Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1969

By GEORGE V. COHEE, ROBERT G. BATES, and WILNA B. WRIGHT
CONTRIBUTIONS TO STRATIGRAPHY

GEOLOGICAL SURVEY BULLETIN 1324 - A

CONTENTS

Page
Listing of nomenclatural changes A1
Age and stratigraphic relations of Amchitka, Banjo Point, and Chitka Point Formations, Amchitka Island, Aleutian Islands, Alaska, by W. J. Carr, W. D. Quinlivan, and L. M. Gard, Jr 16
Amchitka Formation 16
Banjo Point and Chitka Point Formations 18
Age 19
Caesars Head Quartz Monzonite in the Western Carolina Piedmont, by Jarvis B. Hadley and Arthur E. Nelson 23
Metadiabase sills in Negaunee Iron-Formation south of Negaunee, Mich., by J. E. Gair and G. C. Simmons 24
Tracy sill 26
Summit Mountain sill 26
Partridge Creek sill 28
Suicide sill 29
The Osprey Formation (Pleistocene) and its Tower Creek Gravel Member, Yellowstone National Park, by Kenneth L. Pierce, Robert L. Chris- tiansen, and Gerald M. Richmond 30
Osprey Formation 30
Basalt member 31
Tower Creek Gravel Member 32
Age 34
Selected references 34

ILLUSTRATIONS

Page
Figure 1. Geologic sketch map of Amchitka Island, Alaska A17
2. Map showing distribution of middle Precambrian metadiabase sills south of Negaunee, Mich. 25
3. Columnar sections of middle Precambrian metadiabase sills in Negaunee Iron-Foundation 27
4. Index map of the northern part of Yellowstone National Park showing areas underlain by Osprey Formation 31
5. Type section of Tower Creek Gravel Member. 33

TABLES

PageTable 1. Distribution of Foraminifera in the Amchitka, Gunners Cove,and Banjo Point Formations, Amchitka and Rat Islands,AlaskaA192. Pollen and spores from Amchitka Island, Alaska 21
3. Potassium-argon dates on rocks from Amchitka Island, Alaska 22

CHANGES IN STRATIGRAPHIC NOMENCLATURE BY THE U.S. GEOLOGICAL SURVEY, 1969

By George V. Cohee, Robert G. Bates, and Wilna B. Wright

LISTING OF NOMENCLATURAL CHANGES

In the following table, stratigraphic names adopted, revised, reinstated, or abandoned are listed alphabetically. The age of the unit, the revision, and the area involved, along with the author's name and date of publication of the report, are given. The publications in which the changes in nomenclature were made are listed in the references at the end of this publication. The capitalization of age terms in the age column follows official usage.

Name	Age	Location

Beartooth Butte Formation Early Devonian

\qquad
Beartooth Butte Formation extended into Idaho. (Sandberg and
Mapel, 1967.1

Beckers Butte Member changed to Beckers Butte Sandstone Member.
(Poole and others, 1967.)

Beckers Butte Member (of Early or Middle Devonian.
Martin Formation). Mem- Late Devonian
Beirdneau Sandstone Mem
ming.
Beirdneau Sandstone Member raised in rank to Beirdneau Formation
 in Utah. (Poole and others, 1967.)
ber (of Jefferson Forma-
tion).
.. Late DevonianNorth-central Utah
Beirdneau Formation changed to Beirdneau Sandstone in report
Beirdneau Formation Late Devonian
Bellevue Tongue (of Grant Late Ordovician .-.-......-....... . . Kentucky area: Beirdneau Formation used elsewhere. (Mullens, 1969.) Bellevue Limestone Member of McMillan Formation in Ohio extended
levue Tongue (of Grant Late OrdovicianPrecambrian
 Idaho, Montana, eastern Washington. into Kentucky
Series revised to Belt Supergroup. (Robinson and others, 1968.)
Berkeley Group
Early Cretaceous \qquad -.--.East-central Alaska
\qquad Berkeley Group abandoned; rocks assigned to Contra Costa Group (Radbruch, 1969.)
Biederman Argillite adopted as middle formation of Kandik Group

Biederman Argillite (of	Early Cretaceous . .-.-.--	------East-central Alaska .-.---- --.
Kandik Group).		
Rig Spencer Rhyolite	Early Devonian Early Devonian	Maine

Big Spencer Rhyolite adopted. (Rankin, 1968.)
Black Cat M Rhyor (of Trav- Early Devonian eler Rhyolite) \qquad Early Devonian
 Maine Black Cat Member adopted. (Rankin, 1968.)
eler Rhyolite).
Blacksmith Limestone . .-...- Middle Cambrian \qquad North-central Utah \qquad Blacksmith Limestone changed to Blacksmith Dolomite in report area; Blacksmith Limestone used elsewhere. (Mullens, 1989.) Age changed from Late Silurian to Middle and Late Silurian. (Ep. Age changed Epstein, 1967.)
Bloomsburg Red Beds Middle and Late Silurian. Southeastern Pennsylvania. Age changed from Devonian or Carboniferous to Devonian (?)
Blue Hill Granite Porphyry. Devonian(?) \qquad Massachusetts \qquad (Chute, 1969.)
 Cambrian. placed in Pozas Formation. (Briggs, 1969.)
Age changed from late Precambrian and Early Cambrian to late Precambrian to Middle Cambrian. (Armstrong, 1969.)
Broadway Alluvium \qquad Pleistocene Colorado Colorado. (Sharps, 1969.)
Butte Quartz Monzonite - ... Late Cretaceous \qquad Montana \qquad
Buttle Member (of Monterey late Miocene \qquad California Shale).
Calico Peak Porphyry....... early Tertiary (?) \qquad Southwestern Colorado Age changed from Late Cretac
(Robinson and others, 1968.)
(Robinson and others, 1968.) Buttle Diatomite Member of Monterey Formation (Mandra, 196 adopted as Buttle Member of Monterey Shale. (Durham, 1968.)
Age changed from Tertiary to early Tertiary (?). (Pratt and others, 1969.)
Canadian Provincial Series. Early Ordovician \qquad United States
Canadian is reinstated as a provincial series; as presently used will
be equivalent to Lower Ordovician Series. (N. F. Sohl, written be equivalent to Lower Ordovician Series. (N. F. Sohl, written commun., 1969.)
Canovas Canyon Rhyolite early (?) Pliocene \qquad North-central New Mexico. (of Keres Group).
Chico Formation-.-Late Cretaceous \qquad Central California \qquad Chico Formation not used in area of report. Strata southwest of the Chabot fault assigned to underlying Knoxville Formation. North east of the Chabot fault the strata are divided into (ascending) : Joaquin Miller Formation (new), Oakland Conglomerate (restricted), Shephard Creek Formation (new), Redwood Canyon Formation (new), unnamed shale unit, and Pinehurst shale (new)
(Case, 1968.)

Name	Age	Location	Revision and reference
Chilhowee Group --.-	Early Cambrian and Early Cambrian (?).	Tennessee, Virginia, Maryland, West Virginia, North Carolina, and Pennsylvania.	Chilhowee Group extended into eastern Pennsylvania. (Drake, 1969.)
Chinle Formation	Late Triassic	Eastern Arizona and Western New Mexico.	Mesa Redondo Member of Cooley (1958) adopted as member of Chinle Formation. (Repenning and others, 1969.)
Chititu Formation	Late Cretaceous	Southern Alaska .-....	Chititu Formation adopted. (Jones and MacKevett, 1969.)
Chitka Point Formation.	Miocene	Southwestern Alaska ...	Chitka Point Formation expanded to include all rocks in northern Amchitka Island formerly included in the Amchitka Formation. Age changed from Pliocene or Pleistocene to Miocene. (Carr and others, this report, p. A18.)
Church Rock Member (of Chinle Formation).	Late Triassic	Northeastern Arizona, southwestern Colorado, and southeastern Utah.	Church Rock Member extended into southwestern Colorado. (Shawe and others, 1968.)
Cid Formation (of Albemarle Group).	Ordovician (?)	North Carolina	Cid Formation adopted: includes an unnamed lower member and Flat Swamp Member. Replaces, in part, the McManus Formation which has been abandoned. (Stromquist and Sundelius, 1969.)
Cimarron Ridge Formation	Late Cretaceous	Southwestern Colorado	Cimarron Ridge Formation adopted. (Dickinson and others, 1968.)
Circle Creek Rhyolite Claiborne Group	early Pliocene- Eocene	Northern Nevada --- ----------	Circle Creek Rhyolite adopted. (Coats, 1968.) Memphis Sand adopted as basal formation of gloup in western
Clinton Formation	iddle Silurian	outheastern Pennsylvani	Clinton Formation equivalent included in Shawangunk Conglomerate in southeastern Pennsylvania. (Epstein and Epstein, 1967.)
Clover Fork Sandstone Member (of Wise Formation).	Pennsylvanian	Southwestern Virginia and southeastern Kentucky.	Clover Fork Sandstone Member adopted. (Miller, 1969.)
Cloverly Formation	Early Cretaceous	Northeastern Utah	Cloverly Formation extended into northeastern Utah on north flank of Uinta Range. (Schell, 1969.)
Coahuila Series	arly Cretaceous	Texas, Louisiana, Mississippi, Alabama, and Arkansas.	Coahuila Series of Imlay (1944) adopted as a provincial series in the Gulf Coast region. (Maher and Applin, 1968.)
Coamo Formation	Late Cretaceous	Central Puerto Rico. ...	Botijas Limestone Member and Revés Member removed from Coamo Formation and placed in Pozas Formation. (Briggs, 1969.)
Cochiti Formation	early to middle Pliocene.	North-central New Mexic	Cochiti Formation adopted. (Bailey and others, 1969.)
Coeymans Limestone (Formation).	Early Devonian	Pennsylvania .-. -..-----	Coeymans Limestone or Formation made a member of Helderberg Formation in report area. Coeymans Limestone or Formation used elsewhere. (Wood and others, 1969.)
Conejos Quartz Latite ...-	ligocene or older...	Colorado	Name changed everywhere to Conejos Formation. (Lipman and others, 1969.)
Contra Costa Group ...--	Pliocene ...--.-.-.-.	Western California	Contra Costa Group of Ham (1952) adopted; replaces Berkeley Group (abandoned). Includes (ascending): Orinda, Moraga, and Siesta Formations and Bald Peak Basalt. (Radbruch, 1969.)
Cook Mountain Formation	middle Eocene	Western Tennessee	Cook Mountain Formation extended into western Tennessee in subsurface. (Moore and Brown, 1969.)
Cooper Arroyo Sandstone Member (of Mancos Shale).	Late Cretaceous .-.... .-.-....	New Mexico .-.-----.------ .-.	Cooper Arroyo Sandstone Member adopted. (Landis and Dane, 1967.)

