DIGITAL MAPPING TECHNIQUES 2021

The following was presented at DMT'21 (June 7 - 10, 2021 - A Virtual Event)

The contents of this document are provisional

See Presentations and Proceedings from the DMT Meetings (1997-2021)

http://ngmdb.usgs.gov/info/dmt/

GEMS-IN-EXCEL

as Editing Mechanism

Jordan T. Hastings UC Santa Barbara

USGS Grant G20AC00014

Undoubtedly, Excel is everyone's go-to software for tabular data entry, manipulation, analysis and visualization. Excel is also a developer's dream: it is fast, portable, stable, and extensible, with APIs attuned to the user interface that the world already knows.

For over a decade, I have been programming scientific data management in Excel. Through the NCGMP-funded coop at UC Santa Barbara, I am now exploring how to leverage Excel for geologic maps, GeMS specifically. In my DMT21 talks, I show how Excel can be utilized to:

- 1) deliver our geologic maps to end-users, many of whom lack or eschew GIS software; and
- 2) facilitate end-users' own work with our geologic maps, in field engineering, resource studies, survey, etc.

BACKGROUND

Currently

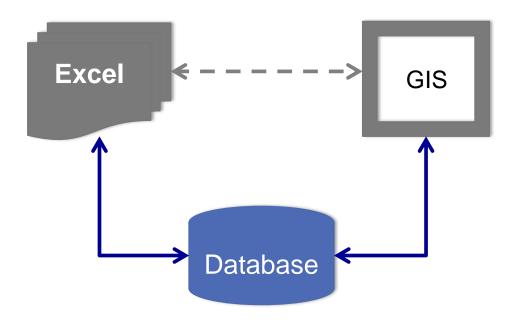
GISc Researcher, UCSB

Formerly

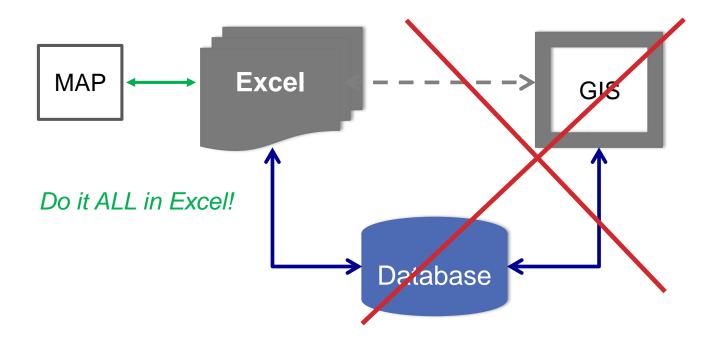
Chief Cartographer, NBMG

Long ago / first training

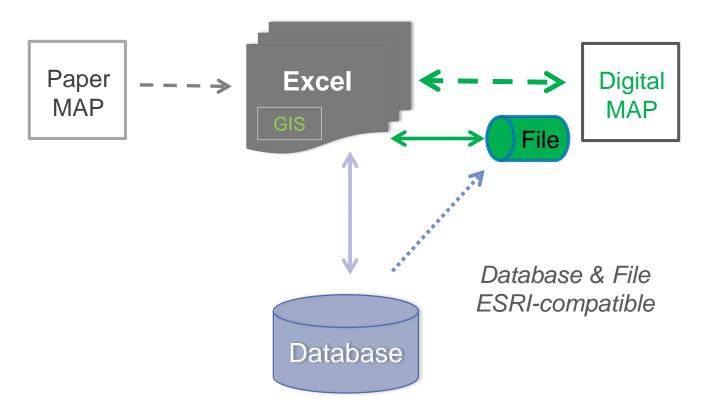
Database Professor, UNR



→ Advanced love / hate relationship with geologic maps in GIS databases


Try something new

Same old



Try something *really* new

Same old

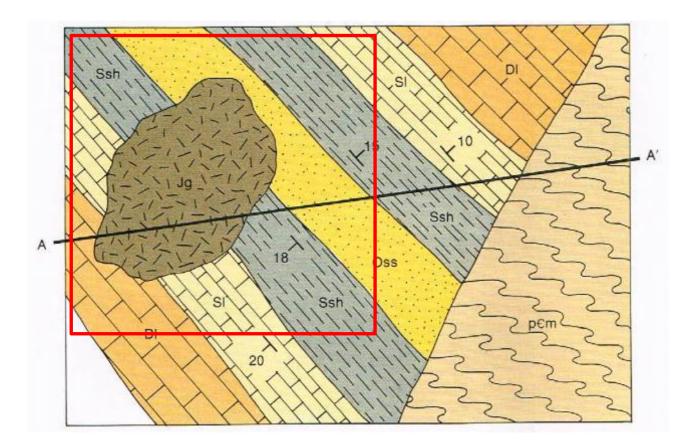
really new workflow

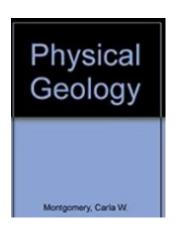
Simplify, simplify

Different focus – the <u>map-user</u>

OUTLINE

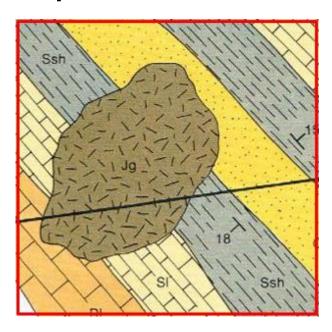
GIS-in-Excel Processing

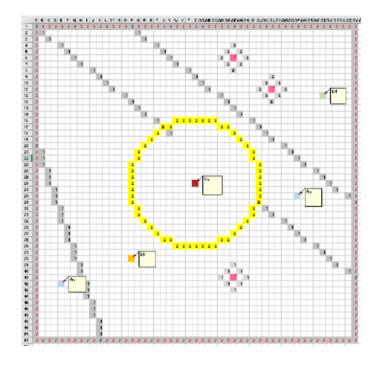

- Image Feature Extraction (raster-to-vector) optional
- Feature Digitizing (points, lines, and polygons)
- Topology Construction (lines+points → polygons)


Excel GIS Data File

- Raster and Vector data types
- Editable (vector) data in-situ
- Esri compatible → fluidity
- Standards support → longevity

GEOLOGIC MAP


cf. Montgomery, C.W. (1990) Physical Geology



GIS IN EXCEL

Map Portion

Raster in Excel

GIS IN EXCEL

