automatically included in its initial software
installation.

We found it massively beneficial to the reliability of the final model to take a
few simple image processing steps with the training data before starting.

1. If not already done, scan the paper map, ensuring that the resolution
and size of the scan match the images that are to be processed by the
final model. Verify that the final raster has an 8-bit unsigned pixel type. If
not, import it into ArcGIS and re-export it with the appropriate pixel type.

4. In the same feature class, create polygons for all other types of features
in the original map you wish to classify, including undesired ones. For
example, in the case of Lowndesville, these additional features included
the map's margin, its quadrangle boundary, and everything that fell in the
space between each contact (referred to as "noncontacts“ in the attribute
table).

Processed — Classified — Vectorized

Its symbology is quite simple, but still complicated enough to make
traditional raster-to-vector conversion tools impractical. Note the lack
of variety in symbology — every contact line is dashed, with no visual
distinction between certain, approximate, inferred, or concealed
features. Compare this with the complexity of the basemap and
surrounding features; the topography and roadway data overlaid on
the map, as well as the orientation measurements and cataclastic
zone markers, visually clutter the image in a way that would have
previously required a human’s input to parse. The combination of
these circumstances makes deep learning a suitable solution.

To complete this task, we asked Textract the
following queries, with the results displayed in the
spreadsheet below.

What is the drill hole number?

What is the date?

Who was it drilled by?

What is the elevation?

What are the UTM coordinate numbers?

Who was it logged by?

What is the description of the location?

6. Use ArcGIS’s topology tools to rectify any gaps or overlaps within the
polygon feature class, ensuring that the features are properly connected
and aligned.

2. Open the scanned map in an image processing
program, such as Photoshop, and tweak the
contrast and brightness of the image. Experimenting
with the black point and posterize settings may also
yield good results. There is no one-size-fits-all
combination of filters that will be appropriate for
every map; do whatever makes the contacts stand
out as much as possible in the scan at hand.

3. Georeference the raster and digitize the contacts in
the training dataset. If starting from line features, apply
a buffer to convert the lines into polygons, ensuring
that all pixels of the feature are well within the polygon
boundaries. In the Lowndesville quadrangle, a 10m
buffer was adequate to cover the entire line in most
areas of the map.

5. Create a double-type field named
“classvalue” and assign a unique integer to
each type of feature. The actual value
assigned is arbitrary – all that matters is that
as it remains distinct. The values assigned
here determine how pixels will be sorted in the
classified raster.

2a. Export Training Data for Deep Learning
This tool accepts the raster and vector data from the
previous task as input and creates two outputs: a
folder of metadata files, in the format specified, and a
folder of image chips.

Image chips, which generally assume square or
rectangular shapes, are smaller pieces that represent
localized regions or segments of the larger image.
They can be understood as the computer taking a
snapshot; the size of the snapshot can be set with the
Tile Size X and Tile Size Y parameters, and the
distance between the snapshots can be set with the
Stride X and Stride Y parameters. By providing a
varied set of image chips, the model can learn
patterns more accurately and recognize features in
more diverse contexts.

This tool is by far the most computationally intensive part of this workflow. Using the
image chips and metadata generated by the Export Training Data For Deep Learning
tool, a model is trained to look for patterns by analyzing each pixel in the training
dataset and the type of feature it belongs to.

• It is highly recommended to use a dedicated GPU to complete this task; this can
be assigned in the Environment settings of this tool. Using a CPU to train a model
can take several days or even weeks, but a GPU can complete the same task in
a matter of hours.

• One major restriction is that only certain NVIDIA GPUs can be used for this
purpose. Esri’s Deep Learning frameworks utilize NVIDIA’s CUDA platform, which
is proprietary. The absence of compatible hardware will require that all
calculations be performed with the computer’s CPU instead.

SCGS trained and tested several models before settling on the optimum parameters
for this dataset. The results of some of these experiments can be seen below.

No image processing Default image chip size
(256x256) 64x64 image chip size

128x128 image chip size, 
training data from multiple 

quads

Ultimately, the model that seemed to 
perform the best on both the training 
map and the rest of the map series was:

• trained on a single quadrangle
• processed in Photoshop

• exported as image chips with
a 128px tile size and a 64px
stride size

• of the DeepLabV3 model type, which
meshed better with single-band
imagery than the other pixel
classification models

Once we were satisfied with the results of Lowndesville, we
ran through the workflow on the other maps in MS-24. In the
below figure, lines digitized autonomously by the computer
can be seen in red, while corrections made by a human
reviewer are in green:

2b. Train Deep Learning Model

After pixel 
classification 

was complete, 
the raster was 
converted back 
into lines via the 
ArcScan toolbar 

in ArcMap.


	DMT23_v2_C
	SCGS_DMT_Poster_COPY_new