Ottauquechee Formation
Paine Shale Member (of Lodgepole Limestone). Paiute Monument Quartz Paliza Canyon Format Panther Seep Formation

Early Mississippian \qquad Montana, Idaho, and Middle Jurassic \qquad
\qquad Wyoming. early to middle Pliocene. North-central New Mexico. Late PennsylvanianNew Mexico Middle Ordovician \qquad New Hampshire \qquad Virginia and Maryland Member (of Aquia Formation).
Patapsco Formation (of Potomac Group).
Peralta Tuff Member (of
Bearhead Rhyolite).
Pinehurst Shale
Pinyon Peak Limestone
\qquad

Member (of Aquia Marl Paleocene Virginia and Maryland Formation).
Pogy Member (of Traveler Early Devonian Larly Devonian ---------------------- Maine middle Pliocene to early Pleistocene.
 Rhyolite)
Polvadera Group \qquad

Devonian \qquad Nevada \qquad New Jersey, Virginia, Pennsylvania, Delaware, and Maryland.

Raritan Formation \qquad Late Cretaceous \qquad New Jersey \qquad

Reany Creek Formation.-.......middle Precambrian peninsula.

Age changed from Silurian (?) to Early Silurian(?). (Moench, 1969.)
Amboy stoneware clay of Kümmel and Knapp (1904) removed from Amboy stoneware clay of Kümmel and Knapp (1904) removed from
top of Raritan and added to base of Magothy. (Owens and Sohl, 1969.)

Age changed from Middle Cambrian to Early Ordovician to Middle and Late Cambrian. (Cady, 1968.) Paine Shale Member extended into southeastern Idaho and western Wyoming. (Sando and others, 1969.)

Paliza Canyon Formation adopted. (Bailey and others, 1969.)
Panther Seep Formation of Kottlowski and others (1956) adopted (Bachman and Myers, 1969.)
Age changed from Late Ordovician (?) to Middle Ordovician. (Cady, 1968.)

Name changed from Paspotansa Greensand Marl Member to Paspotansa Member. (Hazel, 1969.)

Age changed from Late Cretaceous to Early Cretaceous. (Hazel, 1969.)

Peralta Tuff Member of Stearns (1953) adopted. (Bailey and others, 1969.)

Pinehurst Shale adopted. (Case, 1968.)
Age changed from Late Devonian and Early Mississippian to Late Devonian. (Poole and others, 1967.)
Name changed from Piscataway Indurated Marl Member to Piscataway Member. (Hazel, 1968.)

Pogy Member adopted. (Rankin, 1968.)
Polvadera Group adopted. Includes (ascending): Lobato Basalt Tschicoma Formation, and EI Rechuelos Rhyolite. (Bailey and others, 1969.$)$
Popovich Formation of Hardie (1966) adopted. (Akright and others, 1969.)

Age changed from Early and Late Cretaceous to Early Cretaceous. (Hazel, 1969.)

Botijas Limestone Member and Revés Member removed from Coamo Formation and placed in Pozas Formation. Río Bauta (new) adopted as member. (Briggs, 1969.)
Name changed to Puye Formation; age changed from Pliocene(?) to middle and late Pliocene. (Bailey and others, 1969.) Quimby Formation adopted. (Moench, 1969.)
Age changed from Mississippian (?) to Devonian(?). (Chute, 1969.)

Reany Creek Formation adopted. (Puffett, 1969.)

Name	Age Location	Revision and reference
Tinemaha Granodiorite \qquad Early Jurassic \qquad California \qquad Age changed from Jurassic or Cretaceous to Early Jurassic. (Ross, 1969.)		
		Tinton Sand Member removed from Red Bank Sand and made a separate formation. (Minard, 1969.)
Tippipah Limestone \qquad Early Pennsylvanian \qquad Southern Nevada \qquad Age changed from Early Pennsylvanian and Early Permian(?) to Early Pennsylvanian. (Gordon, 1969.)		
Tomstown Dolomite ...-......-	\qquad Pennsylvania, Maryland, Virginia, and West Virginia.	Name changed from Tomstown Dolomite to Tomstown Formation. (Hosterman, 1969.)
Torrecilla Breccia	Carly Cretaceous .-------..-.....-Central Puerto Rico	Torrecilla Breccia adopted: includes (ascending): Aguas Buenas Limestone Member, main body of formation, and Barros Tuff Member. (Briggs, 1969.)
Totavi Lentil (of Puye Formation).	middle and late Pliocene. North-central New Mexico.	Formerly Totavi Lentil of Puye Conglomerate. Age changed from Pliocene(?) to middle and late Pliocene. (Bailey and others, 1969.)
Tower Creek Conglomerate	leistocene \qquad Yellowstone Park area of Idaho, Wyoming, and Montana.	Reduced to member rank and name changed to Tower Creek Gravel Member of Osprey Formation (new). Age changed from Pliocene to Pleistocene. (Pierce, K. L., and others, this report, p. A32.)
Toyosa Member (of Maravillas Formation).	te Cretaceous \qquad Central Puerto Rico.	Toyosa Member adopted as upper member of Maravillas Formation in Orocovis quadrangle (Briggs, 1969.)
		Traveler Rhyolite adopted. Includes Black Cat and Pogy Members. (Rankin, 1968).
Trident Member (of Three Forks Formation).	Late Devonian \qquad Idaho, Montana, and Wyoming.	Two parts of Trident Member, separated by unconformity, recognized in east-central Idaho as equivalent to Logan Gulch and Trident Members of Montana. (Sandberg and Mapel, 1967.)
Tsankawi Pumice Bed (of Pleistocene \qquad Tshirege Member of North-central New Mexico. Tsankawi Pumice Bed adopted. (Bailey and others, 1969.) Bandelier Tuff).		
Tschicoma Formation (of middle to late Pliocene.-.-........North-central New Mexico. Tschicoma Formation made middle formation of Polvadera Group Polvadera Group). (new). (Bailey and others, 1969.)		
Tshirege Member (of Bandelier Tuff).	Pleistocene --.----------------------North-central New Mexico.	Tsankawi Pumice Bed (new) adopted as lower part of Tshirege
uscarora Sandstone	arly Silurian ...-----.-....----.......Pennsylvania	Tuscarora Sandstone equivalent included in Shawangunk Conglomerate in southeastern Pennsylvania. (Epstein and Epstein, 1967.)
Union Springs Shale Member (of Marcellus Shale).	Middle Devonian \qquad Pennsylvania and New York.	Member extended into southeastern Pennsylvania. (Epstein and Epstein, 1967.)
Uwharrie Formation .-...	Ordovician (?)----.-..... North Carolin	Age changed from early Paleozoic to Ordovician(?). (Stromquist and Sundelius, 1969.)
Valentine Limestone Member (of Sultan Limestone).		Age changed from Middle and Late Devonian to Late Devonian. (Poole and others, 1967.)
Valle Grande Member (of Valles Rhyolite).		Valle Grande Member adopted. (Bailey and others, 1969.
Valles Rhyolite (of Tewa Group).		Valles Rhyolite divided into six members (ascending): Deer Canyon, Redondo Creek, Valle Grande, Battleship Rock, El Cajete, and Banco Bonito Members. (Bailey and others, 1969.)

Wasatch Formation Paleocene and Eocene Northwestern Colorado .-.....- In Piceance Creek basin, formation is divided into three members			
ood	Precambrian (?	ssachusetts	ge changed from pre-Carboniferous to Precambrian(?). (Chute, 1969.)
Wilcox Group \qquad Eocene \qquad Western Tennessee \qquad In the subsurface of western Tennessee, the Wilcox Group is divided into three formations (ascending): Old Breastworks Formation, Fort Pillow Sand, and Flour Island Formation. (Moore and Brown, 1969.)			
Yellowstone Tuff \qquad Pliocene or Pleistocene. Wyoming and Montana \qquad Yellowstone Tuff of Boyd (1961) adopted. (Witkind, 1969.) Yellowstone Tuff \qquad Pleistocene \qquad Wyoming and Montana \qquad Age changed from Pliocene or Pleistocene to Pleistocene. (Fraser and others, 1969.)			

AGE AND STRATIGRAPHIC RELATIONS OF AMCHITKA, BANJO POINT, AND CHITKA POINT FORMATIONS, AMCHITKA ISLAND, ALEUTIAN ISLANDS, ALASKA

By W. J. Carr, W. D. Quinlivan, and L. M. Gard, Jr.

Detailed reconnaissance mapping in 1966 and 1967 of Amchitka and Rat Islands in the western Aleutian Islands (fig. 1) supplemented an original study by Powers, Coats, and Nelson (1960) and has resulted in some modifications of the ages and stratigraphy of the rocks. Two formations, the Banjo Point and overlying Chitka Point, are here slightly redefined; the Amchitka Formation is areally restricted and subdivided into two informal units. Several potassium-argon dates are now available for the Chitka Point, one for the East Cape intrusive complex and three for younger intrusive rocks. Age of a fossil pollen collection from the Chitka Point Formation agrees well with the radiometric dates. New fossil collections from the Banjo Point Formation provide a better basis for dating.

AMCHITKA FORMATION

As defined by Powers, Coats, and Nelson (1960), the Amchitka Formation includes rocks of diverse type and age. Rocks of the northwest part of Amchitka formerly mapped as Amchitka Formation are petrographically like and stratigraphically continuous with the Chitka Point Formation. The Amchitka Formation of eastern Amchitka is retained, with some changes in contacts with other formations (fig. 1), but it is divided into two informal units: (1) older breccias, overlain by (2) the pillow lavas and breccias of Kirilof Point. Both units are present in drill holes in the central part of Amchitka.