Generated KML

Δ	А
1	xml version="1.0" encoding="UTF-8"?
2	<pre><kml xmlns="http://www.opengis.net/kml/2.2"></kml></pre>
3	<document></document>
4	<placemark></placemark>
5	<name>A1</name>
6	<polygon></polygon>
7	<extrude>0</extrude>
8	<altitudemode>clampToGround</altitudemode>
9	<pre><outerboundaryis></outerboundaryis></pre>
10	<linearring></linearring>
11	<coordinates></coordinates>
12	-117,39.81,1
13	-116.99,39.8,2
14	-116.99,39.79,3
15	-116 99 29 78 <i>1</i>

Image in Google Map

EXCEL GIS DATA FILE

1 Comment

by JoshuaBixby MVP 02-20-2021 08:05 AM

Post Options ▼

I gave up on this hope/wish/dream many years ago. Fortunately with Esri's move to improve functionality and support for its mobile geodatabase format, which is based on SQLite, I am more interested in moving away from file geodatabases as much as possible.

GeoPackage = SQLite + Esri ST

EXCEL GIS DATA FILE

	Ent/File GDB	Personal GDB	Shapefile	GeoPackage	
Raster &Vector	$\sqrt{}$			\checkmark	
Editable in situ		V	4	$\sqrt{}$	
ESRI Compatible	$\sqrt{}$	4	$\sqrt{}$	$\sqrt{}$	
Standards Support	?		de facto	√	

KML is a (wonderful) transport format, but not a data storage format

EXCEL GIS DATA FILE

GeoPackage

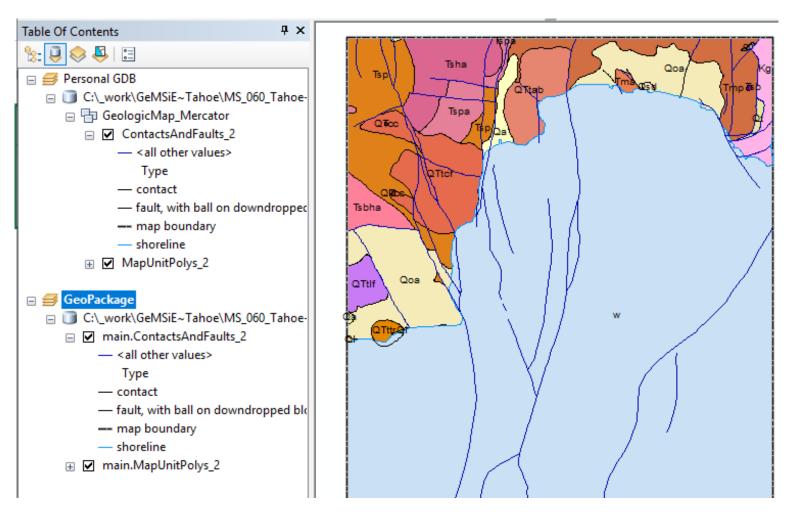
Non-Esri / Non-MS Personal Geodatabase

An Open Format for Geospatial Data

GeoPackage is an open, standards-based, platform-independent, portable, self-describing, compact format for storing and transporting

geospatial data. https://www.geopackage.org/implementations.html

TAHOE-DONNER MAP Kings Beach Quad


Relatively simple geology

- Surficial and Igneous units
- Fault structure
 "in your face"
 still active and
 well studied even in the lake
- Intra-unit contacts (from lava flows)
- Fine cartography

TAHOE-DONNER MAP Kings Beach Quad

Simplify, simplify

GEMS EDITING

Immediate Next Steps (target Fall 2021)

- 1. Extend GeMSiE to support GeoPackage (ODBC)
- 2. Write GeoPackage conversion Script for ArcMap
- 3. Adapt simple feature sketch tool to GeMSiE/GeoPackage
- 4. Write Point+Line → Polygon processor in Excel

Future Ambitions

- 1. Integrate Image → Vector feature extraction in GeMSiE
- 2. Adapt Excel's 3D MapViewer to "see" GeoPackage

THANKS!

[end]