The older breccias, which constitute the lower part of the Amchitka Formation, are the oldest rocks exposed on Amchitka Island; the base is not exposed. The older breccias are restricted in outcrop to the eastern part of Amchitka Island, mainly between Constantine Harbor and the dioritic intrusive rocks of East Cape. The unit consists of fine- to coarse-grained sedimentary breccias and minor interbedded sandstone, siltstone, and claystone composed of volcanic debris. The rocks are generally propylitically altered. The degree of alteration increases erratically eastward toward the intrusive complex, and strongly metamorphosed older breccias occur within and adjacent to the intrusive masses. Numerous dikes, including many of hornblende

Figure 1.-Geologic sketch map of Amchitka Island.
andesite, cut the breccias on the eastern part of Amchitka Island. A maximum thickness of about 4,000 feet of the older breccias may be exposed; however, because of numerous dikes and sills that intrude the section and the possibility of fault repetition, this estimate is probably too high.
The Kirilof Point unit consists of glassy generally monolithologic breccia and tuff breccia, subordinate pillow lava flows, and very minor bedded volcanic sedimentary rocks, most of which were probably deposited in a submarine environment. The lower contact of the unit is exposed 1.6 miles east of Pillow Point at the base of a locally glassy lava and breccia sequence and at the top of a thin layer of sedimentary rocks. The lateral continuity of this contact and its stratigraphic and petrographic significance have not yet been determined. Compositionally some of the rocks of the Kirilof Point unit are less mafic than others known on Amchitka Island; Powers, Coats, and Nelson (1960) published an analysis of hydrated glassy breccia from Kirilof Point which indicates that the rock is a latite. Most other Kirilof Point rocks
analyzed in the current study are a little less silicic. The Kirilof Point unit is about 3,500 feet thick in the vicinity of Pillow Point and ranges from about 1,450 to 3,650 feet thick in drill holes in central Amchitka.

BANJO POINT AND CHITKA POINT FORMATIONS

The Banjo Point Formation consists mainly of breccias, sedimentary rocks, and minor pillow lavas of basaltic composition and submarine deposition. Hornblende-andesite and basalt sills and dikes intrude the formation in places. The Banjo Point is more nearly conformable with the underlying Amchitka Formation than reported by Powers, Coats, and Nelson (1960) but is overlain with considerable angular discordance by the Chitka Point Formation. The Banjo Point remains virtually as defined by Powers, Coats, and Nelson (1960) except for a few changes in its boundaries with the Chitka Point Formation. Outcrops near White House Cove and Burr House Cove, too small to be shown in figure 1, are probably Banjo Point Formation. Largely because of the major erosional unconformity between the two formations, no complete section of Banjo Point is exposed. The formation is a maximum of about 3,600 feet thick in a drill hole west of Kirilof Bay.

Rocks called Chitka Point Formation are here restricted to subaerial hornblende and pyroxene-andesite lava flows, breccias, tuffs, and conglomerate in the northwestern two-thirds of Amchitka (fig. 1). Excluded from the Chitka Point, as mapped by Powers, Coats, and Nelson (1960), are basaltic breccias, now included in the Banjo Point Formation and extending southeastward along the Pacific Coast from about lat $51^{\circ} 32^{\prime} \mathrm{N}$. The contact previously shown (Powers and others, 1960) between Chitka Point and Banjo Point Formations on the Pacific Coast is no longer considered a formational boundary. Included in the Chitka Point Formation by the present authors are all rocks previously mapped by Powers, Coats, and Nelson (1960) as Amchitka Formation on the northwest part of the island, and some small areas previously mapped by them as Banjo Point Formation along the Bering Sea Coast between about $51^{\circ} 30^{\prime} \mathrm{N}$. and Cyril Cove. All these rocks are hornblende or pyroxene-bearing andesites typical of the Chitka Point and are stratigraphically continuous with it. The Chitka Point ranges in thickness from a featheredge near the middle of Amchitka to a minimum of 4,000 feet in a drill hole 2 miles south of Chitka Point; about 1,100 feet are exposed in the vicinity of Topside.

Thus we restrict the Banjo Point to basaltic rocks of generally submarine deposition and the Chitka Point to andesitic rocks of mostly subaerial deposition, each unit representing a distinct episode of eruptive activity separated by uplift and erosion.

AGE

On the basis of Foraminifera and mollusks, Powers, Coats, and Nelson (1960, p. 538) assigned an Oligocene or Miocene age to the Banjo Point Formation. All their fossil material appears to be from beds assigned to the Banjo Point in the current study. Recently MacNeil (1967, p. 37) assigned an age of Oligocene(?) to the Banjo Point on the basis of a further evaluation of fossils in it and in similar beds on nearby Rat Island. Microfossils (table 1) collected by the authors and R. H. Morris from the Banjo Point and Amchitka Formations supplement the original collections which were made by Powers, Coats, and Nelson (1960) and which were studied by Todd (1953) and MacNeil (1967). Studies of the Foraminifera by R. L. Pierce permit refinement of the original ages for these formations. The Banjo Point Formation and similar beds on Rat Island (Gunners Cove Formation) are designated as late Eocene or Oligocene on the basis of mollusks and numerous microfossils from several localities (table 1). Age of the Amchitka Formation is less certain; it underlies the Banjo Point with general conformity, and the one fossil collection from it (table 1) contains only two genera not found in the Banjo Point; the species are not identified.

There is nothing to indicate a significant age difference between the Banjo Point and the upper part of the Amchitka Forma-tion-the breccias and pillow lavas of Kirilof Point--but because of the meager fauna and fact that the lower contact of the formation is not exposed, the authors prefer to assign an age of early Tertiary to the Amchitka Formation.

A coal sample from the Chitka Point Formation yielded numerous pollen and spores which were studied by Estella Leopold

Table 1.-Distribution of Foraminifera in the Amchitka, Gunners Cove, and Banjo Point Formations, Amchitka and Rat Istands, Alaska

	Amchitka Formation 69LG101	$\begin{gathered} \hline \text { Gunners Cove } \\ \text { Formation } \\ \text { WJC70A672 } \\ (\text { M } 337) \\ \hline \end{gathered}$	Banjo Point Forma $\overline{69 L_{6}{ }^{3} 69 \mathrm{LG}^{4}{ }^{4}{ }^{69 L C}{ }^{5}}$	tion 69LG96
Cassidulina globosa Hantken sp. cf. C. galvinensis Cushman and Frizzell				
Globigerina sp. sp. cf. G. eocaena Gümbel				
(?) Globorotalia sp. aff. G.				
Bolivina sp...inOridorsalis umbonatus (Ruess)				

Table 1.-Distribution of Foraminifera in the Amchitka, Gunners Cove, and Banjo Point Formations, Amchitka and Rat Islands, Alaska-Continued

[^0]
(table 2). She reported that "the sample count contains 6.5 percent of deciduous broadleaved trees now exotic to Alaska, and about a fifth of the generic list includes forms foreign to the region*** the age is Miocene, probably middle to late."

Seven potassium-argon dates on rocks from Amchitka Island are listed in table 3. Radiogenic dating is hampered by scarcity of fresh holocrystalline material for whole-rock analysis and of rocks containing minerals with sufficient potassium for dating of mineral separates.

Three dates were obtained on lava flows of the Chitka Point Formation at different localities in central and northwestern Amchitka. All represent flows in the upper part of the Chitka Point. The youngest date obtained, 12.4 ± 1.1 m.y. (million years), may be slightly too young because of the presence of a very small amount of noncrystalline material in the groundmass. Of the three dates, the one considered most reliable (14.1 ± 1.1 m.y.) because of the freshness and relatively coarse texture of the rock was obtained on an andesite flow in a quarry near the middle of Amchitka. On the basis of these dates and the pollen collection (table 2), we assign an age of Miocene to the Chitka Point, previously dated (Powers and others, 1960) as Tertiary or Quaternary.

A date of $15.8 \pm 0.7 \mathrm{~m} . \mathrm{y}$. was obtained on a biotite-bearing phase of the East Cape pluton. This complex of dioritic rocks intrudes rocks as young as the upper unit of the Amchitka Formation, and
fossils indicate that the Banjo Point Formation is also older than the East Cape plutonic complex.

Table 3.-Potassium-argon dates on rocks from Amchitka Island, Alaska

Sample	Rock type, location	Material analyzed	Stratigraphic relations	$\underset{\text { years } 10}{\text { Age }} \times 10$
WJC-87A-66	Hornblende andesite dike between Pillow Point and South Bight; lat $51^{\circ} 21^{\prime} 55^{\prime \prime} \mathrm{N}$., long $179^{\circ} 20^{\prime} 40^{\prime \prime} \mathrm{E}$.	Hornblende	Intrudes Amchitka Formation.	2.7 ± 3.0
$69 \mathrm{Amc}-12$	Basaltic andesite dike, west side of Kirilof Bay; lat $51^{\circ} 26^{\prime} \mathrm{N}$., long $179^{\circ} 14^{\prime}$ E.	Whole rock	Intrudes Banjo Point Formation.	8.9 ± 0.6
WJC-1-67...	Basalt dike(?), point on north side of St. Makarius Bay; lat $51^{\circ} 23^{\prime} 30^{\prime \prime} \mathrm{N}$., long $179^{\circ} 12^{\prime} 50^{\prime \prime} \mathrm{E}$.	----.-.-. do .		10.2 ± 1.1
$69 \text { Amc-15 }$	Pyroxene andesite lava flow on ridge 2 miles north of Windy Island; lat $51^{\circ} 36^{\prime} N$., long $178^{\circ} 48^{\prime}$ E.	do	Upper part of Chitka Point Formation.	12.4 ± 1.1
$69 \text { Amc-17.. }$	Hornolende andesite lava flow, Mex Island; lat $51^{\circ} 28^{\prime} 30^{\prime \prime}$ N., long $179^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{E}$.	.-.-do ---		13.2 ± 1.2
$69 \text { Amc-2 }$	Hornblende andesite lava flow quarry, central Amchitka; lat $51^{\circ} 31^{\prime} \mathrm{N}$., long $179^{\circ} 02^{\prime} \mathrm{E}$.	do	Upper part of Chitka Point Formation.	14.1 ± 1.1
69-Ame-11.	Biotite-hornblende granodiorite; lat $51^{\circ} 23^{\prime} \mathrm{N}$., long $179^{\circ} 25^{\prime}$ E.	Biotite	Intrusive dioritic complex of East Cape. Parts of complex intrude upper and lower units of Amchitka Formation.	15.8 ± 0.7

1 All dates determined by Geochron Laboratories, Inc. Mineral separations by D. R. Miller.
Emplacement of the East Cape pluton appears to be concurrent with a mid-Miocene change from predominantly submarine volcanic deposition to uplift, followed by mostly subaerial andesitic volcanism along the insular ridge. The possibility of a major midTertiary uplift of the Aleutian Arc was pointed out several years ago by Gates, Fraser and Snyder (1954).

Dates (table 3) of 8.9 ± 0.6 and 10.2 ± 1.1 m.y. were obtained on intrusive rocks that appear to belong to a Pliocene episode of basaltic activity that followed eruption of the Chitka Point. Both samples are from northeast-trending bodies that are probably dikes in the Banjo Point Formation.

A date obtained on hornblende from a dike that is part of a swarm that postdates the East Cape plutonic complex is probably not very reliable because of the snall amount of hornblende in the sample. However, intrusive rocks of intermediate composition apparently were emplaced relatively late in the island's history.

CAESARS HEAD QUARTZ MONZONITE IN THE WESTERN CAROLINA PIEDMONT

By Jarvis B. Hadley and Arthur E. Nelson

The name Caesars Head Quartz Monzonite is hereby proposed for several irregularly shaped bodies of granitic rock that occupy about 500 square miles in the southeastern part of the Knoxville 2-degree quadrangle (Hadley and Nelson, in press). These bodies invade a terrane of older paragneiss and schist, which is the principal country rock throughout a large part of the Piedmont province of southwestern North Carolina and northwestern South Carolina.

The type locality of the Caesars Head Quartz Monzonite is on Hogback Mountain in Greenville County, S.C. It is also exposed on the high ridge to the southwest, including Glassy Mountain, Old Indian Mountain, and Chestnut Mountain (Tigerville quadrangle, South Carolina and North Carolina). Good exposures of most of the varieties of the unit can be found along the paved road between State Route 11 and U.S. Highway 25 near Poinsett Reservoir and along the improved but unpaved road across Glassy Mountain and Hogback Mountain, as far as Vaughns Gap. The name is taken from exposures along U.S. Highway 276 in the vicinity of the summit known as Caesars Head in the northwestern part of Greenville County, S.C.

The plutonic intrusive rocks included in this unit consist largely of biotite quartz monzonite and biotite granodiorite, medium to coarse grained, ranging from equigranular to inequigranular and porphyroblastic. The feldspars are principally microcline and oligoclase or sodic andesine, whose relative proportions vary greatly from place to place. Microcline and quartz monzonite are most abundant in the western bodies; conversely, much of the rock in the eastern outcrop areas in granodiorite. Abundant well-crystallized epidote and sphene are characteristic accessory constituents, and small amounts of muscovite and magnetite are generally present. All saprolite samples tested yielded zircon in moderate quantities. The dark minerals are commonly segregated in discontinuous folia accompanied by various degrees of schistosity; locally, however, the rocks are virtually nonfoliated.

Contacts between the Ceasars Head Quartz Monzonite and the surrounding paragneiss and schist, as revealed by reconnaissance mapping and observations, largely along roads, are broadly concordant but locally discordant to the foliation of both intrusive and country rock. Concordant to semiconcordant lenses of paragneiss locally included in the quartz monzonite show gradational rather
than sharply defined boundaries. More definitive information about the structural relations of the Caesars Head Quartz Monzonite awaits detailed study in favorable localities.

Much of the Caesars Head Quartz Monzonite, particularly in the western bodies, resembles the granitic or less foliated phase of the Henderson Gneiss, and the mapped boundaries between these two units are everywhere gradational and obscure. The age of the surrounding paragneiss and schist is not known, although these rocks are probably not older than late Precambrian and not younger than Silurian. Microscopic textural and mineral relationships suggest that the Caesars Head Quartz Monzonite was emplaced before the climax of the regional deformation and well before the peak of thermal activity and recrystallization in the rocks. Its age, therefore, is presumably younger than late Precambrian and at least as old as Carboniferous, the date of the last major metamorphism as indicated by potassium-argon and rubidium-strontium ages reported from the surrounding region (Kulp and Eckelmann, 1961).

METADIABASE SILLS IN NEGAUNEE IRON-FORMATION SOUTH OF NEGAUNEE, MICHIGAN

By J. E. Gair and G. C. Simmons

The Negaunee Iron-Formation (Van Hise and Bayley, 1895; Leith and others 1935) of middle Precambrian age (James, 1958, p. 33-35) in the Marquette synclinorium and iron district, Michigan, is intruded by large bodies of mafic igneous rock. The bodies are most numerous and crop out in prominent ridges and knobs south and southwest of the city of Negaunee, in the axial part of the synclinorium. In early reports, the mafic rock was called diorite (Van Hise and Bayley, 1897; Van Hise and Leith, 1911), but it is now recognized as metadiabase similar to that in other Precambrian areas of upper Michigan (Gair and Wier, 1956, p. 60-61; Bayley, 1959, p. 65-67; Gair and Thaden, 1968, p. 51). Original diabasic texture of the mafic rock generally is well preserved, but virtually none of the original minerals remain. Through low-grade regional metamorphism, calcic plagioclase has been saussuritized and albitized, and pyroxene has been converted to tremolitic and actinolitic amphibole and chlorite. Many large, roughly tabular bodies of metadiabase are conformable, or nearly so, with bedding of the Negaunee Iron-Formation and are considered sills. This paper proposes names for four such sills that are particularly useful markers for subdividing the ironformation. The named sills are mainly south of Negaunee in the
western part of the Palmer and the eastern part of the Ishpeming quadrangles (fig. 2).

Figure 2.-Distribution of middle Precambrian metadiabase sills south of Negaunee, Mich.

The named sills are each $21 / 2$ miles or more in mapped length and 200 feet or more in maximum thickness and extend westward along the north and south limbs from the axial part of the synclinorium. One sill wedges between two of the others in the axial part of the synclinorium, and this arrangement suggests that the sills may have been emplaced during folding. However, emplacement of the sills would necessarily have been early during the folding at the close of middle Precambrian time because they are offset and because some are repeated by faults that are approximately synchronous with the folds. Low-angle crosscutting of the iron-formation by the sills is indicated both by small local thickness variations in iron-formation between sills and by larger thickness variations across a distance of several miles from one flank of the synclinorium to the other (fig. 2). The named sills from lower to higher in the stratigraphic section are the Tracy, Summit Mountain, Partridge Creek, and Suicide (fig. 3).

TRACY SILL

The Tracy sill is named for the Tracy mine, which is a short distance north of a prominent outcrop of the sill in the $\mathrm{NE} 1 / 4 \mathrm{sec}$. 7 and the NW $1 / 4$ sec. 8, T. 47 N., R. 26 W . The name has previously been used informally by local mining company geologists (J. W. Avery, Jones \& Laughlin Steel Corp., oral commun, 1964). The sill has a thickness at the type locality of $200-250$ feet, determined both by drilling and calculations from mapped width and the dip of nearby iron-formation. The base of the sill is $1,100-1,200$ feet above the base of the Negaunee Iron-Formation. The sill extends from the city of Negaunee in sec. 6, west for an unknown distance on the north limb of the Marquette synclinorium and south across the axial part of the synclinorium to the SW $1 / 4$ sec. 18, T. 47 N., R. 26 W., where it terminates against a fault. Drill data suggest that the sill is present in the subsurface for a short distance west of the fault, but apparently it pinches out near the southwest corner of the section and updip before reaching the surface. It is extensively sliced by faults, especially in secs. 5,6 and 7. It should be pointed out that the relations shown in the $\mathrm{SW} 1 / 4$ sec. 5 and the $\mathrm{SE} 1 / 4$ sec. 6 (fig. 2) are based entirely on the interpretation of drill data.

SUMMIT MOUNTAIN SILL

The Summit Mountain sill is named for Summit Mountain in the SW $1 / 4$ sec. 24, T. 47 N., R. 27 W. (fig. 2). ${ }^{1}$ The sill crops out on

[^1]North limb and axial part of Marquette synclinorium

South limb of

Figure 3.-Columnar sections of middle Precambrian metadiabase sills in Negaunee Iron-Formation.
the north side of the mountain, near the crest. A stratigraphically higher sill-the Suicide sill named and discussed below-is exposed in a parallel belt a short distance to the north, near the base of the mountain. At the type locality, the Summit Mountain sill is underlain by 1,800 feet of iron-formation, which to the south is in normal stratigraphic contact with underlying Ajibik Quartzite, the Siamo Slate having pinched out to the east, and in fault contact with Palmer Gneiss. To the northeast, in the axial part of the Marquette synclinorium, the sill is separated from the underlying Tracy sill by $120-340$ feet of iron-formation.

At its type locality the Summit Mountain sill has an approximate thickness of 560 feet, calculated from an outcrop width of 800 feet and a dip of 45° in adjacent iron-formation. To the northeast in the axial part of the synclinorium, the average thickness of the sill is about 500 feet. The sill thins southwest of the type locality, so that a mile away, at its termination against a fault, it is 140 feet thick.

The Summit Mountain sill has a mapped linear extent of more than 7 miles. From its type locality on the southeast limb of an open syncline that plunges west-northwest, the sill continues 1 mile to the southwest and is truncated by a fault, as mentioned above. The sill extends northeast from the type locality to sec. 18, T. 47 N., R. 26 W., where it turns north and then northwest to its known limit against a fault in secs. 1, 11, and 12, T. 47 N., R. 27 W . The curved belt, concave to the west, marks the closure of a major west-plunging syncline. The sill is extensively sliced and repeated by faults in the $\mathrm{SE} 1 / 4 \mathrm{sec} .13, \mathrm{~T} .47 \mathrm{~N} ., \mathrm{R} .27 \mathrm{~W}$. , in the south part of sec. 18, T. 47 N., R. 26 W., and in the north part of sec. 12, T. 47 N., R. 27 W.

PARTRIDGE CREEK SILL

The Partridge Creek sill is named for Partridge Creek which flows a few hundred feet southwest of a ridge containing large exposures of the sill near the center of sec. 12, T. 47 N., R. 27 W. There at the type locality the sill is about 380 feet thick, judging by outcrop width and the dip of adjacent iron-formation, and the base of the sill is separated from the top of the Summit Mountain sill by an 80 -foot thickness of iron-formation. The stratigraphic separation of the sills ranges from 70 to 140 feet across the area. The Partridge Creek sill extends about 1 mile northwest of the type locality, thins slightly in that distance, and is cut off by a fault. Its possible correlative farther west is unknown. Southeast of the type locality, in the $\mathrm{SE} 1 / 4 \mathrm{sec} .12$, the sill splits into two layers, the lower of which is about 100 feet thick and
the upper, about 200 feet thick. The two layers are separated by a maximum thickness of about 150 feet of iron-formation. To the southeast, the layers gradually change strike from southeast to south in the axial part of the synclinorium. They pinch out in sec. 18, T. 47 N., R. 26 W., the upper layer extending about half a mile farther south than the lower layer. Near the southeast corner of sec. 12, T. 47 N., R. 27 W ., the upper layer thickens markedly and passes into an irregular dike which cuts upward across the iron-formation.

SUICIDE SILL

The Suicide sill is named for Suicide Hill ${ }^{2}$ in the south-central part of sec. $12, \mathrm{~T} .47 \mathrm{~N} ., \mathrm{R} .27 \mathrm{~W}$. The upper part of the hill contains numerous exposures. At the type locality the sill occupies a west-northwest-trending syncline in which the upper contact of the sill has been removed by erosion. The part of the sill remaining has an approximate thickness of 580 feet, calculated from the mapped width of the sill between its base and the synclinal axis, and from the dip of adjacent iron-formation. South of the type locality in the axial part of the synclinorium, the thickness of the sill is indeterminate because of faulting. South of that area, the sill passes southwestward without structural complication across sec. 24, north of Summit Mountain, and across the SE $1 / 4$ sec. 23, T. 47 N., R. 27 W.. Along that belt, near the boundary between the Ishpeming and Palmer quadrangles, the sill has a maximum thickness of 630 feet calculated from the mapped width and an assumed dip to the northwest of 45°. At its type locality, the Suicide sill is separated from the underlying Partridge Creek sill by 940 feet of iron-formation. Two miles to the south, on the north side of Summit Mountain, because of the pinchout of the Partridge Creek sill and also apparently because of gradual crosscutting of the iron-formation, the Suicide sill is separated from the underlying Summit Mountain sill by only 100-250 feet of iron-formation. West of Summit Mountain in the SE $1 / 4$ sec. 23, the Summit Mountain and Suicide Sills are connected by a large dike of metadiabase.

The mapped linear extent of the Suicide sill is more than 4 miles. From its type locality, it extends more than a mile to the northwest where it is truncated by a fault in the central part of sec. 11. About a mile southeast of the type locality, it closes around the nose of the northwest-plunging syncline. South of the syncline in the axial part of the Marquette synclinorium, the sill

[^2]appears in several segments bounded by faults; to the southwest, it terminates against a fault.

Near the common west corner of secs. 13 and 24, the Suicide sill is overlain by $400-700$ feet of iron-formation that separates it from an unnamed overlying sill. The possible correlation of the unnamed sill with others (fig. 2) west and northwest of the named bodies and possible correlations of some of the unnamed bodies with the named sills cannot be established because of structural complications and inadequate exposures.

THE OSPREY FORMATION (PLEISTOCENE) AND ITS TOWER CREEK GRAVEL MEMBER, YELLOWSTONE NATIONAL PARK

By Kenneth L. Pierce, Robert L. Christiansen, and Gerald M. Richmond

Recent geologic mapping in Yellowstone National Park has demonstrated that interlayered upper Cenozoic basalts and gravels of several different ages can be recognized. The only previous regional geologic studies of broad scope in this area, made in the late 19th and early 20th centuries (Hague and others, 1896, 1899; Hague, unpub. data, 1904), did not distinguish consistently among these sequences. Although later studies, which were focused on certain topical problems or on only parts of the area (for example, Howard, 1937; Boyd, 1961; Brown, 1961), established many of the relations among these units, a comprehensive stratigraphy has awaited detailed regional mapping. This paper distinguishes one of the basalt-gravel sequences as the Osprey Formation, consisting of two members-a basalt member and the Tower Creek Gravel Member.

OSPREY FORMATION

The Osprey Formation is here defined as that sequence of basalts and gravels, interlayered in locally varied proportions, which fills or partly fills a canyon paleotopography cut both in the upper part of the Yellowstone Tuff and in conformably overlying basalts in the region of northern Yellowstone National Park (fig. 4). On the nose between Lava Creek Canyon and Sheepeater Canyon, the Osprey Formation rests unconformably on both the upper part of the Yellowstone Tuff and the basalt which conformably overlies the tuff. The oldest deposit overlying the Osprey Formation is till of probable late Bull Lake age. The known extent of the Osprey Formation is indicated in figure 4. The formation is well exposed along the west side of Sheepeater Canyon, where the flank of Bunsen Peak is incised by the Gardner River. In this area, Boyd (1961,

Figure 4.-Northern part of Yellowstone National Park and location of areas underlain by Osprey Formation (black), type section of Osprey Formation (Qo), and type section of Tower Creek Gravel Member (Qot).
p. 402) recognized that the basalts and gravels here defined as the Osprey Formation postdate both the Yellowstone Tuff and the basalts that conformably overlie the tuff on the east rim of the canyon.

The type section of the Osprey Formation is designated as the cliff exposure on the west side of Sheepeater Canyon, 3,200 feet almost due north of Osprey Falls and just east of the closest approach in this vicinity of the Bunsen Peak Road to the rim of the canyon. The section is about 200 feet thick. It consists mainly of six flows of columnar-jointed basalt, several of which are separated by as much as 20 feet of gravel, particularly in the lower part of the section and at the base. The section rests on an eroded Eocene intrusive body which forms Bunsen Peak.

For convenience in mapping and in order to provide the maximum possible consistency with previously used stratigraphic nomenclature, the two lithologic facies of the formation are recognized as members.

BASALT MEMBER

The basalt member is designated informally to include all the basalt flows of the Osprey Formation. The basalts are olivine tholeiites characterized by a low content of alkali metals, notably
of potassium. Sparse plagioclase phenocrysts occur in most of the flows; olivine is present in the groundmasses. The basalts typically are very fine grained, dense, and nearly black. Columnar jointing is exceptionally well developed in many flows.

TOWER CREEK GRAVEL MEMBER

The Tower Creek Gravel Member of the Osprey Formation is here defined to include all gravel and other sediments associated with the Osprey Formation. The type section is the exposure on the east side of The Narrows of the Yellowstone River Canyon directly across from Calcite Springs and 5,800 feet N. $30^{\circ} \mathrm{W}$. of the mouth of Tower Creek. It is described in figure 5. At the type section the Tower Creek Gravel rests on Eocene volcanic breccias and is overlain by Pinedale Till (fig. 5). The gravel is mainly cobble sized and occurs in massive subhorizontal beds. The cobbles are about 65 percent Eocene volcanic rocks, $5-15$ percent quartz-bearing rhyolite, $5-25$ percent upper Cenozoic basalt, and $5-15$ percent quartzite and Precambrian crystalline rocks. All the quartz-bearing rhyolite clasts we have observed in the type Tower Creek Gravel Member are Yellowstone Tuff. One distinctive type of clast is purplishgray to bluish-gray welded tuff with abundant white collapsed pumice inclusions containing conspicuously large phenocrysts; this lithology is characteristic of the upper part of the Yellowstone Tuff in the nearby drainage area.

The name Tower Creek Conglomerate was first used on the map legend of sheets 10,12 , and 17 of the atlas for the Yellowstone National Park monograph (Hague and others, 1899). Several years earlier, Hague and others (1896, p. 3 and Canyon Sheet) described these deposits and named them the Canyon Conglomerate. At a locality "just north of Tower Creek" Hague and others noted that (1) the conglomerate does not contain rhyolite cobbles, (2) the conglomerate and associated basalt are prerhyolite in age, and (3) vertebrate remains collected from the conglomerate were identified by O. C. Marsh as being from a Pliocene horse. The identification of these vertebrate remains, now lost, has never been confirmed. Jones and Field (1929, p. 275), however, concluded on the basis of physiographic relations that the basalt and gravel in the Tower Falls area are much younger than the rhyolite.

Gravel previously referred to the Tower Creek Conglomerate was shown to be of two different ages by A. D. Howard (1937, p. 36-80). On the east side of the Yellowstone River in The Narrows area he observed only gravel bearing more than 5 percent rhyolite. On the west side he observed that some gravel contained

Figure 5.-Type section of Tower Creek Gravel Member. Measured by rough hand leveling by K. L. Pierce at the type locality across the Yellowstone River from Calcite Springs, Yellowstone National Park, Wyo. Qot, Tower Creek Gravel Member; Qob, basalt member.
more than 5 percent rhyolite but that other gravel contained 1 percent or less. C. W. Brown (1961, p. 1182-1183) reported that he failed to find rhyolite in the gravel on either side of the river. Our field studies support Howard's conclusion and demonstrate the presence of two different ages of gravel and associated basalt. The younger gravel contains readily discernible (more
than 5 percent) cobbles of rhyolite, mainly from the upper part of the Yellowstone Tuff; the older gravel contains few cobbles of rhyolite and none of Yellowstone Tuff. The basalt that overlies the older gravel underlies the upper part of the Yellowstone Tuff.

By restricting the name Tower Creek Gravel Member to gravel of the Osprey Formation, which generally contains clasts identified as coming from the upper part of the Yellowstone Tuff, we have selected the most conspicuous and extensive gravel exposed in the Tower Falls area. We exclude gravel older than the tuff: for example, that exposed beneath the basalt flow of Overhanging Cliff on the west side of The Narrows in the Tower Falls area. We exclude also deposits previously mapped as Tower Creek Conglomerate in the Gallatin Range in northwestern Yellowstone Park (Hague and others, 1899, sheets 10 and 17), which in fact are associated with rocks of the Absaroka volcanic field of Eocene age (H. W. Smedes, oral commun., 1970). We use the term gravel rather than conglomerate in the formal name because many of the deposits are friable, and the local induration is the result of hydrothermal alteration rather than diagenetic cementation. In other places, hydrothermal alteration has induced both decomposition and disintegration of clasts and matrix.

AGE

The Osprey Formation lies on a paleotopography cut in or through the upper part of the Yellowstone Tuff. The interlayered gravel contains pebbles or cobbles of that tuff in all localities observed, including the type section. The formation is, therefore, younger than the upper part of the Yellowstone Tuff. The upper part is the younger of two ash-flow cooling units of the Yellowstone Tuff in Yellowstone Park and has been dated as 600,000 years old by potassium-argon determinations on sanidine phenocrysts (J. D. Obradovich, written commun., 1969). As the Osprey Formation occurs in canyons cut in the tuff, the formation is probably of considerably younger age. Glacial deposits of probable late Bull Lake age overlie the Osprey Formation just north of the type locality. The formation is therefore of Pleistocene age.

SELECTED REFERENCES

Akright, R. L., Radtke, A. S., and Grimes, D. J., 1969, Minor elements as guides to gold in the Roberts Mountains Formation, Carlin gold mine, Eureka County, Nevada, in International geochemical exploration symposium: Colorado School Mines Quart., v. 64, no. 1, p. 49-66.
Anderson, C. A., 1968, Arizona and adjacent New Mexico, in Ore deposits of the United States, 1933-1967 (Graton-Sales Volume), V. 2: New York,

Am. Inst. Mining, Metall. Petroleum Engineers, p. 1163-1190.
Armstrong, F. C., 1969, Geologic map of the Soda Springs quadrangle, southeastern Idaho: U.S. Geol. Survey Misc. Geol. Inv. Map I-557.
Bachman, G. O., and Myers, D. A., 1969, Geology of the Bear Peak area, Dona Ana County, New Mexico: U.S. Geol. Survey Bull. 1271-C, 46 p.
Bailey, R. A., Smith, R. L., and Ross, C. S., 1969, Stratigraphic nomenclature of volcanic rocks in the Jemez Mountains, New Mexico: U.S. Geol. Survey Bull. 1274-P, 19 p.
Bayley, R. W., 1959, Geology of the Lake Mary quadrangle, Iron County, Michigan: U.S. Geol. Survey Bull. 1077, 112 p.

- 1968, Ore deposits of the Atlantic City district, Fremont County, Wyoming, in Ore deposits of the United States, 1933-1967 (Graton-Sales Volume), V. 1 : New York, Am. Inst. Mining, Metall. Petroleum Engineers, p. 589-604.

Boyd, F. R., 1961, Welded tuffs and flows in the rhyolite plateau of Yellowstone Park. Wyoming: Geol. Soc. America Bull., v. 72, no. 3, p. 387-426.
Brabb, E. E., 1969, Six new Paleozoic and Mesozoic formations in east-central Alaska: U.S. Geol. Survey Bull. 1274-I, 26 p.
Briggs, R. P., 1969, Changes in stratigraphic nomenclature in the Cretaceous System, east-central Puerto Rico: U.S. Geol. Survey Bull. 1274-0, 31 p.
Brown, C. W., 1961, Cenozoic stratigraphy and structural geology, northeast Yellowstone National Park, Wyoming and Montana: Geol. Soc. America Bull., v. 72, no. 8, p. 1173-1193.
Cady, W. M., 1968, The lateral transition from the miogeosynclinal to the eugeosynclinal zone in northwestern New England and adjacent Quebec in Zen, E-An, and others, ed., Studies of Appalachian geology-northern and maritime: New York, Interscience Publishers, p. 151-161.
Case, J. E., 1968, Upper Cretaceous and lower Tertiary rocks, Berkeley and San Leandro Hills, California: U.S. Geol. Survey Bull. 1251-J, 29 p.
Cater, F. W., 1969, The Cloudy Pass epizonal batholith and associated subvolcanic rocks: Geol. Soc. America Spec. Paper 116, 54 p.
Churkin, Michael, Jr., 1968, Silurian and Devonian stratigraphy of Alaska and the Silurian-Devonian boundary [abs.], in Symposium of SilurianDevonian boundary and stratigraphy of Lower and Middle Devonian, Ed. Internat. Leningrad, 1968, Abs. Proc.: Leningrad, Akad. Nauk SSSR, p. 53-54.
Churkin, Michael, Jr., and Brabb, E. E., 1967, Devonian rocks of the YukonPorcupine Rivers area and their tectonic relation to other Devonian sequences in Alaska, in International symposium on the Devonian System, Calgary, Alberta, 1967 [Proc.], V. 2: Calgary, Alberta, Alberta Soc. Petroleum Geologists, p. 227-258.
Chute, N. E., 1969, Bedrock geologic map of the Blue Hills quadrangle, Norfolk, Suffolk, and Plymouth Counties, Massachusetts: U.S. Geol. Survey Geol. Quad. Map GQ-796.
Claypole, E. W., 1885, A preliminary report on the paleontology of Perry County, describing the order and thickness of its formations and its folded and faulted structure: Pennsylvania Geol. Survey, 2d, Rept. F2, 437 p.
Coats, R. R., 1968, The Circle Creek Rhyolite--a. volcanic complex in northern Elko County, Nevada: Geol. Soc. America Mem. 116, p. 69-106.
Collings, M. R., Wiesnet, D. R., and Fleck, W. B., 1969, Water resources of the Millers River basin, north-central Massachusetts and south-western New Hampshire: U.S. Geol. Survey Hydrol. Inv. Atlas HA-293, 4 sheets.

Cooley, M. E., 1958, The Mesa Redondo Member of the Chinle Formation, Apache and Navajo Counties, Arizona: Plateau, v. 31, no. 1, p. 7-15.
Cooper, G. A., and Grant, R. E., 1969, New Permian brachiopods from west Texas: Smithsonian Contr. Paleobiology, no. 1, 20 p.
Dickinson, R. G., Leopold, E. B., and Marvin, R. F., 1968, Late Cretaceous uplift and volcanism on the north flank of the San Juan Mountains, Colorado, in Cenozoic volcanism in the southern Rocky Mountains: Colorado School Mines Quart., v. 63, no. 3, p. 125-148.
Doe, B. R., Tilling, R. I., Hedge, C. E., and Klepper, M. R., 1968, Lead and strontium isotope studies of the Boulder batholith, southwestern Montana: Econ. Geology, v. 63, no. 8, p. 884-906.
Donnell, J. R., 1969, Paleocene and lower Eocene units in the southern part of the Piceance Creek basin, Colorado: U.S. Geol. Survey Bull. 1274-M, 18 p.
Drake, A. A., Jr., 1969, Precambrian and lower Paleozoic geology of the Delaware Valley, New Jersey-Pennsylvania, in Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: New Brunswick, N.J., Rutgers Univ. Press, p. 51-131.
Durham, D. L., 1968, Geology of the Tierra Redonda Mountain and Bradley quadrangles, Monterey and San Luis Obispo Counties, California: U.S. Geol. Survey Bull. 1255, 60 p.
Eardley, A. J., and others, 1944, Hoback-Gros Ventre-Teton [Wyoming] field conference: [Michigan Univ.], geol. map, scale about 1 in . to 2 mi ., and tectonic map, scale 1 in . to 4 mi ., with sections, 2 sheets.
Epstein, J. B., and Epstein, A. G., 1967, Geology in the region of the Delaware to Lehigh Water Gaps; guidebook for the 32d Annual Field Conference of Pennsylvania Geologists: Harrisburg, Pa., Pennsylvania Geol. Survey, 89 p.

1969, Geology of the Valley and Ridge province between Delaware Water Gap and Lehigh Gap, Pennsylvania, in Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: New Brunswick, N.J., Rutgers Univ. Press, p. 132-205.

Fraser, G. D., Waldrop, H. A., and Hyden, H. J., 1969, Geology of the Gardiner area, Park County, Montana: U.S. Geol. Survey Bull. 1277, 118 p.
Freeman, V. L., 1968, Geology of the Comstock-Indian Wells area, Val Verde, Terrell, and Brewster Counties, Texas: U.S. Geol. Survey prof. Paper $594-\mathrm{K}, 26 \mathrm{p}$.
Gair, J. E., and Thaden, R. E., 1968, Geology of the Marquette and Sands quadrangles, Marquette County, Michigan: U.S. Geol. Survey Prof. Paper 397, 77 p.
Gair, J. E., and Wier, K. L., 1956, Geology of the Kiernan quadrangle, Iron County, Michigan: U.S. Geol. Survey Bull. 1044, 88 p.
Gates, Olcott, Fraser, G. D., and Snyder, G. L., 1954, Preliminary report on the geology of the Aleutian Islands: Science, v. 119, no. 3092, p. 446-447.
Gordon, Mackenzie, Jr., 1969, Early Pennsylvanian ammonoids from southern Nevada: U.S. Geol. Survey Prof. Paper 613-C, 13 p.
Green, J. C., 1968, Geology of the Connecticut Lakes-Parmachenee area, New Hampshire and Maine: Geol. Soc. America Bull., v. 79, no. 11, p. 16011638.

Gryc, George, Dutro, J. T., Jr., Brosgé, W. P., Tailleur, I. L., and Churkin, Michael, Jr., 1967, Devonian of Alaska, in International symposium on the Devonian System, Calgary, Alberta, 1967 [Proc.], V. 1: Calgary, Alberta, Alberta Soc. Petroleum Geologists, p. 703-716.
Hadley, J. B., and Nelson, A. E., Geologic map of the Knoxville quadrangle, North Carolina, Tennessee, and South Carolina: U.S. Geol. Survey Misc. Inv. Map I-654. (In press.)
Hague, Arnold, Iddings, J. P., Weed, W. H., Walcott, C. D., Girty, G. H., Stanton, T. W., and Knowlton, F. H., 1899, Geology of Yellowstone National Park. Part II. Descriptive geology, petrography, and paleontology: U.S. Geol. Survey Mon. 32, pt. 2, 893 p.

Hague, Arnold, Weed, W. H., and Iddings, J. P., 1896, Description of Yellowstone National Park, Wyoming: U.S. Geol. Survey Geol. Atlas, Folio 30.
Ham, C. K., 1952, Geology of Las Trampas Ridge, Berkeley Hills, California: California Div. Mines Spec. Rept. 22, 26 p.
Hardie, B. S., 1966, Carlin gold mine, Lynn district, Nevada, in AIME Pacific Southwest Mineral Industry Conf., Sparks, Nevada, 1965, Papers, Pt. A : Nevada Bur. Mines Rept. 13, pt. A, p. 73-82.
Harris, L. D., 1969, Kingsport Formation and Mascot Dolomite (Lower Ordovician) of east Tennessee, in Papers on stratigraphy and mine geology of the Kingsport and Mascot Formations (Lower Ordovician) of east Tennessee: Tennessee Div. Geology Rept. Inv. 23, p. 1-39.
Harrison, J. E., Reynolds, M. W., Kleinkopf, M. D., and Pattee, E. C., 1969, Mineral resources of the Mission Mountains Primitive Area, Missoula and Lake Counties, Montana: U.S. Geol. Survey Bull. 1261-D, 48 p.
Harwood, D. S., 1969, The Second Lake anticline-a major structure on the northwest limb of the Boundary Mountain anticlinorium, northern New Hamshire, west-central Maine, and adjacent Quebec: U.S. Geol. Survey Prof. Paper 650-D, p. D106-D115.
Hazel, J. E., 1969, Faunal evidence for an unconformity between the Paleocene Brightseat and Aquia Formations (Maryland and Virginia): U.S. Geol. Survey Prof. Paper 650-C, p. C58-C65.
Hewett, D. F., Stone, Jerome, and Steiff, L. R., 1969, The ages of three uranium minerals, Mojave Desert, California: U.S. Geol. Survey Prof. Paper 650-B, p. B84-B88.
Hilpert, L. S., 1969, Uranium resources of northwestern New Mexico: U.S. Geol. Survey Prof. Paper 603, 166 p .
Hosterman, J. W., 1969, White clay deposits near Mount Holly Springs, Cumberland County, Pennsylvania: U.S. Geol. Survey Prof. Paper 650-B, p. B66-B72.
Hotz, P. E., 1969, Relationships between the Dothan and Rogue Formations, southwestern Oregon: U.S. Geol. Survey Prof. Paper 650-D, p. D131D137.
Howard, A. D., 1937, History of the Grand Canyon of the Yellowstone: Geol. Soc. America Spec. Paper 6, 159 p.
Hunt, C. B., 1969, Geologic history of the Colorado River, in The Colorado River region and John Wesley Powell: U.S. Geol. Survey Prof. Paper 669-C, p. 59-130.
Imlay, R. W., 1944, Correlation of the Cretaceous formations of the Greater Antilles, Central America, and Mexico: Geol. Soc. America Bull., v. 55, no. 8, p. 1005-1045.

Izett, G. A., 1968, Geology of the Hot Sulphur Springs quadrangle, Grand County, Colorado: U.S. Geol. Survey Prof. Paper 586, 79 p.
Izett, G. A., Scott, G. R., and Obradovich, J. D., 1969, Oligocene rhyolite in the Denver basin, Colorado: U.S. Geol. Survey Prof. Paper 650-B, p. B12-B14.
James, H. L., 1958, Stratigraphy of pre-Keweenawan rocks in parts of northern Michigan: U.S. Geol. Survey Prof. Paper 314-C, p. 27-44.
Jones, D. L., and MacKevett, E. M., Jr., 1969, Summary of Cretaceous stratigraphy in part of the McCarthy quadrangle, Alaska: U.S. Geol. Survey Bull., 1274-K, 19 p.
Jones, O. T., and Field, R. M., 1929, The resurrection of the Grand Canyon of the Yellowstone: Am. Jour. Sci., 5th ser., v. 17, p. 260-278.
Kottlowski, F. E., and others, 1956, Stratigraphic studies of the San Andres Mountains, New Mexico: New Mexico Bur. Mines and Mineral Resources Mem. 1, 132 p .
Kulp, J. L., and Eckelmann, F. D., 1961, Potassium-argon isotopic ages on micas from the southern Appalachians, in Geochronology of rock systems: New York Acad. Sci. Annals, v. 91, art. 2, p. 408-419.
Kümmel, H. B., and Knapp, G. N., 1904, The stratigraphy of the New Jersey clays: New Jersey Geol. Survey Final Rept. 6, p. 117-209.
Landis, E. R., and Dane, C. H., 1967, Geologic map of Tierra Amarilla quadrangle, Rio Arriba County, New Mexico (with description) : New Mexico Bur. Mines and Mineral Resources Geol. Map 19.
Lanphere, M. A., Irwin, W. P., and Hotz, P. E., 1969, Geochronology of crystalline rocks in the Klamath Mountains, California and Oregon [abs.]: Geol. Soc. America Abs. with Programs for 1969, [v. 1] pt. 3, Cordilleran Sec., p. 34.
Laudon, L. R., and Bowsher, A. L., 1941, Mississippian formations of Sacramento Mountains, New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 25, no. 12, p. 2107-2160.

Lawson, A. C., 1914, Description of the San Francisco district [Tamalpais, San Francisco, Concord, San Mateo, and Haywards quadrangles]: U.S. Geol. Survey Geol. Atlas, Folio 193, 24 p.
Leith, C. K., Lund, R. J., and Leith, Andrew, 1935, Pre-Cambrian rocks of the Lake Superior region: U.S. Geol. Survey Prof. Paper 184, 34 p.
Lewis, R. Q., Nelson, W. H., and Powers, H. A., 1960, Geology of Rat Island, Aleutian Islands, Alaska: U.S. Geol. Survey Bull. 1028-Q, p. 555-562.
Lipman, P. W., Mutschler, F. E., Bryant, Bruce, and Steven, T. A., 1969, Similarity of Cenozoic igneous activity in the San Juan and Elk Mountains, Colorado, and its regional significance: U.S. Geol. Survey Prof. Paper 650-D, p. D33-D42.
Lofgren, B. E., and Klausing, R. L., 1969, Land subsidence due to groundwater withdrawal, Tulare-Wasco area, California: U.S. Geol. Survey Prof. Paper 437-B, 103 p.
Love, J. D., and Keefer, W. R., 1969, Basin Creek uplift and Heart Lake Conglomerate, southern Yellowstone National Park, Wyoming: U.S. Geol. Survey Prof. Paper 650-D, p. D122-D130.
MacNeil, F. S., 1967, Cenozoic pectinids of Alaska, Iceland, and other northern regions: U.S. Geol. Survey Prof. Paper 553, 57 p.

Maher, J. C., and Applin, E. R., 1968, Correlation of subsurface Mesozoic and Cenozoic rocks along the eastern Gulf Coast: Am. Assoc. Petroleum Geologists Cross Sec. Pub. 6, 29 p.
Mandra, Y. T., 1960, Fossil silicoflagellates from California, U.S.A.: InternatGeol. Cong., 21st, Copenhagen, 1960, Rept., pt. 6, p. 77-89.
Miller, R. L., 1969, Pennsylvanian formations of southwest Virginia: U.S. Geol. Survey Bull. 1280, 62 p.
Minard, J. P., 1969, Geology of the Sandy Hook quadrangle in Monmouth County, New Jersey: U.S. Geol. Survey Bull. 1276, 43 p.
Moench, R. H., 1969, The Quimby and Greenvale Cove Formations in western Maine: U.S. Geol. Survey Bull. 1274-L, 17 p.
Monroe, W. H., 1969, Geologic map of the Moca and Isabela quadrangles, Puerto Rico: U.S. Geol. Survey Misc. Geol. Inv. Map I-565.
Moore, G. K., and Brown, D. L., 1969, Stratigraphy of the Fort Pillow test well, Lauderdale County, Tennessee: Tennessee Div. Geology Rept. Inv. 26,1 sheet with text.
Mullens, T. E., 1969, Geologic map of the Causey Dam quadrangle, Weber County, Utah: U.S. Geol. Survey Geol. Quad. Map CQ-790.
Olive, W. W., and Finch, W. I., 1969, Stratigraphic and mineralogic relations and ceramic properties of clay deposits of Eocene age in the Jackson Purchase region, Kentucky, and in adjacent parts of Tennessee: U.S. Geol. Survey Bull. 1282, 35 p.
Olsson, R. K., 1963, Latest Cretaceous and earliest Tertiary stratigraphy of New Jersey Coastal Plain: Am. Assoc. Petroleum Geologists Bull., v. 47, no. 4, p. 643-665.
Oriel, S. S., 1969, Geology of the Fort Hill quadrangle, Lincoln County, Wyoming: U.S. Geol. Survey Prof. Paper 594-M, 40 p.
Owens, J. P., and Sohl, N. F., 1969, Shelf and deltaic paleoenvironments in the Cretaceous-Tertiary formations of the New Jersey Coastal Plain, in .Subitzky, Seymour, ed., Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions: New Brunswick, N.J., Rutgers Univ. Press, p. 235-278.
Peterson, D. W., 1969, Geologic map of the Superior quadrangle, Pinal County, Arizona: U.S. Geol. Survey Geol. Quad. Map GQ-818.
Peterson, Fred, 1969, Four new members of the Upper Cretaceous Straight Cliffs Formation in the southeastern Kaiparowits region, Kane County, Utah: U.S. Geol. Survey Bull. 1274-J, 28 p.
Pierce, W. B., and Nelson, W. H., 1969, Geologic map of the Wapiti quadrangle, Park County, Wyoming: U.S. Geol. Survey Geol. Quad. Map GQ-778.
Poole, F. G., Baars, D. L., Drewes, H., Hayes, P. T., Ketner, K. B., McKee, E. D., Teichert, C., and Williams, J. S., 1967, Devonian of the southwestern United States, in International symposium on the Devonian System, Calgary, Alberta, 1967 [Proc.], V. 1: Calgary, Alberta, Alberta Soc. Petroleum Geologists, p. 879-912.
Powers, H. A., Coats, R. R., and Nelson, W. H., 1960, Geology and submarine physiography of Amchitka Island, Alaska: U.S. Geol. Survey Bull. 1028-P, p. 521-554.
Pratt, W. P., McKnight, E. T., and DeHon, R. A., 1969, Geologic map of the Rico quadrangle, Dolores and Montezuma Counties, Colorado: U.S. Geol. Survey Geol. Quad. Map GQ-797.
Puffett, W. P., 1969, The Reany Creek Formation, Marquette County, Michigan: U.S. Geol. Survey Bull. 1274-F, 25 p.

Radbruch, D. H., 1969, Areal and engineering geology of the Oakland East quadrangle, California: U.S. Geol. Survey Geol. Quad. Map GQ-769.
Rankin, D. W., 1968, Volcanism related to tectonism in the Piscataquis volcanic belt, an island arc of Early Devonian age in north-central Maine, in Zen, E-an, and others, eds., Studies of Appalachian geology-northern and maritime: New York, Interscience Publishers, p. 355-369.
Repenning, C. A., Cooley, M. E., and Akers, J. P., 1969, Stratigraphy of the Chinle and Moenkopi Formations, Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah: U.S. Geol. Survey Prof. Paper 521-B, 34 p.
Robinson, G. D., Klepper, M. R., and Obradovich, J. D., 1968, Overlapping plutonism, volcanism, and tectonism, in the Boulder batholith region, western Montana: Geol. Soc. America Mem. 116, p. 557-611.
Rohn, Oscar, 1900, A reconnaissance of the Chitina River and the Skolai Mountains, Alaska: U.S. Geol. Survey 21st Ann. Rept., pt. 2, p. 393-440.
Ross, D. C., 1969, Descriptive petrography of three large granitic bodies in the Inyo Mountains, California: U.S. Geol. Survey Prof. Paper 601, 47 p.
Sandberg, C. A., and Mapel, W. J., 1967, Devonian of the northern Rocky Mountains and Plains, in International symposium on the Devonian System, Calgary, Alberta, 1967 [Proc.], V. 1: Calgary, Alberta, Alberta Soc. Petroleum Geologists, p. 843-877.
Sando, W. J., Mamet, B. L., and Dutro, J. T., Jr., 1969, Carboniferous megafaunal and microfaunal zonation in the northern Cordillera of the United States: U.S. Geol. Survey Prof. Paper 613-E, 29 p.
Schell, E. M., 1969, Summary of the geology of the Sheep Creek Canyon geological area and vicinity, Daggett County, Utah, in Intermountain Assoc. Petroleum Geologists, Geologic guidebook of the Uinta Mountains, 16th Ann. Field Conf. Sept. 4-6, 1969: Salt Lake City, Intermountain Assoc. Petroleum Geologists, p. 143-152.
Schroeder, M. L., 1969, Geologic map of the Teton Pass quadrangle, Teton County, Wyoming: U.S. Geol. Survey Geol. Quad. Map GQ-793.
Sharps, J. A., 1969, Lateral migrations of the Arkansas River during the Quaternary-Fowler, Colorado, to the Colorado-Kansas State line: U.S. Geol. Survey Prof. Paper 650-C, p. C66-C70.
Shawe, D. R., Simmons, G. C., and Archbold, N. L., 1968, Stratigraphy of Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado: U.S. Geol. Survey Prof. Paper 576-A, 108 p.
Stearns, C. E., 1953, Tertiary geology of the Galisteo-Tongue area, New Mexico: Geol. Soc. America Bull., v. 64, no. 4, p. 459-508.
Steven, T. A., and Schmitt, L. J., 1969, Mineral resources of the San Juan primitive area, Colorado: U.S. Geol. Survey Bull. 1261-F, 187 p.
Stromquist, A. A., and Sundelius, H. W., 1969, Stratigraphy of the Albemarle Group of the Carolina Slate Belt in central North Carolina: U.S. Geol. Survey Bull. 1274-B, 22 p.
Swadley, W. C., 1969, Geologic map of the Union quadrangle, Boone County, Kentucky: U.S. Geol. Survey Geol. Quad. Map GQ-779.
Tailleur, I. L., Brosgé, W. P., and Reiser, H. N., 1967, Palinspastic analysis of Devonian rocks in northwestern Alaska, in International Symposium on the Devionian System, Calgary, Alberta, 1967 [Proc.], V. 2: Calgary, Alberta, Alberta Soc. Petroleum Geologists, p. 1345-1361.

Todd, Ruth, 1953, Foraminifera from the lower Tertiary of Amchitka Island, Aleutian Islands: Cushman Found. Foram. Research Contr., v. 4, pt. 1, no. 70, p. 1-7.
Van Hise, C. R., and Bayley, W. S., 1895, Preliminary report on the Marquette iron-bearing district of Michigan: U.S. Geol. Survey 15th Ann. Rept., p. 477-650.

1897, The Marquette iron-bearing district of Michigan: U.S. Geol. Survey Mon. 28, 608 p.
Van Hise, C. R., and Leith, C. K., 1911, The geology of the Lake Superior region: U.S. Geol. Survey Mon. 52, 641 p.
Wahrhaftig, Clyde, Wolfe, J. A., Leopold, E. B., and Lanphere, M. A., 1969, The coal-bearing group in the Nenana coal field, Alaska: U.S. Geol. Survey Bull. 1274-D, 30 p.
Wallace, C. A., and Crittenden, M. D., Jr., 1969, The stratigraphy, depositional environment and correlation of the Precambrian Uinta Mountain Group, western Uinta Mountains, Utah, in Intermountain Assoc. Petroleum Geologists, Geologic guidebook of the Uinta Mountains, 16th Ann. Field Conf., Sept 4-6, 1969: Salt Lake City, Intermountain Assoc. Petroleum Geologists, p. 127-142.
White, I. C., 1883, The geology of the Susquehanna River region in the six counties of Wyoming, Lackawanna, Luzerne, Columbia, Montour, and Northumberland: Pennsylvania Geol. Survey, 2d, Rept. G7, 464 p.
Whitebread, D. H., and Hoover, D. B., 1968, Preliminary results of geological, geochemical, and geophysical studies in part of the Virginia City quadrangle, Nevada: U.S. Geol. Survey Circ. 596, 20 p.
Williams, N. C., 1953, Late pre-Cambrian and early Paleozoic geology of western Uinta Mountains, Utah: Am. Assoc. Petroleum Geologists Bull., v. 37, no. 12, p. 2734-2742.

Witkind, I. J., 1969, Geology of the Tepee Creek quadrangle, Montana-Wyoming: U.S. Geol. Survey Prof. Paper 609, 101 p.
Wood, G. H., Jr., Trexler, J. P., and Kehn, T. M., 1969, Geology of the westcentral part of the Southern Anthracite field and adjoining areas, Pennsylvania: U.S. Geol. Survey Prof. Paper 602, 150 p.
Yeend, W. E., 1969, Quaternary geology of the Grand and Battlement Mesas area, Colorado: U.S. Geol. Survey Prof. Paper 617, 50 p.

[^0]: ${ }^{1}$ Locality 69LG10: Amchitka Formation, pillow lavas and breccias of Kirilof Point, Kirilof Bay, Amchitka Island; lat $51^{\circ} 24^{\prime} 45^{\prime \prime} \mathrm{N}$., long $179^{\circ} 14^{\prime} 30^{\prime \prime}$ E.
 ${ }^{2}$ Locality WJC70A67 (near M337 original collection made by H. A. Powers) : Gunners Cove Formation, southeast side of Gunners Cove, Rat Island; lat $51^{\circ} 48^{\prime} 40^{\prime \prime} \mathrm{N}$., long $178^{\circ} 19^{\prime} \mathrm{E}$.
 ${ }^{3}$ Locality 69LG6: Banjo Point Formation, south side St. Makarius Bay, Amehitka Island; lat $51^{\circ} 22^{\prime} 40^{\prime \prime}$, long $179^{\circ} 13^{\prime} 10^{\prime \prime} \mathbf{E}$.
 ${ }^{4}$ Locality 69LG7: Banjo Point Formation. 1.6 miles northwest of Mex Island, south coast of Amchitka Island; lat $51^{\circ} 29^{\prime} 38^{\prime \prime}$ N., long $179^{\circ} 01^{\prime} 25^{\prime \prime}$ E.
 ${ }^{5}$ Locality 69LG8: Banjo Joint Formation, Banjo Point, north coast of Amehitka Island; lat $51^{\circ} 28^{\prime} 36^{\prime \prime} \mathrm{N}$., long $179^{\circ} 08^{\prime} 15^{\prime \prime} \mathrm{E}$.
 "Locality 69LG9: Banjo Point Formation, Clam Point (same stratigraphic horizon that contained Chlamys aff. C. washburnei Arnold (Powers, and others, 1960, p. 537), south coast of Amehitka Island; lat $51^{\circ} 24^{\prime} 32^{\prime \prime}$ N., long $179^{\circ} 09^{\prime} 44^{\prime \prime} \mathrm{E}$.

[^1]: 1 Summit Mountain (1,885 feet) is the highest point in the Marquette district.

[^2]: 2 Suicide Hill is the site of an internationally known ski jump of the same name.

